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ABSTRACT 

 
A wireless sensor Network consists of sensors implanted in an environment 

for collecting & transmitting data regarding changes in the environment 

based on the requests from controlling device or base station using wireless 

communication. WSNs are being used in medical, military and environment 

monitoring applications. Query dissemination and gathering of information 

towards central node are important communication paradigms across all 

application domains.  

Power consumption constraints in WSNs require task specific queries to adopt 

efficient data centric routing schemes.  This project proposes new routing 

methods for wireless sensor network queries. These methods draw parallels 

from and extend the notion of making the routing protocol aware of the 

underlying network semantics for queries. The proposed methods reduce the 

communication overhead & power consumption by reducing number of 

sensor nodes participating nodes required to participate in certain queries in 

order to successfully answer to user specific queries in WSNs. 

In most instances of sensor network deployment, the sensory attribute 

values (say, light, temperature, etc…) often vary within a certain range of 

possible values termed the sensory range or the attribute-value range. It is 

possible to design a protocol that takes the query range and the historical 

value change information into account to determine if a particular node or set 

of nodes should participate in the query? Making this as the base, the work 

presented here uses that feature to develop new routing scheme for energy 

efficient processing of attribute specific queries. TOSSIM (the TinyOS 

Simulator) is used to implement and simulate routing schemes.  
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1.                                                                 INTRODUCTION  
 

1.1 General 

Future applications of sensor networks are plentiful. In the intelligent building 

of the future, sensors are deployed in offices and hallways to measure 

temperature, noise, light, and interact with the building control system. 

People can pose queries that are answered by the sensor network, such as “Is 

Bhavik in his office”, or “Is there an empty seat in the conference room?” 

Another application is scientific research. As an example, consider a biologist 

who may want to know of the existence of a specific species of birds, and 

once such a bird is detected; the bird’s trail should be mapped as accurately 

as possible. In this case, the sensor network is used for automatic object 

recognition and tracking. More specific applications in different fields will 

arise, and instead of deploying preprogrammed sensor networks only for 

specific applications, future networks will have sensor nodes with different 

physical sensors for a wide variety of application scenarios and different user 

groups. 

     A sensor network is composed of a large number of sensor nodes that are 

densely deployed either inside the phenomenon or very close to it. The 

position of sensor nodes need not be engineered or predetermined. This 

allows random deployment in inaccessible terrains or disaster relief 

operations. On the other hand, this also means that sensor network protocols 

and algorithms must possess self-organizing capabilities. Another unique 

feature of sensor networks is the cooperative effort of sensor nodes. Sensor 

nodes are fitted with an onboard processor. Instead of sending the raw data 

to the nodes responsible for the fusion, they use their processing abilities to 

locally carry out simple computations and transmit only the required and 

partially processed data.  

     The above described features ensure a wide range of applications for sensor 

networks. Some of the application areas are health, military, and home. In 

military, for example, the rapid deployment, self-organization, and fault 

tolerance characteristics of sensor networks make them a very promising 

sensing technique for military command, control, communications, 

computing, intelligence, surveillance, reconnaissance, and targeting systems. 



In health, sensor nodes can also be deployed to monitor patients and assist 

disabled patients. Some other commercial applications include managing 

inventory, monitoring product quality, and monitoring disaster areas. 

     Many protocols and algorithms have been proposed for traditional wireless ad 

hoc networks, they are not well suited to the unique features and application 

requirements of sensor networks. To illustrate this point, the differences 

between sensor networks and ad hoc networks are: 

• Sensor nodes are prone to failures. 

• The topology of a sensor network changes very frequently. 

• Sensor nodes are limited in power, computational capacities, 

and memory. 

     Many researchers are currently engaged in developing schemes that fulfill 

these requirements. 

    

Fig 1.1: Sensor Network Communication Architecture [11] 
           

    The sensor nodes are usually scattered in a sensor field as shown in Fig. 

1.1. Each of these scattered sensor nodes has the capabilities to collect data 

and route data back to the sink. Data are routed back to the sink by a 

multihop infrastructure less architecture through the sink as shown in Fig. 

1.1. The sink may communicate with the task manager node via Internet or 

satellite. The design of the sensor network as described by Fig. 1.1 is 

influenced by many factors, including fault tolerance, scalability, production 

costs, operating environment, sensor network topology, hardware constraints, 

transmission media, and power consumption. 

 

1.2 Motivation 

In this thesis a general query processing middleware is proposed and 

implemented that operates on top of an existing query-based sensor network. 
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Approach is motivated by the following design goals. Power consumption 

constraints in wireless sensor networks require task-specific queries in 

distributed sensor networks to adopt efficient data centric routing techniques. 

This project proposes new routing methods tailored for sensor network queries. 

These routing schemes draws several parallels from and extends the notion of 

making the routing protocol aware of the underlying network semantics for 

aggregate queries. Madden et al initially envisioned one such approach [1]. The 

proposed methods reduce the communication overhead and power consumption 

by reducing the number of sensor nodes required to participate in certain 

queries.  

In most instances of sensor network deployment, the sensory attribute values 

(say, temperature, light, etc…) often vary within a certain range of possible 

values termed as the sensory range or the attribute-value range. The queries 

themselves on the other hand often request node participation based on a 

physical range (e.g. all sensors located east of a particular region). Is it possible 

to design a protocol that takes the query range and the historical value change 

information into account to determine if a particular node or a set of nodes 

should participate in the query response? In this project we describe how the 

proposed routing schemes enable us to achieve this objective. We first record a 

value range for sensory attributes (say, temperature between some specified 

limit). Later, whenever a range query requests information from sensor nodes 

whose historical range is beyond that of the query predicates, the nodes will 

automatically not participate in the query. The project implements two routing 

algorithms in the application layer of TinyOS protocol stacks and compares them 

with TinyOS routing algorithm based on testing results of different topologies and 

radio-range models, in terms of message overhead flooded into the network. 

Second design goal is motivated by the importance of preserving limited 

resources, such as energy and bandwidth in battery-powered wireless sensor 

networks. Data transmission back to a central node for offline storage, querying, 

and data analysis is very expensive for sensor networks of non-trivial size since 

communication using the wireless medium consumes a lot of energy. Since 

sensor nodes have the ability to perform local computation, part of the 

computation can be moved from the clients and pushed into the sensor network, 

aggregating records, or eliminating irrelevant records. Compared to traditional 

centralized data extraction and analysis, In-network processing can reduce 
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energy consumption and reduce bandwidth usage by replacing more expensive 

communication operations with relatively cheaper computation operations, 

extending the lifetime of the sensor network significantly. For example, the ratio 

of energy spent in sending one bit versus executing one instruction ranges from 

220 to 2900 in different architectures .Thus the second main role of the query 

layer is to perform in-network processing. Different applications usually have 

different requirements, from accuracy, energy consumption to delay. For 

example, a sensor network deployed in a battlefield or rescue region may only 

have a short life time but a high degree of dynamics. On the other hand, for a 

long-term scientific research project that monitors an environment, power-

efficient execution of long-running queries might be the main concern. More 

expensive query processing techniques may shorten processing time and 

improve result accuracy, but might use a lot of power. The query layer can 

generate query plans with different tradeoffs for different users. 

Third & final design goal is to support multi-query optimization and tries to 

reduce the number of queries that are sent to the sensor network by making use 

of commonalities among queries. This also reduces the number of messages that 

must be sent in the network, thus the overall energy consumption can be 

reduced and the battery lifetime extended. 

 

1.3 Related Work 

 
Network routing is crucial to the efficiency of data communication and 

consequently, has a direct impact on the robustness of the sensor network 

application. In fact, there are various routing protocols proposed and deployed 

within different network communication layers. Data-centric protocols often 

reside in the network layer of the communication stack. This refers to the fact 

that sources (sensor nodes) aggregate or consolidate the data they gather before 

they relay the data to the destination. By assigning a data related property with 

each sensor node, the intended communication can be directed only to a specific 

number of sensor nodes. Now briefly describe three such related data-centric 

routing protocols.  

• Directed Diffusion [2] introduces the concept of interest- a data structure to 

describe an event- attributes like event type, time stamp, and location. Every 

node keeps an entry of all interests it ever sees and gradient, a data structure to 
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describe the path of the event occurrence. For example interest could include 

data rate and neighbor nodes. Data propagation is determined by interest and 

gradient. Suppose node ‘A’ wants to know something about event ‘e’, or say 

interest ‘I’. It then floods the interest to all neighbors. Every neighbor/node then 

checks their local interest and gradient cache to see if one of their interests 

matches the coming one. If so, send the interest to that neighbor which has the 

highest data rate in the gradient. Thus, the request of the interest ‘I’ gets 

propagated through the network. Directed Diffusion also advocates path 

reinforcement, which refers to the sink enforcing the routing path on neighbors 

with the highest event data rate so that the sink receives high quality data from 

high quality nodes.  

• Information directed routing [3] - For task-specific sensor networks (e.g., .a 

particular type of monitoring), information directed routing provides downstream 

routing (from sink to source) based on a new information model. The model 

formulates the measurement of information contribution using Kullback-Leibier 

divergence and Bayesian filtering method. For all neighbors, the model can 

calculate information distribution based on time and current belief without 

knowing the sensor data. Thus routing becomes a shortest path problem where 

weight of the edges is communication cost between two sensor nodes; and 

communication cost includes additive information contribution of the current 

path. Note that since the information contribution is state-dependent, the 

concurrent path contribution needs to be taken into account.  

• Rumor routing [4] – improves the efficiency of upstream routing (from source 

to sink) by eliminating flooding messages. Once an event happens, an agent, 

which is a long-live packet, will keep track of the event and travel around the 

network. Supposing there is some event happening in the network, instead of all 

the nodes witnessing the event and flooding the network with messages, an 

agent which is a long-live packet keeps list of all events and travels around the 

network to propagate information happening inside the networks.  

In [5] the authors have also recognized the necessity of an abstraction layer 

between the network and the user. They also propose layered database for 

sensor networks. Their focus is on aggregations and joins operations in the 

network using chain of flow blocks. However they do not address the problem of 

multi-query optimization, i.e., reconfiguring the query plan of running queries. It 

is not clear how multiple concurrent queries are handled. In principle it might be 
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possible to reuse results obtained by flow blocks for other queries; however it is 

unknown how to convert between sampling rates of different queries.  

The description given in [6] is restricted to user queries having the same result 

frequency. In the report the authors present a multi query optimization algorithm 

for aggregate queries with the main aim in the reduction of the energy 

consumption. They approach query optimization by a linear reduction technique. 

Their query manager does not immediately send new queries into the network as 

they arrive; instead they are gathered and then dispatched together. Then data 

is captured for several epochs until a new set of user queries is ready to be 

dispatched. Thus the execution plan needs to be recomputed and propagated 

anew for every group of queries. The query optimizer described in this thesis 

adjusts these management cost by choosing between a “universal” or a specific 

query. 

 
1.4 Outline of thesis 

This thesis is organized as follows: 
 

• Chapter 2 provides the brief introduction about wireless sensor node’s 

architecture including with details of protocol stack implemented for sensor 

or sink nodes. It also includes the brief details about query processing in 

wireless sensor networks and further enhancements that must be taken 

into account for research in that direction. It also describes the details 

about TinyOS (the embedded Operating System specially designed for 

Sensor nodes), NesC (Network Embedded System C – a programming 

language for embedded sensor nodes), TOSISM (TinyOS SIMulator), 

TinyVIZ (Visualization Plug-in for TOSSIM especially for sensor networks) 

and TinyDB (RDBMS for Senor Networks). 

 
• Chapter 3 explains the working of TinyOS routing algorithm and also 

analyzes the complexity of the algorithm. It also introduces the schemes 

to achieve efficient routing in wireless sensor networks for attribute 

specific queries. 

 
• Chapter 4 contains the details about the implementation of the routing 

scheme including variants like range management, layer acquisition, 

parent selection process techniques. 
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• Chapter 5 presents the results for different test cases in TOSSIM based 

simulation. It also concludes based on the results achieved for the 

implementation of the project. 

 

• Chapter 6 provides possible directions for relevant future research. 
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2.                                                        LITERATURE SURVEY 
 

2.1 Wireless Sensor Networks’ Architecture 

In recent years, rapid advances in wireless networking, micro-electronic devices, 

and embedded systems have enabled the development of low-cost, low-power, 

small sized sensor nodes. The sensor technology is suitable for a wide range of 

applications ranging from environmental control, warehouse inventory, and 

health care to military environments, establishing ubiquitous wireless sensor 

networks that rapidly evolve human life. 

A sensor network is composed of a large number of sensor nodes with sensing, 

computing, and communicating capabilities. These nodes are usually powered by 

battery and operate in an unattended fashion to collect and process information.  

The protocol stack used by the sink and sensor nodes is given in Fig. 2.1.This 

protocol stack combines power and routing awareness, integrates data with 

networking protocols, communicates power efficiently through the wireless 

medium, and promotes cooperative efforts of sensor nodes. The protocol stack 

consists of the physical layer, data link layer, network layer, transport layer, 

application layer, power management plane, mobility management plane, and 

task management plane. 

 

Figure 2.1: Protocol stack for WSNs [11] 

 

The physical layer addresses the needs of simple but robust modulation, 

transmission, and receiving techniques. Since the environment is noisy and 
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sensor nodes can be mobile, the medium access control (MAC) protocol must be 

power-aware and able to minimize collision with neighbors’ broadcasts. The 

network layer takes care of routing the data supplied by the transport layer. The 

transport layer helps to maintain the flow of data if the sensor networks 

application requires it. Depending on the sensing tasks, different types of 

application software can be built and used on the application layer. 

In addition, the power, mobility, and task management planes monitor the 

power, movement, and task distribution among the sensor nodes. These planes 

sensor node may turn off its receiver after receiving a message 

, computation, and 

help the sensor nodes coordinate the sensing task and lower overall power 

consumption. 

The power management plane manages how a sensor node uses its power. For 

example, the 

from one of its neighbors. This is to avoid getting duplicated messages. Also, 

when the power level of the sensor node is low, the sensor node broadcasts to its 

neighbors that it is low in power and cannot participate in routing messages. The 

remaining power is reserved for sensing. The mobility management plane detects 

and registers the movement of sensor nodes, so a route back to the user is 

always maintained, and the sensor nodes can keep track of who their neighbor 

sensor nodes are. By knowing who the neighbor sensor nodes are, the sensor 

nodes can balance their power and task usage. The task management plane 

balances and schedules the sensing tasks given to a specific region. Not all 

sensor nodes in that region are required to perform the sensing task at the same 

time. As a result, some sensor nodes perform the task more than others 

depending on their power level. These management planes are needed so that 

sensor nodes can work together in a power efficient way, route data in a mobile 

sensor network, and share resources between sensor nodes. 

Recent developments in hardware have enabled the widespread deployment of 

sensor networks consisting of small sensor nodes with sensing

communication capabilities. Already today networked sensors measuring only a 

few cubic inches can be purchased commercially, and Moore’s law tells that it will 

be soon seen components that measure 1/4th of a cubic inch, running an 

embedded version of a standard operating system; such sensor nodes have the 

following resource constraints: 
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• Communication: The wireless network connecting the sensor nodes provides 

usually only a very limited quality of service, has latency with high variance, 

limited bandwidth, and frequently drops packets. 

• Power consumption: Sensor nodes have limited supply of energy, and thus 

energy conservation needs to be of the main system design considerations of any 

sensor network application. For example, the MICA motes are powered by two 

AA batteries, which provide about 2000mAh, powering the mote for 

approximately one year in the idle state and for one week under full load. 

• Computation: Sensor nodes have limited computing power and memory 

sizes. This restricts the types of data processing algorithms on a sensor node, 

and it restricts the sizes of intermediate results that can be stored on the sensor 

nodes. 

• Uncertainty in sensor readings: Signals detected at physical sensors have 

inherent uncertainty, and they may contain noise from the environment. Sensor 

malfunction might generate inaccurate data, and unfortunate sensor placement 

(such as a temperature sensor directly next to the (air conditioner) might bias 

individual readings. 

 

 

 

 

 

 

Figure 2.2 A Berkeley MICA Mote [A] 

 

Processor  4Mhz, 8bit MCU (ATMEL) 
Storage  512KB 
Radio (RF Monolithic) 916Mhz Radio 
Range 100  FT 
Data Rate  40 Kbits/sec 
Transmit Current  12mA 
Receive Current  1.8mA 
Sleep Current  5 uA 

 
 

 
Fig.2.3. Hardware Characteristics of a MICA Mote [A] 
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Future applications of sensor networks are plentiful. In the intelligent building of 

the future, sensors are deployed in offices and hallways to measure temperature, 

noise, light, and interact with the building control system. People can pose 

queries that are answered by the sensor network. Another application is scientific 

research. More specific applications in different fields will arise, and instead of 

deploying preprogrammed sensor networks only for specific applications, future 

networks will have sensor nodes with different physical sensors for a wide variety 

of application scenarios and different user groups. 

 
 
2.2 QUERY PROCESSING IN WIRELESS SENSOR NETWORKS [7] 

 

2.2.1 Introduction 

 

Given the view of a sensor network as a huge distributed database system, it 

would like to adapt existing techniques from distributed and heterogeneous 

database systems for a sensor network environment. However, there are major 

differences between sensor networks and traditional distributed and 

heterogeneous database systems. 

First, sensor networks have communication and computation constraints that are 

very different from regular desktop computers or dedicated equipment in data 

centers, and query processing has to be aware of these constraints. One way of 

thinking about such constraints is the analogous interaction with the file systems 

in traditional database systems, Database systems bypass the file system buffer 

to have direct control over the disk. For a sensor network database system, the 

analogous counterpart is the networking layer, and for intelligent resource 

management we have to ensure that the query processing layer is tightly 

integrated with the networking layer. Second, the notion of the cost of a query 

plan has changed, as the critical resource in a sensor network is power, and 

query optimization and query processing have to be adapted to take this 

optimization criterion into account. 

While developing techniques that address these issues, it must not forget that 

scalability of our techniques with the size of the network, the data volume, and 

the query workload is an intrinsic consideration to any design decision. 
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2.2.2 Queries 

SELECT {attributes aggregates} 

FROM {Sensor data S} 

WHERE {predicate} 

GROUP BY {attributes} 

HAVING {predicate} 

DURATION time interval 

EVERY time span e 

[Fig 2.4 Query Template][C] 

A sensor node has one or more sensors attached that are connected to the 

physical world. Example sensors are temperature sensors, light sensors, or PIR 

sensors that can measure the occurrence of events (such as the appearance of 

an object) in their vicinity. Thus each sensor is a separate data source that 

generates records with several fields such as the id and location of the sensor 

that generated the reading, a time stamp, the sensor type, and the value of the 

reading. Records of the same sensor type from different nodes have the same 

schema, and collectively form a distributed table. 

The sensor network can thus be considered a large distributed database system 

consisting of multiple tables of different types of sensors. Sensor data might 

contain noise, and it is often possible to obtain more accurate results by fusing 

data from several sensors. Summaries or aggregates of raw sensor data are thus 

more useful to sensor applications than individual sensor readings. For example, 

when monitoring the concentration of a dangerous chemical in an area, one 

possible query is to measure the average value of all sensor readings in that 

region, and report whenever it is higher than some predefined threshold. 

It believes that declarative queries are the preferred way of interacting with a 

sensor network. Rather than deploying application-specific procedural code 

expressed in a Turing-complete programming language, It believes that sensor 

network applications are naturally data-driven, and thus it can abstract the 

functionality of a large class of applications into a common interface of 

expressive queries. It considers queries of the simple form shown in query 

template, and we leave the design of a suitable query language for sensor 

networks to future work. It also extends the template to support nested queries, 

where the basic query block shown in Figure 3 can appear within the WHERE or 

HAVING clause of another query block.  Query template has the obvious 
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semantics: The SELECT clause specifies attributes and aggregates from sensor 

records, the FROM clause specifies the distributed relation of sensor type, the 

WHERE clause filters sensor records by a predicate, the GROUP BY clause 

classifies sensor records into different partitions according to some attributes, 

and the HAVING clause eliminates groups by a predicate. Note that it is possible 

to have join queries by specifying several relations in the FROM clause. 

SELECT AVG (R.concentration) 

FROM ChemicalSensor R 

WHERE R.loc IN region 

HAVING AVG (R.concentration) > T 

DURATION (now, now+3600) 

EVERY 10 

[Fig 2.5 Example Aggregate Query][1] 

One difference between this query template and SQL is that our query template 

has additional support for long running, periodic queries. Since many sensor 

applications are interested in monitoring an environment over a longer time-

period, long-running queries that periodically produce answers about the state of 

the network are especially important. The DURATION clause specifies the life 

time of a query and the EVERY clause determines the rate of query answers: It 

computes a query answer every e seconds. The process of computing a query 

answer is also known as a round. 

 

2.2.3 In-Network Aggregation [1] 

In Wireless Sensor Networks (WSNs), energy efficient query processing is 

typically performed by in-network query processing. In in-network query 

processing, a query gradually gets resolved within the network as sensors 

provide their sensed data. However, in-network query processing demands (i) 

the dissemination of detailed query information to all sensors, and (ii) sufficient 

query processing power at all sensors. These limit the application of in-network 

processing to certain types of queries, such as average or maximum value 

computation, only. 

A query plan for a simple aggregate query can be divided into two components. 

Since queries require data from spatially distributed sensors, it needs to deliver 

records from a set of distributed nodes to a central destination node for 

aggregation by setting up suitable communication structures for delivery of 
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sensor records within the network. This part of a query plan is its communication 

component, and the destination node is the leader of the aggregation. In 

addition, the query plan has a computation component that computes the 

aggregate at the leader and potentially computes already partial aggregates at 

intermediate nodes. Recall that power is one of the main design desiderata when 

devising query processing strategies for sensor networks. If it coordinating both 

the computation and communication component of a query plan, it can compute 

partial aggregates at intermediate nodes as long as they are well-synchronized; 

this reduces the number of messages sent and thus saves power. Consider here 

three different techniques on how to integrate computation with communication: 

Direct delivery: This is the simplest scheme. Each source sensor node sends a 

data packet consisting of a record towards the leader, and the multi-hop ad-hoc 

routing protocol will deliver the packet to the leader. Computation will only 

happen at the leader after all the records have been received. 

Packet merging: In wireless communication, it is much more expensive to send 

multiple smaller packets instead of one larger packet, considering the cost of 

reserving the channel and the payload of packet headers. Since the size of a 

sensor record is usually small and many sensor nodes in a small region may send 

packets simultaneously to process the answer for a round of a query, it can 

merge several records into a larger packet, and only pay the packet overhead 

once per group of records. For exact query answers with holistic aggregate 

operators like Median, packet merging is the only way to reduce the number of 

bytes transmitted. 

Partial aggregation: For distributive and algebraic aggregate operators, it can 

incrementally maintain the aggregate in constant space, and thus push partial 

computation of the aggregate from the leader node to intermediate nodes. Each 

intermediate sensor node will compute partial results that contain sufficient 

statistics to compute the final result. 

 

2.3. TinyOS 

The major bottleneck of the motes themselves is the power consumption and the 

low computational power. TinyOS has been designed to meet the requirements 

of sensor networks. Sensor values have to be processed in real time to avoid 

data loss. As the hardware contains physical parallelism, the OS must provide 

some kind of multithreaded architecture. 
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Even systems that call themselves real time need some hundreds of processor 

cycles to perform a context switch. On a small microprocessor like the Atmel 

AVR, used in both mica-family motes and the BTnode, this is unacceptable and 

would lead to data loss. TinyOS does not use a stack-based threaded 

architecture but an event based architecture. This allows it to have only one 

stack and a single execution context. In case a hardware component wants to 

deliver data, it calls an event that will preempt running tasks. 

TinyOS [A] is based on nesC, a C dialect that is imperative at low level and 

declarative at high level. Applications are component based, code is encapsulated 

in components that are defined by the interfaces they provide and by those they 

can consume. Interfaces are bidirectional, they do not only define the commands 

that have to be implemented by the lower level that implements the interface, 

but also events that have to be implemented by the higher level that uses the 

component implementing the interface. The component based model decouples 

API and implementation and hides the specific properties of an implementation. 

At compile time, implementations can be substituted by different 

implementation, either in hardware or in software, only the wiring has to be 

changed. This makes TinyOS very flexible. 

A core feature of TinyOS is the scheduling. TinyOS uses a simple queue with 

length 7 and a two level scheduling. Events have high priority and can preempt 

tasks, which have low priority. To avoid blocking scenarios, events and 

commands are expected to do only state transmissions and leave complex 

computations to tasks, which can be preempted if necessary. Hardware 

interrupts thrown by timers or by the radio module map to first level events. The 

paradigm for network transmissions in TinyOS is active messaging. Messages 

contain a handler address and on arrival this handler is called. Each node is 

expected to run the same handler code and can either redirect the message to a 

neighbor, if it is not the receiver, or start some local events as reaction to the 

message. Transmissions are best effort, if more is needed, it is up to the 

application to implement more sophisticated features like flow control or 

encryption. To send packages over the network, TinyOS uses multi-hop routing 

instead of point-to-point connections to save transmission power. Route 

discovery is done by 2-hop broadcast and topology discovery is based on 

shortest path from each node to the base station. A typical application for TinyOS 

is TinyDB, a RDBS interface for TinyOS sensor networks. In general, SQL 
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commands are transmitted from the base station down the tree to every node. 

Intermediate nodes collect the data from the children and transmit the 

aggregated data to the root node. 

Sensor networks become more and more popular, in the meantime, global 

players like Intel are pushing the technology. TinyOS is designed to meet the 

requirements of small devices with small resources. The major bottleneck is the 

power consumption of the radio module so better routing algorithms could 

improve the system significantly. Static resource allocation is a direct result of 

the small resources but with computation power of current motes, dynamic 

resource allocation could be afforded. Additionally, systems to change the node’s 

code at runtime might broaden the room for applications as currently nodes have 

to be collected and manually reprogrammed to change their general behavior. 

 

2.4 NesC Language 

NesC is a programming language for networked embedded systems that 

represent a new design space for application developers. An example of a 

networked embedded system is a sensor network, which consists of (potentially) 

thousands of tiny, low power “motes,” each of which execute concurrent, 

reactive programs that must operate with severe memory and power constraints. 

NesC’s contribution is to support the special needs of this domain by exposing a 

programming model that incorporates event-driven execution, a flexible 

concurrency model, and component-oriented application design. Restrictions on 

the programming model allow the nesC compiler to perform whole-program 

analysis, including data-race detection (which improves reliability) and 

aggressive function inlining (which reduces resource consumption). 

NesC has been used to implement TinyOS, a small operating system for sensor 

networks, as well as several significant sensor applications. NesC and TinyOS 

have been adopted by a large number of sensor network research groups, it is 

effective at supporting the complex, concurrent programming style demanded by 

this new class of deeply networked systems.[D]. 

The primary concepts in nesC’s design are first, nesC applications are built out of 

components with well-defined, bidirectional interfaces. Second, nesC defines a 

concurrency model, based on tasks and events, and detects data races at 

compile time. 

A few basic principles underlie nesC’s design: 
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NesC is an extension of C: C produces efficient code for all the target 

microcontrollers that are likely to be used in sensor networks. C provides all the 

low-level features necessary for accessing hardware, and interaction with 

existing C code is simplified. Last but not least, many programmers are familiar 

with C. 

C does have significant disadvantages: it provides little help in writing safe code 

or in structuring applications. NesC addresses safety through reduced expressive 

power and structure through components. 

None of the new features in nesC are tied to C: the same ideas could be added to 

other imperative programming languages. 

Whole-program analysis: nesC programs are subject to whole program 

analysis (for safety) and optimization (for performance). Therefore we do not 

consider separate compilation in nesC’s design. The limited program size on 

motes makes this approach tractable. 

NesC is a “static language”: There is no dynamic memory allocation and the 

call-graph is fully known at compile-time. These restrictions make whole program 

analysis and optimization significantly simpler and more accurate. They sound 

more onerous than they are in practice: nesC’s component model and 

parameterized interfaces eliminate many needs for dynamic memory allocation 

and dynamic dispatch. We have, so far, implemented one optimization and one 

analysis: a simple whole-program inliner and a data-race detector. 

NesC supports and reflects TinyOS’s design: nesC is based on the concept of 

components, and directly supports TinyOS’s event based concurrency model. 

Additionally, nesC explicitly addresses the issue of concurrent access to shared 

data. In practice, nesC resolved many ambiguities in the TinyOS concepts of 

components and concurrency, and TinyOS evolved to the nesC versions. 

 

2.5. TOSSIM [A]: 

TOSSIM is a discrete event simulator for TinyOS sensor networks. Instead of 

compiling a TinyOS application for a mote, users can compile it into the TOSSIM 

framework, which runs on a PC. This allows users to debug, test, and analyze 

algorithms in a controlled and repeatable environment. As TOSSIM runs on a PC, 

users can examine their TinyOS code using debuggers and other development 

tools. 
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TOSSIM’s primary goal is to provide a high fidelity simulation of TinyOS 

applications. For this reason, it focuses on simulating TinyOS and its execution, 

rather than simulating the real world. While TOSSIM can be used to understand 

the causes of behavior observed in the real world, it does not capture all of them, 

and should not be used for absolute evaluations. TOSSIM is not always the right 

simulation solution; like any simulation, it makes several assumptions, focusing 

on making some behaviors accurate while simplifying others. One of the most 

common questions about TOSSIM is whether it can “simulate X” or whether it 

“has an accurate X model.” In hope of answering most of such questions, here is 

a brief summary of its characteristics: 

• Fidelity: By default, TOSSIM captures TinyOS’ behavior at a very low level. It 

simulates the network at the bit level, simulates each individual ADC capture, 

and every interrupt in the system. 

• Time: While TOSSIM precisely times interrupts (allowing things like bit-level 

radio simulation), it does not model execution time. From TOSSIM’s perspective, 

a piece of code runs instantaneously. Time is kept at a 4MHz granularity (the 

CPU clock rate of the mica platforms). This also means that spin locks or task 

spin locks will never exit: as the code runs instantaneously, the event that would 

allow the spin to stop will not occur until the code completes (never). 

• Models: TOSSIM itself does not model the real world. Instead, it provides 

abstractions of certain real-world phenomena (such as bit error). With tools 

outside the simulation itself, users can then manipulate these abstractions to 

implement whatever models they want to use. By making complex models 

exterior to the simulation, TOSSIM remains flexible to the needs of many users 

without trying to establish what is “correct.” Additionally, it keeps the simulation 

simple and efficient. 

– Radio: TOSSIM does not model radio propagation; instead, it provides a radio 

abstraction of directed independent bit errors between two nodes. An external 

program can provide a desired radio model and map it to these bit errors. Having 

directed bit error rates means that asymmetric links can be easily modeled. 

Independent bit errors mean longer packets have a higher probability of 

corruption, and each packet’s loss probability is independent. 

– Power/Energy: TOSSIM does not model power draw or energy consumption. 

However, it is very simple to add annotations to components that consume 

power to provide information on when their power states change (e.g., turned on 
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or off). After a simulation is run, a user can apply a energy or power model to 

these transitions, calculating overall energy consumption. Because TOSSIM does 

not model CPU execution time, it cannot easily provide accurate information for 

calculating CPU energy consumption. 

• Building: TOSSIM builds directly from TinyOS code. To simulate a protocol or 

system, you must write a TinyOS implementation of it. On one hand, this is often 

more difficult than an abstract simulation; on the other, it means you can then 

take your implementation and run it on actual motes. 

• Imperfections: Although TOSSIM captures TinyOS behavior at a very low 

level, it makes several simplifying assumptions. This means that it is very 

possible that code which runs in a simulation might not run on a real mote. For 

example, in TOSSIM interrupts are non-preemptive (a result of being a discrete 

event simulator). On a real mote, an interrupt can fire while other code is 

running. If pre-emption can put a mote in an unrecoverable state, then 

simulated motes will run without mishap while real-world motes may fail. Also, if 

interrupt handlers run too long, a real-world mote may crash; as code in TOSSIM 

runs instantaneously, no problems will appear in simulation. 

• Networking: Currently, TOSSIM simulates the 40Kbit RFM mica networking 

stack, including the MAC, encoding, timing, and synchronous acknowledgements. 

It does not simulate the mica2 ChipCon CC1000 stack.  

• Authority: Initial experience from real-world deployments has shown that 

TinyOS networks have very complex and highly variable behavior. While TOSSIM 

is useful to get a sense of how algorithms perform in comparison to one another, 

TOSSIM results shouldn’t be considered authoritative. For example, TOSSIM can 

tell you that one algorithm behaves better than another under high loss, but the 

question remains as to whether the specified loss scenario has any basis in the 

real world. TOSSIM should not be considered an end-point of evaluation; instead, 

it is a system that allows the user to separate out environmental noise to better 

understand algorithms. 

 

2.6. Tinyviz [A]: 

TinyViz is a Java visualization and actuation environment for TOSSIM. The main 

TinyViz class is a jar file, tools/java/net/tinyos/sim/tinyviz.jar. TinyViz can be 

attached to a running simulation. Also, TOSSIM can be made to wait for TinyViz 

to connect before it starts up, with the -gui flag. This allows users to be sure that 

- 19 - 



TinyViz captures all of the events in a given simulation. TinyViz is not actually a 

visualizer; instead, it is a framework in which plugins can provide desired 

functionality. By itself, TinyViz does little besides draw motes and their LEDs. 

However, it comes with a few example plugins, such as one that visualizes 

network traffic. 

Figure 2.6 shows a screenshot of the TinyViz tool. The left window contains the 

simulation visualization, showing 16 motes communicating in an ad-hoc network. 

The right window is the plug-in window; each plug-in is a tab pane, with 

configuration controls and data. The second element on the top bar is the Plug-in 

menu, for activating or de-activating individual plug-in. Inactive plug-in have 

their tab panes grayed out. The third element is the layout menu, which allows 

you to arrange motes in specific topologies, as well as save or restore topologies. 

TinyViz can use physical topologies to generate network topologies by sending 

messages to TOSSIM that configure network connectivity and the loss rate of 

individual links. 

 

 

 

[Figure 2.6: TinyViz connected to TOSSIM running an object tracking 
application. The right panel shows sent radio packets, the left panel exhibits 
radio connectivity for mote 15 and network traffic. The green arrows and 
corresponding labels represent link probabilities for mote 15, and the magenta 
arrows indicate packet transmission.] 
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The right side of the top bar has three buttons and a slider. TinyViz can slow a 

simulation by introducing delays when it handles events from TOSSIM. The slider 

configures how long delays are. The On/Off button turns selected motes on and 

off; this can be used to reboot a network, or dynamically change its members. 

The button to the right of the slider starts and stops a simulation; unlike the 

delays, which are for short, fixed periods, this button can be used to pause a 

simulation for arbitrary periods. The final button, on the far right, enables and 

disables a grid in the visualization area. The small text bar on the bottom of the 

right panel displays whether the simulation is running or paused. 

The TinyViz engine uses an event-driven model, which allows easy mapping 

between TinyOS’ event based execution and event-driven GUIs. By itself, the 

application does very little; drop-in plugins provide user functionality. TinyViz has 

an event bus, which reads events from a simulation and publishes them to all 

active plugins. 

 

2.7. TinyDB [A]: 

TinyDB GUI is a query processing system to gather, organize, display and 

analyze from TinyOS sensors. TinyDB provides simple SQL-like interface to 

specify data you want to extract. TinyDB is a centralized application which only 

resides on base station/PC, thus it’s more like a GUI interface and written in 

Java. 
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Figure 2.7: sample look of TinyDB interface 

TinyDB application is nesC coded and programmed on top of TinyOS system for 

each node.  
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3.                                PROJECT SCOPE AND DESCRIPTION 
 

 

TinyOS is an open source embedded operating system designed specially for 

sensor networks. This compact operating system includes memory management, 

device management (radio), and task scheduling and protocol management for 

communication layers. Every mote has TinyOS as small as 200K programmed 

into its ROM and runs the application on top of it. TinyOS implements network 

routing on application, data link and physical layers and can be ported to 

different platforms and sensor boards, such as mica2, mica and PC.  

 

The project will modify and enhance routing on application layer. The 

communication stack is like: 

 

 

Application->Data Link (MAC) ->Physical 

 

 

3.1 TinyOS routing algorithm analysis 

 

As the nature of wireless sensor networks, in which the sensor node can only 

hear and communicate with other peers, called “neighbors”, within its signal 

broadcasting distance, the routing tree algorithm is decentralized. Every node 

selects or is selected to forward messages between neighbors. In this fashion 

messages get propagated over the network. 
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At each node, X: 

Initialization 

Start timer for TimerTask 

Start timer for SendRouteTask 

If TimerTask fired 

   If neighbor table does not exist 

          Create a new one now 

     Else update neighbor table 

Choose a parent 

If SendRouteTask fired 

   If neighbor table does not exist 

    Return 

 Sending broadcasting routing messages (index, parent, cost, hop- count) 

If Receive routing messages 

   Update the neighbor table 

If Intercept Snoop messages 

   Update neighbor table 

Forever 

Figure 3.1 The TinyOS Routing Algorithm 

 

• Message Overhead 

As it can be seen from the algorithm described in Figure 3.1, the timer for 

each node goes off after a time period and a broadcast message is sent 

anyway. Suppose timers for all nodes are not synchronized and there are N 

nodes. There will be cases in which the child node’s timer goes off first and 

sends out useless messages till their parents notify all the other children. 

The best case scenario is when the parent always sends routing message 

ahead of its children resulting in O (N) broadcast messages being sent out 

to create a neighbor table for each node and another N broadcast message 

sent out to fill up the neighbor information. In this case it’s hard to say the 

balanced tree structure has less overhead than skewed ones since the 

messages overhead is determined by the sequence of timers to be fired. 

 

• Time Complexity 
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Every time it creates or updates a neighbor table, it has to scan the entire 

table once, and every node has to scan its own neighbor table at least twice 

(create and update). If the neighbor table size is M (upper limit of TinyOS 

table size is 16), then the total time spent on the routing tree algorithm is O 

(2M2 ). 

 

• Space Complexity 

The neighbor table structure looks like the following: 

 

typedef struct TableEntry { 

uint16_t id; // Node Address 

uint16_t parent; 

uint16_t cost; 

uint8_t childLiveliness; 

uint16_t missed; 

uint16_t received; 

int16_t lastSeqno; 

uint8_t flags; 

uint8_t liveliness; 

uint8_t hop; 

uint8_t receiveEst; 

uint8_t sendEst; 

} TableEntry 

Figure 3.2 Neighbor Table 

The multihop routing packet structure looks like: 

typedef struct MultihopMsg { 

uint16_t sourceaddr; 

uint16_t originaddr; 

int16_t seqno; 

uint8_t hopcount; 

/* offset changes */ 

uint8_t data [(TOSH_DATA_LENGTH - 7)]; 

} __attribute__ ((packed)) TOS_MHopMsg; 

 

Figure 3.3 Routing Message 
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3.2 TinyOS: WMEWMA-link quality estimator 

 

TinyOS introduces a new link quality estimator- window means with 

EWMA(exponentially weighted moving average), also termed as WMEWMA. 

 

WMEWMA(t, a ) = (Packets Received in t )/max(Packets Expected in t,  

Packets Received in t) 

 

Where t is the time window represented in number of message opportunities and 

a Є [0, 1] controls the history of the estimator. WMEWMA computes an average 

success rate over a time period and smoothens the average with a EWMA.[9] 

Although the literature gives out the complex formula, at the application layer, 

each node snoops on its neighbor messages (messages which are not addressed 

to it but it can hear/receive them, since all the messages are broadcast into 

networks) and keeps counting on received and send messages. By observing 

messages of success and loss, each node has the numerical estimation of its link 

quality and passes it on to its neighbors. 

 

3.3 Attribute Based Routing for non-constant attributes 

Implementation 

 

Madden’s proposed idea for semantic routing for constant attributes such as 

location or sensor ID is a simple power-conservation scheme. It’s easy to 

implement with low maintenance costs. Considering the real deployment 

environment, in most sample periods, sensor readings such as temperature and 

sound are not likely to widely fluctuate. Instead they mostly deviate within a 

fixed or constant range. As an example, the situation exists for the light value in 

the daytime. So, if a user query requests for nodes with attribute data far below 

range, the sensor nodes not followed in that range ideally would not need to 

participate in/respond to such a query. Here the proposed scheme implements 

this idea (let’s call it Semantic Routing Tree (SRT)) for non-constant attributes. 

Current TinyOS application layer routing is primarily based on signal strength. 

SRT reuses the TinyOS tree structure and appends the historical reading-range 
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to each node in the routing layer so that query dissemination efficiently routes 

requests to only appropriate regions. SRT needs periodic maintenance since the 

sensory attribute’s range has to be updated periodically. 

 

3.4 Dynamic Semantic Routing Implementation 

 

Let’s now discuss the other contribution proposed in this project. Unlike SRT, 

which routes the message to most stable nodes, Dynamic Semantic Routing Tree 

(DSRT) extends the idea of routing primarily based on the historical readings. 

The purpose of DSRT is to cluster motes area into semantic-close groups so that 

the query only reaches to affected groups; and maximally save communication 

and computation cost for non-affected nodes. Intuitively DSRT is not as stable as 

SRT since it excludes the signal factor. 

 

3.5 Project Task Summary 

 

• TOSSIM modification 

     Source file name: adc_model.c 

• TinyDB GUI modification 

     Source file name: ResultFrame.java 

• SRT / DSRT implementation on TinyOS application layer 

     Source file names: MultiHopWMEWMA.nc 

                                 MultiHop.h 

                                 RouteControl.nc 

• Query dissemination modification in TinyDB application 

     Source file names: TupleRouterM.nc 

                                 MultiHopEngineM.nc 
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4.SYSTEM DESIGN,ARCHITECTURE AND IMPLEMENTATON 
 

 

4.1 Complete Picture of implementation 

  

 

Routing 

AM 

ADC 

Tuple 
Router 

Routing 

TinyVIZ 

Messag
es

Messages 

TinyDB GUI 

TOSSIM

 

Figure 4.1 System Architecture [A] 
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Component Descriptions 

 

• TinyOS Routing: it’s a major module in charge of routings at all    

communication layers 

 

• TinyOS AM: the module managing radio transmission 

 

• TinyOS ADC: analog-to-digital reading module. 

 

• TinyDB Tuple Router: the module translating incoming query messages. 

 

• TinyDB Routing: this module contains query dissemination and 

application layer routings. 

 

4.2. Project Design 

 

The implementation of DSRT is based on TinyOS/TinyDB code by TinyOS group. 

The basic process is broken down into three components: 

 

• History Reading Collector. History reading collector gathers up all reading 

information such as temperature, light and sound for a certain period of time and 

extract the range value (highest and lowest) for each attribute. This range value 

will be passed on to the routing component for clustering. As for real 

implementation in the TOSSIM, history reading range is manually put into a 

configuration file, MoteSet. Every time TOSSIM boots up, it reads the file first 

and generates random ADC readings within given ranges. TinyOS routing module 

also reads the range information into memory. 

 

• New Routing Algorithms. The original TinyOS routing algorithm (network 

layer) is an ad-hoc routing based on link quality, the most reliable nodes are 

chosen to be the parents to relay messages for other peers. Two new routing 

algorithms (SRT and DSRT) are implemented. The later chapter will elaborate on 

both algorithms. 
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• Query Dissemination based on new routing tree. In TinyOS/TinyDB, a 

query request issued from base station gets propagated to all sensor nodes by 

broadcasting: every node hears the request simply relays query messages to its 

neighbors. The new query dissemination will selectively relay query requests to 

only related peers based on the routing tree. 

 

At each node, X: 

Initialization 

Start timer for TimerTask 

Start timer for SendRouteTask 

If TimerTask fired 

If neighbor table does not exist 

Create a new one now 

Else update neighbor table 

Choose a parent (update node range) 

If SendRouteTask fired 

If neighbor table does not exist 

Return 

Sending broadcasting routing messages (index, parent, cost, hop- count, range) 

If Receive routing messages 

Update the neighbor table (include range information) 

If Intercept Snoop messages 

Update neighbor table 

Forever 

 

Figure 4.2: SRT Algorithm 

 

 

4.3 SRT Algorithm Analysis 

 

As shown in the diagram above (Figure 4.2), SRT differs with TinyOS Routing in 

that it adds in the range information into multihop messages. As a result, space 

complexity is increased by 2 more bytes. Neighbor table size is increased by 2 

bytes as well. Other than that SRT has the same message overhead and time 

complexity as TinyOS Routing. 
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4.4 Range Information Management 

 

In order to efficiently disseminate query requests, each node dynamically merges 

its range with its children’s ranges. Thus the range of a sensor node overlaps 

information of sub-tree under it. A special case is BS’s range reflects the history 

range of the whole sensor network, which blocks the unrelated query even 

before the query is sent out to the network. When tree structure changes, all 

range information is adjusted - either being removed or merged. 

 

At each node, X: 

Initialization 

Start timer for TimerTask 

Start timer for SendRouteTask 

If TimerTask fired 

If neighbor table does not exist 

Create a new one now 

Else update neighbor table 

Calculate Manhattan distance for every neighbor 

Choose a parent (update node range) 

Path compression 

If SendRouteTask fired 

If neighbor table does not exist 

Return 

Sending broadcasting routing messages (index, parent, cost, hop- count, range, 

layer) 

If Receive routing messages 

Identify which ripple layer I’m sitting on 

Update the neighbor table (include range information) 

If Intercept Snoop messages 

Update neighbor table 

Forever 

Figure 4.3: DSRT Algorithm 
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4.5 DSRT Algorithm Complexity Analysis 

Same as TinyOS and SRT, it uses two timers to send out routing messages and 

choose parents. So message overhead and time complexity is same as TinyOS 

and SRT. However, DSRT (Figure 4.3) puts range and layer information in the 

routing message structure: 

 

typedef struct MultihopMsg { 

uint16_t sourceaddr; 

uint16_t originaddr; 

int16_t seqno; 

uint8_t hopcount; 

uint8_t rnglow; 

uint8_t rnghigh; 

uint8_t layer; 

/* offset changes */ 

uint8_t data [(TOSH_DATA_LENGTH - 10)]; 

} __attribute__ ((packed)) TOS_MHopMsg; 

 

Figure 4.4 DSRT Routing Message 

So that the total message size is increase by 3 bytes comparing to TinyOS. 

 

4.6 Cycle Prevention Techniques: Hop count and Layer 

In the distributed area, each node has the only knowledge of its neighbors 

instead of the whole picture; it’s very easy to produce cycles and stranded nodes 

inside the tree structure. When a cycle exists in the tree, a message is infinitely 

passed back and forth in the network, which wastes large amount of 

communication and should be prevented at all cost. 

TinyOS routing algorithm prevents cycles by controlling the hop count. A node 

selects a parent under the condition that its future parent must have the smaller 

hop count than itself. Thus, the tree is built top down. However there is still slim 

chance to get into a cycle when two nodes happen to choose the opposite as its 

parent at the same time. 

DSRT introduces a new concept, layer, we picture sensor network is made of 

multiple layers of nodes, starting from the base station, all nodes which can hear 

BS are the first layer, 0 and nodes sitting on layer 1 can hear layer 0, so on and 
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so forth. When a query request is issued from BS, it propagates from layer 0 to 

the farthest layer, which is similar to the ripple effect. Each node has to identify 

its layer before it comes into parent selection. Layer identification is built top 

down from BS as well. Once a node knows its layer, it starts parent selection 

under the rule that it can only choose its parent from its ancestor layers or inside 

the same layer. And inside the same layer, each node checks if the current 

parent candidates’ have smaller hop counts. Similarly as TinyOS, there is still 

chance of producing cycles. In the later discussion, we can see a complete cycle-

free goal is hard-to-achieve in the distributed environment. 

 

4.7 Layer Acquisition Algorithm 

 

Before building up the routing tree, DSRT assigns layer identities to every sensor 

node in the network, with the innermost layer (closest to BS) to be the layer 0. 

The top down layer building algorithm is like Figure 4.5: 

 

While (true) { 

If “I can hear from the Base Station” 

then myLayer = 0 

Else { 

Wait (three timer cycles); 

If “I waited for enough time” and “I can hear some one with a layer id I” 

Then 

myLayer = I +1; 

} } 

Figure 4.5: Layer Acquisition Algorithm 

4.8. The Parent Selection Process 

In the deployment of sensor networks, sensors can be spread out to cover a 

large area and the distance from sensors to the base station could be out the 

reach of sensors’ radio signals. For example, the largest hearing distance of two 

mica motes is 50 feet and radio signal strength decreases as the distance 

increases. When a sensor node can’t communicate with the base station directly, 

it depends on other sensor nodes closer to the base station to relay the 

communication. Thus, parent selection enables a message from any given sensor 

node to eventually reach the base station through one or many hops. The TinyOS 
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routing implements a multi-hop tree structure. A typical TinyOS routing tree is 

shown in Figure 4.6. 

 

0

1 

2
3

4 

 

Figure 4.6: A TinyOS Routing Tree 

 

As shown in Figure 4.6, by default, the base station ID is 0. Here let’s assume 

that nodes 2 and 3 are beyond the communication range of the base station and 

rely on node 1 to relay the communication. We term node 1 to be the parent of 

nodes 2 and 3. Each node is free to choose a parent on its own. The process of 

selecting a node from its neighbor is called parent selection. Parent selection is 

crucial in multi-hop environment and has the direct impact on efficiency of 

communication. Next two sections will talk about different parent selection 

criteria of TinyOS, SRT and DSRT. 

 

4.9. Manhattan Distance based parent selection in DSRT: 

 

DSRT selects parents based on range information rather than physical proximity, 

that is, each node would choose a node that has the most ‘similar’ range as its 

parent. For example, suppose a sensor node historically has the temperature 

between 70F and 90F. Now, let’s say it has to choose a parent between two 

nodes, A and B, each with a range 50-60F and 70-90F. Which one will it select? 

In this case, B is selected since it has the same range even if A might be closer 
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to the node in terms of physical distance. What if A and B have the range of 20-

30F and 30-40F? In this case, it’s hard to evaluate the approximation. Manhattan 

distance provides the quantitative evaluation of length between two points. 

Manhattan distance [15], also known as city block distance is defined as: 

 

D (i, j) = |xi1-xj1| + |xi2-xj2|+… + |xip – xjp| 

 

Where i = (xi1, xi2, xi3…xip), j= (xj1, xj2, xj3…xjp) and are two p-dimensional 

data. Specifically, here the range is defined as a two-dimensional numerical data. 

For every sensor node attribute two ranges are defined: lowest range and 

highest range, I = (lowest, highest) and M-distance between two sensor nodes, i 

and j can be described as 

 

D (i, j) = |lowest (i) – lowest (j)| + |highest (i) – highest (j)| 

 

Example: 

Node A has the range of [10, 20], B has it of [30, 40] 

D(A,B) = |10- 30| + |20-40| = 40 

Before calculating the distance, a serial of data standardization is performed 

since standardization gives all variables an equal weight. The process goes like 

the following: 

Given a group of range information, lowest range array LA (LA1, LA2…LAn) and 

highest as HA (HA1, HA2…HAn) 

 

� Calculate the mean value M for LA and HA 

MLA= 1/m * (LA1 + LA2 +…+ LAn) 

MHA = 1/m * (HA1 + HA2 +…+ HAn) 

 

� Calculate the standard deviation S for LA and HA 

 

SLA=sqrt (1/n * ((| LA1– MLA |2+…+ | LAn - MLA|2)) 

SHA=sqrt (1/n * ((| HA1– MHA |2+…+ | HAn - MHA |2)) 

 

� Calculate the z-score based on S and M 

ZLAi = (LAi – MLA)/ SLA, ZHAi = (HAi – MHA)/ SHA 
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The M-distance between two nodes 1 and 2 is finally calculate as 

D (1, 2) = | ZLA1 – ZLA2 | + | ZHA1 – ZHA2| 

And two nodes are considered as closest when they have min (M-distance) of all 

neighbors. 

 

4.10. DSRT Parent Selection Process 

DSRT defers parent selections between 0 and other layers. A sensor node in 

layer 0 tries to directly connect to BS except its range falls into others. The 

purpose is as the layer 0 is closest to the BS; it should avoid multi-hops as 

possible. Starting from layer 1, parent selection is determined by M-distance. 

 

4.11. Path Compression 

 

DSRT tries to cluster sensor nodes and it allows one or more hops inside one 

layer. Therefore, DSRT routing tree has more depth than TinyOS. It’s a tradeoff 

between increasing tree depth and segmenting clusters. For example, a cluster of 

two or three nodes and a huge hop count doesn’t save much communication and 

processing cost for conditional queries, instead, it scarifies a lot of network 

performance. This case should be avoided and here is the path compression 

coming into play. Path compression in the graph theory refers to that in order to 

eliminate long paths, the child saves the pointers to its ancestor parents (e.g. 

Parent’s parent) and skip the current parent to compress the path. DSRT 

introduces a constant, HOP_LIMIT to control the length of path. If the current 

hop counts exceed the HOP_LIMIT, DSRT does path compression. 

 

4.12. Code Optimization 

Embedded system programming requires optimal code to save computation 

power. The following code optimization schemes are applied in SRT and DSRT 

coding. 

� keeping struct size to be power of two 

� Minimize the local variables and declare them in inner scope 

� Prefer int over char 

� Minimize the function arguments  
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5.                                   TESTING RESULTS AND ANALYSIS  
 

 

5.1. Test Environment Setup 

All tests are executed in TOSSIM and TinyDB GUI. Three types of radio model 

models- single hop, lossy model and empirical model are simulated. 

 

In TOSSIM, a network signal is either a one or zero. All signals are of equal 

strength, and collision is modeled as a logical or; there is no cancellation. The 

single hop model assumes the perfect transmission of radio single. Each node 

can hear from its neighbors without any data loss. 

 

The “lossy” radio model places the nodes in a directed graph. Each edge (a, b) in 

the graph means a’s signal can be heard by b. Every edge has a value in the 

range (0, 1), representing the probability a bit sent by a will be corrupted 

(flipped) when b hears it. For example, a value of 0.01 means each bit 

transmitted has a 1% chance of being flipped, while 1.0 means every bit will be 

flipped and 0.0 means bits will be transmitted without error. Each bit is 

considered independently.[A] 

 

Empirical model assumes each mote has a transmission radius of 50 feet. 

Combined with the bit error rate, this means each mote transmits its signal in a 

disc of radius 50 feet, with the bit error rate increasing with distance from the 

center. [A] 

 

5.2 Evaluation Metrics 

 

There are several network metrics to evaluate the performance of sensor 

networks. 
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• Messages to build up the tree(BTM): routing messages it takes to built 

up a consistent tree and it happens when sensor networks boot up 

• Query messages disseminated to the whole network (QM): number 

of query messages are sent to the network so that all sensor nodes get 

the query request 

• Round trip time for a certain query (RTT): interval in seconds from 

issuing the query to data coming back and displayed. 

• First response time (FRTT): the round trip time of the first responded 

node. 

• Last response time (LRTT): the round trip time of the last responded 

node. 

• Response percentage (RP): number of nodes responded with data 

results/ number of nodes expected to return results 

• Participation Rate (PR): number of nodes involved into queries 

• Network Topology (NT): there are three NT being tested in this project. 

Single Hop: each node can reach BS with no data loss 

Multihop: Complement of single hop. Nodes are spread out as      grid    

with equal distance. Data is lossy and erroneous. The TinyOS empirical 

model (refer to manual) is used to generate test data. 

Skewed (straight line): sensor nodes form a straight line. 

 

5.3 Simple Comparison & Analysis 

 

Let’s see an example of 5 sensor nodes, labeled as 1, 2, 3, 4, 5 in single hop. 

And namely each has the light value (lumens) as Figure 5.1. 

 

 

NodeID Light Ranges 

1 [20,60] 

2 [10,100] 

3 [20,60] 

4 [10,100] 

5 [10,60] 

Figure 5.1 light ranges 
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TinyOS and SRT routing structures turn out like this (Figure 5.2): 

0 

5 

4 
3

2

1 

Figure 5.2 TinyOS / SRT Routing tree 

 

Here TinyOS and SRT structures are the same (Figure 5.2). That’s because SRT 

doesn’t not change the way routing tree is built up and it only adds range 

information on each node. And DSRT structure is a bit different. 

0

1 2

3

5 

4

 

 

Figure 5.3 DSRT Routing tree 
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As shown in Figure 5.3, DSRT tries to arrange nodes with similar light range 

together. Here since nodes 1 and 3 are within the same range, node 3 becomes 

the parent of node 1. It’s worth mentioning that nodes 1 and 3 is 

interchangeable, that is, it’s possible node 1 becomes the parent of 3 and directly 

connects to BS. It all depends on whose timer is fired first and selects the BS as 

parent. 

 

Supposing there is a query, format as 

 

Select nodeid, light 

 

This extracts all the light readings from all sensors. In this case, BS sends out 

the query request and every node works on its own, sending back the data. 

DSRT has more latency since its largest hop count is 2. However in the case of 

conditional query, format as 

 

 

Select nodeid, light where light> 60 

 

 

Node 1 will not participate in the query process. What it saves? Communication 

cost between node 1 and 3, processing cost of node 1. Looks like not save much. 

However, in large scale networks, communication and processing cost of ten or 

more nodes means a lot. 

 

5.4. Test Results 
  

 Test case scenario 1: 
 

Single Hop, 10 nodes, light ranges are within [50, 100]. 
 
For following Non-conditional query, 
 
Select nodeid, light from sensors 
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  BTM RP FRTT / LRTT NT 

TinyOS/SRT 11 100% 15~16/16~17 single 
hop 

DSRT 3 100% 16~19/16~20 single 
hop 

 
 

Figure 5.4 Test Case 1 
 
 
 
 
 
There is not much performance discrepancy between three, only that 

TinyOS/SRT cost more BTM, since TinyOS/SRT need sending more routing 

messages to establish WMEWMA metrics. 

 

 Test case scenario 2: 
 

Single Hop, 30 nodes, light ranges are within [10, 30], [40, 70], 
[80, 120]. 
 
For following Non-conditional query, 
 
Select nodeid, light from sensors 

 

  BTM RP FRTT / 
LRTT 

NT 

TinyOS/SRT 27 86% 56/157 single 
hop 

DSRT 4 76%~83% 55~57/76 single 
hop 

Figure 5.5 Test Case 2 
 

DSRT has poorer RP and RTT. It can be explained by the DSRT tree structure 

tends to have bigger tree depth and enlarge the network latency. 

 

 Test case scenario 3: 
 

Single Hop, 30 nodes, light ranges are within [10, 30], [40, 70], [80, 

120], conditional query:  

Select nodeid, light where light in T 

- 41 - 



 

 QR 

  T= [10,30] T= [40,70] T=[80,120] 

TinyOS 22 22 22 
SRT 20 22 19 
DSRT 14 11 11 

 
Figure 5.6 Test Case 3(QR) 

 
 
 

 PR 

  T= [10,30] T= [40,70] T=[80,120] 

TinyOS 29 29 29 
SRT 19 27 26 
DSRT 16 14 16 

 
Figure 5.7 Test Case 3(PR) 

 
 
 

TinyOS routing does not filter any query messages and it consumes more 

messages and processing power than SRT and DSRT. DSRT outperforms a little 

than SRT in terms of QM and PR. 

 

 Test case scenario 4: 
 

Multi-Hop empirical model, 4x4 grid with equal distance of 10 feet, 16 

nodes, light ranges are within [10, 60], [60,110], [120, 170]. 

 For following non-conditional query:  

                                 Select nodeid, light from sensors  

 
  BTM RP FRTT/LRTT NT 

TinyOS/SRT 26 100% 33 / 96 Multi hop 

DSRT 7 53-60% 55-57 / 95~519 Multi hop 

 
Figure 5.8 Test Case 4 
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 Test case scenario 5: 
 

Multi-Hop empirical model, 4x4 grid with equal distance of 10 feet, 16 

nodes, light ranges are within [10, 60], [60,110], [120, 170]. 

For following conditional query: 

 

Select nodeid, light where light in T 

 

 QR 

  T= [10,60] T= [60,110] T=[120,170] 

TinyOS 11 11 11 
SRT 16 17 18 
DSRT 4 8 5 

 
Figure 5.9 Test Case 5(QR) 

 
 
 

 PR 

  T= [10,60] T= [60,110] T=[120,170] 

TinyOS 15 15 15 
SRT 4 12 14 
DSRT 5 10 11 

 
Figure 5.10Test Case 5(PR) 

 
 

 Test case scenario 6: 
   

Multi-Hop lossy model, 25 nodes, light ranges are within [10, 50], 

[60,100], [125, 190], and [200, 250]. 

  

For following Non conditional query:  

 

Select nodeid, light From sensors 
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  BTM RP FRTT/LRTT NT 

TinyOS/SRT 12 100% 34 / 175 Multi hop 

DSRT 7 100% 109 / 320 Multi hop 

Figure 5.11Test Case 6 
 

 

 Test case scenario 7: 
 

Multi-Hop lossy model, 25 nodes, light ranges are within [10, 50], 

[60,100], [125, 190], and [200, 250]. 

For following conditional query: 

 
Select nodeid, light where light in T 

 

 QR 

  T= [10,50] T= [60,100] T=[125,190] T=[200,250] 

TinyOS 5 5 5 5 
SRT 5 5 5 5 
DSRT 4 5 4 5 

 
Figure 5.12 Test Case 7(QR) 

 
 PR 

  T= [10,50] T= [60,100] T=[125,190] T=[200,250] 

TinyOS 24 24 24 24 
SRT 8 8 8 8 
DSRT 9 9 8 8 

 
Figure 5.13Test Case 7(PR) 

 
 
 
5.5. Result Analysis 

 
TinyOS routing does not filter any query messages and it consumes more 

messages and processing power than SRT and DSRT.  
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In the single hop environment, DSRT outperforms SRT and TinyOS in that it 

takes fewer messages overhead to establish the routing and disseminate the 

messages. 

While in the lossy environment, DSRT has poor network response time. (As the 

value increases for FRTT/LRTT) 
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6.                                                                   FUTURE WORK      
 

 

DSRT builds up routing structure based on single non-constant attributes and 

supports conditional query of single predicate. Same as SRT, It keeps track of 

range information for single attribute. However, user queries can be multi-

dimensional, for example query for temperature and sound at the same time. In 

the case, there will be multiple routing trees, one for each attribute. How to 

disseminate dimensional queries will involve finding common optimal paths 

between multiple tree structures. As for space, with more and more attributes 

adding in, efficient storage of range information has to be taken into account. So 

future work will include attribute based routing implementing over multi attribute 

based queries and multi query support for this proposed routing scheme.  
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