
Design And Integration of EMISS SoC
Using 65nm Technology

By

Jani Parthkumar Girishchandra

09MEC008

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

AHMEDABAD-382481

MAY 2011

Design And Integration of EMISS SoC
Using 65nm Technology

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in VLSI Design

By

Jani Parthkumar Girishchandra

09MEC008

Under the Guidance of

Prof. Usha Mehta

Associate Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

AHMEDABAD-382481

MAY 2011

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in VLSI Design at Nirma University and has not been submitted elsewhere for a

degree.

ii) Due acknowledgement has been made in the text to all other material used.

Jani Parthkumar Girishchandra

iv

Certificate

This is to certify that the Major Project entitled ”Design And Integration of Mini SoC

Using 65nm Technology” submitted by JANI PARTHKUMAR GIRISHCHAN-

DRA(09MEC008), towards the partial fulfillment of the requirements for the degree

of Master of Technology in VLSI Design of Nirma University of Science and Technol-

ogy, Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Date: Place: Ahmedabad

Prof. Usha Mehta Mr. Asif Ali Zargar Dr. N M Devashrayee

Associate Professor, Technical Leader, PG Co-ordinator,M.Tech VLSI Design,

Department E & C Engineering, HED-HVD Design Team, Department E & C Engineering,

Institute of Technology, ST Microelectronics, Institute of Technology,

Nirma University, Ahmedabad Greater Noida Nirma University, Ahmedabad

Dr. A S Ranade Dr. K Kotecha

Head of Department,E&C Engineering, Director,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University ,Ahmedabad

v

Abstract

Nowadays the circuits, with the feature of lower power, lower cost per gate area,

faster operation, more reliable implementation, smaller physical size, greater design

security are the main requirements. SoC are the best alternative in this scenario

which satisfy all these criteria. SoC is the well developed branch of electronics and in

todays era everything is built on SoC(silicon on chip). SoCs are highly efficient and

have improved performance because they are programmable and we can implement

desired functionality and makes our task easier. SoC contains many IP(Intellectual

Property) blocks which contains many modules of required property. The different

memory modules are use in project. In past , television antennas are used to transfer

data. In that, Analog signals are transferred. In this process we cant get the good

picture quality due to weakness of analog signals.

Different memories are added in the design like NAND flash memory, NOR flash

memory, SPI flash memory, and MCC cache memory and also connected ST Bus.

These memories are designed as a EMISS SoC. This design is verified using different

tools. During verification different design bugs are arrived and using the trial and

solution method these bugs are removed.

Tests cases were run for read, write, hit, miss, read mode write, continuous read,

continuous write to check the design using Stymgen environment. The design was

being tried to be failed and was being tried to find out as many bugs as possible.

vi

Acknowledgements

I am deeply indebted to my thesis supervisor Mr.Sanjeev Vwrshney for his con-

stant guidance and motivation. He has devoted significant amount of his valuable

time to plan and discuss the thesis work. Without his experience and insights, it

would have been very difficult to do quality work.

I would also like to extend my gratitude to Asso. Prof.Usha Mehta and Dr.

N.M.Devashrayee for fruitful discussions during Design And Integration of Mini SoC

Using 65nm Technology meetings and for their encouragement.

My special thanks to Mr.Asif Rashid Zargar who was the first person I used to ap-

proach whenever I got stuck. I would also like to thank my friends and IP Design Team

members (Mr.Sandeep,Mr.Kriti,Mr.Naveen,Mrs.Deboleena,Mrs.Parul)of my class for

their delightful company which kept me in good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

Jani Parthkumar Girishchandra

09MEC008

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Figures x

List of Tables xi

1 Introduction 1
1.1 STBus . 1
1.2 EMISS(External Memory Interface Subsystem) 2

1.2.1 NAND flash controller . 2
1.2.2 NOR flash controller . 3
1.2.3 Serial Flash controller . 3
1.2.4 PCI controller . 3

1.3 NAND Flash Memory . 4
1.4 NOR Flash Memory . 4
1.5 Serial Flash Memory . 5
1.6 PCI Flash Memory . 6
1.7 MCC Cache Memory . 6

2 STBus overview 7
2.1 STBus overview . 7

2.1.1 STBus Protocols . 7
2.2 STBus basic pin description . 9

3 EMISS(External Memory Interface Subsystem) 16
3.1 Features lists . 16
3.2 IP block context . 18
3.3 Normal functional behavior . 19

vii

CONTENTS viii

3.4 EMI Buffer . 20
3.5 EMI4 . 21
3.6 Serial Flash controller . 22

3.6.1 Legacy mode . 23
3.6.2 Fast sequence mode . 23
3.6.3 Fast sequence boot mode . 23

3.7 NAND integrated controller . 23
3.7.1 Hamming NAND controller 24
3.7.2 BCH NAND controller . 24

3.8 PCISS . 25
3.9 EMPI . 25

3.9.1 EMPI modes supported . 26
3.9.2 Arbiter . 26

3.10 clocking . 26
3.10.1 Frequencies . 28
3.10.2 Clock relationships . 28
3.10.3 PCI clock master . 29
3.10.4 PCI clock slave . 29
3.10.5 MPX and flash clocking . 29

4 Memories used in EMISS 31
4.1 NAND Memory . 31

4.1.1 NAND Memory feature lists 32
4.1.2 NAND flash memory Logic diagram and pin description . . . 33
4.1.3 Bus Operation . 34

4.2 NOR flash Memory . 36
4.2.1 NOR Flash Memory Features List 36
4.2.2 NOR flash Memory logic diagram and pin description 38
4.2.3 Bus Operation . 38

4.3 SPI flash Memory . 42
4.3.1 SPI flash Memory feature lists 42
4.3.2 SPI flash Memory logic diagram and pin description 43
4.3.3 SPI flash memory Bus operations 43

5 MCC Cache Memory 45
5.1 cache mode specification . 45
5.2 Cache general description . 46
5.3 Cache Control . 48
5.4 Cache Performance Tables . 49
5.5 Cache Area Estimation . 50
5.6 Functional Specification . 53

5.6.1 Cache Glue and Reset . 53
5.6.2 Cache Control . 54

CONTENTS ix

5.7 Verification Environment . 54
5.7.1 Verification Platform . 55

5.8 HDL Testbench Architecture . 57
5.8.1 RTL Simulation Environment 57
5.8.2 Test Scenarios . 58
5.8.3 Checking Mechanism . 58

6 Conclusion 59

References 60

List of Figures

2.1 STBus protocols layers . 8
2.2 Signals and pin descriptions of STBus 9

3.1 EMIPCISS Block diagram . 18
3.2 EMISS sub system core . 20
3.3 Serial flash controller modes . 22
3.4 EMISS clocking . 27

4.1 Logic Diagram of NAND flash memory 33
4.2 Signals and pin descriptions of NOR flash memory 38
4.3 SPI flash memory pin diagram . 43

5.1 MCC cache block diagram . 46
5.2 Memory cache block diagram . 47
5.3 32 Kbytes cache with cache line 32 bytes 51
5.4 32 Kbytes cache with cache line 16 bytes 51
5.5 Functional Diagram . 52
5.6 Verification Environment . 55
5.7 Verification Process . 57

x

List of Tables

3.1 clock names and frequencies . 28

4.1 Signal Names And its Function of NAND flash memory 34
4.2 command sets and its hex condition 36
4.3 Signal Names And its Function of NOR flash memory 39
4.4 flash memory pin description and its functions 43
4.5 Input / Output Data Table . 44

5.1 32 K Cache efficienty in term of Bandwidth & Opcode 49
5.2 64K Cache efficienty in term of Bandwidth & Opcode 49
5.3 128K Cache efficienty in term of Bandwidth and Opcode 50

xi

Chapter 1

Introduction

1.1 STBus

The STBus is a set of protocols, interfaces, primitives and architectures specifying

an interconnect subsystem, versatile in terms of performance, architecture and imple-

mentation. The STBus is the result of the evolution of the interconnect subsystem

developed for microcontroller dedicated to consumer application, such as set top

boxes, ATM networks, digital still cameras and others. Such an interconnect was

born from the accumulation of ideas converging from different sources, such as the

transporter (ST20), the Chameleon program (ST40, ST50), MPEG video processing

and VCI (Virtual Component Interface)organization. Today the STBus is not only a

communication system characterized by protocol, interfaces, transaction set and IPs,

but also a technology allowing to design and implement communication networks for

Systems On Chip with the support of a development environment including tools for

system level design and architectural exploration, silicon design, physical implemen-

tation and verification.

1

CHAPTER 1. INTRODUCTION 2

1.2 EMISS(External Memory Interface Subsystem)

The EMISS supports NOR flash, NAND Flash, Serial Flash, and PCI interfaces.

The design consists of two modules, namely, the subsystem core and pad logic. The

subsystem core instantiates to support different interfaces all the responsible IPs. The

arbitration logic to grant the mastership of the bus to a bus interface (or device) is

implemented in the sub-system core. The pad logic multiplexes different signals on

to a common bus which is fed to the pads. The necessary logic to control the tri-

stating of the pads is also generated within the pad logic of the sub-system. There are

different modules in EMISS block like NAND flash controller , NOR flash controller,

serial flash controller.

1.2.1 NAND flash controller

The NAND controller consists of two independent NAND controllers known as Ham-

ming NAND controller and BCH NAND controller. Both these controllers are de-

scribed briefly in the sections below.

1.Hamming NAND controller

The Hamming NAND flash controller supports boot, flex mode and advanced flex

modes. In all the modes the external NAND flash could be 8 or 16 bits. It could

be small page or large page. The NAND device can accept 3 bits, 4 bits or 5 bits of

address. All the configurations for boot mode are inferred from the value of static

pins.

2.BCH NAND controller

The BCH NAND controller has been designed to support both MLC and SLC kind

of devices. It supports boot and AFM modes. In boot mode only 8 bit parts are

supported while in AFM mode 16bit parts are also supported. The BCH NAND

CHAPTER 1. INTRODUCTION 3

controller is equipped with dedicated hardware DMAs for efficient data transfers in

AFM mode.

1.2.2 NOR flash controller

It supports NOR flash (AMD, Intel or ST), MPX master, DVBCI and ATAPI inter-

faces. The DVBCI and ATAPI interfaces are supported using additional glue that is

designed around the EMI. EMI also supports SDRAM interface. The SDRAM pins

are not bristled out and hence cannot be supported by the sub-system.

1.2.3 Serial Flash controller

The SPI Boot IP supports booting from the serial flash, which could be ST type or

Atmel type. The type of flash is configured by the static pin which is bristled out of

the chip. After boot, the writing into the external serial flash is supported by SPI

functionality in comms or through the new FSM mode in the SPI controller. The SPI

boot pins are multiplexed with the SPI pins of the comms. This multiplexing is done

at the top level and is outside the scope of the document. The subsystem bristles the

all the pins required for serial communication.

1.2.4 PCI controller

The PCI interface is supported by three blocks which are together known as PCISS.

PCI IP purchased from Synopsys. STBus AHB converter from OCCS Glue to connect

the STBus-AHB and AHB-PCI bridges. In addition to connecting the two bridges,

the additional functionalities such as address translation are also implemented in the

glue. The STBus-PCI bridge is explained in detail in chapter 2.

CHAPTER 1. INTRODUCTION 4

1.3 NAND Flash Memory

It is a multilevel cell device from the NAND flash 4224-byte page family of non-volatile

flash memories. It has a density of 16 Gbits. The device operates from a 3 V power

supply. The address lines are multiplexed with the data input/output signals on a

multiplexed x8 input/output bus. This interface reduces the pin count and makes it

possible to migrate to other densities without changing the footprint. Each block can

be programmed and erased up to 10,000 cycles (with error correction code (ECC)

on). The device also has hardware security features; a write protect pin is available

to provide hardware protection against program and erase operations.

The devices feature an open-drain, ready/busy output that identifies if the pro-

gram/erase/ read (P/E/R) controller is currently active. The use of an open-drain

output allows the ready/busy pins of several memories to be connected to a single

pull-up resistor. The memory array is split into 2 planes of 2048 blocks each. This

multiplane architecture makes it possible to program 2 pages at a time (one in each

plane), to erase 2 blocks at a time (one in each plane), or to read 2 pages at a time

(one in each plane) dividing by two the average program, erase, and read times.

The device has the Chip Enable ’don’t care’ feature, which allows the bus to be

shared between more than one memory at the same time, as Chip Enable transition

during the latency time do not stop the read operation. Program and erase operations

can never be interrupted by Chip Enable transition. There is the option of a unique

identifier (serial number), which allows the NAND flash to be uniquely identified.

1.4 NOR Flash Memory

The NOR architecture is currently the most popular flash architecture. It is com-

monly used in EPROM and EEPROM designs. Aside from active transistors, the

largest contributor to area in the cell array is the metal to diffusion contacts. NOR

architecture requires one contact per two cells, which consumes the most area of all

CHAPTER 1. INTRODUCTION 5

the flash architecture alternatives. Electron trapping in the floating gate is done by

hot-electron injection.

The NOR flah memory featuring single 3.0V power supply, is a 32Mbit NOR-type

Flash Memory organized as 4Mx8 or 2M x16. The memory architecture of the device

is designed to divide its memory arrays into 71 blocks to be protected by the block

group. This block architecture provides highly flexible erase and program capability.

The NOR Flash consists of two banks. This device is capable of reading data from

one bank while programming or erasing in the other bank.

Access times of 70ns, 80ns and 90ns are available for the device. The device?s fast

access times allow high speed microprocessors to operate without wait states. The

device performs a program operation in units of 8 bits (Byte) or 16 bits (Word) and

erases in units of a block. Single or multiple blocks can be erased.

1.5 Serial Flash Memory

SPI-compatible interface that allows for a low pin-count package which occupies less

board space and ultimately lower total system costs. SPI serial flash memories are

manufactured with SST proprietary, high-performance CMOS Super Flash technol-

ogy. The split-gate cell design and thick-oxide tunneling injector attain better relia-

bility and manufacturability compared with alternate approaches. SPI flash memory

devices significantly improve performance and reliability, while lowering power con-

sumption. The devices write (Program or Erase) with a single power supply of 1.65-

1.95V. The total energy consumed is a function of the applied voltage, current, and

time of application. Since for any given voltage range, the Super Flash technology

uses less current to program and has a shorter erase time, the total energy consumed

during any Erase or Program operation is less than alternative flash memory tech-

nologies.

CHAPTER 1. INTRODUCTION 6

1.6 PCI Flash Memory

The flash on this board, like the SRAM, is non-volatile. Unlike the SRAM, the flash

contains various modes that it operates in. Before accessing the FLASH, it must

be placed into the mode of operation desired via an ORDERED sequence of reads

and writes to specific addresses with specific data. Ordered is stressed, because some

systems will cache up accesses and burst them to the board in an undesired order;

hence, the operation will be unsuccessful. This problem can be avoided by performing

non-cacheable access or by inserting delays between accesses when performing certain

activities.

1.7 MCC Cache Memory

The purpose of inserting the cache for inter prediction motion compensation is to

reduce the typical bandwidth required for prediction, keeping the worst case band

width smaller or same as without cache memory. The bandwidth has been studied

on Allegro streams and the compromising size or associatively and complexity has

been found: 8-ways associative, 32- byte or 16 bytes word, cache size is 128 KBytes.

The one ways was simpler in term of implementation, but it creates a bottleneck

which can slow down the cache. This motion compensation cache (MCC) is inserted

between the XPred memory access and the STBus. It can be bypassed, in which case

the XPred accesses the external memory in the same manner as in previous DELTA

versions. In this case, XPred STBus plugs are directly connected to STBus.

But generally 128k bytes is too much and it acquires more space on chip so we

will have to reduce the mrmory size from 128kB to 64kB or 32kB.

This second generation of MCC cache,uses an input buffer in order to be STbus la-

tency independant whatever cache size. Because when cache memory become smaller

than 128K, cache data collisions can introduce some delay on request sent to STbus

which are not acceptable.With an input buffer we have no more collision possible.

Chapter 2

STBus overview

The objective of this document is to give all the informations required to understand

what is the STBus, covering the communication protocols, the interfaces and the

functionality of the building blocks through which it’s possible to build interconnect

systems at different level of complexity. It has been tried to mantain the level of

detail of the different topics such that the understanding of the different concepts

and problematics should be easy and fast enough; the description of the building

blocks is carried out so that deep technical implementation details are omitted, for

sake of simplicity. This document addresses as audience the interconnect architects,

the interconnect designers, the application engineers and the project leaders. It can

be used as complete and concise reference about the STBus communication system

by any people starting architectural or design activities about the STBus.

2.1 STBus overview

2.1.1 STBus Protocols

Three different types of the STBus protocols exist, each having a different level of

complexity in terms of both performance and implementation:

a. Type1 is the simplest and is intended to be used for peripherals registers access.

7

CHAPTER 2. STBUS OVERVIEW 8

No pipeline applies. It acts as a RG protocol. Load/store on 1/2/4/8 bytes are

supported.

b. Type 2 adds pipelines features. It is equivalent to the ”basic” RGV protocol.

It supports all operation code for ordered transactions. The number of the

requesting cells (i.e. in a packet) is the same than the number of the response

ones.

c. Type 3 is an advanced protocol implementing split transactions for high band-

width requirements (high performance systems). It supports out of order execu-

tions. The packet response size might be different than the packet request size

(the number of cells differs between request and response). The interfaces maps

the STBus transaction set on a physical set of wires defined by this interface.

Figure 2.1: STBus protocols layers

Each operation is broken into one or more request/response packet pairs. Primi-

tive operations have a single request/ response pair. Depending on the STBus type,

compound operations may contain multiple pairs of packets. These packets are then

mapped onto the physical interface as a series of cells. Request cells onto the signals

associated with requests, and responses onto those associated with responses. The

number of cells in each packet is determined by the amount of data to be transferred

CHAPTER 2. STBUS OVERVIEW 9

and the width of the interface. Depending on the interface type, the amount of in-

formation to be transferred in the request phase is the same (type 1/ type 2) or may

differ (type 3) from that to be transferred in the response phase.

2.2 STBus basic pin description

Figure 2.2: Signals and pin descriptions of STBus

CHAPTER 2. STBUS OVERVIEW 10

• req(request)

The request is the signal used by the initiator interface to communicate it wants

to start a transaction. Once the request is asserted, all the signals associated to

the packet to be transmitted must be kept constant until the grant is received

from the target interface, meaning the transaction has effectively started.

• Gnt (grant)

The grant is the signal with which a transaction is considered started after a

request has been asserted. The grant generated by a node as consequence of the

arbitration is a causal grant (grant on request), while the grant generated by a

target module is a default grant and is an information about the availability of

the target itself to accept a new request.

• Eop (end of packet)

The end of packet is the signal marking the last cell of a packet being transmit-

ted. It’s used mainly by the node to ensure a packet cannot be interrupted.

• Lck (lock)

The lock signal is used to link together two or more packets to build complex

transactions, such as chunks and ReadModifyWrite operations

• r req (response request)

The response request is the signal used by the target interface to communicate

it wants to complete a transaction. Once the response request is asserted,

all the signals associated to the response packet to be transmitted must be

kept constant until the response grant is received from the initiator interface,

meaning the transaction has effectively been completed.

• r gnt (response grant)

The response grant is the signal with which a transaction is considered com-

pleted after a response request has been asserted. The response grant generated

CHAPTER 2. STBUS OVERVIEW 11

by a node as consequence of the response arbitration is a causal response grant,

while the response grant generated by an initiator module is a default response

grant and is an information about the availability of the initiator itself to accept

a new response.

• r eop (response end of packet)

The response end of packet is the signal marking the last cell of a response

packet being transmitted. It’s used mainly by the node to ensure a response

packet cannot be interrupted.

• r lck (response lock)

The response lock signal is used to link together two or more response packets

during the transmission of complex transactions, such as responses to chunks.

• data[8*2n-1:0] (data with n = 0,1, 2, 3, 4,5)

This is the data the initiator wants to send to the target in case of store oper-

ations.

• add[31:n] (address with n = 0,1, 2, 3, 4,5)

This is the address of the memory location the initiator wants to access. The

address of a transaction must be transaction-aligned. For example an 8 bytes

operation can be addressed to the addresses 0x0, 0x8, 0x10, but not to the

addresses 0x4 and 0xC.

• opc[7:0] (opcode)

This signal defines the type of operation the initiator wants to perform. The

opcode can be considered composed of three parts: bits [3:0 indicate the opera-

tion type, e.g. load/store/cache operation etc. l bits [6:4 specify the size of the

operation, e.g. the number of bytes the operation will involve l bit 7 is reserved

and in multiplexed buses/systems is used to distinguish between request and

CHAPTER 2. STBUS OVERVIEW 12

response packets. The STBus interconnect is a non-multiplexed system so bit

7 must always be low

• be[2n-1:0] (byte enables)

The byte enables signal defines which bytes within a cell are significant. For

operations whose size is smaller that the data width, the byte enables basically

specifies the low order address bits. For example, with a LD1 in a 32 bits

system, address bits [1:0 are implicitly encoded in the byte enables signal. In

systems where byte enables are not defined all cells are assumed to be valid.

• src[7:0] (source)

The src is used for two reasons: the lowest 4 bits can be used by the initiator to

identify possible internal sub processes (up to 16), the highest 4 bits are used by

the interconnect to unambiguously identify the initiator itself. If the initiator

has less than 16 processes (even none), all the unused src bits can be used to

identify the initiator in the interconnect.

• tid[7:0] (transaction identifier)

This signal is used by the initiator to label a transaction with additional infor-

mation. It is split into two fields:

tid[3:0] uniqueness information

tid[7:4] enhancement information The uniqueness information is used by type 3

initiators to unambiguosly identify the transaction, so to be able to detect the

correct response in case of out of order traffic. Type 2 initiators haven’t such a

possibility. The enhancement information is used to enhance the processing of

an operation without changing its functionality. The following fields are defined

for it: [4] Not end of message

’0’ - this transaction has no relationship to the next transaction (end of message)

’1’ - the next transaction is related to this transaction (member of a message)

CHAPTER 2. STBUS OVERVIEW 13

[5] Not device access ’0’ - this store operation will not be posted ’1’ - this store

operation may be posted (that is the system may choose to return an early

response, deleting the true response when it is returned to improve performance

reducing the latency between grant and response)

[6] Store and forward ’0’ - each time a cell is received/assembled, it can be

immediately propagated to the target interface ’1’ - first collect all the cells

building a packet and then send the whole packet to the target interface

[7] Reserved The message information is used by the initiator to indicate that

the system should attend to keep the message components together. This can

increase performance in case of access to a page-based memory such as the

SDRAM. The write posting information is used by the initiator to indicate that

the information in the response to a write operation will be ignored, and then

it may wish to have a ’dummy’ response returned early. The store and forward

information is used to drive the storage behavior at buffers.

• pri[3:0] (priority)

This signal labels the request packet with an urgency level which the intercon-

nect may use to implement preferential arbitration. The priority is encoded

into a 4 bits field; ”1111” corresponds to the most urgent or highest priority,

”0000” to the least urgent or lowest priority.

• r data[[8*2n-1:0] (response data with n = 1, 2, 4, 8, 16 or 32 -bytes)

This is the data read from memory at a specified location during a load opera-

tion.

• r opc[7:0] (response opcode)

This is the information about the status of the response being presented to the

initiator. The encoding of this field is as follows: Success r opc = ”10000000”

Error r opc = ”10000001”

CHAPTER 2. STBUS OVERVIEW 14

Most modules may choose to only implement bit zero of this field. Bits 1 to

6 are reserved for future applications whilst bit[7 is reserved for systems which

implement multiplexed request/response transports. The construction and size

of an error response may differ from that of a normal response as the target is

unable to process the operation, however, typically it will be between 1 and N

cells, where N is the size of the request packet. This signal should normally be

sampled on the final cell (as marked with eop) of a response packet

• r tid[7:0] (response transaction identifier)

The r tid signal is a copy of the tid signal sent during the transmission of the

request packet, and is used by type 3 initiators to detect the request packet to

which the response got is relative.

• r src[7:0] (response source)

This signal is a copy of the src signal associated to the respective request packet,

and is used by the interconnect to identify the initiator toward which the re-

sponse has to be routed. For an initiator, the lowest bits can be used to detect

the internal sub process to which the response got is relative.

• r pri[3:0] (response priority)

This signal labels the response packet with an urgency level which the system

interconnect may use to implement preferential arbitration. It is a copy of the

pri signal sent with the request packet.

• tst scanenable: Scan test enable

The STBus interconnect is fully scannable for testability reasons. The tst scanenable

signal is used to enable the scan test operation mode.

• tst scanin: Scan test input

This is the scan chain(s) input to feed during the scan test operation mode.

CHAPTER 2. STBUS OVERVIEW 15

• tst scanout: Scan test output This is the scan chain(s) output to be monitored

during the scan test operation mode.

Chapter 3

EMISS(External Memory Interface

Subsystem)

The EMISS supports NOR flash, NAND Flash, Serial Flash,and PCI interfaces. The

design consists of two modules, namely, the subsystem core and pad logic. The

subsystem core instantiates to support different interfaces all the responsible IPs.

The arbitration logic to grant the mastership of the bus to a bus interface (or device)

is implemented in the sub-system core. The pad logic multiplexes different signals

on to a common bus which is fed to the pads. The necessary logic to control the tri-

stating of the pads is also generated within the pad logic of the sub-system. There are

different modules in EMISS block like NAND flash controller , NOR flash controller,

serial flash controller.

3.1 Features lists

The proposed EMIPCI subsystem supports following interfaces

• NOR Flash support for different vendors like Intel, Numonyx, AMD etc.(a)

• Synch and Asynch flash support

• 8 bit /16 bit data bus support

16

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 17

• NAND Flash support

• Small page, large page, very large page, very very large page devices supported

• 8bit / 16 bit data bus support

• ECC support for upto 30bit error correction

• Boot as well as non-boot capability

• Error free devices supported

• Host managed AFM mode with dedicated HW DMA support.

• Multi CS and 2X8 bit mode supported in non-boot AFM mode.

• Serial Flash support

• x1, x2, x4 pad support for boot and well as non-boot mode

• Flexible Fast Sequence Mode available for large data transfers with FDMA

support.

• Programmable clock division ratios available.

• Flexibility to support Flashes from different vendors with varying commands/protocols.

• DVB-CI

• ATAPI supports for register read/write.

• MPX master and slave

• PCI master or target, host and device configured on boot

• Support for 6 different banks of 128MB(configurable) each

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 18

• Different interface pin outs muxed efficiently to provide a low pad count. Muxing

is supported along with bus arbitration logic to ensure no bus contention Note:

IThe full details of each particular feature are given in the relevant sections,

and not in the features list.

3.2 IP block context

The sub-system instantiates two blocks viz., sub-system core and the pad logic as

shown in Figure 1. The sub-system core instantiates different IPs responsible to

implement the different functionalities envisaged in the EMI-PCI-EMPI sub-system.

The padlogic multiplexes the different signals coming from the sub-system core on to

a common shared bus.The System view of the EMI-PCI-EMPI subsystem is shown

in the Figure 1. The block diagram of the EMI-PCI-EMPI subsystem is shown in the

Figure 1 below. The scope of this document is only the sub-system core excluding the

padlogic. The padlogic has to be added at SOC level as shown in Figure 1. However,

for the sake of clarity and completeness some details of the padlogic block is also

added here in this document.

Figure 3.1: EMIPCISS Block diagram

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 19

3.3 Normal functional behavior

The sub-system core is described in this chapter. The chapter gives an overview

of individual blocks. For the detailed description of the blocks instantiated to refer

to the functional specification document of the corresponding IP. The glue and the

arbitration logic are described in detail in this chapter. The interfaces of each IP and

the issues in integrating the IP are also documented in this chapter. The IP details

described in this section are as follows:

• EMI Buffer

• Router

• EMI4

• Serial Flash controller

• NAND integrated conrtoller

• BCH controller

• Hamming controller

• PCISS

• EMPI

• Arbiter

• Glue logic (internal to EMIPCISS) All the above IPs are inside the sub-system

core which is delivered as a part of EMIPCISS. Figure 2 below shows the sub-

system core with the different components.The padlogic glue is added on top of

the sub-system core at the SOC level. Deyails related to the padlogic are given

in section.

• Padlogic (external to EMIPCISS)

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 20

Figure 3.2: EMISS sub system core

3.4 EMI Buffer

The EMI buffer translates the STBus cells (received on T2-32 bit interface) into

Request- Grant-Validnext cycle (RGVnc). It also houses registers that specify the

top address of each bank. The EMI buffer houses transmit and receive buffers. The

transmit buffer stores the cells received on STBus interface before they are mapped

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 21

onto RGVnc interface. The receive buffer stores the response data received from

RGVnc interface before the responses are forwarded on to STBus interface.

• Router

The router used is similar to the one described in 7200 FMI subsystem router

Functional specification: ADCS 7966966. The router is responsible to route the

transactions to SPI Boot, EMI or NAND flash controller. The router logic is

expected to work on the following rules.

• If the current cell and next cell are to the same IP (that is either SPI Boot,

EMI or nand flash controller), the cell will be forwarded without waiting for the

valid nextcycle signal.

• If the current and next cell are to different IPs, the next cell is forwarded a

cycle after the valid nextcycle assertion is detected.

• The router is packet based, which means that unless the reponse of all the cells

of a packet are returned, the control is not changed to another IP.

Following the above rules eliminates possibility of out of order responses on

STBus interface.The memory mapped transactions to the boot bank are for-

warded to the interface of the ”boot device” depending on the static pin values.

The memory mapped transactions to any other bank are forwardef to the EMI4.

3.5 EMI4

EMI supports NOR flash (AMD, Intel or ST), MPX master, DVBCI and ATAPI

interfaces. The DVBCI and ATAPI interfaces are supported using additional glue

that is designed around the EMI. EMI also supports SDRAM interface. The SDRAM

pins are not bristled out and hence cannot be supported by the sub-system.

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 22

3.6 Serial Flash controller

The SPI Boot IP supports booting from the serial flash, which could be ST type or

Atmel type. The type of flash is configured by the static pin which is bristled out of

the chip. After boot, the writing into the external serial flash is supported by SPI

functionality in comms or through the new FSM mode in the SPI controller. The SPI

boot pins are multiplexed with the SPI pins of the comms. This multiplexing is done

at the top level and is outside the scope of the document. The subsystem bristles the

all the pins required for serial communication.

Serial flash controller can work as per below modes as shown in fig:

Figure 3.3: Serial flash controller modes

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 23

3.6.1 Legacy mode

• Normal mode: This mode supports read access to the serial Flash. All the SPI

outputs are generated on the rising edge of the system clock and all the inputs

are latched on the rising edge of the system clock.

• Contiguous mode: This is the performance enhancement mode. When enabled,

it improves the performance of the controller for back-to-back contiguous ac-

cesses made to flash memory locations.

• Fast read mode: That is operations at higher frequencies. It allows reads at bit

rates up to 50 MHz.

• Dual I/O mode: The data is output on two pins, DI and DO. This doubles the

data transfer rate as compared to the normal mode

3.6.2 Fast sequence mode

It offers a flexible, software programmable engine which may be used to perform

various serial Flash operations including read, write and erase.The FSM mode enables

the controller to execute multiple command/address/data sequences in one go based

on the configuration of sequence registers.

3.6.3 Fast sequence boot mode

This mode is designed to support x1, x2 and x4 booting.Fast sequence boot mode is

designed to support x1, x2 and x4 booting.

3.7 NAND integrated controller

The NANDi controller consists of two independent NAND controllers known as Ham-

ming NAND controller and BCH NAND controller. Both these controllers are de-

scribed briefly in the sections below.

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 24

3.7.1 Hamming NAND controller

The Hamming NAND flash controller supports boot, flex mode and advanced flex

modes. In all the modes the external NAND flash could be 8 or 16 bits. It could be

small page or large page. The NAND device can accept 3 beats, 4 beats or 5 beats of

address. All the configurations for boot mode are inferred from the value of static pins.

When the external NAND device used is small page, 3 beats of address are generated

when address short not long is ’1’, else 4 beats of address are generated. In the case

of large page NANDs 4 address beats are generated when ’address short not long’

is ’1’ else 5 address beats are generated. It is expected that only chip select don’t

care type of NAND devices are supported. In the current sub-system NAND device is

supported on one Bank. This bank however can be configurable at boot and later can

be re-configured by the software. The HAMMING controller is cabable of correcting

one error per 128Bytes during boot mode. It can also detect 1 error in 512B in AFM

mode. Correction in AFM mode is left on the software. The Nand controller always

functions in slave mode. The arbiter is always assumed to have the bus ownership and

nand controller will always work in slave mode. When the nand controller receives a

request to access the external memory block from the router, it forwards the request

to the arbiter by asserting the ”nand bus req” signal. The arbiter grants the bus to

the nand controller by asserting the ”nand bus grant” signal. The controller starts

accessing the memory block only when it receives the grant for the external shared

bus. When the nand controller transaction is complete, it relinquishes the bus by

deasserting the ”nandbus engaged not free” signal. The controller would request for

the bus before every boot, flex or AFM transaction.

3.7.2 BCH NAND controller

The BCH NAND controller has been designed to support both MLC and SLC kind

of devices. It supports boot and AFM modes. In boot mode only 8 bit parts are

supported while in AFM mode 16bit parts are also supported. The BCH NAND

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 25

controller is equipped with dedicated hardware DMAs for efficient data transfers in

AFM mode. During boot mode, static pins are sampled by the controller to determine

the type of NAND flash it is connected to. The BCH controller can support 2K, 4K

and 8K page flash devices. It also has an inherent error correcting BCH engine which

can correct up to18b or up to 30b errors per 1KB depening on the configuration used.

Devices with 512B pages cannot be supported by this controller. The controller

is capable of interfacing with multi chip select devices. It also supports 2x8 bit

configuration. Like the HAMMING controller, the BCH controller always functions

in bus slave mode. It requests for the shared bus form the arbiter whenever it has a

boot or AFMrequest to service.

3.8 PCISS

The PCI interface is supported by three blocks which are together known as PCISS.

• PCI IP purchased from Synopsys.

• STBus AHB converter from OCCS

• Glue to connect the STBus-AHB and AHB-PCI bridges. In addition to connect-

ing the two bridges, the additional functionalities such as address translation

are also implemented in the glue.

3.9 EMPI

The MPX slave interface is implemented using the EMPI. The MPX slave is never a

bus master, hence does not request for the mastership of the bus. The external MPX

master is expected to request for the bus mastership. However the glue around the

EMPI has to be updated to support strobes on falling feature. The EMPI supports

the modes described below.

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 26

3.9.1 EMPI modes supported

The EMPI is configured to support single chip select mode only. The chipselect[5]

(or the chip select of last bank) is connected to the EMPI chip select. The EMPI

within EMISS is configured to infer the burst size information from address bits 31

to 29. The address bits 63 to 61 are not required. Strobes on falling feature can be

programmed to be enabled on EMPI. This is essentially done in the padlogic.

3.9.2 Arbiter

The arbiter is primarily responsible to arbitrate the requests from different agents

(Interfaces) requesting the mastership of the bus and grant the mastership to a given

interface. It always ensures that the bus contention does not occur when the bus

mastership is changed. The primary purpose of the arbiter is to ensure that any of

the bus agents does not lock the bus for a very long time. Latency critical requests,

such as CPU accesses to the external peripheral viz., DVBCI are serviced with a

greater priority to ensure an efficient overall system performance. The arbiter uses a

bandwidth limit arbitration scheme instead of a simple bandwidth based arbitration

scheme.

3.10 clocking

The sub-system could be configured as clock master or clock slave for synchronous

flash and MPX modes. This is done by asserting appropriate logic on the pin

’emi clock slavenot master’ at the boot. It could be configured either as the clock

master or the clock slave in PCI mode. When PCI mode is supported, synchronous

flash and MPX mode are not supported. The following four scenarios are envisaged

for clocking.

• PCI clock master

• PCI clock slave

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 27

• MPX and Flash clock master

• MPX clock slave Each of the three clocking scenarios are described in following

sections. The Figure below gives a picture of the clocking structure in EMIP-

CISS.

Figure 3.4: EMISS clocking

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 28

3.10.1 Frequencies

clock name C.F. Min C.F. Typical C.F. Max
Clock 0 100MHz 100MHz

Clock pci 0 33MHz 66MHz
device clock in 0 33MHz 66MHz

clk nandctrl 0 200MHz 200MHz
clk stbus plug 0 200MHz 200MHz
emi slave clock 0 100MHz 100MHz

Table 3.1: clock names and frequencies
Where C.F. = Clock Frequency

3.10.2 Clock relationships

The sub-system has a total of 6 clocks as given in Table 10. When the EMISS is

clock slave, emi slave clock is used instead of clock. When PCI is used in clock slave

mode then device clock in is used instead of clock pci. These scenarios are described

in the sections below. There are essentially four clock domains in the EMISS- clock,

clock pci, clk nandctrl and clk stbus plug. All the clocks are assumed to be of 50%

duty cycle +/-10%. However there is no requirement for system clock to meet this

constraint. The PCI clock requirements are defined in STBus-PCI bridge functional

specification document. Appropriate re-timing of signals is performed within EMISS

for signals that are crossing clock domains. The system clock is expected to have

three branches, one fed to EMI, second fed to the padlogic and third fed to glue

responsible for generating the Flash clock/MPX clock. It is essential that a timing

relation is maintained between these three branches. The timing relation is described

later.

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 29

3.10.3 PCI clock master

When the sub-system is configured as PCI clock master, the PCI clock is generated

with in the on chip (from clock gen) is used instead of the one fed from the pads. A

logic within the sub-system selects the PCI clock and feeds it to the clock out pad.

The clock out pad is enabled by the logic within the sub-system core, so that the PCI

clock is output from the chip.

3.10.4 PCI clock slave

When the sub-system is configured as PCI clock slave, the external glue selects the

PCI clock fed from the pads instead of the one generated from the clock gen. A logic

within the sub-system disables the clock out pad (by de-asserting the ’device clock en’

pin. This tristates the clock pad. The sub-system clock is also generated by the

clock gen. and is fed to the sub-system core and the padlogic. The constraints on

the PCI clock are documented in the STBus-PCI bridge functional specifications.

The constraints in the scenario of both PCI clock master and PCI clock slave are

documented.

3.10.5 MPX and flash clocking

MPX and PCI modes are complimentary, hence PCI will not be used when MPX mode

is selected. When the sub-system is configured as the clock master (by asserting a ’0’

on emi clock slavenotmaster), the clock from clock gen is fed to EMI and padlogic, the

MPX clock (or flash clock) is generated by the padlogic. The MPX clock generated

is bristled out through the clock pad. The clock pad has to be configured as output.

In the MPX and synchronous flash mode, the EMISS is configured as clock slave by

asserting a logic ’1’ on pin ’emi clock slavenotmaster’. In this mode, the clock from

the pad is fed to the EMI and padlogic. A glue external to the EMISS has to select

the EMI STBus clock. The mapping of STBus transactions to the interconnect clock

is outside the scope of the EMISS. The clock balancing has to be such that the delay

CHAPTER 3. EMISS(EXTERNAL MEMORY INTERFACE SUBSYSTEM) 30

in the EMISS clock source point (output of mux) to clock input of the FF in EMI has

to be same as the delay from clock source to clock input of FF (essentially clocked

by curr clock) in padlogic. The data at the pad output should be delayed by a very

small amount (say 2ns) with respect to the rising edge of the clock at the pad.

Chapter 4

Memories used in EMISS

4.1 NAND Memory

The NAND16GW3D2A is a multilevel cell (MLC) device from the NAND flash 4224-

byte page family of non-volatile flash memories. The NAND16GW3D2A has a density

of 16 Gbits. The device operates from a 3 V power supply.

The address lines are multiplexed with the data input/output signals on a mul-

tiplexed x8 input/output bus. This interface reduces the pin count and makes it

possible to migrate to other densities without changing the footprint.

Each block can be programmed and erased up to 10,000 cycles (with error correc-

tion code (ECC) on). The device also has hardware security features; a write protect

pin is available to provide hardware protection against program and erase operations.

The devices feature an open-drain, ready/busy output that identifies if the pro-

gram/erase/ read (P/E/R) controller is currently active. The use of an open-drain

output allows the ready/busy pins of several memories to be connected to a single

pull-up resistor. The memory array is split into 2 planes of 2048 blocks each. This

multiplane architecture makes it possible to program 2 pages at a time (one in each

plane), to erase 2 blocks at a time (one in each plane), or to read 2 pages at a time

(one in each plane) dividing by two the average program, erase, and read times.

31

CHAPTER 4. MEMORIES USED IN EMISS 32

The device has the Chip Enable ’don’t care’ feature, which allows the bus to be

shared between more than one memory at the same time, as Chip Enable transition

during the latency time do not stop the read operation. Program and erase operations

can never be interrupted by Chip Enable transition.

There is the option of a unique identifier (serial number), which allows the NAND16GW3D2A

to be uniquely identified. It is subject to an NDA (non-disclosure agreement) and

is, therefore, not described in the datasheet. For more details of this option contact

your nearest Numonyx sales office. The device is available in TSOP48 (12 20 mm)

package. and is shipped from the factory with block 0 always valid and the memory

content bits, in valid blocks, erased to ’1’.

4.1.1 NAND Memory feature lists

• High density multilevel cell (MLC) flash memory 16 Gbits of memory array 512

Mbits of spare area Cost-effective solutions for mass storage applications

• NAND interface x8 bus width Multiplexed address/data

• Supply voltage: VDD = 2.7 to 3.6 V

• Page size: (4096 + 128 spare) bytes

• Block size: (512K + 16K spare) bytes

• Multiplane architecture Array split into two independent planes All operations

can be performed on both planes simultaneously

• Memory cell array (4 K + 128) bytes x 128 pages x 4096 blocks

• Page read/program Random access: 60 us (max) Sequential access: 25 ns (min)

Page program operation time: 800 us (typ)

• Multipage program time (2 pages): 800 us (typ)

• Copy-back program Fast page copy

CHAPTER 4. MEMORIES USED IN EMISS 33

• Fast block erase Block erase time: 2.5 ms (typ)

• Multiblock erase time (2 blocks): 2.5 ms (typ)

• Status register

• Electronic signature

• Serial number option

• Chip enable ’don’t care’

• Data protection Hardware program/erase locked during power transitions

• Development tools Error correction code models Bad block management and

wear leveling algorithm HW simulation models

• Data integrity 10,000 program/erase cycles (with ECC) 10 years data retention

4.1.2 NAND flash memory Logic diagram and pin descrip-

tion

Figure 4.1: Logic Diagram of NAND flash memory

CHAPTER 4. MEMORIES USED IN EMISS 34

Signal Function Direction
I\O0 - I\O7 Data input\outputs Input\output

CL Command latch enable Input
AL Address latch enable Input

E(bar) Chip enable Input
R(bar) Read enable Input
W(bar) Write enable Input

WP(bar) Write protect Input
RB(bar) Ready\Busy (open drain output) Output

VDD Power supply Power supply
VSS Ground Ground
N.C. Not connected -
DU Do not used -

Table 4.1: Signal Names And its Function of NAND flash memory

4.1.3 Bus Operation

• Command input

Command input bus operations give commands to the memory. Commands are

accepted when Chip Enable is Low, Command Latch Enable is High, Address

Latch Enable is Low and Read Enable is High. They are latched on the rising

edge of the Write Enable signal. Only I/O0 to I/O7 are used to input commands.

• Address input

Address input bus operations input the memory addresses. Five bus cycles are

required to input the addresses. The addresses are accepted when Chip Enable

is Low, Address Latch Enable is High, Command Latch Enable is Low and

Read Enable is High. They are latched on the rising edge of the Write Enable

signal. Only I/O0 to I/O7 are used to input addresses.

• Data input

Data input bus operations input the data to be programmed. Data is only

accepted when Chip Enable is Low, Address Latch Enable is Low, Command

CHAPTER 4. MEMORIES USED IN EMISS 35

Latch Enable is Low and Read Enable is High. The data is latched on the rising

edge of the Write Enable signal. The data is input sequentially using the Write

Enable signal.

• Data output

Data output bus operations read the data in the memory array, the status

register, the electronic signature, and the unique identifier. Data is output

when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,

and Command Latch Enable is Low. The data is output sequentially using

the Read Enable signal. If the Read Enable pulse frequency is lower then 33

MHz (tRLRL higher than 30 ns), the output data is latched on the rising edge

of Read Enable signal For higher frequencies (tRLRL lower than 30 ns), the

extended data out (EDO) mode must be considered. In this mode, data output

is valid on the input/output bus for a time of tRLQX after the falling edge of

Read Enable signal

• Write protect

Write protect bus operations protect the memory against program or erase

operations. When the Write Protect signal is Low the device does not accept

program or erase operations, therefore, the contents of the memory array cannot

be altered. The Write Protect signal is not latched by Write Enable to ensure

protection, even during power-up.

• Standby

The memory enters standby mode by holding Chip Enable, E, High for at least

10 us. In standby mode, the device is deselected, outputs are disabled and

power consumption is reduced.

• Command set All bus write operations to the device are interpreted by the

command interface. The commands are input on I/O0-I/O7 and are latched

CHAPTER 4. MEMORIES USED IN EMISS 36

on the rising edge of Write Enable when the Command Latch Enable signal

is High. Device operations are selected by writing specific commands to the

command register. The two-step command sequences for program and erase

operations are imposed to maximize data security.

Function
1st
cycle

2nd
cycle

3rd
cycle

4th
cycle

Acceptable
during
Command
busy

Page read 00h 30h
Read for copy back 00h 35h

Read ID 90h
Reset FFh Yes

Page Program 80h 10h
Multiple page program 80h 11h 81h 10h

Multiple read 60h 60h 30h
Copy back program 85h 10h

Multiple copy back program 85h 11h 81h 10h
Multiple copy back read 60h 60h 35h

Block erase 60h D0h
Multiple block erase 60h 60h D0h
Read status register 70h Yes
Random data input 85h

Random data output 05h E0h
Multiple random data output 00h 05h E0h

Table 4.2: command sets and its hex condition

4.2 NOR flash Memory

4.2.1 NOR Flash Memory Features List

• Single Voltage, 2.7V to 3.6V for Read and Write operations

• Organization 4,194,304 x 8 bit (Byte mode) / 2,097,152 x 16 bit (Word mode)

CHAPTER 4. MEMORIES USED IN EMISS 37

• Fast Read Access Time : 70ns

• Read While Program/Erase Operation

• Dual Bank architectures

Bank 1 / Bank 2 : 8Mb / 24Mb

• Secode(Security Code) Block : Extra 64K Byte block

• Power Consumption (typical value @5MHz) Read Current : 14mA Program/Erase

Current : 15mA Read While Program or Read While Erase Current : 25mA

Standby Mode/Auto Sleep Mode : 5uA

• WP/ACC input pin Allows special protection of two outermost boot blocks

at VIL, regardless of block protect status Removes special protection of two

outermost boot block at VIH, the two blocks return to normal block protect

status Program time at VHH : 9us/word

• Erase Suspend/Resume

• Unlock Bypass Program

• Hardware RESET Pin

• Command Register Operation

• Block Group Protection / Unprotection

• Supports Common Flash Memory Interface

• Industrial Temperature : -40C to 85C

• Endurance : 100,000 Program/Erase Cycles Minimum

• Data Retention : 10 years

• Package : 48 Pin TSOP1 : 12 x 20 mm / 0.5 mm Pin pitch 48 Ball TBGA : 6

x 8.5 mm / 0.8 mm Ball pitch 48 Ball FBGA : 6 x 8.5 mm / 0.8 mm Ball pitch

CHAPTER 4. MEMORIES USED IN EMISS 38

4.2.2 NOR flash Memory logic diagram and pin description

Figure 4.2: Signals and pin descriptions of NOR flash memory

4.2.3 Bus Operation

• Byte/Word Mode

If the BYTE pin is set at logical ”1” , the device is in word mode, DQ0-DQ15

are active. Otherwise the BYTE pin is set at logical ”0” the device is in byte

mode, DQ0-DQ7 are active. DQ8-DQ14 are in the High-Z state and DQ15 pin

is used as an input for the LSB (A-1) address pin.

• Read Mode

The K8D3216U is controlled by Chip Enable (CE), Output Enable (OE) and

Write Enable (WE). When CE and OE are low and WE is high, the data stored

at the specified address location,will be the output of the device. The outputs

are in high impedance state whenever CE or OE is high.

• Standby Mode

CHAPTER 4. MEMORIES USED IN EMISS 39

PIN NAME PIN FUNCTION
A0-A20 Address inputs

DQ0-DQ10 Data inputs backslash outputs
Byte(bar) Word\Byte(bar) selection
CE(bar) chip enable
OE(bar) output enable

RESET(bar) hardware reset pin
RY backslash BY(bar) Ready\Busy output

WE(bar) Write enable
WP(bar) backslash ACC Hardware write protection \program Acceleration

Vcc power supply
Vss ground
N.C. Not connected

Table 4.3: Signal Names And its Function of NOR flash memory

The features Stand-by Mode to reduce power consumption. This mode puts the

device on hold when the device is deselected by making CE high (CE = VIH).

Refer to the DC characteristics for more details on stand-by modes. Output

Disable The device outputs are disabled when OE is High (OE = VIH). The

output pins are in high impedance state.

• Automatic Sleep Mode

The features Automatic Sleep Mode to minimize the device power consumption.

Since the device typically draws 5uA of the current in Automatic Sleep Mode,

this feature plays an extremely important role in battery-powered applications.

When addresses remain steady for tAA+50ns, the device automatically acti-

vates the Automatic Sleep Mode. In the sleep mode, output data is latched

and always available to the system. When addresses are changed, the device

provides new data without wait time.

• Autoselect Mode

This flash offers the Autoselect Mode to identify manufacturer and device type

by reading a binary code. The Autoselect Mode allows programming equipment

CHAPTER 4. MEMORIES USED IN EMISS 40

to automatically match the device to be programmed with its corresponding

programming algorithm. In addition, this mode allows the verification of the

status of write protected blocks. This mode is used by two method. The one

is high voltage method to be required VID (8.5V 12.5V) on address pin A9.

When A9 is held at VID and the bank address or block address is asserted, the

device outputs the valid data via DQ pins(see Table 9 and Figure 2). The rest

of addresses except A0, A1 and A6 are Donut Care. The other is autoselect

command method that the autoselect code is accessible by the commamd se-

quence without VID. The manufacturer and device code may also be read via

the command register. The autoselect operation of block protect verification is

initiated by first writing two unlock cycle. The third cycle must contain the

bank address and autoselect command (90H). If Block address while (A6, A1,

A0) = (0,1,0) is finally asserted on the address pin, it will produce a logical ”1”

at the device output DQ0 to indicate a write protected block or a logical ”0” at

the device output DQ0 to indicate a write unprotected block. To terminate the

autoselect operation, write Reset command (F0H) into the command register..

• Write (Program/Erase) Mode

The K8D3216U executes its program/erase operations by writing commands

into the command register. In order to write the commands to the register,

CE and WE must be low and OE must be high. Addresses are latched on the

falling edge of CE or WE (whichever occurs last) and the data are latched on

the rising edge of CE or WE (whichever occurs first). The device uses standard

microprocessor write timing.

• Program

This can be programmed in units of a word or a byte. Programming is writing

0’s into the memory array by executing the Internal Program Routine. In order

to perform the Internal Program Routine, a four-cycle command sequence is

necessary. The first two cycles are unlock cycles. The third cycle is assigned

CHAPTER 4. MEMORIES USED IN EMISS 41

for the program setup command. In the last cycle, the address of the memory

location and the data to be programmed at that location are written. The

device automatically generates adequate program pulses and verifies the pro-

grammed cell margin by the Internal Program Routine. During the execution

of the Routine, the system is not required to provide further controls or timings.

During the Internal Program Routine, commands written to the device will be

ignored. Note that a hardware reset during a program operation will cause data

corruption at the corresponding location.

• Block Erase

To erase a block is to write 1us into the desired memory block by executing

the Internal Erase Routine. The Block Erase requires six bus cycles to write

the command sequence shown in Table 8. After the first two ”unlock” cycles,

the erase setup command (80H) is written at the third cycle. Then there are

two more ”unlock” cycles followed by the Block Erase command. The Internal

Erase Routine automatically pre-programs and verifies the entire memory prior

to erasing it. The block address is latched on the falling edge of WE or CE,

while the Block Erase command is latched on the rising edge of WE or CE.

Multiple blocks can be erased sequentially by writing the six bus-cycle operation

in Figure. Upon completion of the last cycle for the Block Erase, additional

block address and the Block Erase command (30H) can be written to perform

the Multi-Block Erase. 50us (typical) ”time window” is required between the

Block Erase command writes. The Block Erase command must be written

within the 50us ”time window”, otherwise the Block Erase command will be

ignored. The 50us ”time window” is reset when the falling edge of the WE

occurs within the 50us of ”time window” to latch the Block Erase command.

During the 50us of ”time window”, any command other than the Block Erase

or the Erase Suspend command written to the device will reset the device to

read mode. After the 50us of ”time window”, the Block Erase command will

CHAPTER 4. MEMORIES USED IN EMISS 42

initiate the Internal Erase Routine to erase the selected blocks. Any Block Erase

address and command following the exceeded ”time window” may or may not

be accepted. No other commands will be recognized except the Erase Suspend

command during Block Erase operation.

4.3 SPI flash Memory

4.3.1 SPI flash Memory feature lists

• serial peripheral interface compatible- mode 0 and mode 3 268,435,456x1 bit

structure or 134,217,728x2 bits (two i/o mode) structure or 67,108,864 x 4 bits

(for i/o mode structure)

• power supply operation 2.7 to 3.6 volt for read,erase and program operation

• latch up protected to 100mA from 1V to Vcc+1V

• high performance VCC=2.7 3.6V

• normal read 50MHZ

• Fast read 1 I/O: 80 MHZ with 8 dummy cycles 2 I/O: 70 MHZ with 4 dummy

cycles 4 I/O: 70 MHZ with 6 dummy cycles

• fats program time: 1.4ms(typ.) and 5 ms(max.)/page(256-byte per page)

• Low power consumption

• typical 100000 erase /program cycles

CHAPTER 4. MEMORIES USED IN EMISS 43

SYMBOL DESCRIPTION
CS Chip select
SI\ SIO0 & Serial Data input\output

SO\SIO1\PO7 serial Data input\output parallel data output
SCLK clock input

WP/SIO2 write protection:connect to GND or serial data input\output
GND ground

PO0 P̃O6 parallel data output\input
N.C. Not connected

Table 4.4: flash memory pin description and its functions

4.3.2 SPI flash Memory logic diagram and pin description

Figure 4.3: SPI flash memory pin diagram

4.3.3 SPI flash memory Bus operations

• CS (chip select): This signal will enable the chip

• SCLK (serial clock): clock input

CHAPTER 4. MEMORIES USED IN EMISS 44

Mode SIO0 SIO1 SIO2 SIO3
1 Input Output WP to GND Hold
2 I\P & O\P I\P & O\P WP to GND Hold
4 I\P & O\P I\P & O\P I\P & O\P I\P & O\P

Table 4.5: Input / Output Data Table

• PO (parallel data input/output): It will not be connected in serial data opera-

tion

• WP(write protect): It will be connected to ground

Chapter 5

MCC Cache Memory

The purpose of inserting the cache for inter prediction motion compensation is to

reduce the typical bandwidth required for prediction, keeping the worst case band

width smaller or same as without cache memory. The bandwidth has been studied

on Allegro streams and the compromising size/associativity and complexity has been

found: 8-ways associative, 32- byte or 16 bytes word, cache size is 128 KBytes. The

one ways was simplier in term of implementation, but it creates a bottleneck which

can slow down the cache.

This motion compensation cache (MCC) is inserted between the XPred memory

access and the STBus. It can be bypassed, in which case the XPred accesses the

external memory in the same manner as in previous DELTA versions. In this case,

XPred STBus plugs are directly connected to STBus .

5.1 cache mode specification

• The cache mode has been specified having in mind next constraints: XPred

is ”latency independent”, which means we may have 2 MBs in the pipeline

between the request by the XPred and the data coming back to XPred.

• Chunks bordered inside the MB and having max size defined by user registers

45

CHAPTER 5. MCC CACHE MEMORY 46

Figure 5.1: MCC cache block diagram

should be respected, even if some of data from original chunk requested by

XPred are in the cache

• For DDR efficiency, The cache access can be either LD32 or LD16.

• cache is working on STBus clock to avoid multiple clock domain crossing and to

be able to use the MCC as embedded SRAM even though DELTA is not used

and its clock disabled.

• Tthe target frequency is 300 Mhz in 45 nm. Xpred request can be read every 2

cycles clocks. Xpred data can be sent by MCC every clock cycle.

5.2 Cache general description

Requests from XPred are processed one by one with 2 cycles per request. At this stage,

MCC verifies if the requested pixels are in the cache or not. Nothing is read/written

from/to cache at this stage. In case of cache miss, a 32-byte memory word in cache is

reserved. In any case of hit/miss, number of outstandig reads at given cache address

CHAPTER 5. MCC CACHE MEMORY 47

is incremented. If there is a cache miss:the request is put in ReqFIFO (request FIFO),

from which the requests will be sent to DDR, once the chunk is completed

Figure 5.2: Memory cache block diagram

the cache address where the pixels will be written to, is put in RetFromDDR FIFO

(return from DDR FIFO) used to control the ”write in cache” process In any case

(hit or miss), the address where the pixels are (or will be after DDR access) is stored

in RetFIFO (return to XPred FIFO). This FIFO is used to control the ”read from

cache” process Pixels requested by XPred are either in cache (cache hit) or not (cache

miss) and they have to be accessed from the DDR. In this last case pixels are stored

in the cache when back from the DDR. In any of these two cases, pixels are read

from the cache before being sent to the XPred. To make the implementation uniform

and as small as possible, 8 memory cuts of 4096x32bits each have been chosen. The

control logic uses a 2x512x76 bits table, having tags,u ord,in cpt. The way this ctrl

table is used will be described later in text. In addition, there are few FIFOs (DPreg)

used to store requests from XPred: 512x12bits, 512x17bits and 16x28bits

CHAPTER 5. MCC CACHE MEMORY 48

5.3 Cache Control

• Cache control used a control table that is used to store different parameters for

each of words in cache. This table contains in cpt, V bits, U ord and address

tag for each word in cache.

• V: Valid bit is 0 if the word in cache has not yet been used for the picture (after

reset). Once it has been used at least once, it remains to 1, which means there

is a valid word that may be used for MC, which can only be replaced by another

valid word.

• in :cpt counts the number of times a word in cache is to be read. In other words,

it counts the number of outstanding requests from XPred for a given word. Or

again, it counts the number of times same word is used in the pipeline: XPred

- Cache - DDR - Cache - XPred

• u ord: corresponds to used order, each time a Xpred request is granted, the used

order of each bank are refreshed. Then when there is a cache miss, the corre-

sponding request can reserve the word in cache which has been least recenlty

used. control table can be updated by 2 differents processes: the ”Hit/Miss

Detection” and the ”Read from cache” process. dual port memory should be

used for ctrl table. One port is used for ”cache hit/miss” process and one port

for ”read from cache process”. In addition to keep the right processing rate

two ”cache hit/miss process” are running in parallel, as well as two ”read from

cache process”.

In above section, 128KB memory is used. If 128KB memory is used then the area

of memory will increase.so we will have to reduce the area and so we will have to

reduce the memory of the cache from 128KB to 64KB or 32KB.

This second generation of cache, uses an input buffer in order to be STbus la-

tency independant whatever the cache size. Because when the cache memory become

smaller than 128K, cache data collisions can introduce some delay on request sent

CHAPTER 5. MCC CACHE MEMORY 49

to STbus which are not acceptable. with an input buffer we have no more collision

possible.

5.4 Cache Performance Tables

32 K Cache efficiency in term of Bandwidth & Opcode
without
cache

128K (075mm2 in 40n)LRU

BW nb Opcode BW nb Opcode
Allergo Streams Max 809 46813 862(+6%) 26939(-42%)

Avg 487 24538 275(-44%) 8587(-65%)
DVD Streams Max 474 24814 288(-39%) 8993(-63%)

Avg 245 12332 191(-22%) 5967(-51%)
Real Life Streams Max 195 10077 206(+5%) 6444(-36%)

Avg 106 4935 102(-3%) 3186(-35%)

Table 5.1: 32 K Cache efficienty in term of Bandwidth & Opcode

64 K Cache efficiency in term of Bandwidth & Opcode
without
cache

128K (075mm2 in 40n)LRU

BW nb Opcode BW nb Opcode
Allergo Streams Max 809 46813 862(+6%) 26939(-42%)

Avg 487 24538 271(-44%) 8467(-65.5%)
DVD Streams Max 474 24814 288(-39%) 8987(-63%)

Avg 245 12332 183(-25%) 5703(-53%)
Real Life Streams Max 195 10077 192(-1.5%) 5995(-40%)

Avg 106 4935 86(-18%) 2693(-45%)

Table 5.2: 64K Cache efficienty in term of Bandwidth & Opcode

CHAPTER 5. MCC CACHE MEMORY 50

128 K Cache efficiency in term of Bandwidth & Opcode
without
cache

128K (075mm2 in 40n)LRU

BW nb Opcode BW nb Opcode
Allergo Streams Max 809 46813 862(+6%) 26935(-42%)

Avg 487 24538 258(-47%) 8051(-67%)
DVD Streams Max 474 24814 267(-43%) 8340(-66%)

Avg 245 12332 151(-38%) 4709(-61%)
Real Life Streams Max 195 10077 147(-24%) 4603(-54%)

Avg 106 4935 83(-21%) 2608(-47%)

Table 5.3: 128K Cache efficienty in term of Bandwidth and Opcode

5.5 Cache Area Estimation

a. A quick Webgen exploration give the following area for 128K cache in 40nm:

SRAM 4096x64=0.117 (4 cuts =0.468)

DPRAM 1024x32 =0.044mm2 (5 cuts = 0.222)

DPREG 512x17 =0.011mm2

DPREG 512x13 =0.009mm2

DPREG 128x64 = 0.011mm2

DPREG 16x30 = 0.003mm2 (should probably implemented with Flip-flops)

it means a total of about 0.72 mm2 for memories in 40 nm

a. For 32 KB cache

For 32 KB cache with fifo replacement and input buffer in 40nm:

DPREG 2x416x128 =0.090(input buffer)

SRAM 1024x32 =0.019 (8 cuts = 0.15) or 1024x128=0.069 (2 cuts=0.14) (cache)

DPREG 256x112 =0.027(cache control)

DPREG 512x15 =0.01

CHAPTER 5. MCC CACHE MEMORY 51

DPREG 128x20 =0.005

DPREG 16x30 = 0.003mm2 (should probably implemented with Flip-flops)

It means a total of about 0.27 mm2 for memories in 40 nm

a. For 64 KB cache with fifo replacement and input buffer in 40nm:

DPREG 2x416x128 =0.090(input buffer)

SRAM 1024x32 =0.019 (8 cuts = 0.15) or 2048x128=0.13 (2 cuts=0.26) (cache)

DPREG 512x104 =0.048(cache control)

DPREG 512x15 =0.01

DPREG 128x20 =0.005

DPREG 16x30 = 0.003mm2 (should probably implemented with Flip-flops)

it means a total of about 0.41 mm2 for memories in 40 nm with input buffer,

XpredMac could be simplified by removing a part of its memory (replace 288x176 by

42x176). but in that case the bypass mode of the cache should still use input buffer,

which is not planed yet.

Cache control converts also the Load32 or Load16 from external memory or cache

into Load8 or Load16 when sending data to XPred. The address corresponding to

the opcode, received from XPred MAC is considered in next way by the cache:

Figure 5.3: 32 Kbytes cache with cache line 32 bytes

Figure 5.4: 32 Kbytes cache with cache line 16 bytes

CHAPTER 5. MCC CACHE MEMORY 52

To simplify the design, the prediction address space should be contiguous. Having

the max DPB size in mind, the Address prefix may be ignored by the cache control

hardware. The maximum range of address that Cache can access is defined by max

DPB size = 6 (pict) x 8160(MBs) x 384(byte per MB) = 18.8MBytes. But to secure

future application the cache can work in 64 Mbytes memory range it explains why

tag+address byte is on 26 bits. A functional schema of cache control system is shown

here below. There are 128 addresses in the cache 32 bytes and 256 addresses in cache

16 bytes, which corresponds to 10 MBs . In orther words, if we access all block of

pixels one after another, same cache address will be used only after 10 MBs. The

8 memories having the same cache address space (going from 0 to 127) in LD32

configuration, and 4 memories having the same cache address space (going from 0

to 127) and 4 memories having the same cache address space (going from 128 to

255) in LD16 configuration. with each address, it corresponds 8-way associativity,

will be called banks. A content of any address in DDR may be at single address in

cache (equal to DDR addr(11:4)), but in any of eight banks. To know to which DDR

address the content of cache address correspond to, tag part of DDR address (equal

to DDR address(25:12)) is stored together with each 32-byte or 16 byte data.

Figure 5.5: Functional Diagram

CHAPTER 5. MCC CACHE MEMORY 53

When valid bit V is one and the ”Tag” part of address is found, the word is

considered ”Hit” and read from the cache. If not, the word is fetched from external

memory and written on the least recently written word of 8 having the same address

in the cache as address[11:5] bits of DDR.

5.6 Functional Specification

In this specification, The cache is verified is verification engineer. If there is any bug

in the design then verification engineer will find it out and will inform about the bug

to the designer. Designer will modify the design and try to make it correct.

In MCC cache below are the tests which have run to check the design and as per

the results of the tests modification are done to design.

5.6.1 Cache Glue and Reset

Check that MCC is bypassed when bypass bit is set.

Check that on soft reset pulse on srst n:

• All the state machines go back to idle state

• The outstanding STBUS transactions are properly terminated before soft reset

is applied to internal logic

• Status output port (MCC X CNT) are cleared

• The valid (V) control bits stored in SRAM are reseted.

• When STBUS transactions are terminated and soft reset finished MCC SRSEND

goes high during the soft reset initialization the Xpred requests are not taken

into account (grant is forced to 0)

• At the end of soft reset the configuration is stored in internal registers.

CHAPTER 5. MCC CACHE MEMORY 54

5.6.2 Cache Control

• Proper Hit& Miss detection, Check that on Cache HIT, the requests are not sent

to DDR. The data should be returned to XPred from internal cache memory.

• Lock management: Check the functionality of lock management block. Gener-

ate traffic to hit same cache address for the parallel running processes: Cache

Hit & Miss P1, Cache Hit & Miss P2, Cache Read P1

• Check that the entire cache memory is accessible and can be filled up resulting

in cache hit for all subsequent transactions within the specified address range.

• Replacement policy: Check that when all sets for a cache address are valid, the

least recently used cache word is chosen for replacement in case a miss occurs

for next transaction on same cache address.

• In order response: Check that cache always returns data in order of request.

• Check that data coherency is maintained: data returned by cache for any ad-

dress should match memory content at that address.

• Check proper cache functioning in case of cache miss and all eight banks valid

with pending request greater then 0.

• Check proper cache functioning in case of cache hit and if corresponding number

of pending request = 15.

• Check that cache write gets higher priority, if cache read & write occur at same

cache address.

5.7 Verification Environment

This verification environment consists of following components:

• Everest EVC for driving/observing all STBus Ports.

CHAPTER 5. MCC CACHE MEMORY 55

Figure 5.6: Verification Environment

• VHDL Test bench instantiating the Device under test (DUT)

• Specman test generator for random tests generation.

• Directed tests.

5.7.1 Verification Platform

The verification platform consists of Everest EVC, MCC EVC and HDL test bench.

Everest EVC implements XPred initiator and system memory target ports. MCC

EVC has a cache reference model and checkers to compare rtl and reference model

transactions.

Specman Reference Model

A reference model for delta cache is implemented in Specman. The model closely

follows functional specification. The reference model has following components and

functions:

CHAPTER 5. MCC CACHE MEMORY 56

• Control table struct - implements control table bits and valid bits for each cache

address

• Cache mem struct - implements cache memory, with variable cache line size 16

or 32

• Fifos - ReqFifo, RetFifo, RetFromDDRFifo, STBus Rx Fifo - used to store

transactions.

• ProcessCacheHitMissDetect: The process detects if the data for incoming re-

quest is in cache (cache hit), or has to be requested from DDR (cache miss). It

then populates the fifos as per spec. and updates control table. Two cache hit

miss detect process run in parallel to handle Xpred requests every 2 cycles

• ProcessCacheRead: It reads data from cache and stores the response data in

RxRsp fifo.

• ProcessCacheWrite: On receiving response from DDR, it writes data in cache.

• LruUpdate: The function updates ’used order’ field in control table according

to functional spec. and returns least recently used ’way’ for replacement in case

of cache miss.

• Performance counters: counters for input opcodes received for a picture frame,

cache hit or miss and output opcodes generated by cache on DDR initiator ports

are implemented.

MCC EVC

A MCC EVC wrapper is written on top of cache reference model. This block trans-

lates STBus transactions to cache transactions which are driven on reference model

ports. The EVC implements checkers for comparing request and response transac-

tions. Following checks are implemented:

CHAPTER 5. MCC CACHE MEMORY 57

• Request generated by RTL should match reference model requests on DDR

initiator port

• Response generated by RTL should match reference model response on target

port

• Response Data should always match contents of memory for the given address

5.8 HDL Testbench Architecture

The HDL test bench has MCC RTL along with webgen memories and a hwcfg block

to configure cache.

Figure 5.7: Verification Process

5.8.1 RTL Simulation Environment

IUS tool is used for simulating design. A script ’build cmd’ is used to precompile rtl

and specman environment. For running a test, ’run cmd’ script is used which loads the

precompiled snapshot, recompiles it along with the test and runs a simulation.Memory

contents are dumped at the end of test for debugging in case of test failure.

CHAPTER 5. MCC CACHE MEMORY 58

5.8.2 Test Scenarios

Test are written in specman with constrained random generation of address and

opcode on DDR initiator port. The timing delays for target and initiator ports are

also randomized. To run allegro streams, ’stream.e’ test reads the opcodes, address

and end of chunk information from a file and drives them on the initiator port.

5.8.3 Checking Mechanism

All tests are self checking, dut error is reported in case of any check failures. STBus

protocol checks are enabled in all tests to ensure proper STBus compliant traffic at

MCC input and output ports.

Chapter 6

Conclusion

We can say that, by using the MCC cache memory and other memories, which are

described above, are very useful in TV. We can improve the quality of TV picture by

digitizing the analog signal and using these kinds of memory we can reduce the delay

of the broadcasted picture. By using this kind of memories, we can store the data in

advance and so the delay is reduced. Also using MCC cache memory we can control

the traffic of video data signals.

STBus is also a very useful protocol which is used for data transfer in between

two modules. By using STBus we can apply input as well as output as per our

requirement. And also we can check the modules by applying the different kinds of

tests to our modules. So STBus is also a very useful protocol. And it is specially

STMicroelectronics product which is used in only STMicroelectronics.

59

References

[1] Davide Di Blasi, Run Tests User manual, 2001

[2] STBus Communication System : Concepts and definitions by Alberto Scan-
durra , Giuseppe Falconeri, Bruno Jego CMG division -OCCS team,Catania
,Granoble,.2002.

[3] Spyglass design checks by Jean-Christophe Mas ,Technology R&D, CCDS
February 2008.

[4] EMIPCISS Generic IP block functional specification by Sanjeev varshney
,HED,Greater Noida,2010

[5] RTLGUI 5.X HEG R&D, Design Support, greater noida, India.

[6] Websites used
www.toodoc.com
www.ieee.com

60

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	STBus
	EMISS(External Memory Interface Subsystem)
	NAND flash controller
	NOR flash controller
	Serial Flash controller
	PCI controller

	NAND Flash Memory
	NOR Flash Memory
	Serial Flash Memory
	PCI Flash Memory
	MCC Cache Memory

	STBus overview
	STBus overview
	STBus Protocols

	STBus basic pin description

	EMISS(External Memory Interface Subsystem)
	Features lists
	IP block context
	Normal functional behavior
	EMI Buffer
	EMI4
	Serial Flash controller
	Legacy mode
	Fast sequence mode
	Fast sequence boot mode

	NAND integrated controller
	Hamming NAND controller
	BCH NAND controller

	PCISS
	EMPI
	EMPI modes supported
	Arbiter

	clocking
	Frequencies
	Clock relationships
	PCI clock master
	PCI clock slave
	MPX and flash clocking

	Memories used in EMISS
	NAND Memory
	NAND Memory feature lists
	NAND flash memory Logic diagram and pin description
	Bus Operation

	NOR flash Memory
	NOR Flash Memory Features List
	NOR flash Memory logic diagram and pin description
	Bus Operation

	SPI flash Memory
	SPI flash Memory feature lists
	SPI flash Memory logic diagram and pin description
	SPI flash memory Bus operations

	MCC Cache Memory
	 cache mode specification
	 Cache general description
	Cache Control
	Cache Performance Tables
	Cache Area Estimation
	Functional Specification
	Cache Glue and Reset
	Cache Control

	Verification Environment
	 Verification Platform

	HDL Testbench Architecture
	RTL Simulation Environment
	Test Scenarios
	Checking Mechanism

	Conclusion
	References

