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Abstract

The rapid and dynamic information and knowledge transfer between designers dur-

ing the conceptual phase of designing verification environment for any Reusable IP

can result in time consuming and erroneous environment. This thesis describes the

development and verification of a structured framework, which has been generated to

aid and support conceptual design. The development of framework for IP verification

is based on OVM (Open Verification Methodology). For designing verification envi-

ronment in this directory case study of various project was carried out and summary

of study observed was drawn in table II. From that conceptual design of framework

is generated, which was followed by creation of hardcoded fragments for each com-

ponent. In this project work, a tool is developed for generating the Framework.

Script takes input from User, in GUI form and depending on the input, existence of

reuse layer in verification environment and placement of components is decided at

run time. Existence of reuse layer control some hierarchical references in the code,

and then connection of various component in respective hierarchy was otherwise a

tedious task is completed through the script with less efforts. Various other com-

ponents were designed like bus interface tracker, which is useful for debugging and

performance analysis. Quality has been tested by ensuring the framework is compile

clean. Various configuration files were developed for compiling the framework with a

generic frontend simulation environment. This framework will save efforts as well as

time for creating basic essential components in the environment and is less prone to

errors as the framework itself would be pre-validated. This framework, as the name

suggests is the fundamental layer created for any generic IP validation and thus not

only enforces the same look-n-feel across all IP environments but also ensures the

quality discipline among the team members.
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Chapter 1

Introduction

1.1 Introduction and Motivation

The conceptual phase of any design project is potentially the most vibrant, dynamic

and creative stage of the overall design process. It is at early stage that designers need

to interact freely to achieve optimal verification environment that eliminate or reduce

the need for compromise of design at a later, more critical period of the process. Cur-

rently, for developing verification environment for any Reusable IP, all components

are to be created from scratch which is time consuming and is prone to error. This

thesis is based on actual work designing generic framework for IP verification and is

motivated by these several factors. As generic framework include all the necessary

components with its minimal functionality without including project specific data for

any generic IPs. These will save efforts as well as time for creating basic essential

components in the environment and is less prone to errors as the framework itself

would be pre-validated. Thus this framework will help effective deployment of new

IP environments in future projects.

This project is divided into two distinct phases Designing and Validating. The first

phase (Designing) involves creating templates for basic components according to OVM

methodology of verification. Second phase (validating) involves compiling and elabo-

1



CHAPTER 1. INTRODUCTION 2

rating the templates by developing configuration files for generic frontend simulation

environment.

1.2 Objectives of Thesis

The main objectives of the thesis are:

1) Auto creating Templates for basic component in verification environment using a

script.

2) Ensure the whole framework is self sufficient in terms of compilation and elabora-

tion of the templates.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, OVM Verification Environment and OVM Mechanics, describes the

overall verification process focusing on two questions. This chapter introduces

and briefly describes the OVM components for testbench organization and also

explains the mechanics of OVM, illustrating how to build hierarchies of class-

based verification components and connect them with transaction-level inter-

faces.

Chapter 3, Generic Simulation Environment , describes the template simulation

environment required to compile and simulate any IP verification environment.

This chapter includes packages in system verilog and configuration files for sim-

ulation environment.
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In chapter 4, Designing Generic Framework, Presents the actual work carried out

during the project. This chapter describes the case study carried out, based on

this study, using a PERL script generation of templates is carried out. This

chapter also includes designing of configuration files for validating the environ-

ment.The whole templates are compiled and elaborated using VCS simulator

from Synopsys R©.

In chapter 5, Designing Bus interface Tracker, Presents the concept of tracker.

Actual work done for generating generic template for tracker is also described

in this chapter. The inputs to the tracker generating script and flow of the

script are also presented.

In chapter 6, Other Productive contribution, describes the other productive contri-

bution carried out during the period of internship, which includes OVM Com-

pliance checking for various IPs, adding coverpoint to coverage, writing various

test code and attending various trainings.

Finally, in chapter 7 concluding remarks is presented.



Chapter 2

OVM Verification Environment &

OVM Mechanics

The OVM (Open Verification Methodology) is the result of joint development be-

tween Cadence and Mentor Graphics to facilitate true SystemVerilog interoperability

with a standard library and a proven methodology. Completely open source, it com-

bines the best of the Cadence Incisive Plan-to-Closure Universal Reuse Methodology

(URM) and the Mentor Advanced Verification Methodology (AVM). The OVM is a

programming environment built upon SystemVerilog. It is designed to enable the

development of complex testbenches.

2.1 Verification Principles

2.1.1 Verification Basics

Functionally verifying a design means comparing the designer’s intent with observed

behavior to determine their equivalence. Every testbench has some kind of reference

model and a means to compare the function of the design with the reference. The

reference can take many forms, such as a document describing the operation of the

DUT, a golden model that contains a unique algorithm, or assertions that represent

4



CHAPTER 2. OVM VERIFICATION ENVIRONMENT & MECHANICS 5

a protocol.

2.1.2 Two questions

Verifying a design involves answering two questions: Does it work? and Are we done?

The first question comes from the essential idea of verification where the major role

is to determine functional correctness of the design. The second asks if we have

satisfactorily compared the design and intent to conclude whether the design does

indeed match the intent, or if not, why not. Are-we-done questions are also call for

functional coverage, questions that relate to whether the design is sufficiently covered

by the test suite in terms of design features. The most important part in the whole

verification process is the approach. When a good approach is followed to design the

test benches, one does not have to go back and forth in developing / checking the

functionality. Here comes the need for a common, reusable and easily pluggable veri-

fication environment framework. Although different designs may function differently,

the verification framework needed for those designs are abstracted at a higher level

and are common and reusable. Hence the efforts in this project is to concentrate on

developing such generic framework with less / minimal efforts and help all IP teams

with a easy launch for the verification environment.
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2.1.3 Two loop flow

The process for answering the does-it-work and are-we-done questions can be de-

scribed in a simple flow diagram as shown in figure 2.1. Everything is driven by the

functional (architectural) specification for the design. From the functional specifica-

tion, the design and the verification plan can be derived. The verification plan drives

the testbench construction.

Figure 2.1: Two-loop Flow
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2.1.4 Concentric Testbench Organization

The OVM defines verification components, their structure, and interfaces. OVM

testbenches are organized in layers. The innermost layer is the DUT, an RTL device

with pin-level interfaces. Above that is a layer of transactors, devices that convert

between the transaction-level and pin-level worlds. The components in the layers

above the transactor layer are all transaction-level components.Figure 2.2 illustrates

the Concentric testbench organization.

Figure 2.2: Concentric Testbench Organization
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2.2 OVM components

2.2.1 Transactors

The role of a transactor in a testbench is to convert a stream of transactions to

pin-level activity or vice versa. Transactors are characterized by having at least one

pin-level interface and at least one transaction-level interface.

Monitor. A monitor, as the name implies, monitors a bus. It watches the pins and

converts their wiggles to a stream of transactions. Monitors are passive, meaning

they do not affect the operation of the DUT in any way.

Driver. A driver converts a stream of transactions (or sequence items) into pin-level

activity.

Responder. A responder is much like a driver, but it responds to activity on pins

rather than initiating any activity.

2.2.2 Operational Components

The operational components are the set of components that fulfill all the require-

ments the DUT needs to operate. The operational components are responsible for

generating traffic towards the DUT. They are all transaction-level components and

have only transaction-level interfaces (called TLM). The ways to generate stimulus

are as varied as the kinds of devices there are to verify.

Stimulus Generator. Stimulus generators create a stream of transactions passed on

to the driver to be able to convert to pin level activities and drive towards the ’DUT’.

Stimulus generators can be of varied types, such as random, directed, or directed

random (also called pseudo random); they can be free running or have controls; and

they can be independent or synchronized. The simplest stimulus generator random-

izes the contents of a request object and sends that object to a driver through a TLM

connection.
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Master. A master is a bidirectional component that sends requests and receives re-

sponses. Masters initiate activity. Like stimulus generators, they can send individual

randomized transactions or sequences of directed or directed-random transactions.

Masters may use the responses to determine their next course of action. Masters can

also be implemented in terms of sequences.

Slave. Slaves, like masters, are bidirectional components. They respond to requests

and return responses (in contrast to masters, which send requests and receive re-

sponses).

2.2.3 Analysis Components

Analysis components receive information about what’s going on in the testbench and

use that information to make some determination about the correctness or complete-

ness of the test. Two common kinds of analysis components are scoreboards and

coverage collectors.

Scoreboard. Scoreboards are used to determine functional correctness of the DUT,

to answer does-it-work questions. Scoreboards are connected to the DUT activities

through transactor components like monitor using TLM connections and help deter-

mine if the DUT is behaving correctly to its stimulus.

Coverage Collector. Coverage collectors count things. They tap into streams of

transactions and count the transactions or various aspects of the transactions. The

purpose is to determine verification completeness by answering are-we-done questions.

The particular things that a coverage collector counts depend on the design and the

specifics of the test. Coverage collectors can also perform computations as part of a

completeness check.
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2.2.4 Controller

Controllers form the main thread of a test and orchestrate the activity. Typically,

controllers receive information from scoreboards and coverage collectors and send

information to environment components. For example, a controller might start a

stimulus generator running and then wait for a signal from a coverage collector to

notify it when the test is complete. The controller, in turn, stops the stimulus gen-

erator. More elaborate variations on this theme are possible. In an example of a

possible configuration, a controller supplies a stimulus generator with an initial set

of constraints and starts the stimulus generator running. When a particular ratio of

packet types is achieved, the coverage collector signals the controller. Rather than

stopping the stimulus generator, the controller may send it a new set of constraints.

2.3 Components and Hierarchy

The primary structure for building testbench elements is the component. OVM is

responsible for creating the component instances and assembling them into hierar-

chies.Figure 2.3 illustrates a simple hierarchy of components.

Figure 2.3: Simple Hierarchy of components
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The top-most node, env, is the root. The root is distinguished by the fact that

it has no parent. All other nodes have exactly one parent. Each node has a name.

The location in the hierarchy of each node can be identified by a unique full name

(path), which is constructed by stringing together the names of all the nodes between

the root and the node in question, separating them with a hierarchy separator, dot

(.). The children of a component are stored in an associative array. This array is not

directly accessible, but it can be accessed through a hierarchy API.

Figure 2.4: small design showing traversing

2.4 Connectivity

Components are connected to each other through TLM ports and exports. Ports and

exports provide a means for components, or more accurately, processes in components,

to synchronize and communicate with each other. Ports and exports are objects that

form a binding point to enable intercomponent communication. Exports provide

functions and tasks that can be called by ports shown in figure 2.5.
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Figure 2.5: Connecting an initiator to a target

The connect method on ports and exports is used to bind the two together.

initiator port.connect(target.export)

This method creates an association, or a binding, between the port and export so

that the port can now call tasks and functions on the export. For the connection

to be made successfully, the types of the port and export must match. That is, the

interface types must be the same, and the type of the object being transferred in the

interface must be the same.

2.5 Phases

Traditional Verilog modules rely on the simulator to elaborate the complete design

and kick off its execution. Since OVM components are classes, they are instanti-

ated and connected, and their execution is initiated outside of the Verilog elaborator.

Components come into existence by calling class constructor new(), which allocates

memory and performs initializations. Rather than the Verilog run-time engine manag-

ing instantiation, elaboration, and execution of class-based components, component

functionality is broken into phases, and the OVM phase controller manages their

execution.
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Table I: Table of phases

Each phase is represented in the component as a virtual method (task or function)

with a trivial default implementation. These phase callbacks are implemented by the

component developer, who supplies appropriate functionality. The phase controller

ensures that the phases are executed in the proper order. The set of predefined phases

is shown in the table I. Each phase has a specific purpose. Component builders must

take care to ensure that the functionality implemented in each phase callback is ap-

propriate to the phase definition.

new is not technically a phase, in that it’s not managed by the phase controller.

However, for each component, the constructor must execute and complete in order to

bring the component into existence. Therefore, new() must run before build() or any

other subsequent phases can execute.

build is the place where new components, ports, and exports are instantiated and con-
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figured. This is also the recommended place for calling set config * and get config *.

(refer section 2.6)

connect is where components, ports, and exports created in build() are connected.

end of elaborationis where you can make configuration changes, knowing that elab-

oration is complete. That is, you can assume that all components are built and con-

nected.

start of simulation executes just before time 0.

run is the only pre-defined task phase. All of the run tasks are forked to run in par-

allel. Each run task continues until its locus of control passes the endtask statement

or it is explicitly shut down. Later in this chapter, we will discuss how to shut down

test-benches.

extract is intended for collecting information relating to coverage or other informa-

tion about how to answer the testbench questions.

check is where any correctness checking or validation of extracted data is done.

report is where final reports are produced.

2.6 Config

To increase reusability of components, it’s desirable to sprinkle them liberally with

parameters that can be externally configured. The config facility provides a means

to do just this. It is based on a database of name-value pairs called configuration

items that is organized hierarchically. Each component contains a configuration table

of configuration items as shown in Figure 2.6 and, since components are arranged in

a tree, each element in the database can be uniquely located by the location of the

component and the name of the configuration item.
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Figure 2.6: Each component has a database of configuration items

The ovm component class contains two sets of methods for putting configuration

items into the database and for retrieving them later. These are set config * and

get config *. The Table II below shows both sets. The set config * functions place an

item in the configuration database in the current component, that is, in the component

instance in which the function is called. These functions each take three arguments,

name, field name, and value. The argument name is a path name that represents

the scope of the components that are to accept this configuration item. name is used

in get config * to locate items in the configuration database. field name is the name

of the field and must be unique within the current configuration database. value is

the value part of the name-value pair and its type can be string, int, or ovm object,

depending on which function is being called. In addition, set config object takes a

clone argument to indicate whether the object being passed in as the value should be

cloned before it is put into the configuration database.
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Table II: Configuration functions

The get config * functions retrieve items from the configuration database. These

functions take only two arguments, a field name and an inout variable that contains

the value of the item located. They also return a bit to indicate whether the requested

item was successfully located. The get config * functions do not take a path name

argument like their set config * counterparts because they use the path of the current

component as the point of reference to locate configuration items. They are designed

to inquire as to the value of a configuration item for the current context, that is, the

component in which the get config * function is called.

2.7 Factory

The structure of a testbench is determined by the organization of the components into

a hierarchy and the way these objects are connected. The behavior of the testbench



CHAPTER 2. OVM VERIFICATION ENVIRONMENT & MECHANICS 17

is determined by the procedural code in the phase callbacksbuild, connect, run, and

so forth. There are times when it is desirable to modify the behavior or part of the

structure externally, that is, at run time, without touching the testbench code. For

example, to inject errors into a system, you may want to replace the normal driver

with an error driver, one that intentionally injects errors. Instead of re-coding the

environment to use a different driver, you can use the factory to do the substitution

automatically.

The factory provides a means for substituting one object for another without

having to use your text editor to modify the testbench. Instead of creating the object

using new(), you invoke a create function in the factory. The factory keeps a list

of registered objects and, optionally, a set of overrides associated with each one.

When you create an object using the factory, the list of overrides is consulted. If

one is present, then the override object is returned.Otherwise, the registered object

is returned.

The factory is an OVM data structure. It is global in scope, and only one instance

exists (that is, its a singleton). It serves as a polymorphic constructor, a single

function that lets you build a variety of different objects. It provides a means for

registering objects and for specifying overrides. Objects registered as overrides must

be derived from the object they are overriding. To have a single function return

multiple objects, each of those objects must be derived from a common base class.

An essential component of the factory is the wrapper, a class that wraps the

object we wish to register with the factory. The factory data structure is a table of

wrappers indexed by a key. The wrapper has a create() function that delegates to

the constructor of the wrapped object.

Using the factory involves three steps: registration, setting overrides, and cre-

ation. In the first step, you register an object with the factory. In the second step,

you add an override to a registered object. In the third step, you create an object

with the factory that will return either the originally registered object or an override,

depending on whether an override was registered for the requested object.
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2.8 Shutting down the testbench

2.8.1 Global Function

The easiest way to shut down an OVM testbench is to call the global function

global stop request(). This requests that the testbench shut down. If there is no

reason not to shut down, then the testbench will terminate. What reasons would

there be to not allow a shutdown? Every component has a virtual task stop(). When

you call global stop request(), this task is called for each component whose member

enable stop request is set to 1. When all of the stop tasks have returned, then the

testbench shuts down. The stop task can be used to clean things up, tell the DUT

to shut down, serve as a shutdown objection, or anything else you’d like to do before

completing the current phase. Since it is a task, stop() can consume time. A stop()

task can disallow the shutdown by blocking. It can wait for some condition to be set

or delay a fixed time. The stop() task services the shutdown request. When stop()

returns, it allows the request to be granted. The following example illustrates how

the stop mechanism works. This example consists of two producers sending transac-

tions to a consumer through a FIFO. Each producer runs independently of the other.

We want to make sure that both producers finish their respective jobs. When one

finishes, the other continues until it is done. Upon starting, the task immediately

calls global stop request(), which causes the stop() tasks to be called in the produc-

ers (because enable stop interrupt is set to 1 in each). In turn, each producer blocks

until its respective done flag is set. When the producer with the smallest number of

iterations finishes, it triggers its local done flag and its stop task returns. However,

because there are outstanding blocked stop tasks, the simulation continues. Only

when all of the stop tasks complete will the simulation terminate.
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2.8.2 Timeout

It’s possible that a simulation can deadlock when a bug in a stop task prevents

it from returning, a blocked call never unblocks, or a forever loop never breaks.

To prevent the simulation from hanging indefinitely, OVM provides two watchdog

timeout mechanisms. One is for task phases, and the other is for stop tasks. ovm root

contains two variables, phase timeout and stop timeout. Their type is the Verilog type

time, and their values can be set by set global timeout and set global stop timeout.

The default value for both variables is 0, which means timeout is disabled. When a

task-based phase is executed, such as run(), and phase timeout has been set to a value

greater than zero, then a separate watchdog process is spawned that simply waits until

the timeout expires. A fork/join any construct is used to spawn these tasks, so if the

run tasks finish before the timeout expires, then the timeout is ignored. On the other

hand, if the timeout expires first, then it will initiate a shutdown.

2.9 Tests and Testbenches

Through the proper use of configuration, the factory, and the phased build process,

you can create a verification testbench that allows you to randomize more than just

the generated stimulus. For example, if a testbench is written to allow the number

of drivers on a bus to be configurable, then the same testbench can be reused across

multiple tests, each of which might specify a different (possibly random) number of

drivers. As you can see, the flexibility of OVM allows you to run each of these different

tests without having to modify the testbench itself.

The OVM also provides an explicit ovm test class as a container for tests. Typ-

ically, the top-level module will instantiate an ovm test, which in turn configures

and instantiates the testbench. Additional tests can then be written as extensions

of the base test that include new configuration and factory directives, making the

tests themselves relatively short, well-defined, and easy to maintain. In actuality, the

ovm test is simply another extension of ovm component. Since tests and testbenches
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are simply components, they too can be created and overridden via the factory.

2.10 Summary

In this chapter we looked at how to structure an overall verification process. The

process is based on two fundamental questions, Does it work? and Are we done?

Testbench organization with all OVM components are also discussed in this chap-

ter. The rest of the chapter explains OVM testbench components that answer these

questions and shows how to connect them to form testbenches.An understanding of

the concepts discussed in this chapter enables to construct the essential elements of a

testbench using the OVM. This chapter describes how to create arbitrary hierarchies

of class-based components, connect them, configure them, run them, and shut them

down.



Chapter 3

Generic Simulation Environment

UNIX HDL simulation front-end environment is flexible and easy to use. It provides

a common environment to many projects while providing project-specific customiza-

tion.

3.1 System Verilog Package

Packages provide ways to have common code to be shared across multiple modules.

SystemVerilog provides package support to help share following among multiple Sys-

tem Verilog modules, interfaces and programs.

• parameters

• data

• type

• task

• function

• sequence

21
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• property

Above can be shared across SystemVerilog modules, macromodule interfaces and

programs. Few rules that should be followed with packages are.

• Packages can not contain any assign statement.

• Variable declaration assignments within the package shall occur before any ini-

tial, always, always comb, always latch, or always ff blocks

• Items within packages cannot have hierarchical references.

• Assign statement on any net type is not allowed.

A package is to group a type declaration and a set of tasks or functions that operate

on that type. In this scenario, a module could then declare objects of the type and

use the package tasks/functions to operate on the object data.

A package is to define a utility for common use. This sort of package often makes use

of persistent state and non-reentrancy in its implementation.

3.2 VCS (verilog compiler simulator)

VCS is a high-performance, high-capacity Verilog R© simulator that incorporates ad-

vanced, high-level abstraction verification technologies into a single open native plat-

form. VCS enables you to analyze, compile, and simulate Verilog design descriptions.

It also provides you with a set of simulation and debugging features to validate your

design. These features provide capabilities for source-level debugging and simulation

result viewing. VCS supports all levels of design descriptions, but is optimized for

the behavioral and register transfer levels. VCS accelerates complete system ver-

ification by delivering the fastest and highest capacity Verilog simulation for RTL
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functional verification. In addition, VCS supports Synopsys DesignWare IP, the VCS

Verification Library, VMC models, and the Vera testbench tool.

3.3 Configuration files

3.3.1 Setting Environment

Before simulator runs, the environment must be setup. This includes any tools that

will run (e.g., the simulator, a wave viewer..) and environment variables. Simulator

itself does not set any environment, and this separation of concerns provides for a

more transparent operation, and easy reproducibility of results. The main benefit

of using the dispatcher is that users needn’t worry about explicitly re-sourcing the

environment when updating their local work area from the repository.

3.3.2 Perl-syntax formatted file

In order to provide a converged validation environment, and aid in tool maintainabil-

ity, the tool changes should be minimal. In other words, all projects should use the

same methodology and use the same code. However, there are differences in projects

that should be accounted for. For example, the RTL source code from one project to

another is different. Perl-syntax formatted text file sets a number of project specific

variables. This text file contain commands of the sort that might have been invoked

manually once the simulation started running but are to be executed automatically

each time the simulation starts up.



Chapter 4

Designing Generic Framework

The development of the framework involved a bottom-up approach to grouping the

design tasks from the various case study projects. In essence the approach involved

the generation of a framework hierarchy, with the project-specific tasks acting as the

basis of development, and the clustering of these tasks in relation to their combined

objective representing the generic group characteristics. This hierarchy represented

a generic building design framework in which each of the case study projects and the

designing together process descriptions could be contained.

4.1 Creating Templates

4.1.1 Case study projects

Various projects of designing IP verification environment were examined during this

research period in order to gain an appreciation of the similarities and differences in

the tasks undertaken during the conceptual design of environment. The case studies

represented an investigation of the ways in which differing factors can influence the

activities involved in the conceptual design process.
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4.1.2 Observations from case study data

The various sources of data, relating to each case study project, were compiled and

cross-referenced. In some project concept of reuselayer was used. All the well defined,

essential components are encapsulated in this reuselayer. As shown in fig 4.1, Top

layer ”Env” is root and ”Reuse layer” is defined in this environment.

Figure 4.1: Concept of Reuselayer

A synopsis of each case study was generated, in addition to a list of the design tasks

that were involved in each of the respective projects.Subsequently, these data was

passed to those individuals who provided the information for verification of data. In

this manner, errors in the descriptions were highlighted and amended quickly and effi-

ciently. This procedure allowed the generation of a robust and detailed description of

the various design tasks involved during the conceptual phase of each of the projects.

This allowed a number of general observations to be made, the most germane being :

• There was a variation whether reuse layer environment is present or all the

components are there in upper layer environment only.
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Table I: observation from case study

• There was a variation in the number of components present in verification en-

vironment identified in each project II. These variation depends on project

complexity.

• From II it is seen that also there is variation in no of component in Reuse layer

as well as upper layer.

• There was a variation in the number of tasks that were identified in each project.

This difference was recognised as being the result of number of components

involved in environment.

• Within the high level details of tasks it was apparent that some were common

to all projects, while others were very much project specific.
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4.2 Flow of the tool

Template generating tool is developed using Perl script as shown in fig 4.2. This

PERL Script gets input from user in GUI form. Initially users use to enter inputs

in text file, for getting templates of various components according to requirements.

Now the code template generation script has been enhanced using TK, to create GUI

(Graphics User Interface). So that it is easy for user to enter the project data.

Figure 4.2: Flow of the tool
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Here as shown in fig 4.3 user need to enter the name of his IP, all the templates will

be generated using IP name. User has flexibility to choose various components for

their project (IP), and also the location of this component, whether in top Env or

in Reuse layer. Number and name of IP specified interface can also be mentioned,

template will contain placeholders for this ip specific interfaces.

Figure 4.3: Input to script through GUI

Output of the script is templates for testbench files and the configuration files which

are used to pre-validate testbench environment templates. With this tool, essentially

env and scoreboard template are generated, while generation of reuseenv and cover-

age template depends on the input provided by user in addition to all configuration

files.
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• Testbench files

– Env.sv and ReuseEnv.sv

∗ Class declaration

∗ Function definitions (not project specific)

∗ Phases (OVM)

∗ Task of idle detection

∗ Placeholders for project specific function and task

– Scoreboard.sv and Coverage.sv

∗ Class declaration

∗ Phases (OVM)

∗ Placeholders for project specific function and task

• Configuration files

– Package files

∗ Includes all testbench files

– Perl syntax formatted text file

Flow of Script:-

Refer Figure - 4.4 In this script, initially get inputs from user through GUI as shown

in figure. If answer for the field do you need component say (coverage) is yes than

component flag (coverage flag)is set to 1, else set to 0. Then component list file is

get opened and name of component is read, if the flag for that component is set than

it will open the fragment list and create template for that component.
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Figure 4.4: Flow chart
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4.3 Summary

Actual work starting from designing of preliminary framework to creation of tem-

plates is presented in this chapter. Input to script was generated after studying

various project, and full flow of script is presented.
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Designing Bus Interface Tracker

There are number of tools available to validation and design Engineers for debugging

test failures. The most detailed information available in a Waveform viewer. How-

ever, it is very cumbersome to debug waveform by visual inspection. Bus, interface

trackers are tabular representation of waveforms as shown in figure 5.1.

Figure 5.1: Tracker output
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Bus interface tracker is useful tool for debug and performance analysis. Tracker,

monitors changes on an interface and dumps out in to a table as shown below. Infor-

mation like timestamp, clk signal, reset signal, and various interface signals.

5.1 Template creation for tracker

Bus interface Trackers is not dependent on project specific details. As tracker moni-

tors the changes in the interfaces, generic tracker template can be generated. I have

developed Perl script that gets inputs from user through GUI and generate Ovm Com-

ponent tracker.sv. as shown in fig 5.2. While doing actual simulation, this traker.sv

file will gets input from interface file, and will generate tracker output as shown in

fig 5.1. This interface file contains all the signal for that particular intercface, us-

ing clocking block module. Interface is instantiated virtually in the ovm component

tracker.
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Figure 5.2: Tracker flow
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Ovm Component Tracker includes interface instantiation, various OVM phases,

tasks and functions shown in table - I :-

Table I: Ovm component Tracker

5.1.1 Flow of script

In this script, initially get inputs from user through GUI as shown in fig 5.3. Name

of interface for which tracker needs to be developed should be given to the script.

Name of all the signals , with their width and display name in tracker output to be

entered by user. With all this data, script will create ovm componet Tracker.sv file.
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Figure 5.3: Tracker script flow
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5.2 Summary

In this chapter, the concept of tracker is discussed. Actual work done for generating

generic template for tracker is also described in this chapter. The inputs to the tracker

generating script and flow of the script are presented.
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Other Productive Contribution

6.1 OVM Compliance checking for various IPs

Currently, verification environment for large number of reusable IPs are developed

using OVM (Open Verification Methodology). For n number of IPs there are n

numbers of IP owner, each of them having their own coding style, their own perception

and understanding regarding methodology. There was no checking guidelines available

for IPs to be checked, whether they are fully OVM compliant or not. Within Intel,

one of the groups came up with ovm compliance checklist. This checklist constitutes

various checklist rules that are to be followed by IP owner while designing verification

environment such as architecture compliance (These checks require simulation to

instantiate the OVC and check its architecture.). I have been involved in checking

the OVM compliance for each existing IP with following steps:-

• Studied, understood and discussed the checklist rules that were defined in OVM

compliance checklist.

• Developed input table to gather essential information from IP owner regarding

testbench files for that particular IP.

• Graded one IP for this checklist item according to the inputs provided by IP

owner. This grading process includes checking compliance for each checklist
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item and also providing suggestion to make the non-complaint things to be

complaint according to OVM compliance checklist.

• In the process of IP grading, we created an Excel sheet which includes following

column

Table I: IP grading column

• After grading an IP ABC, I found that there are various tasks that can be auto-

mated, because various checklist items depend on searching particular content

from the input files that IP owner provides. So I developed a Perl Script for

automating the IP grading process.
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• Output of the script is Excel sheet with the data for column 1 to column 5 for

every checklist item. Rest of data is to be filled manually.

• Using this script, almost 80% of the manual task is automated.

• I graded total 14 Ips, the result is as follows

Table II: ovm-ip-grading
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6.2 Added Coverpoint for mapping multi inter-

rupt agents to single interrupt pin or line

All the interrupt agents are mapped to one of the pin of 8 pin interrupt line, there can

be large number of agents, so more than one agent is mapped to single line, and send

interrupt. To check whether multi interrupt agents are mapped to single interrupt pin

or not, I added coverpoint in relevant covergroup of Coverage component. To add this

coverpoint data was taken from scoreboard, and using that data at any instance of

time, how many agents are mapped to a particular pin can be found out. Coverpoint

was added to count the number of agent mapped should be more than 2.

6.3 Written various test code

6.3.1 For checking full condition for memory storage element

Message Signaled Interrupts, in PCI 2.2 and later and PCI Express, are an alternative

way of generating an interrupt. Traditionally, a device has an interrupt pin which it

asserts when it wants to interrupt the host CPU. While PCI Express does not have

separate interrupt pins, it has special messages to allow it to emulate a pin assertion

or deassertion. Message Signaled Interrupts allow the device to write a small amount

of data to a special address in memory space. There was a test, in which one assert

message is sent, and once msi (message signaled interrupts) arrives then de assert

was sent. I have enhanced this test to check if, 2 interrupts are send then weather

the memory storage element on the other side which receives this message gets full

or not.

6.3.2 For checking clock dutycycle of certain block

There was a test which was checking the clock period for a certain block. In this

test, period from posedge to posedge was counted for particular frequency. I have
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enhanced this test to count duty cycle, by taking posedge to negedge difference.

6.3.3 For multiple msi

There was a test for getting single msi (message signaled interrupts), I have written

new test for getting multiple msi. My learning from this is, before receiving another

msi, end of data for first one should be sent, that is once the first message is completed,

and another can be received. I have used Clocking block feature of system verilog, in

this test.

6.4 Trainings attended

During the period of internship, I have attended various trainings. These training

helped me in understanding and developing different the concepts of System verilog

and OVM.

• Attended SV training and practices labs on

– Basic Datatypes, enumerated Data type,

– Arrays, Structure

– Interfaces

– Classes and inheritance

– Static Class Properties and Copying Objects

– Parameterized Classes

– Virtual Classes

– Random Constraints

– Generate Construct

• Attended OVM training and practices labs on
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– Testbench organization

– Defining Transaction

– Designed Driver and sequencer components

– Designed monitor and agent components to observe a bus transaction

– Define a covergroup within a coverage-collector to measure stimulus cov-

erage.

– Create a user-defined sequence extending from ovm sequence.

– Use the factory override feature to use a new driver component

• Attended Advanced SystemVerilog Tips Including OVM & UVM

Tips This training was presented by World-Renowned Verification Expert

Cliff Cummings, hosted by Cadence Design Systems and QLogic India.

Topics Overview:-

– New UVM 1.0 overview and comparison to OVM

– Important OVM and UVM phasing

– Secrets in mastering OVM and UVM

– Graceful termination of tests in OVM and UVM with emphasis on the

objection mechanism

– Some of Cliff’s favorite SystemVerilog tips and tricks

– Some early UVM techniques and best practices
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Conclusion

The generic framework intends to improve the design of organizational processes for

IP verification. The approach is to develop system verilog compile clean templates

for all components needed in verification, with all basic necessary code including

placeholders for project specific code according to OVM methodology. This project is

divided into two distinct phases Designing and Validating. The first phase (Designing)

involves creating templates for basic components according to OVM methodology of

verification. Second phase (validating) involves compiling and elaborating the design

by developing configuration files for generic frontend simulation environment.

Script was demonstrated to the Intel team, and no specific enhancement was

mentioned, script will be shortly released for the deployment within some new IP

projects. The script enables the immediate and easy use of framework which leads

to lower costs, less time consumption and a higher quality of the Design for IP verifi-

cation. Thus this project will save efforts as well as time for creating basic essential

components in the environment and is less prone to errors as the framework itself

would be validated.
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