
Major Project

On

 Attribute Based Routing For Query
Processing To Minimize Power Consumption

in Wireless Sensor Networks

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science & Engineering

By

 Patel Bhavik M.
(06MCE023)

Under Guidance of

Dr. S.N. Pradhan

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERCITY OF SCIENCE & TRCHNOLOGY
Ahmedabad 382481

May 2008

This is to certify that Dissertation entitled

Attribute Based Routing For Query Processing
To Minimize Power Consumption in Wireless

Sensor Networks

Submitted by

Bhavik Patel

has been accepted toward fulfillment of the requirement

for the degree of

Master of Technology in Computer Science & Engineering

Dr. S. N. Pradhan Prof. D. J. Patel

Professor Head of The Department

Prof. A. B. Patel

Director, Institute of Technology

CERTIFICATE

This is to certify that the work presented here by Mr. Bhavik Patel entitled

“Attribute Based Routing For Query Processing To Minimize Power Consumption

In Wireless Sensor Networks” has been carried out at Institute Of Technology,
Nirma University during the period September 2007 – May 2008 is the

bonafide record of the research carried out by him under my guidance and

supervision and is up to the standard in respect of the content and presentation

for being referred to the examiner. I further certify that the work done by him is

his original work and has not been submitted for award of any other diploma or

degree.

Dr. S. N. Pradhan
Guide,
Professor, Department of Computer Engineering,
Institute of Technology,
Nirma University, Ahmedabad.

Date:

ACKNOWLEDGEMENTS

The successful completion of a project is generally not an individual effort. It

is an outcome of the cumulative efforts of a number of persons, each having

own importance to the objective. This session is a vote of thanks and

gratitude towards all those persons who have directly or indirectly

contributed in their own specials way towards the completion of this project.

It gives me great pleasure in expressing thanks and profound gratitude to

Dr. S. N. Pradhan, M.Tech In-Charge, Department of Computer Engineering,

Institute of Technology, Nirma University, Ahmedabad for his valuable

guidance and continual encouragement throughout the project. I heartily

thankful him for his time to time suggestions and the clarity of the concepts

of the topic that helped me a lot during the project.

I would like to give my special thanks to Prof. D. J. Patel, Head, Department

of Computer Engineering, Institute of Technology, Nirma University for his

continual kind words of encouragement and motivation throughout the

Project. I am thankful to all faculty members for their special attention and

suggestion towards the project work.

I extend my sincere thanks to my colleagues for their support in my work. I

would like to express my gratitude towards my family members who have

always been my source of inspiration and motivation.

Bhavik Patel
(06MCE023)

iv

ABSTRACT

A wireless sensor Network consists of sensors implanted in an environment

for collecting & transmitting data regarding changes in the environment

based on the requests from controlling device or base station using wireless

communication. WSNs are being used in medical, military and environment

monitoring applications. Query dissemination and gathering of information

towards central node are important communication paradigms across all

application domains.

Power consumption constraints in WSNs require task specific queries to adopt

efficient data centric routing schemes. This project proposes new routing

methods for wireless sensor network queries. These methods draw parallels

from and extend the notion of making the routing protocol aware of the

underlying network semantics for queries. The proposed methods reduce the

communication overhead & power consumption by reducing number of

sensor nodes participating nodes required to participate in certain queries in

order to successfully answer to user specific queries in WSNs.

In most instances of sensor network deployment, the sensory attribute

values (say, light, temperature, etc…) often vary within a certain range of

possible values termed the sensory range or the attribute-value range. It is

possible to design a protocol that takes the query range and the historical

value change information into account to determine if a particular node or set

of nodes should participate in the query? Making this as the base, the work

presented here uses that feature to develop new routing scheme for energy

efficient processing of attribute specific queries. TOSSIM (the TinyOS

Simulator) is used to implement and simulate routing schemes.

v

CONTENTS

Certificate .. II

Acknowledgement .. IV

Abstract... V

Contents ... VI

List Of Figures ... VIII

List Of Abbreviations.. X

Chapter 1 Introduction .. 1

1.1 General ...1

1.2 Motivation ...2

1.3 Related Work ...4

1.4 Outline of Thesis...6

Chapter 2 Literature Survey .. 8

2.1 Wireless Sensor Networks’ Architecture8

2.2 Query Processing In Wireless Sensor Networks11

2.2.1 Introduction...11

2.2.2 Queries ...12

2.2.3 In-Network aggregation 13

2.3 TinyOS..14

2.4 NesC Language ..16

2.5 TOSSIM ..17

2.6 TinyVIZ...19

2.7 TinyDB..21

Chapter 3 Project Scope and Description....................................... 23

3.1 TinyOS Routing Algorithm Analysis23

3.2 TinyOS- WMEWMA Link Quality Estimator26

3.3 Attribute Based Routing for non-constant attributes26

vi

3.4 Dynamic Semantic Routing27

3.5 Project Task Summary ...27

Chapter 4 System Design, Architecture and Implementation......... 28

4.1 Complete Picture of Implementation..........................28

4.2 Project Design..29

4.3 SRT Algorithm Analysis..30

4.4 Range Information Management31

4.5 DSRT Algorithm Complexity Analysis32

4.6 Cycle Prevention Techniques:- Hop Count & Layer.......32

4.7 Layer Acquisition Algorithm......................................33

4.8 The Parent Selection Process....................................33

4.9 Manhattan Distance Based Parent Selection in DSRT....34

4.10 DSRT Parent Selection Process36

4.11 Path Compression...36

4.12 Code Optimization ..36

Chapter 5 Testing Results & Analysis .. 37

5.1 Test Environment Setup ..37

5.2 Evaluation Metrics ..37

5.3 Simple Comparison & Analysis38

5.4 Test Results ..40

5.5 Result Analysis & Conclusion....................................44

Chapter 6 Future Work .. 46

References ..47

vii

 LIST OF FIGURES

Figure No. Caption Page
No.

Figure 1.1 Sensor Network Communication Architecture 2

Figure 2.1 Protocol Stack for WSNs 8

Figure 2.2 A Berkeley MICA Mote 10

Figure 2.3

Hardware Characteristics of a MICA Mote 10

Figure 2.4

Query Template 12

Figure 2.5 Example Aggregate Query 13

Figure 2.6 TinyVIZ Example 20

Figure 2.7 TinyDB Example 22

Figure 3.1 TinyOS Routing Algorithm 24

Figure 3.2 Neighbor Table 25

Figure 3.3 Routing Messages 25

Figure 4.1 System Architecture 28

Figure 4.2 SRT Algorithm 30

Figure 4.3 DSRT Algorithm 31

Figure 4.4 DSRT Routing Message 32

Figure 4.5 Layer Acquisition Algorithm 32

Figure 4.6 A TinyOS Routing Tree 33

Figure 5.1 Light Ranges 38

Figure 5.2 TinyOS/SRT Routing Tree 39

Figure 5.3 DSRT Routing Tree 39

Figure 5.4 Test Case 1 41

viii

Figure 5.5 Test Case 2 41

Figure 5.6 Test Case 3(QR) 42

Figure 5.7 Test Case 3(PR) 42

Figure 5.8 Test Case 4 43

Figure 5.9 Test Case 5(QR) 43

Figure 5.10 Test Case 5(PR) 43

Figure 5.11 Test Case 6 44

Figure 5.12 Test Case 7(QR) 44

Figure 5.13 Test Case 7(PR) 44

ix

 LIST OF ABBREVIATIONS

WSNs Wireless Sensor Networks

TinyOS Tiny Operating System

NesC Network Embedded System C

TOSSIM TinyOS Simulator

TinyVIZ

Tiny Visualization

TinyDB

Tiny Database

SRT Semantic Routing Tree

DSRT Dynamic Semantic Routing Tree

WMEWMA Window Means with Exponentially Weighted
Moving Average

BTM Messages to Build-up Tree

QM Query Messages disseminated to the whole
network

RTT Round Trip Time for a certain query

LRTT Last Response Time

FRTT First Response Time

RP Response Percentage

PR Participation Rate

NT Network Topology

x

1. INTRODUCTION

1.1 General

Future applications of sensor networks are plentiful. In the intelligent building

of the future, sensors are deployed in offices and hallways to measure

temperature, noise, light, and interact with the building control system.

People can pose queries that are answered by the sensor network, such as “Is

Bhavik in his office”, or “Is there an empty seat in the conference room?”

Another application is scientific research. As an example, consider a biologist

who may want to know of the existence of a specific species of birds, and

once such a bird is detected; the bird’s trail should be mapped as accurately

as possible. In this case, the sensor network is used for automatic object

recognition and tracking. More specific applications in different fields will

arise, and instead of deploying preprogrammed sensor networks only for

specific applications, future networks will have sensor nodes with different

physical sensors for a wide variety of application scenarios and different user

groups.

 A sensor network is composed of a large number of sensor nodes that are

densely deployed either inside the phenomenon or very close to it. The

position of sensor nodes need not be engineered or predetermined. This

allows random deployment in inaccessible terrains or disaster relief

operations. On the other hand, this also means that sensor network protocols

and algorithms must possess self-organizing capabilities. Another unique

feature of sensor networks is the cooperative effort of sensor nodes. Sensor

nodes are fitted with an onboard processor. Instead of sending the raw data

to the nodes responsible for the fusion, they use their processing abilities to

locally carry out simple computations and transmit only the required and

partially processed data.

 The above described features ensure a wide range of applications for sensor

networks. Some of the application areas are health, military, and home. In

military, for example, the rapid deployment, self-organization, and fault

tolerance characteristics of sensor networks make them a very promising

sensing technique for military command, control, communications,

computing, intelligence, surveillance, reconnaissance, and targeting systems.

In health, sensor nodes can also be deployed to monitor patients and assist

disabled patients. Some other commercial applications include managing

inventory, monitoring product quality, and monitoring disaster areas.

 Many protocols and algorithms have been proposed for traditional wireless ad

hoc networks, they are not well suited to the unique features and application

requirements of sensor networks. To illustrate this point, the differences

between sensor networks and ad hoc networks are:

• Sensor nodes are prone to failures.

• The topology of a sensor network changes very frequently.

• Sensor nodes are limited in power, computational capacities,

and memory.

 Many researchers are currently engaged in developing schemes that fulfill

these requirements.

Fig 1.1: Sensor Network Communication Architecture [11]

 The sensor nodes are usually scattered in a sensor field as shown in Fig.

1.1. Each of these scattered sensor nodes has the capabilities to collect data

and route data back to the sink. Data are routed back to the sink by a

multihop infrastructure less architecture through the sink as shown in Fig.

1.1. The sink may communicate with the task manager node via Internet or

satellite. The design of the sensor network as described by Fig. 1.1 is

influenced by many factors, including fault tolerance, scalability, production

costs, operating environment, sensor network topology, hardware constraints,

transmission media, and power consumption.

1.2 Motivation

In this thesis a general query processing middleware is proposed and

implemented that operates on top of an existing query-based sensor network.

- 2 -

Approach is motivated by the following design goals. Power consumption

constraints in wireless sensor networks require task-specific queries in

distributed sensor networks to adopt efficient data centric routing techniques.

This project proposes new routing methods tailored for sensor network queries.

These routing schemes draws several parallels from and extends the notion of

making the routing protocol aware of the underlying network semantics for

aggregate queries. Madden et al initially envisioned one such approach [1]. The

proposed methods reduce the communication overhead and power consumption

by reducing the number of sensor nodes required to participate in certain

queries.

In most instances of sensor network deployment, the sensory attribute values

(say, temperature, light, etc…) often vary within a certain range of possible

values termed as the sensory range or the attribute-value range. The queries

themselves on the other hand often request node participation based on a

physical range (e.g. all sensors located east of a particular region). Is it possible

to design a protocol that takes the query range and the historical value change

information into account to determine if a particular node or a set of nodes

should participate in the query response? In this project we describe how the

proposed routing schemes enable us to achieve this objective. We first record a

value range for sensory attributes (say, temperature between some specified

limit). Later, whenever a range query requests information from sensor nodes

whose historical range is beyond that of the query predicates, the nodes will

automatically not participate in the query. The project implements two routing

algorithms in the application layer of TinyOS protocol stacks and compares them

with TinyOS routing algorithm based on testing results of different topologies and

radio-range models, in terms of message overhead flooded into the network.

Second design goal is motivated by the importance of preserving limited

resources, such as energy and bandwidth in battery-powered wireless sensor

networks. Data transmission back to a central node for offline storage, querying,

and data analysis is very expensive for sensor networks of non-trivial size since

communication using the wireless medium consumes a lot of energy. Since

sensor nodes have the ability to perform local computation, part of the

computation can be moved from the clients and pushed into the sensor network,

aggregating records, or eliminating irrelevant records. Compared to traditional

centralized data extraction and analysis, In-network processing can reduce

- 3 -

energy consumption and reduce bandwidth usage by replacing more expensive

communication operations with relatively cheaper computation operations,

extending the lifetime of the sensor network significantly. For example, the ratio

of energy spent in sending one bit versus executing one instruction ranges from

220 to 2900 in different architectures .Thus the second main role of the query

layer is to perform in-network processing. Different applications usually have

different requirements, from accuracy, energy consumption to delay. For

example, a sensor network deployed in a battlefield or rescue region may only

have a short life time but a high degree of dynamics. On the other hand, for a

long-term scientific research project that monitors an environment, power-

efficient execution of long-running queries might be the main concern. More

expensive query processing techniques may shorten processing time and

improve result accuracy, but might use a lot of power. The query layer can

generate query plans with different tradeoffs for different users.

Third & final design goal is to support multi-query optimization and tries to

reduce the number of queries that are sent to the sensor network by making use

of commonalities among queries. This also reduces the number of messages that

must be sent in the network, thus the overall energy consumption can be

reduced and the battery lifetime extended.

1.3 Related Work

Network routing is crucial to the efficiency of data communication and

consequently, has a direct impact on the robustness of the sensor network

application. In fact, there are various routing protocols proposed and deployed

within different network communication layers. Data-centric protocols often

reside in the network layer of the communication stack. This refers to the fact

that sources (sensor nodes) aggregate or consolidate the data they gather before

they relay the data to the destination. By assigning a data related property with

each sensor node, the intended communication can be directed only to a specific

number of sensor nodes. Now briefly describe three such related data-centric

routing protocols.

• Directed Diffusion [2] introduces the concept of interest- a data structure to

describe an event- attributes like event type, time stamp, and location. Every

node keeps an entry of all interests it ever sees and gradient, a data structure to

- 4 -

describe the path of the event occurrence. For example interest could include

data rate and neighbor nodes. Data propagation is determined by interest and

gradient. Suppose node ‘A’ wants to know something about event ‘e’, or say

interest ‘I’. It then floods the interest to all neighbors. Every neighbor/node then

checks their local interest and gradient cache to see if one of their interests

matches the coming one. If so, send the interest to that neighbor which has the

highest data rate in the gradient. Thus, the request of the interest ‘I’ gets

propagated through the network. Directed Diffusion also advocates path

reinforcement, which refers to the sink enforcing the routing path on neighbors

with the highest event data rate so that the sink receives high quality data from

high quality nodes.

• Information directed routing [3] - For task-specific sensor networks (e.g., .a

particular type of monitoring), information directed routing provides downstream

routing (from sink to source) based on a new information model. The model

formulates the measurement of information contribution using Kullback-Leibier

divergence and Bayesian filtering method. For all neighbors, the model can

calculate information distribution based on time and current belief without

knowing the sensor data. Thus routing becomes a shortest path problem where

weight of the edges is communication cost between two sensor nodes; and

communication cost includes additive information contribution of the current

path. Note that since the information contribution is state-dependent, the

concurrent path contribution needs to be taken into account.

• Rumor routing [4] – improves the efficiency of upstream routing (from source

to sink) by eliminating flooding messages. Once an event happens, an agent,

which is a long-live packet, will keep track of the event and travel around the

network. Supposing there is some event happening in the network, instead of all

the nodes witnessing the event and flooding the network with messages, an

agent which is a long-live packet keeps list of all events and travels around the

network to propagate information happening inside the networks.

In [5] the authors have also recognized the necessity of an abstraction layer

between the network and the user. They also propose layered database for

sensor networks. Their focus is on aggregations and joins operations in the

network using chain of flow blocks. However they do not address the problem of

multi-query optimization, i.e., reconfiguring the query plan of running queries. It

is not clear how multiple concurrent queries are handled. In principle it might be

- 5 -

possible to reuse results obtained by flow blocks for other queries; however it is

unknown how to convert between sampling rates of different queries.

The description given in [6] is restricted to user queries having the same result

frequency. In the report the authors present a multi query optimization algorithm

for aggregate queries with the main aim in the reduction of the energy

consumption. They approach query optimization by a linear reduction technique.

Their query manager does not immediately send new queries into the network as

they arrive; instead they are gathered and then dispatched together. Then data

is captured for several epochs until a new set of user queries is ready to be

dispatched. Thus the execution plan needs to be recomputed and propagated

anew for every group of queries. The query optimizer described in this thesis

adjusts these management cost by choosing between a “universal” or a specific

query.

1.4 Outline of thesis

This thesis is organized as follows:

• Chapter 2 provides the brief introduction about wireless sensor node’s

architecture including with details of protocol stack implemented for sensor

or sink nodes. It also includes the brief details about query processing in

wireless sensor networks and further enhancements that must be taken

into account for research in that direction. It also describes the details

about TinyOS (the embedded Operating System specially designed for

Sensor nodes), NesC (Network Embedded System C – a programming

language for embedded sensor nodes), TOSISM (TinyOS SIMulator),

TinyVIZ (Visualization Plug-in for TOSSIM especially for sensor networks)

and TinyDB (RDBMS for Senor Networks).

• Chapter 3 explains the working of TinyOS routing algorithm and also

analyzes the complexity of the algorithm. It also introduces the schemes

to achieve efficient routing in wireless sensor networks for attribute

specific queries.

• Chapter 4 contains the details about the implementation of the routing

scheme including variants like range management, layer acquisition,

parent selection process techniques.

- 6 -

• Chapter 5 presents the results for different test cases in TOSSIM based

simulation. It also concludes based on the results achieved for the

implementation of the project.

• Chapter 6 provides possible directions for relevant future research.

- 7 -

2. LITERATURE SURVEY

2.1 Wireless Sensor Networks’ Architecture

In recent years, rapid advances in wireless networking, micro-electronic devices,

and embedded systems have enabled the development of low-cost, low-power,

small sized sensor nodes. The sensor technology is suitable for a wide range of

applications ranging from environmental control, warehouse inventory, and

health care to military environments, establishing ubiquitous wireless sensor

networks that rapidly evolve human life.

A sensor network is composed of a large number of sensor nodes with sensing,

computing, and communicating capabilities. These nodes are usually powered by

battery and operate in an unattended fashion to collect and process information.

The protocol stack used by the sink and sensor nodes is given in Fig. 2.1.This

protocol stack combines power and routing awareness, integrates data with

networking protocols, communicates power efficiently through the wireless

medium, and promotes cooperative efforts of sensor nodes. The protocol stack

consists of the physical layer, data link layer, network layer, transport layer,

application layer, power management plane, mobility management plane, and

task management plane.

Figure 2.1: Protocol stack for WSNs [11]

The physical layer addresses the needs of simple but robust modulation,

transmission, and receiving techniques. Since the environment is noisy and

- 8 -

sensor nodes can be mobile, the medium access control (MAC) protocol must be

power-aware and able to minimize collision with neighbors’ broadcasts. The

network layer takes care of routing the data supplied by the transport layer. The

transport layer helps to maintain the flow of data if the sensor networks

application requires it. Depending on the sensing tasks, different types of

application software can be built and used on the application layer.

In addition, the power, mobility, and task management planes monitor the

power, movement, and task distribution among the sensor nodes. These planes

sensor node may turn off its receiver after receiving a message

, computation, and

help the sensor nodes coordinate the sensing task and lower overall power

consumption.

The power management plane manages how a sensor node uses its power. For

example, the

from one of its neighbors. This is to avoid getting duplicated messages. Also,

when the power level of the sensor node is low, the sensor node broadcasts to its

neighbors that it is low in power and cannot participate in routing messages. The

remaining power is reserved for sensing. The mobility management plane detects

and registers the movement of sensor nodes, so a route back to the user is

always maintained, and the sensor nodes can keep track of who their neighbor

sensor nodes are. By knowing who the neighbor sensor nodes are, the sensor

nodes can balance their power and task usage. The task management plane

balances and schedules the sensing tasks given to a specific region. Not all

sensor nodes in that region are required to perform the sensing task at the same

time. As a result, some sensor nodes perform the task more than others

depending on their power level. These management planes are needed so that

sensor nodes can work together in a power efficient way, route data in a mobile

sensor network, and share resources between sensor nodes.

Recent developments in hardware have enabled the widespread deployment of

sensor networks consisting of small sensor nodes with sensing

communication capabilities. Already today networked sensors measuring only a

few cubic inches can be purchased commercially, and Moore’s law tells that it will

be soon seen components that measure 1/4th of a cubic inch, running an

embedded version of a standard operating system; such sensor nodes have the

following resource constraints:

- 9 -

• Communication: The wireless network connecting the sensor nodes provides

usually only a very limited quality of service, has latency with high variance,

limited bandwidth, and frequently drops packets.

• Power consumption: Sensor nodes have limited supply of energy, and thus

energy conservation needs to be of the main system design considerations of any

sensor network application. For example, the MICA motes are powered by two

AA batteries, which provide about 2000mAh, powering the mote for

approximately one year in the idle state and for one week under full load.

• Computation: Sensor nodes have limited computing power and memory

sizes. This restricts the types of data processing algorithms on a sensor node,

and it restricts the sizes of intermediate results that can be stored on the sensor

nodes.

• Uncertainty in sensor readings: Signals detected at physical sensors have

inherent uncertainty, and they may contain noise from the environment. Sensor

malfunction might generate inaccurate data, and unfortunate sensor placement

(such as a temperature sensor directly next to the (air conditioner) might bias

individual readings.

Figure 2.2 A Berkeley MICA Mote [A]

Processor 4Mhz, 8bit MCU (ATMEL)
Storage 512KB
Radio (RF Monolithic) 916Mhz Radio
Range 100 FT
Data Rate 40 Kbits/sec
Transmit Current 12mA
Receive Current 1.8mA
Sleep Current 5 uA

Fig.2.3. Hardware Characteristics of a MICA Mote [A]

- 10 -

Future applications of sensor networks are plentiful. In the intelligent building of

the future, sensors are deployed in offices and hallways to measure temperature,

noise, light, and interact with the building control system. People can pose

queries that are answered by the sensor network. Another application is scientific

research. More specific applications in different fields will arise, and instead of

deploying preprogrammed sensor networks only for specific applications, future

networks will have sensor nodes with different physical sensors for a wide variety

of application scenarios and different user groups.

2.2 QUERY PROCESSING IN WIRELESS SENSOR NETWORKS [7]

2.2.1 Introduction

Given the view of a sensor network as a huge distributed database system, it

would like to adapt existing techniques from distributed and heterogeneous

database systems for a sensor network environment. However, there are major

differences between sensor networks and traditional distributed and

heterogeneous database systems.

First, sensor networks have communication and computation constraints that are

very different from regular desktop computers or dedicated equipment in data

centers, and query processing has to be aware of these constraints. One way of

thinking about such constraints is the analogous interaction with the file systems

in traditional database systems, Database systems bypass the file system buffer

to have direct control over the disk. For a sensor network database system, the

analogous counterpart is the networking layer, and for intelligent resource

management we have to ensure that the query processing layer is tightly

integrated with the networking layer. Second, the notion of the cost of a query

plan has changed, as the critical resource in a sensor network is power, and

query optimization and query processing have to be adapted to take this

optimization criterion into account.

While developing techniques that address these issues, it must not forget that

scalability of our techniques with the size of the network, the data volume, and

the query workload is an intrinsic consideration to any design decision.

- 11 -

2.2.2 Queries

SELECT {attributes aggregates}

FROM {Sensor data S}

WHERE {predicate}

GROUP BY {attributes}

HAVING {predicate}

DURATION time interval

EVERY time span e

[Fig 2.4 Query Template][C]

A sensor node has one or more sensors attached that are connected to the

physical world. Example sensors are temperature sensors, light sensors, or PIR

sensors that can measure the occurrence of events (such as the appearance of

an object) in their vicinity. Thus each sensor is a separate data source that

generates records with several fields such as the id and location of the sensor

that generated the reading, a time stamp, the sensor type, and the value of the

reading. Records of the same sensor type from different nodes have the same

schema, and collectively form a distributed table.

The sensor network can thus be considered a large distributed database system

consisting of multiple tables of different types of sensors. Sensor data might

contain noise, and it is often possible to obtain more accurate results by fusing

data from several sensors. Summaries or aggregates of raw sensor data are thus

more useful to sensor applications than individual sensor readings. For example,

when monitoring the concentration of a dangerous chemical in an area, one

possible query is to measure the average value of all sensor readings in that

region, and report whenever it is higher than some predefined threshold.

It believes that declarative queries are the preferred way of interacting with a

sensor network. Rather than deploying application-specific procedural code

expressed in a Turing-complete programming language, It believes that sensor

network applications are naturally data-driven, and thus it can abstract the

functionality of a large class of applications into a common interface of

expressive queries. It considers queries of the simple form shown in query

template, and we leave the design of a suitable query language for sensor

networks to future work. It also extends the template to support nested queries,

where the basic query block shown in Figure 3 can appear within the WHERE or

HAVING clause of another query block. Query template has the obvious

- 12 -

semantics: The SELECT clause specifies attributes and aggregates from sensor

records, the FROM clause specifies the distributed relation of sensor type, the

WHERE clause filters sensor records by a predicate, the GROUP BY clause

classifies sensor records into different partitions according to some attributes,

and the HAVING clause eliminates groups by a predicate. Note that it is possible

to have join queries by specifying several relations in the FROM clause.

SELECT AVG (R.concentration)

FROM ChemicalSensor R

WHERE R.loc IN region

HAVING AVG (R.concentration) > T

DURATION (now, now+3600)

EVERY 10

[Fig 2.5 Example Aggregate Query][1]

One difference between this query template and SQL is that our query template

has additional support for long running, periodic queries. Since many sensor

applications are interested in monitoring an environment over a longer time-

period, long-running queries that periodically produce answers about the state of

the network are especially important. The DURATION clause specifies the life

time of a query and the EVERY clause determines the rate of query answers: It

computes a query answer every e seconds. The process of computing a query

answer is also known as a round.

2.2.3 In-Network Aggregation [1]

In Wireless Sensor Networks (WSNs), energy efficient query processing is

typically performed by in-network query processing. In in-network query

processing, a query gradually gets resolved within the network as sensors

provide their sensed data. However, in-network query processing demands (i)

the dissemination of detailed query information to all sensors, and (ii) sufficient

query processing power at all sensors. These limit the application of in-network

processing to certain types of queries, such as average or maximum value

computation, only.

A query plan for a simple aggregate query can be divided into two components.

Since queries require data from spatially distributed sensors, it needs to deliver

records from a set of distributed nodes to a central destination node for

aggregation by setting up suitable communication structures for delivery of

- 13 -

sensor records within the network. This part of a query plan is its communication

component, and the destination node is the leader of the aggregation. In

addition, the query plan has a computation component that computes the

aggregate at the leader and potentially computes already partial aggregates at

intermediate nodes. Recall that power is one of the main design desiderata when

devising query processing strategies for sensor networks. If it coordinating both

the computation and communication component of a query plan, it can compute

partial aggregates at intermediate nodes as long as they are well-synchronized;

this reduces the number of messages sent and thus saves power. Consider here

three different techniques on how to integrate computation with communication:

Direct delivery: This is the simplest scheme. Each source sensor node sends a

data packet consisting of a record towards the leader, and the multi-hop ad-hoc

routing protocol will deliver the packet to the leader. Computation will only

happen at the leader after all the records have been received.

Packet merging: In wireless communication, it is much more expensive to send

multiple smaller packets instead of one larger packet, considering the cost of

reserving the channel and the payload of packet headers. Since the size of a

sensor record is usually small and many sensor nodes in a small region may send

packets simultaneously to process the answer for a round of a query, it can

merge several records into a larger packet, and only pay the packet overhead

once per group of records. For exact query answers with holistic aggregate

operators like Median, packet merging is the only way to reduce the number of

bytes transmitted.

Partial aggregation: For distributive and algebraic aggregate operators, it can

incrementally maintain the aggregate in constant space, and thus push partial

computation of the aggregate from the leader node to intermediate nodes. Each

intermediate sensor node will compute partial results that contain sufficient

statistics to compute the final result.

2.3. TinyOS

The major bottleneck of the motes themselves is the power consumption and the

low computational power. TinyOS has been designed to meet the requirements

of sensor networks. Sensor values have to be processed in real time to avoid

data loss. As the hardware contains physical parallelism, the OS must provide

some kind of multithreaded architecture.

- 14 -

Even systems that call themselves real time need some hundreds of processor

cycles to perform a context switch. On a small microprocessor like the Atmel

AVR, used in both mica-family motes and the BTnode, this is unacceptable and

would lead to data loss. TinyOS does not use a stack-based threaded

architecture but an event based architecture. This allows it to have only one

stack and a single execution context. In case a hardware component wants to

deliver data, it calls an event that will preempt running tasks.

TinyOS [A] is based on nesC, a C dialect that is imperative at low level and

declarative at high level. Applications are component based, code is encapsulated

in components that are defined by the interfaces they provide and by those they

can consume. Interfaces are bidirectional, they do not only define the commands

that have to be implemented by the lower level that implements the interface,

but also events that have to be implemented by the higher level that uses the

component implementing the interface. The component based model decouples

API and implementation and hides the specific properties of an implementation.

At compile time, implementations can be substituted by different

implementation, either in hardware or in software, only the wiring has to be

changed. This makes TinyOS very flexible.

A core feature of TinyOS is the scheduling. TinyOS uses a simple queue with

length 7 and a two level scheduling. Events have high priority and can preempt

tasks, which have low priority. To avoid blocking scenarios, events and

commands are expected to do only state transmissions and leave complex

computations to tasks, which can be preempted if necessary. Hardware

interrupts thrown by timers or by the radio module map to first level events. The

paradigm for network transmissions in TinyOS is active messaging. Messages

contain a handler address and on arrival this handler is called. Each node is

expected to run the same handler code and can either redirect the message to a

neighbor, if it is not the receiver, or start some local events as reaction to the

message. Transmissions are best effort, if more is needed, it is up to the

application to implement more sophisticated features like flow control or

encryption. To send packages over the network, TinyOS uses multi-hop routing

instead of point-to-point connections to save transmission power. Route

discovery is done by 2-hop broadcast and topology discovery is based on

shortest path from each node to the base station. A typical application for TinyOS

is TinyDB, a RDBS interface for TinyOS sensor networks. In general, SQL

- 15 -

commands are transmitted from the base station down the tree to every node.

Intermediate nodes collect the data from the children and transmit the

aggregated data to the root node.

Sensor networks become more and more popular, in the meantime, global

players like Intel are pushing the technology. TinyOS is designed to meet the

requirements of small devices with small resources. The major bottleneck is the

power consumption of the radio module so better routing algorithms could

improve the system significantly. Static resource allocation is a direct result of

the small resources but with computation power of current motes, dynamic

resource allocation could be afforded. Additionally, systems to change the node’s

code at runtime might broaden the room for applications as currently nodes have

to be collected and manually reprogrammed to change their general behavior.

2.4 NesC Language

NesC is a programming language for networked embedded systems that

represent a new design space for application developers. An example of a

networked embedded system is a sensor network, which consists of (potentially)

thousands of tiny, low power “motes,” each of which execute concurrent,

reactive programs that must operate with severe memory and power constraints.

NesC’s contribution is to support the special needs of this domain by exposing a

programming model that incorporates event-driven execution, a flexible

concurrency model, and component-oriented application design. Restrictions on

the programming model allow the nesC compiler to perform whole-program

analysis, including data-race detection (which improves reliability) and

aggressive function inlining (which reduces resource consumption).

NesC has been used to implement TinyOS, a small operating system for sensor

networks, as well as several significant sensor applications. NesC and TinyOS

have been adopted by a large number of sensor network research groups, it is

effective at supporting the complex, concurrent programming style demanded by

this new class of deeply networked systems.[D].

The primary concepts in nesC’s design are first, nesC applications are built out of

components with well-defined, bidirectional interfaces. Second, nesC defines a

concurrency model, based on tasks and events, and detects data races at

compile time.

A few basic principles underlie nesC’s design:

- 16 -

NesC is an extension of C: C produces efficient code for all the target

microcontrollers that are likely to be used in sensor networks. C provides all the

low-level features necessary for accessing hardware, and interaction with

existing C code is simplified. Last but not least, many programmers are familiar

with C.

C does have significant disadvantages: it provides little help in writing safe code

or in structuring applications. NesC addresses safety through reduced expressive

power and structure through components.

None of the new features in nesC are tied to C: the same ideas could be added to

other imperative programming languages.

Whole-program analysis: nesC programs are subject to whole program

analysis (for safety) and optimization (for performance). Therefore we do not

consider separate compilation in nesC’s design. The limited program size on

motes makes this approach tractable.

NesC is a “static language”: There is no dynamic memory allocation and the

call-graph is fully known at compile-time. These restrictions make whole program

analysis and optimization significantly simpler and more accurate. They sound

more onerous than they are in practice: nesC’s component model and

parameterized interfaces eliminate many needs for dynamic memory allocation

and dynamic dispatch. We have, so far, implemented one optimization and one

analysis: a simple whole-program inliner and a data-race detector.

NesC supports and reflects TinyOS’s design: nesC is based on the concept of

components, and directly supports TinyOS’s event based concurrency model.

Additionally, nesC explicitly addresses the issue of concurrent access to shared

data. In practice, nesC resolved many ambiguities in the TinyOS concepts of

components and concurrency, and TinyOS evolved to the nesC versions.

2.5. TOSSIM [A]:

TOSSIM is a discrete event simulator for TinyOS sensor networks. Instead of

compiling a TinyOS application for a mote, users can compile it into the TOSSIM

framework, which runs on a PC. This allows users to debug, test, and analyze

algorithms in a controlled and repeatable environment. As TOSSIM runs on a PC,

users can examine their TinyOS code using debuggers and other development

tools.

- 17 -

TOSSIM’s primary goal is to provide a high fidelity simulation of TinyOS

applications. For this reason, it focuses on simulating TinyOS and its execution,

rather than simulating the real world. While TOSSIM can be used to understand

the causes of behavior observed in the real world, it does not capture all of them,

and should not be used for absolute evaluations. TOSSIM is not always the right

simulation solution; like any simulation, it makes several assumptions, focusing

on making some behaviors accurate while simplifying others. One of the most

common questions about TOSSIM is whether it can “simulate X” or whether it

“has an accurate X model.” In hope of answering most of such questions, here is

a brief summary of its characteristics:

• Fidelity: By default, TOSSIM captures TinyOS’ behavior at a very low level. It

simulates the network at the bit level, simulates each individual ADC capture,

and every interrupt in the system.

• Time: While TOSSIM precisely times interrupts (allowing things like bit-level

radio simulation), it does not model execution time. From TOSSIM’s perspective,

a piece of code runs instantaneously. Time is kept at a 4MHz granularity (the

CPU clock rate of the mica platforms). This also means that spin locks or task

spin locks will never exit: as the code runs instantaneously, the event that would

allow the spin to stop will not occur until the code completes (never).

• Models: TOSSIM itself does not model the real world. Instead, it provides

abstractions of certain real-world phenomena (such as bit error). With tools

outside the simulation itself, users can then manipulate these abstractions to

implement whatever models they want to use. By making complex models

exterior to the simulation, TOSSIM remains flexible to the needs of many users

without trying to establish what is “correct.” Additionally, it keeps the simulation

simple and efficient.

– Radio: TOSSIM does not model radio propagation; instead, it provides a radio

abstraction of directed independent bit errors between two nodes. An external

program can provide a desired radio model and map it to these bit errors. Having

directed bit error rates means that asymmetric links can be easily modeled.

Independent bit errors mean longer packets have a higher probability of

corruption, and each packet’s loss probability is independent.

– Power/Energy: TOSSIM does not model power draw or energy consumption.

However, it is very simple to add annotations to components that consume

power to provide information on when their power states change (e.g., turned on

- 18 -

or off). After a simulation is run, a user can apply a energy or power model to

these transitions, calculating overall energy consumption. Because TOSSIM does

not model CPU execution time, it cannot easily provide accurate information for

calculating CPU energy consumption.

• Building: TOSSIM builds directly from TinyOS code. To simulate a protocol or

system, you must write a TinyOS implementation of it. On one hand, this is often

more difficult than an abstract simulation; on the other, it means you can then

take your implementation and run it on actual motes.

• Imperfections: Although TOSSIM captures TinyOS behavior at a very low

level, it makes several simplifying assumptions. This means that it is very

possible that code which runs in a simulation might not run on a real mote. For

example, in TOSSIM interrupts are non-preemptive (a result of being a discrete

event simulator). On a real mote, an interrupt can fire while other code is

running. If pre-emption can put a mote in an unrecoverable state, then

simulated motes will run without mishap while real-world motes may fail. Also, if

interrupt handlers run too long, a real-world mote may crash; as code in TOSSIM

runs instantaneously, no problems will appear in simulation.

• Networking: Currently, TOSSIM simulates the 40Kbit RFM mica networking

stack, including the MAC, encoding, timing, and synchronous acknowledgements.

It does not simulate the mica2 ChipCon CC1000 stack.

• Authority: Initial experience from real-world deployments has shown that

TinyOS networks have very complex and highly variable behavior. While TOSSIM

is useful to get a sense of how algorithms perform in comparison to one another,

TOSSIM results shouldn’t be considered authoritative. For example, TOSSIM can

tell you that one algorithm behaves better than another under high loss, but the

question remains as to whether the specified loss scenario has any basis in the

real world. TOSSIM should not be considered an end-point of evaluation; instead,

it is a system that allows the user to separate out environmental noise to better

understand algorithms.

2.6. Tinyviz [A]:

TinyViz is a Java visualization and actuation environment for TOSSIM. The main

TinyViz class is a jar file, tools/java/net/tinyos/sim/tinyviz.jar. TinyViz can be

attached to a running simulation. Also, TOSSIM can be made to wait for TinyViz

to connect before it starts up, with the -gui flag. This allows users to be sure that

- 19 -

TinyViz captures all of the events in a given simulation. TinyViz is not actually a

visualizer; instead, it is a framework in which plugins can provide desired

functionality. By itself, TinyViz does little besides draw motes and their LEDs.

However, it comes with a few example plugins, such as one that visualizes

network traffic.

Figure 2.6 shows a screenshot of the TinyViz tool. The left window contains the

simulation visualization, showing 16 motes communicating in an ad-hoc network.

The right window is the plug-in window; each plug-in is a tab pane, with

configuration controls and data. The second element on the top bar is the Plug-in

menu, for activating or de-activating individual plug-in. Inactive plug-in have

their tab panes grayed out. The third element is the layout menu, which allows

you to arrange motes in specific topologies, as well as save or restore topologies.

TinyViz can use physical topologies to generate network topologies by sending

messages to TOSSIM that configure network connectivity and the loss rate of

individual links.

[Figure 2.6: TinyViz connected to TOSSIM running an object tracking
application. The right panel shows sent radio packets, the left panel exhibits
radio connectivity for mote 15 and network traffic. The green arrows and
corresponding labels represent link probabilities for mote 15, and the magenta
arrows indicate packet transmission.]

- 20 -

The right side of the top bar has three buttons and a slider. TinyViz can slow a

simulation by introducing delays when it handles events from TOSSIM. The slider

configures how long delays are. The On/Off button turns selected motes on and

off; this can be used to reboot a network, or dynamically change its members.

The button to the right of the slider starts and stops a simulation; unlike the

delays, which are for short, fixed periods, this button can be used to pause a

simulation for arbitrary periods. The final button, on the far right, enables and

disables a grid in the visualization area. The small text bar on the bottom of the

right panel displays whether the simulation is running or paused.

The TinyViz engine uses an event-driven model, which allows easy mapping

between TinyOS’ event based execution and event-driven GUIs. By itself, the

application does very little; drop-in plugins provide user functionality. TinyViz has

an event bus, which reads events from a simulation and publishes them to all

active plugins.

2.7. TinyDB [A]:

TinyDB GUI is a query processing system to gather, organize, display and

analyze from TinyOS sensors. TinyDB provides simple SQL-like interface to

specify data you want to extract. TinyDB is a centralized application which only

resides on base station/PC, thus it’s more like a GUI interface and written in

Java.

- 21 -

Figure 2.7: sample look of TinyDB interface

TinyDB application is nesC coded and programmed on top of TinyOS system for

each node.

- 22 -

3. PROJECT SCOPE AND DESCRIPTION

TinyOS is an open source embedded operating system designed specially for

sensor networks. This compact operating system includes memory management,

device management (radio), and task scheduling and protocol management for

communication layers. Every mote has TinyOS as small as 200K programmed

into its ROM and runs the application on top of it. TinyOS implements network

routing on application, data link and physical layers and can be ported to

different platforms and sensor boards, such as mica2, mica and PC.

The project will modify and enhance routing on application layer. The

communication stack is like:

Application->Data Link (MAC) ->Physical

3.1 TinyOS routing algorithm analysis

As the nature of wireless sensor networks, in which the sensor node can only

hear and communicate with other peers, called “neighbors”, within its signal

broadcasting distance, the routing tree algorithm is decentralized. Every node

selects or is selected to forward messages between neighbors. In this fashion

messages get propagated over the network.

- 23 -

At each node, X:

Initialization

Start timer for TimerTask

Start timer for SendRouteTask

If TimerTask fired

 If neighbor table does not exist

 Create a new one now

 Else update neighbor table

Choose a parent

If SendRouteTask fired

 If neighbor table does not exist

 Return

 Sending broadcasting routing messages (index, parent, cost, hop- count)

If Receive routing messages

 Update the neighbor table

If Intercept Snoop messages

 Update neighbor table

Forever

Figure 3.1 The TinyOS Routing Algorithm

• Message Overhead

As it can be seen from the algorithm described in Figure 3.1, the timer for

each node goes off after a time period and a broadcast message is sent

anyway. Suppose timers for all nodes are not synchronized and there are N

nodes. There will be cases in which the child node’s timer goes off first and

sends out useless messages till their parents notify all the other children.

The best case scenario is when the parent always sends routing message

ahead of its children resulting in O (N) broadcast messages being sent out

to create a neighbor table for each node and another N broadcast message

sent out to fill up the neighbor information. In this case it’s hard to say the

balanced tree structure has less overhead than skewed ones since the

messages overhead is determined by the sequence of timers to be fired.

• Time Complexity

- 24 -

Every time it creates or updates a neighbor table, it has to scan the entire

table once, and every node has to scan its own neighbor table at least twice

(create and update). If the neighbor table size is M (upper limit of TinyOS

table size is 16), then the total time spent on the routing tree algorithm is O

(2M2).

• Space Complexity

The neighbor table structure looks like the following:

typedef struct TableEntry {

uint16_t id; // Node Address

uint16_t parent;

uint16_t cost;

uint8_t childLiveliness;

uint16_t missed;

uint16_t received;

int16_t lastSeqno;

uint8_t flags;

uint8_t liveliness;

uint8_t hop;

uint8_t receiveEst;

uint8_t sendEst;

} TableEntry

Figure 3.2 Neighbor Table

The multihop routing packet structure looks like:

typedef struct MultihopMsg {

uint16_t sourceaddr;

uint16_t originaddr;

int16_t seqno;

uint8_t hopcount;

/* offset changes */

uint8_t data [(TOSH_DATA_LENGTH - 7)];

} __attribute__ ((packed)) TOS_MHopMsg;

Figure 3.3 Routing Message

- 25 -

3.2 TinyOS: WMEWMA-link quality estimator

TinyOS introduces a new link quality estimator- window means with

EWMA(exponentially weighted moving average), also termed as WMEWMA.

WMEWMA(t, a) = (Packets Received in t)/max(Packets Expected in t,

Packets Received in t)

Where t is the time window represented in number of message opportunities and

a Є [0, 1] controls the history of the estimator. WMEWMA computes an average

success rate over a time period and smoothens the average with a EWMA.[9]

Although the literature gives out the complex formula, at the application layer,

each node snoops on its neighbor messages (messages which are not addressed

to it but it can hear/receive them, since all the messages are broadcast into

networks) and keeps counting on received and send messages. By observing

messages of success and loss, each node has the numerical estimation of its link

quality and passes it on to its neighbors.

3.3 Attribute Based Routing for non-constant attributes

Implementation

Madden’s proposed idea for semantic routing for constant attributes such as

location or sensor ID is a simple power-conservation scheme. It’s easy to

implement with low maintenance costs. Considering the real deployment

environment, in most sample periods, sensor readings such as temperature and

sound are not likely to widely fluctuate. Instead they mostly deviate within a

fixed or constant range. As an example, the situation exists for the light value in

the daytime. So, if a user query requests for nodes with attribute data far below

range, the sensor nodes not followed in that range ideally would not need to

participate in/respond to such a query. Here the proposed scheme implements

this idea (let’s call it Semantic Routing Tree (SRT)) for non-constant attributes.

Current TinyOS application layer routing is primarily based on signal strength.

SRT reuses the TinyOS tree structure and appends the historical reading-range

- 26 -

to each node in the routing layer so that query dissemination efficiently routes

requests to only appropriate regions. SRT needs periodic maintenance since the

sensory attribute’s range has to be updated periodically.

3.4 Dynamic Semantic Routing Implementation

Let’s now discuss the other contribution proposed in this project. Unlike SRT,

which routes the message to most stable nodes, Dynamic Semantic Routing Tree

(DSRT) extends the idea of routing primarily based on the historical readings.

The purpose of DSRT is to cluster motes area into semantic-close groups so that

the query only reaches to affected groups; and maximally save communication

and computation cost for non-affected nodes. Intuitively DSRT is not as stable as

SRT since it excludes the signal factor.

3.5 Project Task Summary

• TOSSIM modification

 Source file name: adc_model.c

• TinyDB GUI modification

 Source file name: ResultFrame.java

• SRT / DSRT implementation on TinyOS application layer

 Source file names: MultiHopWMEWMA.nc

 MultiHop.h

 RouteControl.nc

• Query dissemination modification in TinyDB application

 Source file names: TupleRouterM.nc

 MultiHopEngineM.nc

- 27 -

4.SYSTEM DESIGN,ARCHITECTURE AND IMPLEMENTATON

4.1 Complete Picture of implementation

Routing

AM

ADC

Tuple
Router

Routing

TinyVIZ

Messag
es

Messages

TinyDB GUI

TOSSIM

Figure 4.1 System Architecture [A]

- 28 -

Component Descriptions

• TinyOS Routing: it’s a major module in charge of routings at all

communication layers

• TinyOS AM: the module managing radio transmission

• TinyOS ADC: analog-to-digital reading module.

• TinyDB Tuple Router: the module translating incoming query messages.

• TinyDB Routing: this module contains query dissemination and

application layer routings.

4.2. Project Design

The implementation of DSRT is based on TinyOS/TinyDB code by TinyOS group.

The basic process is broken down into three components:

• History Reading Collector. History reading collector gathers up all reading

information such as temperature, light and sound for a certain period of time and

extract the range value (highest and lowest) for each attribute. This range value

will be passed on to the routing component for clustering. As for real

implementation in the TOSSIM, history reading range is manually put into a

configuration file, MoteSet. Every time TOSSIM boots up, it reads the file first

and generates random ADC readings within given ranges. TinyOS routing module

also reads the range information into memory.

• New Routing Algorithms. The original TinyOS routing algorithm (network

layer) is an ad-hoc routing based on link quality, the most reliable nodes are

chosen to be the parents to relay messages for other peers. Two new routing

algorithms (SRT and DSRT) are implemented. The later chapter will elaborate on

both algorithms.

- 29 -

• Query Dissemination based on new routing tree. In TinyOS/TinyDB, a

query request issued from base station gets propagated to all sensor nodes by

broadcasting: every node hears the request simply relays query messages to its

neighbors. The new query dissemination will selectively relay query requests to

only related peers based on the routing tree.

At each node, X:

Initialization

Start timer for TimerTask

Start timer for SendRouteTask

If TimerTask fired

If neighbor table does not exist

Create a new one now

Else update neighbor table

Choose a parent (update node range)

If SendRouteTask fired

If neighbor table does not exist

Return

Sending broadcasting routing messages (index, parent, cost, hop- count, range)

If Receive routing messages

Update the neighbor table (include range information)

If Intercept Snoop messages

Update neighbor table

Forever

Figure 4.2: SRT Algorithm

4.3 SRT Algorithm Analysis

As shown in the diagram above (Figure 4.2), SRT differs with TinyOS Routing in

that it adds in the range information into multihop messages. As a result, space

complexity is increased by 2 more bytes. Neighbor table size is increased by 2

bytes as well. Other than that SRT has the same message overhead and time

complexity as TinyOS Routing.

- 30 -

4.4 Range Information Management

In order to efficiently disseminate query requests, each node dynamically merges

its range with its children’s ranges. Thus the range of a sensor node overlaps

information of sub-tree under it. A special case is BS’s range reflects the history

range of the whole sensor network, which blocks the unrelated query even

before the query is sent out to the network. When tree structure changes, all

range information is adjusted - either being removed or merged.

At each node, X:

Initialization

Start timer for TimerTask

Start timer for SendRouteTask

If TimerTask fired

If neighbor table does not exist

Create a new one now

Else update neighbor table

Calculate Manhattan distance for every neighbor

Choose a parent (update node range)

Path compression

If SendRouteTask fired

If neighbor table does not exist

Return

Sending broadcasting routing messages (index, parent, cost, hop- count, range,

layer)

If Receive routing messages

Identify which ripple layer I’m sitting on

Update the neighbor table (include range information)

If Intercept Snoop messages

Update neighbor table

Forever

Figure 4.3: DSRT Algorithm

- 31 -

4.5 DSRT Algorithm Complexity Analysis

Same as TinyOS and SRT, it uses two timers to send out routing messages and

choose parents. So message overhead and time complexity is same as TinyOS

and SRT. However, DSRT (Figure 4.3) puts range and layer information in the

routing message structure:

typedef struct MultihopMsg {

uint16_t sourceaddr;

uint16_t originaddr;

int16_t seqno;

uint8_t hopcount;

uint8_t rnglow;

uint8_t rnghigh;

uint8_t layer;

/* offset changes */

uint8_t data [(TOSH_DATA_LENGTH - 10)];

} __attribute__ ((packed)) TOS_MHopMsg;

Figure 4.4 DSRT Routing Message

So that the total message size is increase by 3 bytes comparing to TinyOS.

4.6 Cycle Prevention Techniques: Hop count and Layer

In the distributed area, each node has the only knowledge of its neighbors

instead of the whole picture; it’s very easy to produce cycles and stranded nodes

inside the tree structure. When a cycle exists in the tree, a message is infinitely

passed back and forth in the network, which wastes large amount of

communication and should be prevented at all cost.

TinyOS routing algorithm prevents cycles by controlling the hop count. A node

selects a parent under the condition that its future parent must have the smaller

hop count than itself. Thus, the tree is built top down. However there is still slim

chance to get into a cycle when two nodes happen to choose the opposite as its

parent at the same time.

DSRT introduces a new concept, layer, we picture sensor network is made of

multiple layers of nodes, starting from the base station, all nodes which can hear

BS are the first layer, 0 and nodes sitting on layer 1 can hear layer 0, so on and

- 32 -

so forth. When a query request is issued from BS, it propagates from layer 0 to

the farthest layer, which is similar to the ripple effect. Each node has to identify

its layer before it comes into parent selection. Layer identification is built top

down from BS as well. Once a node knows its layer, it starts parent selection

under the rule that it can only choose its parent from its ancestor layers or inside

the same layer. And inside the same layer, each node checks if the current

parent candidates’ have smaller hop counts. Similarly as TinyOS, there is still

chance of producing cycles. In the later discussion, we can see a complete cycle-

free goal is hard-to-achieve in the distributed environment.

4.7 Layer Acquisition Algorithm

Before building up the routing tree, DSRT assigns layer identities to every sensor

node in the network, with the innermost layer (closest to BS) to be the layer 0.

The top down layer building algorithm is like Figure 4.5:

While (true) {

If “I can hear from the Base Station”

then myLayer = 0

Else {

Wait (three timer cycles);

If “I waited for enough time” and “I can hear some one with a layer id I”

Then

myLayer = I +1;

} }

Figure 4.5: Layer Acquisition Algorithm

4.8. The Parent Selection Process

In the deployment of sensor networks, sensors can be spread out to cover a

large area and the distance from sensors to the base station could be out the

reach of sensors’ radio signals. For example, the largest hearing distance of two

mica motes is 50 feet and radio signal strength decreases as the distance

increases. When a sensor node can’t communicate with the base station directly,

it depends on other sensor nodes closer to the base station to relay the

communication. Thus, parent selection enables a message from any given sensor

node to eventually reach the base station through one or many hops. The TinyOS

- 33 -

routing implements a multi-hop tree structure. A typical TinyOS routing tree is

shown in Figure 4.6.

0

1

2
3

4

Figure 4.6: A TinyOS Routing Tree

As shown in Figure 4.6, by default, the base station ID is 0. Here let’s assume

that nodes 2 and 3 are beyond the communication range of the base station and

rely on node 1 to relay the communication. We term node 1 to be the parent of

nodes 2 and 3. Each node is free to choose a parent on its own. The process of

selecting a node from its neighbor is called parent selection. Parent selection is

crucial in multi-hop environment and has the direct impact on efficiency of

communication. Next two sections will talk about different parent selection

criteria of TinyOS, SRT and DSRT.

4.9. Manhattan Distance based parent selection in DSRT:

DSRT selects parents based on range information rather than physical proximity,

that is, each node would choose a node that has the most ‘similar’ range as its

parent. For example, suppose a sensor node historically has the temperature

between 70F and 90F. Now, let’s say it has to choose a parent between two

nodes, A and B, each with a range 50-60F and 70-90F. Which one will it select?

In this case, B is selected since it has the same range even if A might be closer

- 34 -

to the node in terms of physical distance. What if A and B have the range of 20-

30F and 30-40F? In this case, it’s hard to evaluate the approximation. Manhattan

distance provides the quantitative evaluation of length between two points.

Manhattan distance [15], also known as city block distance is defined as:

D (i, j) = |xi1-xj1| + |xi2-xj2|+… + |xip – xjp|

Where i = (xi1, xi2, xi3…xip), j= (xj1, xj2, xj3…xjp) and are two p-dimensional

data. Specifically, here the range is defined as a two-dimensional numerical data.

For every sensor node attribute two ranges are defined: lowest range and

highest range, I = (lowest, highest) and M-distance between two sensor nodes, i

and j can be described as

D (i, j) = |lowest (i) – lowest (j)| + |highest (i) – highest (j)|

Example:

Node A has the range of [10, 20], B has it of [30, 40]

D(A,B) = |10- 30| + |20-40| = 40

Before calculating the distance, a serial of data standardization is performed

since standardization gives all variables an equal weight. The process goes like

the following:

Given a group of range information, lowest range array LA (LA1, LA2…LAn) and

highest as HA (HA1, HA2…HAn)

� Calculate the mean value M for LA and HA

MLA= 1/m * (LA1 + LA2 +…+ LAn)

MHA = 1/m * (HA1 + HA2 +…+ HAn)

� Calculate the standard deviation S for LA and HA

SLA=sqrt (1/n * ((| LA1– MLA |2+…+ | LAn - MLA|2))

SHA=sqrt (1/n * ((| HA1– MHA |2+…+ | HAn - MHA |2))

� Calculate the z-score based on S and M

ZLAi = (LAi – MLA)/ SLA, ZHAi = (HAi – MHA)/ SHA

- 35 -

The M-distance between two nodes 1 and 2 is finally calculate as

D (1, 2) = | ZLA1 – ZLA2 | + | ZHA1 – ZHA2|

And two nodes are considered as closest when they have min (M-distance) of all

neighbors.

4.10. DSRT Parent Selection Process

DSRT defers parent selections between 0 and other layers. A sensor node in

layer 0 tries to directly connect to BS except its range falls into others. The

purpose is as the layer 0 is closest to the BS; it should avoid multi-hops as

possible. Starting from layer 1, parent selection is determined by M-distance.

4.11. Path Compression

DSRT tries to cluster sensor nodes and it allows one or more hops inside one

layer. Therefore, DSRT routing tree has more depth than TinyOS. It’s a tradeoff

between increasing tree depth and segmenting clusters. For example, a cluster of

two or three nodes and a huge hop count doesn’t save much communication and

processing cost for conditional queries, instead, it scarifies a lot of network

performance. This case should be avoided and here is the path compression

coming into play. Path compression in the graph theory refers to that in order to

eliminate long paths, the child saves the pointers to its ancestor parents (e.g.

Parent’s parent) and skip the current parent to compress the path. DSRT

introduces a constant, HOP_LIMIT to control the length of path. If the current

hop counts exceed the HOP_LIMIT, DSRT does path compression.

4.12. Code Optimization

Embedded system programming requires optimal code to save computation

power. The following code optimization schemes are applied in SRT and DSRT

coding.

� keeping struct size to be power of two

� Minimize the local variables and declare them in inner scope

� Prefer int over char

� Minimize the function arguments

- 36 -

5. TESTING RESULTS AND ANALYSIS

5.1. Test Environment Setup

All tests are executed in TOSSIM and TinyDB GUI. Three types of radio model

models- single hop, lossy model and empirical model are simulated.

In TOSSIM, a network signal is either a one or zero. All signals are of equal

strength, and collision is modeled as a logical or; there is no cancellation. The

single hop model assumes the perfect transmission of radio single. Each node

can hear from its neighbors without any data loss.

The “lossy” radio model places the nodes in a directed graph. Each edge (a, b) in

the graph means a’s signal can be heard by b. Every edge has a value in the

range (0, 1), representing the probability a bit sent by a will be corrupted

(flipped) when b hears it. For example, a value of 0.01 means each bit

transmitted has a 1% chance of being flipped, while 1.0 means every bit will be

flipped and 0.0 means bits will be transmitted without error. Each bit is

considered independently.[A]

Empirical model assumes each mote has a transmission radius of 50 feet.

Combined with the bit error rate, this means each mote transmits its signal in a

disc of radius 50 feet, with the bit error rate increasing with distance from the

center. [A]

5.2 Evaluation Metrics

There are several network metrics to evaluate the performance of sensor

networks.

- 37 -

• Messages to build up the tree(BTM): routing messages it takes to built

up a consistent tree and it happens when sensor networks boot up

• Query messages disseminated to the whole network (QM): number

of query messages are sent to the network so that all sensor nodes get

the query request

• Round trip time for a certain query (RTT): interval in seconds from

issuing the query to data coming back and displayed.

• First response time (FRTT): the round trip time of the first responded

node.

• Last response time (LRTT): the round trip time of the last responded

node.

• Response percentage (RP): number of nodes responded with data

results/ number of nodes expected to return results

• Participation Rate (PR): number of nodes involved into queries

• Network Topology (NT): there are three NT being tested in this project.

Single Hop: each node can reach BS with no data loss

Multihop: Complement of single hop. Nodes are spread out as grid

with equal distance. Data is lossy and erroneous. The TinyOS empirical

model (refer to manual) is used to generate test data.

Skewed (straight line): sensor nodes form a straight line.

5.3 Simple Comparison & Analysis

Let’s see an example of 5 sensor nodes, labeled as 1, 2, 3, 4, 5 in single hop.

And namely each has the light value (lumens) as Figure 5.1.

NodeID Light Ranges

1 [20,60]

2 [10,100]

3 [20,60]

4 [10,100]

5 [10,60]

Figure 5.1 light ranges

- 38 -

TinyOS and SRT routing structures turn out like this (Figure 5.2):

0

5

4
3

2

1

Figure 5.2 TinyOS / SRT Routing tree

Here TinyOS and SRT structures are the same (Figure 5.2). That’s because SRT

doesn’t not change the way routing tree is built up and it only adds range

information on each node. And DSRT structure is a bit different.

0

1 2

3

5

4

Figure 5.3 DSRT Routing tree

- 39 -

As shown in Figure 5.3, DSRT tries to arrange nodes with similar light range

together. Here since nodes 1 and 3 are within the same range, node 3 becomes

the parent of node 1. It’s worth mentioning that nodes 1 and 3 is

interchangeable, that is, it’s possible node 1 becomes the parent of 3 and directly

connects to BS. It all depends on whose timer is fired first and selects the BS as

parent.

Supposing there is a query, format as

Select nodeid, light

This extracts all the light readings from all sensors. In this case, BS sends out

the query request and every node works on its own, sending back the data.

DSRT has more latency since its largest hop count is 2. However in the case of

conditional query, format as

Select nodeid, light where light> 60

Node 1 will not participate in the query process. What it saves? Communication

cost between node 1 and 3, processing cost of node 1. Looks like not save much.

However, in large scale networks, communication and processing cost of ten or

more nodes means a lot.

5.4. Test Results

 Test case scenario 1:

Single Hop, 10 nodes, light ranges are within [50, 100].

For following Non-conditional query,

Select nodeid, light from sensors

- 40 -

 BTM RP FRTT / LRTT NT

TinyOS/SRT 11 100% 15~16/16~17 single
hop

DSRT 3 100% 16~19/16~20 single
hop

Figure 5.4 Test Case 1

There is not much performance discrepancy between three, only that

TinyOS/SRT cost more BTM, since TinyOS/SRT need sending more routing

messages to establish WMEWMA metrics.

 Test case scenario 2:

Single Hop, 30 nodes, light ranges are within [10, 30], [40, 70],
[80, 120].

For following Non-conditional query,

Select nodeid, light from sensors

 BTM RP FRTT /
LRTT

NT

TinyOS/SRT 27 86% 56/157 single
hop

DSRT 4 76%~83% 55~57/76 single
hop

Figure 5.5 Test Case 2

DSRT has poorer RP and RTT. It can be explained by the DSRT tree structure

tends to have bigger tree depth and enlarge the network latency.

 Test case scenario 3:

Single Hop, 30 nodes, light ranges are within [10, 30], [40, 70], [80,

120], conditional query:

Select nodeid, light where light in T

- 41 -

 QR

 T= [10,30] T= [40,70] T=[80,120]

TinyOS 22 22 22
SRT 20 22 19
DSRT 14 11 11

Figure 5.6 Test Case 3(QR)

 PR

 T= [10,30] T= [40,70] T=[80,120]

TinyOS 29 29 29
SRT 19 27 26
DSRT 16 14 16

Figure 5.7 Test Case 3(PR)

TinyOS routing does not filter any query messages and it consumes more

messages and processing power than SRT and DSRT. DSRT outperforms a little

than SRT in terms of QM and PR.

 Test case scenario 4:

Multi-Hop empirical model, 4x4 grid with equal distance of 10 feet, 16

nodes, light ranges are within [10, 60], [60,110], [120, 170].

 For following non-conditional query:

 Select nodeid, light from sensors

 BTM RP FRTT/LRTT NT

TinyOS/SRT 26 100% 33 / 96 Multi hop

DSRT 7 53-60% 55-57 / 95~519 Multi hop

Figure 5.8 Test Case 4

- 42 -

 Test case scenario 5:

Multi-Hop empirical model, 4x4 grid with equal distance of 10 feet, 16

nodes, light ranges are within [10, 60], [60,110], [120, 170].

For following conditional query:

Select nodeid, light where light in T

 QR

 T= [10,60] T= [60,110] T=[120,170]

TinyOS 11 11 11
SRT 16 17 18
DSRT 4 8 5

Figure 5.9 Test Case 5(QR)

 PR

 T= [10,60] T= [60,110] T=[120,170]

TinyOS 15 15 15
SRT 4 12 14
DSRT 5 10 11

Figure 5.10Test Case 5(PR)

 Test case scenario 6:

Multi-Hop lossy model, 25 nodes, light ranges are within [10, 50],

[60,100], [125, 190], and [200, 250].

For following Non conditional query:

Select nodeid, light From sensors

- 43 -

 BTM RP FRTT/LRTT NT

TinyOS/SRT 12 100% 34 / 175 Multi hop

DSRT 7 100% 109 / 320 Multi hop

Figure 5.11Test Case 6

 Test case scenario 7:

Multi-Hop lossy model, 25 nodes, light ranges are within [10, 50],

[60,100], [125, 190], and [200, 250].

For following conditional query:

Select nodeid, light where light in T

 QR

 T= [10,50] T= [60,100] T=[125,190] T=[200,250]

TinyOS 5 5 5 5
SRT 5 5 5 5
DSRT 4 5 4 5

Figure 5.12 Test Case 7(QR)

 PR

 T= [10,50] T= [60,100] T=[125,190] T=[200,250]

TinyOS 24 24 24 24
SRT 8 8 8 8
DSRT 9 9 8 8

Figure 5.13Test Case 7(PR)

5.5. Result Analysis

TinyOS routing does not filter any query messages and it consumes more

messages and processing power than SRT and DSRT.

- 44 -

In the single hop environment, DSRT outperforms SRT and TinyOS in that it

takes fewer messages overhead to establish the routing and disseminate the

messages.

While in the lossy environment, DSRT has poor network response time. (As the

value increases for FRTT/LRTT)

- 45 -

6. FUTURE WORK

DSRT builds up routing structure based on single non-constant attributes and

supports conditional query of single predicate. Same as SRT, It keeps track of

range information for single attribute. However, user queries can be multi-

dimensional, for example query for temperature and sound at the same time. In

the case, there will be multiple routing trees, one for each attribute. How to

disseminate dimensional queries will involve finding common optimal paths

between multiple tree structures. As for space, with more and more attributes

adding in, efficient storage of range information has to be taken into account. So

future work will include attribute based routing implementing over multi attribute

based queries and multi query support for this proposed routing scheme.

- 46 -

 REFERENCES

Collection of literature

Papers

1. S. Madden. The design and evaluation of a query processing

architecture for sensor networks ph.d. thesis. UC berkeley.

2. R. Govindam. Directed diffusion: A scalable and robust communication

paradigm for sensor networks. In Proceedings of the Sixth Annual

International Conference on Mobile Computing and Networking

(MobiCOM ’00), 2002.

3. J. L. Feng Zhao. Information-directed routing in ad hoc sensor

networks. In International Conference on Mobile Computing and

Networking, 2003.

4. D. D.Estrin. Rumor routing algorithm for sensor netowrks. In

Proceedings of the First Workshop on Sensor Networks and

Applications(WSNA), 2002.

5. Yao Y., Gehrke J.: Query Processing for Sensor Networks. Proceedings

of the CIDR Conference, 2003.

6. Trigoni N., Yao Y., Demers A., Gehrke J.: Multi-query Optimization for

Sensor Networks. Technical Report TR2005-1989, Cornell University,

2005.

7. Yao Yong, Johannes Gehrke, “Query Processing In Sensor Networks",

CIDR Conference,2003.

8. Geoffrey Werner-Allen, Swieskowski Patrick and Welsh Matt ,

"MoteLab: A Wireless Sensor Network Testbed” ,IEEE Conference,

2005.

- 47 -

9. Chong Chee-Yee, Srikanta P. Kumar, "Sensor Networks: Evolution,

Opportunities, and Challenges",IEEE Volume 91,No. 8 , August 2003.

10.Gummadi Ramkrishna , Li Xin, Govindan Ramesh , Hong Wei, “Energy-

Efficient Data Organization and Query Processing in Sensor Networks"

21st international Conference on Data Engineering (ICDE 2005), IEEE

11.Bharathidasan Archana, Sai Ponduru Vijay Anand “Sensor Network: An

Overview”.

Websites

A. TinyOS TOSSIM http://www.tinyos.net/

B. Sensor Nodes http://www.xbow.com/

C. TinyDB: http://www.telegraph.cs.berkeley.edu/tinydb/

D. NesC: http://www.nesc.sourceforge.net/

Books

 “Wireless Sensor Networks: An Information Processing Approach”.
 By Feng Zhao and Leonidas Guibas.

- 48 -

http://www.tinyos.net/
http://www.xbow.com/
http://www.telegraph.cs.berkeley.edu/tinydb/
http:/www.nescc.sourceforge.net/

	Major Projec1--certificates.pdf
	Major Projec1--first details.pdf
	Major Project.pdf

