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Abstract

Time to market & Power is becoming a critical design criterion for ASIC/SoC de-

signers. Early Design Analysis find the issues which can pin points structural ,coding

& consistency problem at RTL. Early Design Analysis can find most comprehensive

design problems related to clock, reset & CDC(clock domain crossings) which cannot

find in the verification of the design but this captures at the netlist level which will

cause a design respin & TTM will increase. Early Design analysis finds such issues at

RTL level, so it reduces the design respin time. To generate the netlist from the RTL

designer needs the synthesis constraints. These constraints need to be accurate for

the quality netlist. Early Design Analysis also helps to find fault in the synthesis con-

straints. Now Early Design Analysis also helps to generate the synthesis constraints

automatically with the tool. This automation reduces the human efforts to generate

constraints & generated constraints will have more accuracy. To meet power require-

ment of the design it is likely to have power estimation at the RTL level itself, so

the designer can apply different techniques at RTL level to meet power requirement

when chip will manufactured.

During this thesis, work based on the different steps of Early Design Analysis will

be carried out on the different IP’s with the the tool named SPYGLASS. Spyglass

will observed problems related with the different IP’s & will ensure that applied

solution is feasible or not for the design at every stage of the Early Design Analysis.

Also the comparision of the results will be performed for the features like constraints

generation & power estimation will be carried out with some standard results.
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Chapter 1

INTRODUCTION

1.1 What is Early Design Analysis

Early Design Analysis is a technique to analyze the design at RTL(Register

Transfer Level) level to check the issues like connectivity, synthesizability & also

implementation issues like CDC(clock domain crossing),power related clock gating,

some timing exception ,DFT(Design for Testability) set up. So this checks ensures

the designer that what changes designer has to make at RTL level so that these issues

can be solved at RTL level only so that designer can reduce the implementation time

of the design by avoiding the iterations. For that we are using tool called SPYGLASS

which can do Early Design Analysis effectively.

1.2 Need of Early Design Analysis

RTL designers need to make decisions that impact the power, timing and phys-

ical feasibility of a chip during the downstream implementation flow. Since RTL

designers have limited visibility into physical implementation, the impact of these

decisions are resolved late in the process. The result can be several iterations be-

tween back-end and front-end designers, a costly problem. So Early Design Analysis

provides a early estimates of area, power, timing and routability for RTL designers

1
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without the need for physical design expertise or tools. For that I have used Spyglass

tool for the early design analysis. With SpyGlass, RTL designers can make sure RTL

blocks will be easier to implement and will meet SoC design goals like area require-

ment, timing requirements, power estimation etc of the physical chips. So for to solve

the such issues Early Design Analysis is done.

1.3 Key features of Spyglass[3]

• Full language support for Verilog (IEEE 1364, Verilog 2001, and SystemVerilog)

and VHDL (VHDL-87 and VHDL-93).

• A rich suite of built-in rules, including.

• File checks, such as file names, design units per file and headers.

• Naming checks on signals, ports, parameters, constants, clocks and other con-

structs.

• Style and related checks.

• Coding for synthesis and related checks.

• Design practice and related checks.

• Area, timing and synchronization checks.

• Clock and reset checks.

• DFT, LowPower, Constraints, ERC and similar checks (cost options)



CHAPTER 1. INTRODUCTION 3

• A variety of report format options so you can set up your own reports

• Built-in engines, including RTL synthesis and flattening, to enable detailed

implementation tests including clocking, reset and synchronization of asyn-

chronous signals.

1.4 Key Benefits of the Spyglass[3]

• Provides relative quantitative measure of implementation readiness of RTL

blocks Facilitates tracking block implementation readiness progress as part of

regression setup

• Very fast analysis to enable multiple iterations within a day leads to faster

design closure

• RTL designers can take corrective action based on Rules and reports without

having to learn physical aspects or develop tool expertise

• Integrated into SpyGlass platform Offer physical rules like other SpyGlass tools

• Rich set of visualization, what-if analysis, reports and metrics enable easy to

use floorplanning for complex IP and SoC’s

In Early Design Analysis there are some checks can be performed at the RTL.

1.5 Early Design Analysis Flow

Early Design Analysis has a 4 basic steps to ensure that design is good for synthesis.

These steps are,

a. RTL Checks: It is a method to perform a different checks to on the RTL design

to catch the issues which will not have the impact on the simulation i.e. verifi-

cation but will cause the problem after the synthesis when the gate level netlist

is generated. The problem like mentioned below.
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Figure 1.1: Early Design Analysis Flow

• CDC(Clock Domain Crossing): Such issues can not be detected at the

RTL level. Verification also can not detect such a problem.This problem

can be detect in the synthesis with timing violation. So to solve the prob-

lem reiterative process has to done after synthesis. These causes longer

design time.To save this design time it is good to have a method that can

detect such a problem at the RTL level.So designer can solve the problem

at the early stage of the design. That causes reduction in the iterative

time.So RTL checks is the important part of the Early Design Analysis

which can reduce the design time drastically and ensures the functionality

of the design.

e.g Clocks that are asynchronous with respect to each other may reach

different flops at slightly different times in each cycle during the execution

of the design. This timing uncertainty may cause setup and hold-time vi-
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olations randomly in the design. Setup and hold time violations can cause

functional failure in the chip. This issue cannot be identified using tradi-

tional verification methods, such as simulation and static timing analysis.

Static clock domain crossing analysis and verification is the only way of

verifying CDC correctness. The need is to detect clock domain crossing

at RTL level and make sure proper synchronization has been added in the

circuit.

• Reset asynchronization problem can cause the functionality failure.

• Linting Checks: Linting checks helps the designer to find that RTL is

synthesizable or not. Also due to RTL is following the standard coding

guidelines there may be simulation-synthesis mismatch can occur. So may

be the further implementation issues can cause failure in functionality.

Linting checks also helps to solve such issues in the RTL.

• DFT Checks Manufacturing test is performed by patterns automatically

generated by ATPG (Automatic Test Pattern Generation) tools. To op-

erate effectively, these tools require that the circuits be correctly designed

for testing.

b. GENSDC :

In a typical design environment, SDC files are used and modified at various

stages of the design (e.g. RTL, pre-layout, post-layout). Generally these SDC

files are created either manually by the Designer or with help of some automated

ad-hoc scripts. It’s very difficult to avoid mistakes (human error) in SDC written

manually. Gensdc tool has the capability to understand the design & generate

the constraints automatically. So the generated constraint is accurate & free

from human errors.

c. SDC(Synopsys Design Constraints) Checks: IC designs go through sev-

eral transformations in a typical RTL-to-layout flow, and as they do, a number

of verification steps (simulation, equivalence checking, etc.) are performed to
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ensure that the design intent is preserved. Timing constraints, too, are cre-

ated at RTL and refined throughout the design cycle. But, traditionally, there

has been no step for validating timing constraints at various stages of design.

The creation and refinement of constraints has been largely a manual, error-

prone and time-consuming process. Managing thousands of lines of constraints

throughout the flow is nearly impossible. As a result, constraints issues are a

major cause of additional iterations during implementation. According to Elec-

tronic Design News, a typical design project goes through 10 or more iterations

due to refinement of timing constraints. Poor constraints impact the chip qual-

ity in terms of area, power, and timing. As a result, timing closure takes longer.

Worst of all, incorrect constraints can result in silicon failing timing and hence

a re-spin. There is thus a critical need for an EDA solution that ensures valid

timing constraints throughout the design flow. e.g IC designs go through sev-

eral transformations in a typical RTL-to-layout flow, and as they do, a number

of verification steps (simulation, equivalence checking, etc.) are performed to

ensure that the design intent is preserved.

d. Power Estimation & Reduction Power reduction is becoming a critical design

criterion for ASIC/SOC designers. Reducing both dynamic and leakage power

is imperative to meet power budgets for portable devices as well as to ensure

that the systems that these ASICs meet their packaging and cooling costs. In

addition, the power of an ASIC has a significant impact on its reliability and

manufacturing yield. Traditionally, most automated power optimization tools

have focused at gate-level and physical level optimizations. However, major

power reductions are only possible by addressing power at the RTL and system

levels. At these levels, it is possible to make the sequential modifications needed

to reduce power and energy consumption via techniques like sequential clock

gating, power gating, voltage/frequency scaling and other micro-architectural

techniques. The focus of this tutorial will be on techniques for power reduction
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at the RTL and system level. It will also focus on expressing power intent at

system and RTL levels and the flows needed to use that power intent in tools

for functional verification, RTL-level optimization, logic synthesis and physical

design. The following sections describe the key focus areas in the tutorial. Since

power of a design is a function of how it performs a computation over time, al-

most all the major transformations that have significant impact on the power of

a design are sequential in nature - they change the sequence of values generated

at key internal registers or memories in time. We will discuss the sequential

optimizations like, sequential clock gating, power gating, dynamic voltage scal-

ing and memory banking. The impact of these optimizations on verification

and implementation flows will be highlighted and solutions to verification and

implementation issues will be presented. In the last few years, standards have

started emerging to allow designers to express power intent such as voltage

islands and power modes in a design. These are allowing for the same power

intent to be seen by all the tools in the RTL flow: RTL simulation, logic synthe-

sis, place and route, logic equivalence checking and any other post-layout tools.

Both CPF and UPF attempt to specify this information. We will focus on the

key information that the emerging power formats need to support and how this

impacts the RTL design and implementation flow. Specific power optimizations

enabled by such information in implementation tools will also be discussed.
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1.6 Thesis Organization

In chapter 2 describes the different clock, reset CDC & linting issues related to the

RTL.

In chapter 3 different “Synthesis Design constraint” is described which will have

the impact & importance of the synthesis. & also how the automated constraints can

generate with the GENSDC.

Chapter 4 describes the need & importance of SDC checks with some examples.

In chapter 5 how power estimation can be done at the RTL level. It also describe

that the power estimated at the RTL level the can be optimized that it has a close

approximation when the design is fabricated from silicon.

Finally, in chapter 6 concluding remarks is presented.



Chapter 2

RTL Checks

2.1 Introduction[5]

Shrinking device sizes and increasingly complex designs have created multimillion-

transistor systems running with multiple asynchronous clocks with frequencies as high

as multiple gigahertz. SoC systems have multiple interfaces, some using standards

with very different clock frequencies. Several modern serial interfaces are inherently

asynchronous from the rest of the chip. There is also a trend toward designing major

sub-blocks of SoCs to run on independent clocks to ease the problem of clock skew

across large chips. Design methodologies have traditionally focused on partition-based

implementation and verification. Often these partitions are based on clock domains.

The cross-clock domain crossing (CDC) signals pose a unique and challenging issue

for verification. Traditional functional simulation is inadequate to verify clock domain

crossings. While static timing analysis (STA) is an integral part of the timing closure

solution, little attention has been paid to addressing proper clock domain implemen-

tation and verification. Existing methods provide an ad hoc partial verification that

is manual, time consuming, and error prone. If the sources of potential errors are not

addressed and verified early on, designs can end up with functional errors that are

only detected late in the design cycle - or even worse, during post-silicon verification.

9
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The cost of fixing errors at this stage is enormous.

• Structural issues (sCDC): If the data input to a storage element changes too

close to a clock edge, the element may go into a metastable state and the output

cannot be reliably used. Asynchronous clock domain crossings are particularly

prone to metastability failures. To address this issue, the circuit must be de-

signed to “buy time” so the metastable signal can settle to a stable value, typi-

cally using synchronizers. After completing the synchronization, the structures

beyond the synchronizers still matter. For example, the design must ensure that

the synchronized signals do not converge. Reconvergence can create functional

errors.

• Functional issues (fCDC): Designers must ensure that the stability and func-

tionality on either side of the CDC circuit are handed over properly. Otherwise,

there could be loss of signal values for signals passing between clock domains,

with data instability in the receiving clock domain. Only automatic formal

verification techniques can ensure that multiclock designs are correct prior to

tapeout. The CDC verification solution must address this verification challenge,

while maximizing overall productivity and effectiveness. The CDC solution

needs to cover clock domain analysis and structural and functional verification,

addressing both register-transfer-level (RTL) and gate-level verification needs.

My thesis work is mainly limited to different structural checks which can ensure

correctness of the structural errors of the RTL. In RTL checks there are different

issues which is bening performed by the Early Design Analysis Tool(Spyglass).
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2.2 CDC Checks

The design issues and challenges of handling the signal crossing domains will be

discussed later in this thesis. First, look at some CDC basics.

2.2.1 CDC Domains

A clock domain is defined as that part of the design driven by either a single clock or

clocks that have constant phase relationships. A clock and its inverted clock or its de-

rived divide-by-two clocks are considered a clock domain (synchronous). Conversely,

domains that have clocks with variable phase and time relationships are considered

different clock domains. In Figure 2.1, the design has a single clock domain because

the gCLK is the derived divide-by-two clock of the master clock CLK. In Figure 2.2,

Figure 2.1: Single clock domain

multiple clocks come from different sources. The sections of logic elements driven by

these clocks are called clock domains, and the signals that interface between these

asynchronous clock domains are called the clock domain crossing (CDC) paths. The

DA signal is considered an asynchronous signal into the clock domain - no constant

phase and time relationship exists between CLK A and CLK B.



CHAPTER 2. RTL CHECKS 12

Figure 2.2: The CDC path

2.2.2 Asynchronous Signal Issues

In the multiple clock domain if the signal is not synchronized than there can be

some issues that can designer face due to unsynchronized crossing.

These issues are:

a. Metastability :

The transaction of data violated the setup or hold time of the destination FF. It

caused the ouput may oscillate for an indefinite amount time. The Metastability

may lead to the high current or even burn out of the chip. It also caused

functional issue and timing issue.
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Figure 2.3: Metastability[1]

b. Data Loss:

This problem arises when a short pulse generated in a fast clock domain is

fed into a slow clock domain. Under such circumstances the short signals may

miss the active edge of the slow clock domain and will not be captured in the

destination. The following figure illustrates the data-hold problem in fast-to-

slow crossings.

Figure 2.4: Data Loss[4]

Typically, a handshake or custom circuit is used to extend the pulse for at least

one full cycle of the slow destination clock. All fast-to-slow crossings need to be

functionally verified to make sure that such extenders exist and no short pulse
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is generated in the destination.

c. Data Coherency:

Whenever new data is generated in the source clock domain, it may take 1 or

more destination clock cycles to capture it, depending on the arrival time of

active clock edges due to slow to fast clock domain crossing. This situation can

be avoid using Synchronizer.

2.3 Synchronization Techniques

To avoid problems due to unsynchronized crossing on the crossing path the different

synchronizer is used. There are four main techniques for the synchronizer used by

the designer as mentioned below.

2.3.1 Multiflop Synchronizer

The synchronizers as shown in fig 2.5 allow sufficient time for the oscillations to

settle down and ensure that a stable output is obtained in the destination domain.

A commonly used synchronizer is a multi-flop synchronizer as shown in Figure 2.5.

2.3.2 Enable based Synchronizer

This scheme marks those clock crossings as synchronized where the first flip-flop in

the destination clock domain is enabled by a signal synchronized to the destination

clock and the clock crossing is in the data path as shown in fig 2.6. The clock domain

crossing is marked as synchronized if either of the following conditions is met:

• The enable pin is driven by a signal synchronized to the destination clock do-

main.
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Figure 2.5: Multiflop Synchronizer[1]

• A valid synchronizer exists in any one of the paths driving the enable pin and

signals in all other paths are either driven by primary ports or the destination

clock domain flip-flops and there is no unsynchronized crossing in any of the

paths.

Figure 2.6: Enable based Synchronizer
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2.3.3 Recirculation Synchronization Scheme

This scheme marks those clock crossings as synchronized where the first flip-flop in

the destination clock domain is driven by a MUX. The clock domain crossing happens

through one of the MUX input pins and the other MUX input pin is driven by the

destination flip-flop output.

As shown in figure 2.7, a control signal EN, generated in the source domain is syn-

chronized in the destination domain using a multi-flop synchronizer. The synchro-

nized control signal EN Sync drives the select pin of the muxes, thereby controlling

the data transfer for all bits of the bus A. In this way, individual bits of the bus are

not synchronized separately, and hence there is no data incoherency. However, it is

important to ensure that when the control signal is active, the source domain data

A[0:1] should be held constant.

Figure 2.7: Recirculation Mux based Synchronizer

2.3.4 Handshake Synchronization

This scheme marks those clock crossings as synchronized that match the Handshake

Synchronization configuration as in the following figure 2.8. Here the synchronization

between FSM1 & FSM2 is done by control signals such as req ,ack.
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Figure 2.8: Handshake Synchronization[4]

2.4 Reset Assertion

A fully asynchronous reset is one that both asserts and de-asserts a flip-flop asyn-

chronously. Here, asynchronous reset refers to the situation where the reset net is

tied to the asynchronous reset pin of the flip-flop.

Figure 2.9: Reset Recovery time violation[8]

Additionally, the reset assertion and de-assertion is performed without any knowl-

edge of the clock. The biggest problem of above described circuit is that it will work

most of the time. However if the edge of the reset deassertion is too close to the

clock edge & violate the reset recovery time than output will goes in to metastable

as shown in figure 2.9.

The reset recovery time is a type of setup timing condition on a flip-flop that defines

the minimum amount of time between the assertion of reset and the next rising clock
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edge as shown in figure 2.10.

Figure 2.10: Reset Deassertion Synchronization[3]

2.5 Linting Checks

In general Lint tools that flag suspicious and non- portable usage of language

construct in any programming language. It points out the code where it likely to

be bugs. In chip design world Lint tools (some time referred as Design Rule Checker)

check the cleanness and portability of the HDLs code for various EDA tools. Usually

compiler does not show the errors and warnings which detected by lint tools. There

are many advantages of it, for example when design style enforced by lint tool it avoids

a situation where the synthesis tools implements something different than expected

from RTL code.

e.g Consider the following Verilog code

input a;

input b;

output c;

assign c= a+b;

This example is completely ok with compiler. Complier does not generate warning.
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In the above code by default the output variable ‘c’ is a wire. It is not necessary

declare it as a wire. But some (not every) synthesis tools may need it to be declared

it as a wire.

Here is the another example presents which reprsents the simulation-synthesis

mismatch. If one process is defined as below,

Process(a,b,c)

e <= a and b;

f <= c and d;

g <= e and f;

end process;

Here if ‘d’ is changes from ‘1’ to ‘0’, then there may be no impact on the simulation

results , but in the synthesis it will simply generate the one AND gate for “f<=c and

d” . So as the input ‘d’ to ‘0’ then ouput would be ‘0’. So it will directly affect the

outputs if initial output is ‘1’. Linting checks ensure these kind of errors is avoided

in the design.

If spyglass is applied on the code before the synthesis, it points out the above

mistake. This is just one example. There are many standards and lint check rules are

available. Here are some example for rules, coding style, DFT, design style, language

constructs, synthesis and also possible to include custom rule checking. It is possible

to select/deselect the rules/standards during lint checking. It completely depends on

the need of the particular environment and design.

2.6 DFT Checks[3]

The primary DFT approach commonly used is to implement full scan on the design.

Key objectives of this design method are:

• to allow any internal state necessary for testing to be achieved by forming shift

registers called scan chains,
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• to force latch enables to be active so that the latch may be treated as a buffer,

• to allow easy control of clocks so test results at internal nodes can be captured,

a. A typical scan flip-flop is shown in Figure 2.11. Scan flip-flops are connected

(see Figure 2.12) so that shift registers are formed when the SE pin is set to

1. A critical aspect of this shifting action is that shift clocks must reach the

scan flip-flops and the sets and resets must remain inactive regardless of circuit

state.

Figure 2.11: Scan Flip-flop

Figure 2.12: Scan Chain Segment

b. Latches are state elements that can defeat combinational ATPG tools.Tests for

circuits such as shown in Figure 2.13 may require signal propagation through

latches. The appropriate DFT method is to design the latch enables so that the

latch is forced active in capture mode.

c. To perform the tests, the scan multiplexers must be switched back to normal or

system mode so that test results can be captured for scan-out. The capture clock
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Figure 2.13: Latch Transperancy

must be operated in system mode and therefore the circuit must be designed

to guarantee that the capture pulses reach the scan flip-flops regardless of the

scan-in state.

Figure 2.14: Capture Mode Diagram

So for this kind of fuctions DFT checks is applied on the RTL design. This checks

ensures that every scan chain element will be checked in test mode in the Shift mode.

2.7 Typical Issues For the RTL Checks

There are many implementation issues are there which has come across my way

during the RTL checks. These issues has to be solved at any level of design to get

proper functionality of the IC. If such issues is solved at RTL level then it has greatly

reduced the re-spin time at the later stage of the time. So solution of such cases is

has much importance in VLSI Design. Here below some of these issues are mentined

which has to be solved at any cost.
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2.7.1 RTL Checks Issues

a. Reset De-assertion Synchronization A fully asynchronous reset is one that both

asserts and de-asserts a flip-flop synchronously. Here, asynchronous reset refers

to the situation where the reset net is tied to the asynchronous reset pin of

the flip-flop. The biggest problem with the asynchronous reset circuit described

above is that, it will work most of the time. However, if the edge of the reset

deassertion is too close to the clock edge and violate the reset recovery time, then

the output of FF goes to metastable. So such kind of issue cause metastability

as explained in section 2.2.2. Solution: In Figure 2.15, the registers in the

Figure 2.15: Reset Deassertion Synchronization Error

reset circuit are asynchronously reset via the external signal, and all functional

registers are reset at the same time. This occurs asynchronous with the clock,

which does not need to be running at the time of the reset. When the external

reset deasserts, the clock local to that domain must toggle twice before the

functional registers are taken out of reset. Note that the functional registers

are taken out of reset only when the clock begins to toggle and is done so

synchronously.

b. Unsynchronized clock domain crossings This type of Issue can cause metasta-

bility of the signals due to violation in reset recovery time. If this metastability
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Figure 2.16: Reset Deassertion Synchronization Solution

propogate through output it can cause functionality failure of the design.

Figure 2.17: Unsynchorinized Clock Domain Crossings Problem

Solution: There are different technique to solve synchronization issues.
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Figure 2.18: Multiflop Synchrinization Scheme

(1) Multiflop Synchrinization Scheme

(2) Enable based Enable scheme

(3) Mux based Reciculation Scheme

c. Convergence of Signals from Different Domains:

In case of convergence of signals other than singular flop outputs, this rule flags

if one of the following conditions holds true:

• If the signals are coming from the same source domain but different desti-

nation domains

• If the signals are coming from different source domains but same destina-

tion domain

• If the signals are coming from the different source and destination domains

All such convergences should be avoided irrespective of the fact that the signals

are gray-encoded or not.It is not a good design practice to converge signals

from different source domains although in some cases it may be required by

design and can be designed so there is no glitch or coherency issue. In all cases

convergences of two different domain signals, reported by this rule need to be

reviewed.
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Figure 2.19: Convergence of Signals from Different Domains Problem

Solution: Convergence between signals coming from different domains is a

serious issue. The design needs to be analyzed carefully for such cases as to

why they are required and should be avoided if possible.

d. Converge of Signals after any no. of Sequential Elements This issue can cause

data coherency issue. The issue is as shown in figure, 2.20 where the two differ-

ent data are converging at AND gate after any number of sequential element.

Figure 2.20: Convergence of signals after any number of sequential element
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Solution: Convergence between separately synchronized signals can lead to

data coherency issues. It is recommended to use a common synchronizer for all

signals that are converging or verify that two or more converging signals do not

control the net on which it is converging at the same time.

2.8 DFT Checks

a. All clock must be test clock controlled in test mode.

b. All FF should be scanable in test mode.

c. Asynchronous set/reset should be inactive during shift mode.

Problem: In such cases where the derived clock is used for the flops as a clock source,

in scan shift mode this combinational logic wil not come in picture so in test mode

these flops will not have clock in test mode, so it remains untested & these will cause

failure in testing.

Figure 2.21: DFT Checks in Normal Mode gives Error

Solution: The solution for such kind of errors is to introduced bypass logic for the

clocks or resets as shown in fig. 2.22. Here for mux in test mode signal is set to

1 directly test clock will go to the clock pin of the sequential element & when 0

generated clock will go to the same pin.
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Figure 2.22: DFT in test mode

2.9 Linting Checks

a. Avoid “EXIT” statement.

b. Avoid non-integer indexes in GENERATE statement.

c. Input port not used.

d. Input value should not be greater than size specified in IEEE conversion func-

tion.

This kind of error has to be solved before the synthesis as this errors causes failure

in synthesis.

2.10 Summary

In this chapter first some of the problems associated with the RTL are discussed.

Also solution of these problems also described. At last some problems which are often

faced by the designer is presented. In these, CDC problems are very important issues

& it has to solved at the RTL level.
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GENSDC

3.1 Introduction

While the functionality of the design is represented by the RTL code, timing con-

straints play the role of influencing the performance parameters of the design. These

performance parameters include power, area and timing. These parameters tend to be

inter-related, but the majority of design constraints tend to be related to timing. In

the context of timing, constraints convey the following important information about

the performance of the design:

• The target operating frequency for various clocks

• The time at which various inputs are available

• The time at which various outputs are desired

• The drive capacity of external drivers

• The external load that needs to be driven

• Certain topological paths that need not be timed (false paths)

• Certain topological paths that are allowed more than one clock cycle to complete

(multi-cycle paths)

28
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These constraints are then used by:

• Synthesis tools: To direct that it should infer logic and choose gates so as to

meet those performance requirements

• Static timing analysis (STA) tools: To direct that it should validate that

the realized circuit actually meets the stated performance requirements

• Place and route tools: To complete placement and routing such that the

performance requirements continue to be met.

For that spyglass introduced the tool name GENSDC which will generate the

constraints with the some input from the designer. As constraints generation is auto-

mated, these constraints should have much accuracy compare to Manually generated

constraints.

3.2 Why GENSDC?

• In a typical design environment, SDC files are used and modified at various

stages of the design (e.g. RTL, pre-layout, post-layout). Generally these SDC

files are created either manually by the Designer or with help of some automated

ad-hoc scripts.

• It’s very difficult to avoid mistakes (such as human error) in SDC written man-

ually. Even the designer has to understand the design to write the SDC file.

• Apart from it, the designer has to have the technical competency for the con-

straints & various design flow stages. It is a time consuming process too. Even

script generated SDC flow also needs continues updating of the scripts for new

features.

• The SDC generation tool should have capability to understand the design and

generate SDC.
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3.3 Various Synthesis Constraints

For the RTL designer there are number of constraints that designer has to take

care of. Some of these constraints are mentioned below.

3.3.1 create clock

This creates a clock in the current design at the declared source and defines its

period and waveform. The static timing analysis tool uses this information to propa-

gate the waveform across the clock network to the clock pins of all sequential elements

driven by this clock source.

3.3.2 create generated clock

Creates a generated clock in the current design at a declared source by defining

its frequency with respect to the frequency at the reference pin. The static timing

analysis tool uses this information to compute and propagate its waveform across the

clock network to the clock pins of all sequential elements driven by this source. The

generated clock information is also used to compute the slacks in the specified clock

domain that drive optimization tools such as place and route.

3.3.3 clock latency

Clock latency of the clock is the delay between the primary clock source to clock

pin of the sequential element.There are two types of latency,

• Source Latency: The time for the clock to reach at the source port to input is

called source latency as shown in figure 3.1.

• Network Latency: Network latency is the time of clock to reach from input pin

to clock pin is called network latency as in figure 3.2.
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Figure 3.1: Latency & uncertainty[9]

3.3.4 clock uncertainty

In ideal mode the clock signal can arrive at all clock pins simultaneously, but in

real world that perfection is not achievable. So, to anticipate the fact that the clock

will arrive at different times at different clock pins, the “ideal mode” clock assumes

a clock uncertainty. For example, a 1 ns clock with a 100 ps clock uncertainty means

that the next clock tick will arrive in ns plus or minus 50 ps. The main reasons for

this is,

a. The insertion delay to the launching ip-op’s clock pin is different than the

insertion delay to the capturing ip-op’s clock pin (one paths through the clock

tree can be longer than another path). This is called clock skew.

b. The clock period is not constant. Some clock cycles are longer or shorter than

others in a random fashion. This is called clock jitter. Even if the launching
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clock path and the capturing clock path are absolutely identical, their path

delays can still be different because of on-chip variation. This is where the chip’s

delay properties vary across the die due to process variations or temperature

variations or other reasons. This essentially increases the clock skew.

So this clock skew is called clock uncertainty. It is important constraints to calculate

timing violation.

3.3.5 set input delay

Specifies the required data arrival times at the specified input ports relative to the

clock. The Clock name must refer to an actual clock name in the design. You can

specify input delays relative to the rising edge (default) or falling edge (-clock fall) of

the clock. If you specify only the minimum or maximum delay for a given port, the

same value is used for both. You can specify separate rising (-rise) and falling (-fall)

arrival times at the port. If you specify only the rise or only the fall value for a given

port, the specified value is used for both rise and fall.

Figure 3.2: Input Delay

3.3.6 set output delay

The set output delay command sets output path delays on output ports relative to

a clock edge. Output ports have no output delay unless you specify it. For in/out
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(bidirectional) ports, you can specify the path delays for both input and output

modes. The tool adds output delay to path delay for paths ending at primary outputs.

Figure 3.3: output delay

3.3.7 Max Delay & Min Delay

The Maximum Delay of the RTL is the time needed to complete the travelling of

signal from input to the output. i.e to the time required to reach from input to output

that is possible. This constraint is useful to timing analysis tool to find the Violation

condition.

The Minimum Delay of the RTL is the time needed to complete the travelling of

signal from input to the output. i.e to the time required to reach from input to output

that is possible. This constraint is useful to timing analysis tool to find the Violation

condition.

3.3.8 false path

The false need to be declare for the paths on which designer don’t want to check

timing violations. Due to this constraints designer saves the effort & time to analyze

the wrong violations. Some of the exapmples of such paths are,
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Figure 3.4: Max Delay & Min Delay:

a. False paths are paths in a design which are functionally never be true.

b. A path which has no functional purpose or a path which does not need to be

timing constrained.

c. Paths that are physically exists in the design, but they are not logical/functional

paths. These paths are never get sensitized under any input conditions.

As we can see from the figure 3.5, it is logically impossible from a1, through f1 and

b2, to f2. It also logically impossible from b2, through f1 and a2, to f2. As by setting

false path in such a case will minimize the efforts of the synthesis tool & designer

need not to observe timing violation on the such paths. So designer declare false

path constraints on the path a1-f1-b2-f2. Also desinger set this constraints on the

synchronizer path as shown in figue 3.6.

3.3.9 MultiCycle Path

Multicycle paths are paths which requires more than one clock cycle to propagate

the data due to slow combinationl logic between clocks as shown in figure 3.7. Here
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Figure 3.5: False Path

Figure 3.6: False Path on Synchronizer

due to slow combinational logic the multicycle path needs to be declared at the for

the path from clock 1 to clock 2.
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Figure 3.7: Multicycle Path

3.4 Issues Related with GENSDC

While exploring the GENSDC there are some issues that is found out & which is

need to be resolved. This issues are,

3.4.1 GENSDC wrongly detect the clock

a. When the mux output pin is going to the clock pin of any flop then it generates

the clock at the data pin of the mux even if it is not going to the CP pin of

the mux. Normally in this type of design structure the output of the mux is

generated clock with the source pin is select pin of the mux.

Figure 3.8: ISSUE 1
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b. Wrong clocks created at the select of the Mux and the input of the mux whose

output is going to select pin of another Mux selecting between 2 clocks and the

output of this mux is driving the memory cell as a clock. Such structures is

normally used to select clock for the memory.

Figure 3.9: ISSUE 2

c. When tool sees a gate (XOR gate in our case) & one of its input is going to the

CP pin of any flop then GENSDC generates the clock at the other input of the

gate. Which is definitely a extra clock.

Figure 3.10: ISSUE 3
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3.4.2 Other issues

There are some other issues that also be taken care of to increse the tool usability.

These issues are,

a. GENSDC is not able to generate set load constraint for the input ports. Which

is need to be set to tell the synthesis about the loading strength of the design.

b. Tool neither can generate set multicycle path constraint nor it has some input

request for multi cycle path. This is very important constraint for the designer.

Designer need to input all multicycle path constraints manually.

c. set ideal network constraints is generated on the internal pins of the high fanout

objects. This internal nets may get optimized down the flow. So this will useless

for the synthesis tool.

3.5 Advantage of GENSDC

• GENSDC can find all the clock domain crossing path related to the different

clocks & it also gives the flexibility to the designer to set either false path or

clock uncertainty for different clocks.

• GENSDC can find all the input to output paths on its own to generate the

constraints set max delay & set min delay. Only designer need ensures the

values for this constraints.

• GENSDC can take different parameter for constraints inputs from the library

file of their respective technology (e.g. 40 nm,65nm). So designer need not to

care about the value different constraints.
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3.6 Results

For the constraints generated on the different IPs, here is the result comparision of

the SDC checks errors with respect to constriants generated manually.

Table 3.1: Results for SDC checks:

IP No. Of Errors for
manually generated
constraints

No. Of Errors for
GENSDC generated
constraints

Uniperif reader top 32 10
Uniperif player top 58 3
TELSS 83 18
HDTVOut 865 133

3.7 Summary

Automation of constraints generation will reduced the generation time. This will

also help to improve the quality of the constraints. As shown in table 3.1, the no.

of errors in the SDC checks of automated generated constraints is very less compare

to manually generated constraints. But as this tool is not able to understand some

concept of clocks as described in section 3.4, fully automated constraints are not

reliable. So here human interference is necessary to get accurate constraints.
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SDC Checks

As today’s designs become more complex, so too do their constraints. Design func-

tionality typically gets a lot of attention through code review, functional verification,

etc. However, the constraints themselves also need to get the same level of atten-

tion. Because of good quality of constraints designer gets the accurate & the critical

implementation and timing analysis of the RTL during synthesis which gives the ac-

curate approximation & timing analysis of that design. So designer can ensure that

the design is going to be pass or fail on the Silicon. The complexity of constraints is

further increased by the following design characteristics:

• Low power applications (e.g., handheld devices) require extensive clock gating

• Pad limited designs require a high degree of input multiplexing

This chapter highlights and discusses the importance of constraint validation early

in the design flow, and analyzes the impact of this validation approach on a real

design. After that we will see some issues associated with the SDC checker which has

come across in the design during the flow.

40
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4.1 What is SDC Checks?

Validating constraints through out the design flow requires a methodology that will

guide designers through each step in the flow, specifying how to clean up and optimize

the design constraints. This will not only improve the QoR(Quality of Result) but

will reduce expensive re-spins and iterations. This constraints are very useful for

the synthesis tool to do the synthesis of the design from the RTL. So checking the

constraints at the RTL level will give exact idea about different “timing constraint”

which will be useful to predict timing of the design & also to generate the netlist.

4.2 Constraint Problem[5]

Typical Problems within a Constraint File

• Clock Definitions: Clock issues lead to excessive iterations among block synthe-

sis, STA, and P&R. This includes the inconsistencies in specification of clocks,

generated clocks, and all related clock data like latency, uncertainty, buffering,

and so on.

• Input and Output delays: Inconsistencies in input and output delay specification

can lead to incorrect or non-optimum synthesis results. Over-constraining may

result in longer synthesis run times and extra buffering on tight paths. Under-

constraining will result in not meeting chip level timing goals.

• Exceptions: Exception validation is needed because of Incorrect timing excep-

tions, especially the ones on timing critical paths, may lead to silicon failing to

meet timing as the timing path violations are masked until silicon. Too many

exceptions overwhelm the implementation tools. Thus, if there are exceptions

on invalid paths, or paths blocked by constant propagation, or functionally in-

correct exceptions, it is better to identify them in advance and remove them

from the constraints before implementation. Verifying exceptions manually is a
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time-consuming and error-prone process. Typical exception issues include false

paths set on paths that are not structurally connected, or false paths specified

on true paths, or incorrect cycle counts specified for multi-cycle paths.

• The level of support on various commands/options for constraints varies from

one tool to another. Thus, maintaining a flow involving multiple vendors re-

quires a tool which can intelligently indicate if the constraint is friendly to a

specific tool.

• Constraints issues are not limited to a single constraint file for a block, but

can also occur in the hierarchical context involving multiple constraint files for

several blocks and the chip level design.

4.3 The Need for Constraint Validation Tools

In the design constraints it may be possible that designer has forgot to introduce

some important constraints or it is also possible that unknowingly introduced wrong

values in the constraints. These kind of problems can’t caught by simulation tools.

Though there are an issues in the constraints simulation tool will pass the functionality

of that design. So after that the earliest that a designer can catch wrong/missing

constraints is during or after synthesis by observing the timing report of the synthesis.

Here also, there are several possibilities depending on the nature of the constraint.

• Certain constraints have a default value which is highly optimistic, e.g., set input delay.

If a user has forgotten to specify set input delay, a default value of “0” is as-

sumed, and no issue will be reported. Even a typical STA tool will not be able to

catch such an issue. Both synthesis and STA tools will happily assume the “0”

value and provide optimistic results. Unfortunately, the silicon might not be-

have that optimistically, and the device might not meet its performance target.

Several other constraints (e.g., set input transition) have a highly optimistic

default value.
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• The majority of constraints are simply assumed to be a “statement of fact”

from the user. Implementation/timing tools simply honor those, without any

verification or warning. A particular set of constraints which relax a require-

ment fall under such category, e.g., “set false path”. If a path is declared as

“set false path” both synthesis and STA tools will not time the path. Once

again, this could cause the silicon to fail.

• Some constraints, when missing, would be reported by a synthesis tool, e.g.,

“create clock” or “create generated clock”.

Even if synthesis tools could be relied upon to catch some of the issues with con-

straints, they still would not catch issues related to mismatches or inconsistencies

among the constraints of various blocks. This is because synthesis tools look at each

block in isolation without looking at its surrounding blocks. The earliest that such

mismatches would be caught is during STA at the full chip level; though even at

this point they are often caught indirectly and manifest as timing problems rather

than constraint problems. Unfortunately, by this point the blocks have already been

synthesized and we are already too far along in the flow to catch such issues. This

will often result in repeated iterations through synthesis onwards.

There is a real need to verify timing constraints much earlier in the design flow, so

that we are not caught by surprise later during implementation/STA. For example,

• During silicon testing: The silicon may not meet timing, because of optimistic

“defaults” in various tools

• During STA: Even though the individual blocks were meeting the timing, the

full chip does not meet timing because of constraint inconsistencies between

different blocks
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Figure 4.1: Catches/Missing the Erronoues Constraints

4.4 Complexity of Constraints[5]

Conceptually, constraints are very simple. However, there are a number of ways in

which high impact mistakes can be made. Here is the some common issues which are

designer can made & it has to be avoided.

a. A clock is not declared at a signal/port which is being used as a clock.

b. A clock is declared at a signal/port which is not being used as a clock.

c. A generated clock is being generated,the source specification is wrong.

d. A generated clock is being declared,with the wrong value for divide by.

e. A simple clock divider, implemented using a flop’s output inverted and fed back

to its own “data” input. Depending on whether the generated clock is being

tapped before or after the inversion-the clock waveform would be different. A
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generated clock is declared with a waveform that is not commensurate with the

point of tapping.

These kind of errors in the constraints can cause many serious issues & may cause

timing violation in the in the synthesis. So designer needs to correct the constraints

& rerun the synthesis. So this rerun may take long time than estimated & increases

the TTM(Time to Market.)

Since constraint development/maintenance is traditionally thought of as a “back-

end” issue, many RTL designers are not that conversant with these complexities.

There is a good chance that they will make some of the mistakes outlined above

which can result in silicon failure, or, in the best case synthesis respins. Early con-

straint validation allows one to avoid issues such as,

• Missing constraints where tools may proceed with “optimistic defaults”

• Constraints which are inconsistent among different partitions which will result

in additional synthesis iterations after STA

• Other less commonly used constraint scenarios, it’s likely that these may be

overlooked during manual review. Many new designers might not be aware of

these fine details. The backend teams (who usually have reasonable knowledge

of constraints) may not be familiar enough with the design to catch these issues

4.5 SDC Checks Issues

a. Clock driven by a constant value or hanging: Clocks being driven by a constant

value is a serious error in the design because the timing analysis results will be

invalid without proper clock constraints. The timing results may give a false

sense of security and you may get silicon timing failure. This can cause sections

of the chip to be non-functional Solution: Here designer has to taken care that
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Figure 4.2: clock Driven Problem Problem

such cases will not occur in the design. Designer has to keep in mind that these

kind of erros is not occur in the unintentionally design.

b. Combinational port-to-port path is unconstrained Problem: If a combinational

path is unconstrained then no timing check would be made. Therefore, the

operation of the device at any specified speed cannot be guaranteed. Solution:

Figure 4.3: Port to Port Unconstrained Path

The schematic shows the unconstrained combinational path starting from an

input port to an output port. The path is unconstrained when one of the pair

of constraints is missing.
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4.6 Issues with SDC Checker Tool

Due to some of the misconcept or misunderstanding of the SDC checker rules ,there

are some errors which designer will get during the this run. These kind of errors will

consume time of the designer to observe it. So if these kind of errors are avoided then

time will be saved. Some the rules are as described below,

a. Rule-1: Incorrectly Defined Generated clock: One of the rule in the for the

SDC checker is, “If there is a combinational path from the source clock to the

generated clock pin, the divide by factor should be 1” Above figure shows that,

if this kind of structure is there in the design divided by factor has to be 1. But

Figure 4.4: Rule 1:

for the mux base clocks divider this can not be the case as shown in figure. For

this case the divide by factor can be any depending upon the mux inputs. So

this rule has to be modified for generated clock generated by combo logic.

b. Equal value for setup & hold time uncertainty: SDC checker checks for equal

uncertainty / skew values in case of set-up and hold checks. This seems to

be conceptually true but as per the front end design flow at the IP level, hold

checks are not done and so we set the uncertainty for hold checks to zero so that

there should be minimum no. of violation in the timing report of the synthesis.
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Figure 4.5: mux based divider:

This means here we have a case of unequal set-up and hold uncertainty. So for

front end design flow this rule has to be modified.

c. Errors related to Notech cells optimization: In the constraints file if some of

the constraitns is set on the internal nets of the IP then SDC checker flags the

error in that these nets will optimized down the flow. But for some cases of

special cells like Notech cells, these kind of cells will not optimized down the

flow esspecially in the synthesis. So these errors should not there for notech

cells.

4.7 Summary

In this chapter we have seen the importance of SDC checker tool for the for the

designer to do synthesis. This tool will find almost every issues at the related to

constraitnts. So the sythesized design will be fully optimized & designer will find

some real issues related to the design at the netlist level. Also to there are some

errors in the tool which are to be moified to improve the understanding of the tool.
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POWER ESTIMATION

5.1 Introduction

As IC design sizes and frequencies increase, power consumption goes up. Some years

ago, only a few design teams were concerned about power. Now all RTL designers

consider power to be critical, and many designers of wall-powered applications are

also concerned about power. In order to address these concerns, there is a need

to estimate the power consumption of a design very early in the design cycle. If

the estimated power is higher than the power target, then designers should be able

to reduce the power consumption in a time efficient way. Typical power reduction

techniques include the use of voltage domains, power domains, and clock gating. Since

voltage domains and power domains require special logic circuits and make the power

grid design more complicated, there is a need to verify that the voltage and power

domain implementation is correct.

5.2 Components of Power Dissipation

For CMOS designs, the total power consumed by a circuit falls into 2 major cat-

egories: static power, which is the power consumed when the transistors are not

switching, and dynamic power, which represents the power consumed by switching

49
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logic states.

Static Power

Static power is dissipated in several ways. Some are due to the reverse-biased diode

leakage from the diffusion layers and the substrate, but the largest percentage of static

power results from source-to-drain sub-threshold leakage current. This is caused by

reduced threshold voltages which prevent the gate from completely turning off and

hence allow this leakage current (Ileak).

The leakage power is dependent on the voltage, temperature and state of the transis-

tors.

Leakage Power = V * Ileak

Dynamic Power

a. Switching Power: The switching power is determined by the capacitive load and

the frequency of the logic transitions on a cell output.

SwitchingPower =
1

2
∗ Cload ∗ V 2 ∗ f (5.1)

where the total load capacitance (Cload) is the sum of the net and gate ca-

pacitances on the driving output, and the frequency (f) is the rate of state

transitions.

b. Internal Power: The internal power is caused by the charging of internal loads

as well as by the short-circuit current between the N and P transistors of a gate

when both are on.

InternalPower =
1

2
∗ Cint ∗ V 2 ∗ f + V ∗ Isc (5.2)

As the input signals transition, both N and P type transistors can be on

simultaneously. During this time, current Isc flows from Vdd to Gnd causing
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the dissipation of short circuit power. The short circuit power is affected by

the dimensions of the transistors, the load capacitance on the output, and the

transition time of the input signals. Circuits with slow transition times can

dissipate excessive short circuit power as both N and P transistors are on for an

extended period. ASIC or Library vendors provide power models for the internal

power consumption of CMOS cells, which are characterized with different driver

output loads and input signal transition times. The diagram below describes

the power components for a simple buffer cell.

Figure 5.1: Components of Power Dissipation[2]

The leakage current Ileak can vary based on the transistor states. For example,

when the input signal In is high, and the N transistor is on, the leakage will differ

compared to when the N transistor is off. When a rising signal is applied at the input,

internal power is dissipated due to Isc and Iintsw. During the transition from low to

high, the N transistor turns on and the P type transistor turns off resulting in Isc

from Vdd to Gnd. Additionally, internal switching power is incurred in charging and

discharging of Cint. The switching power on the Out net is due to Isw charging and

discharging Cload.
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5.3 Power Analysis Requirements0[2]

In order to analyze the power consumption of a design at RTL, it is important

to consider all the factors which contribute to both the static and dynamic power.

These are shown in the diagram below: In order to analyze the power consumption,

the following are required:

a. RTL Data : The RTL is required to determine the design connectivity and type

of cells used in the design and to accurately compute the capacitance on the

drivers.

b. Cell Library Power Models : In order to compute the internal power of the

CMOS cells used in the design, ASIC or Library vendors must provide cell

models which specify both the static and dynamic power consumption internal

to the cell.

c. Signal Activity : The signal activity of a design affects both the static and

dynamic power consumption. The static power (cell leakage) is often state

dependent, and the dynamic power is directly proportional to the toggle rate

of the pins. So for the signal activity VCD or SAIF file generated from the

simulation is as input for the RTL level.

Figure 5.2: Power Analysis Requirements

d. Net Parasitics / Transition Times : Net parasitics (or capacitances) affect the

dynamic power of the design. Switching power is directly proportional to the

net capacitance. Internal power depends on both the input signal transition
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times, which are determined by the net parasitics, as well as the output load,

which is a combination of the net parasitics and input pin capacitances of the

fanout. The example below illustrates the relationship between the transition

times and the dynamic power consumption.

Figure 5.3: Transition Times Affect Dynamic Power Consumption

The internal power consumption of U1 is determined by the transition time on In1

and the capacitive load on the output Net1, which is the sum of the input pin capac-

itances of the gates it drives (gate fanout) and the net capacitance, C1. Now if the

net capacitance C1 is large, the switching power of Net1 certainly will increase, but

additionally, the transition time on Net1 will be affected. A large transition time on a

net with a large number of fanout loads results in excessive internal power consump-

tion for all of the gates to which it is connected. This is because the internal power

consumption of the fanout gates, the registers D1-DX in this example, is considerable

because the long transition time on the net is allowing for a longer period of time

in which short circuit power is being dissipated. In summary, the accuracy of the

power analysis is dependent upon the accuracy of the inputs provided. The netlist,

cell library power model, signal activity, and parasitics/transition times need to be

accurate to provide accurate power consumption analysis.
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5.4 Signal Activity Flow for Power Analysis[7]

At RTL level no netlist data is available. So for accurate power estimation at

the RTL level there is a simulation file should be provide to the tool. This file

are VCD(Value Changed Dumped File) & SAIF(Switching Activity Interchanged

Format). This file can be generated from the simulation.

• VCD File:

a. VCD is a ASCII-based format for dumpfiles generated by EDA logic sim-

ulation tool

b. A VCD is an ascii file (that’s both an advantage and disadvantage) de-

scribing a digital waveform from a VHDL/Verilog simulator.

c. vcd file - contains value changes of a signal. i.e. at what times signals

changes their values. saif does not contains this information. it contains

cumulative information of vcd.

d. it contains the waveforms for all the signals in the RTLs

e. Any application which needs time stamps of individual value changes must

have to use vcd e.g. time based power estimation or if you have a vcd file

• SAIF File:

a. The limitation of VCD can overcome by SAIF file.

b. SAIF is the EDA industry’s most widely used power format that provides

switching activity information to power optimization and analysis tools

c. saif file - contains toggle counts and time information like how much time

a signal was in 1 state(T1), 0 state(T0) , x state (TX). Also in backward

saif file you can have timing information.
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5.5 Power Analysis Flow for Signal Activity

Accurate power analysis depends on accurate signal activity. Power analysis sup-

ports both average and peak power analysis based on the signal activity provided.

For average power analysis, supports the propagation of switching activity based on

either tool defaults, user-defined switching activity, or switching activity derived from

a logic simulation (either RTL or gate-level), typically saved as a SAIF (Switching

Activity Interchange Format) file. For peak power analysis, requires a timing logic

simulation and generation of a VCD that captures the activity and time of every event

on each net. The VCD-based analysis is extremely accurate since all the factors con-

tributing to power consumption are supported in an accurate form. Peak and average

power can be calculated, and detailed, time-based waveforms can be generated. If

event-based simulation activity is not available, accurate average power can still be

calculated by providing gate-level toggle rates, typically with a SAIF file.

Figure 5.4: Power Analysis Flow
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In the SAIF file, the activity information includes the number of times the signals

toggled per net, as well as the percentage of time that the signals were at a given

state. This toggle rate information enables both dynamic and leakage power to be

accurately determined.

5.6 mkPower

For the RTL level power analysis Spypower tool is used to estimate the power. But

results of these tool only be valid if its results is compared with the some standard

tool. mkPower is such kind of tool. It calculates the power at the netlist level. The

flow for these tool to calculate the power is as shown below.

Figure 5.5: mkPower Flow
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5.7 Power Results for Different IPs

Here is the result for power estimation of different IP’s. Here the spypower has

used RTL to generate the power reports.

Table 5.1: Spypower Results with RTL
IP1 TELSS
Power Leakage Internal Switching Total
Combinatinal 1.71mW 853uW 2.09mW 4.66mW
Sequential 2.6mW 8.195mW 1.642mW 12.45mW
Memory 22.7uW 6.69mW 14.1uW 6.73mW
Total 4.33mW 15.7mW 3.75mW 23.8mW
IP2 Uniperif reader top

Leakage Internal Switching Total
Combinatinal 244uW 0.7uW 1.78uW 246uW
Sequential 496.6uW 334.5uW 19.5uW 851.2uW
Memory 0 0 0 0
Total 741uW 335uW 21.3uW 1.1mW
IP3 Uniperif player top

Leakage Internal Switching Total
Combinatinal 266uW 1.76uW 5.02uW 272uW
Sequential 850.5uW 517uW 4.22uW 1.47mW
Memory 0 0 0 0
Total 1.12mW 618uW 9.25mW 1.74mW
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Here is the result of the standard tool called mkPower with netlist for different

IPs.

Table 5.2: Power Results with mkPower
IP1 TELSS
Power Leakage Internal Switching Total
Combinatinal 2.616mW 913uW 1.476mW 5mW
Sequential 3.99mW 7.087mW 616uW 11.6mW
Memory 1.4mW 6.9mW 15.22uW 8.31mW
Total 8.006mW 14.6mW 2.335mW 24.9mW
IP2 Uniperif reader top

Leakage Internal Switching Total
Combinatinal 804.6uW 1.095uW 1.66uW 807.3uW
Sequential 1.05mW 283.6uW 7.66uW 1.36mW
Memory 0 0 0 0
Total 1.868mW 284.7uW 8.45uW 2.162mW
IP3 Uniperif player top

Leakage Internal Switching Total
Combinatinal 637uW 56.8uW 61.3uW 755uW
Sequential 902uW 902uW 6.5uW 2.17mW
Memory 0 0 0 0
Total 1.95mW 1.03mW 72.7uW 3.05mW
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Table 5.3: Power Results of Spypower at Netlist
IP1 TELSS
Power Leakage Internal Switching Total
Combinatinal 2.66mW 906uW 1.38mW 4.95mW
Sequential 4.05mW 9mW 1.844mW 14.9mW
Memory 1.4mW 6.84mW 17.7uW 8.26mW
Total 8.11mW 16.7mW 3.25mW 28.1mW
IP2 Uniperif reader top

Leakage Internal Switching Total
Combinatinal 789uW 31.6uW 49.5uW 870uW
Sequential 1.07mW 506.1uW 5.18uW 1.5mW
Memory 0 0 0 0
Total 1.86mW 537uW 54.68uW 2.87mW
IP3 Uniperif player top

Leakage Internal Switching Total
Combinatinal 637uW 56.8uW 61.3uW 755uW
Sequential 1.26mW 902uW 6.5uW 2.17mW
Memory 0 0 0 0
Total 1.95mW 1.03mW 72.7uW 3.05mW

So here in the above tables we have seen the power results for the tool spypower

& power for different cases on the different IP’s. The result should be same for both

the tools but there are mismatches in the results which is described in section 5.8.

5.8 Summary

With the transition to finer process geometries, signal integrity effects and power

consumption have become a top concern. When ignored, circuits can either fail in

silicon, or not meet performance specifications. Given the effects of parasitics on tim-

ing, and the effects of timing on power consumption, designers need an environment

in which the interdependencies between power and timing analysis are accounted for.

Use of spyglass to calculate power at RTL will help the designer to reduce the power

at the early stage of the design when power reduction can be done easily with the

different power reduction techniques. But still there are result differences as shown
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Table 5.4: Summary Table
Power TELSS

mkPower Spypower
with RTL

% Differ-
ence

Spypower
with netlist

% Differ-
ence

Leakage 8.006mW 4.33mW 45.91% 8.11mW 1.25%
Internal 14.6mW 15.7mW 7.5% 16.7mW 14.38%
Switching 2.335mW 3.75mW 60.6% 3.25mW 39.18%
Total 24.9mW 23.8mW 4.41% 28.1mW 12.85%

Uniperif reader top
mkPower Spypower

with RTL
% Differ-
ence

Spypower
with netlist

% Differ-
ence

Leakage 1.868mW 741uW 60.33% 1.86mW 0.4%
Internal 284.7uW 335uW 17.71% 537uW 88.83%
Switching 8.45uW 21.3uW 152% 83.9uW 546%
Total 2.162mW 1.1mW 49.12% 2.44mW 12.85%

Uniperif player top
mkPower Spypower

with RTL
% Differ-
ence

Spypower
with netlist

% Differ-
ence

Leakage 1.93mW 1.12mW 42.56% 1.95mW 1%
Internal 968mW 618uW 38.1% 1.03mW 6.75%
Switching 6.2uW 9.25uW 49.2% 72.7uW 1096%
Total 2.906mW 1.74mW 12.27% 3.05mW 5.17%

in table 5.4. The maximum result difference for big IP like TELSS is almost 46%

for the leakage power at the RTL. Ideally the leakage power should be almost same

for both the tools. So from these results, it can be concluded that Spypower is not a

reliable tool to calculate the power at RTL level till now.
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Conclusion

With a growing number of clocks in today’s SoC designs, increased design

complexity, and pressure for first silicon success to achieve “Time to Market”, all

clock and timing issues have become a critical factor in the IC design.

RTL Checks will ensure the correctness of the CDC problems which will cause

metastability in the design & further failure in functionality. So solving CDC problems

at the early stage of the design will help to reduce the verification efforts. RTL checks

also ensure the synchronized reset with the clocks.Also RTL checks does the Linting

checks which will ensure the synthesizability & also make sure that there should be

no mismatch between simulation & synthesis of the same design.

GENSDC will helps the designer to automate these constraints generation pro-

cess which can causes minimum human errors & makes the task easy and faster for

the designer. As shown in table 3.1 the no. of SDC Checks errors can greatly be re-

duced campare to manually generated constraints. But still due to some issues in this

tool due to which tool not seems mature enough to automate the whole constraints

generation process. But human intervene is required to get accurate constraints.

SDC checks will help to generate accurate netlist from the RTL, it is must to

have a good & accurate design constraint. SDC checks help the designer to find the

errors in the constraints if any which will help the designer to avoid design flaws and

costly respins. So SDC Checks will ensure ,

61
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a. constraints are correct and consistent throughout the design flow, from RTL

through floorplanning

b. Results in better-optimized silicon

c. Prevents design errors and re-spins

Power Analysis also very important for any design. If this point is not taken

into consideration then design may fail at silicon. So estimating power at the RTL

level will help the designer to ensure that how much power will be consumed from

the silicon. This will help the designer add some techniques such as clock gating, to

reduce the consumption of power. As this is done at RTL level, it will save the design

time. But as shown in table 5.4 the result is not accurate at RTL level compare to

netlist level. So still tool is not reliable to do power estimation at RTL.

So now a days Early Design Analysis is prime concerned for the RTL designer now

a days to reduce design respin & time-to-market time.
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