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Abstract

The circuit consumes more power during test mode compared to functional mode.

So test power has been major big concern in large System-on-Chip designs from

last decade. In the first part of report, the state-of-the-art in low power testing is

presented. The first part contains the detailed survey on various power reduction

techniques proposed for both the aspects of testing i.e. external testing as well as

Built-In-Self-Test. The advances in DFT techniques emphasizing low power is also

included in this part.

In the second part novel methods are presented which aims at minimizing the total

power consumption during testing. This is achieved by minimizing the switching

activity in the circuit by reducing the Hamming Distance between successive test

vectors. In this method the test vectors are reordered for minimum total hamming

distance and the same vector set is used for testing. Artificial intelligence is another

approach that is described to reduce switching activity. Also Test power has become

a serious problem with scan-based testing. It can lead to prohibitive test power in

the process of test application. During the process of scan shifting, the states of the

flip-flops are changing continually, which causes excessive switching activities. Test

vector reordering for reducing scan in scan out power is one of the general goal of low

power testing. WTM based reordering technique have proposed here to reorder the

test vectors in an optimal manner to minimize switching activity during testing.

In the third part it is shown that MT Fill algorithm is preferable when power is a

big concern. Frequency directed bit filling approach is preferable when compression

is a major goal. But the proposed approach that is a combination of MT fill and

frequency directed bit filling is preferable when one wants to achieve moderate power

and compression.

The final part addresses error-resilience that is the capability to tolerate bit-flips in a

compressed test data stream (which is transferred from an Automatic Test Equipment
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(ATE) to the Device-Under-Test (DUT)). In an ATE, bit-flips may occur in either

the electronics components of the loadboard, or the high speed serial communication

links (between the user interface workstation and the head). It is shown that errors

caused by bit-flips can seriously degrade the test quality (as measured by coverage)

of the compressed data streams. The effects of bit-flips on compression are analyzed

and various test data compression techniques are evaluated.
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Chapter 1

Introduction

THE SYSTEM-ON-A-CHIP (SoC) revolution challenges both design and test en-

gineers, especially in the area of power dissipation. Generally, a circuit or system

consumes more power in test mode than in normal mode. This extra power con-

sumption can give rise to severe hazards in circuit reliability or, in some cases, can

provoke instant circuit damage. Moreover, it can create problems such as increased

product cost, difficulty in performance verification, reduced autonomy of portable

systems, and decrease of overall yield. Low power dissipation during test application

is becoming increasingly important in todays VLSI systems design and is a major

goal in the future development of VLSI design.

1.1 The challenge to test

Modern chip design has greatly advanced with recent silicon manufacturing tech-

nology improvements that escalate transistor counts, increasing a chips complexity

while maintaining its size. This phenomenon will continue, resulting in at least 10

of todays microprocessors fitting onto a single chip by 2005. Consequently, design

and test of complex digital circuits imposes extreme challenges to current tools and

methodologies. VLSI circuit designers are excited by the prospect of addressing these

challenges efficiently, but these challenges are becoming increasingly hard to over-

2
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come. Test currently ranks among the most expensive and problematic aspects in

a circuit design cycle, revealing the ceaseless need for innovative, test-related solu-

tions. As a result, researchers have developed several techniques that enhance a

designs testability through DFT modifications and improve the test generation and

application processes. Traditionally, test engineers evaluated these techniques accord-

ing to various parameters: area overhead, fault coverage, test application time, test

development effort, and so forth. But now, the recent development of complex, high-

performance, low-power devices implemented in deep-submicron technologies creates

a new class of more sophisticated electronic products, such as laptops, cellular tele-

phones, audio- and video-based multimedia products, energyefficient desktops, and

so forth. This new class of systems makes power management a critical parameter

that test engineers cannot ignore during test development. Test or DFT engineers

find their main motivation in considering power consumption during test in a cir-

cuits consumption of more power in test mode than during normal operation. IT IS

shown that the test power (the power consumed during test) could be twice as high

as the power consumed during the normal mode. Several reasons cause this increased

power usage. First, test efficiency correlates with toggle rate; therefore, in the test

mode the switching activity of all nodes is often several times higher than during

normal operation. Second, test engineers use parallel testing in SoCs to reduce the

test application time, which might result in excessive energy and power dissipation.

Third, the DFT circuitry designed to reduce the test complexity is often idle during

normal operation but might be intensively used in the test mode. Fourth, succes-

sive functional input vectors applied to a given circuit during system mode have a

significant correlation. In contrast, the correlation between consecutive test patterns

can be low. For example, in a signal-processing circuit for speech recognition, the

input vectors behave predictably, with the least-significant bits more likely to change

than the most-significant bits. Similarly, in high-speed circuits that process digital

audio and video signals, the inputs to most of those modules change relatively slowly.

In fact, designers of low-power circuits take advantage of this consistent behavior
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when they determine a circuits thermal and electrical limits, and system packaging

requirements. In contrast, there is no definite correlation between the successive test

patterns generated by an automatic test-pattern generator for external testing or

the patterns produced by a linear feedback shift register (LFSR) for built-in selftest

(BIST). This lack of correlation can result in significantly greater switching activity

in the circuit during test than during normal operation. Because power dissipation in

CMOS circuits is proportional to switching activity, tests excessive switching activity

can cause catastrophic problems, as detailed later. Although academic research on

low-power design remains nearly independent of that for test, industrial practice re-

quires ad hoc solutions for considering power consumption during test application[7].

Practiced solutions include

1. oversizing power supply, package, and cooling to withstand the increased cur-

rent during testing (test engineers insert breaks into the test process to avoid hot

spots);

2. testing with reduced operating frequency; and

3. system-under-test partitioning and appropriate test planning.

The first solution increases both hardware costs and test time. Although the

second proposal uses less hardware, the reduced frequency increases test time and

might lead to a loss of defect coverage because the reduced frequency can mask

dynamic faults. Moreover, this solution reduces power consumption but lengthens

test time, so it does not reduce the total energy consumed during test. The third

solution of test partitioning and test planning detects dynamic faults, but increases

hardware costs and test time. To provide an adequate response to these industrial

needs, various researchers have proposed solutions for power problems encountered

during test. I classify these solutions into those applicable for external testing and

those applicable for BIST. But first, test engineers and designers need to understand

the qualities of power under test, as defined in the Terminology sidebar (next page)

and the next two sections.
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To provide an adequate response to the industrial needs, various researchers have

proposed solutions for power problems encountered during test. These solutions are

classified into those applicable for external testing and those applicable for BIST. But

first, test engineers and designers need to understand the qualities of power under

test, as defined in the Terminology.

2.1 Terminology

As discussed earlier, one of the current concerns, which may turn into a major en-

gineering problem in the future of SOC development, is test power. These concerns

involve energy, average power, peak power, instantaneous power and thermal over-

load. Below are some definitions of these parameter. Energy: the total switching

activity generated during test application. Energy has impact on the battery lifetime

during power up or periodic self-test of battery operated devices. Average Power: the

total distribution of power over a time period, which is generally the amount of power

consumed during the application of a test. The average power is given by the ratio

between the energy and the test time. Elevated average power adds to the thermal

load that must be vented away from the device under test. It may cause structural

damage to the silicon (hot spots), to bonding wires or to the package. Peak Power:

5
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the highest value of power at any given instant. The peak power determines the ther-

mal and electrical limits of components and the system packaging requirements. If

the peak power exceeds a certain limit, the correct functioning of the entire circuit is

no longer guaranteed. - In fact, the time window for the definition of the peak power

is related to the thermal capacity of the chip, and forcing this window to one clock

period is sometimes just a simplifying assumption. For example, Test and the circuit

has a peak power consumption during only one cycle but it has power consumption

within the limit of thermal capacity of the chip for all other cycles, the circuit will

not be damaged because the energy consumed, which corresponds to the peak power

consumption times one cycle, will not be enough to elevate chip temperature over

the limit of thermal capacity of the chip (unless the peak power consumption is far

higher than normal power consumption). In order to damage the chip, high (not only

highest) power consumption should last for several cycles to consume enough energy

that can elevate chip temperature over the limit [6].

2.2 Energy and Power Modelling

Power consumption in CMOS circuits can be classified into static and dynamic. Static

power dissipation is due to leakage current or other current drawn continuously from

the power supply. Dynamic dissipation is due to (i) short circuit current and (ii)

charging and discharging of load capacitance during output switching.

For the current CMOS technology, dynamic power is the dominant source of power

consumption, although this may change for future developments of high scaled inte-

gration. The average energy consumed at node i per switching is 1/2CiV2DD where

Ci is the equivalent output capacitance and VDD the power supply voltage. There-

fore, a good approximation of the energy consumed in a period is 1/2CisiV2
DD, where

si is the number of switching during the period. Nodes connected to more than one

gate are nodes with higher parasitic capacitance. Based on this fact, and in a first

approximation, capacitance Ci, is assumed to be proportional to the fanout of the
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node Fi. Therefore, an estimation of the energy Ei consumed at node i during one

clock period is:

Ei =
1

2
si.Fi.C0.V

2
DD (2.1)

where C0 is the minimum size parasitic capacitance of the circuit. According to this

expression, the estimation of the energy consumption at the logic level requires the

calculation of the fanout Fi and the number of switching on node i, si. The fanout of

the nodes is defined by circuit topology, and the switching can be estimated by a logic

simulator (note that in a CMOS circuit, the number of switching is calculated from

the moment the input vector is changed until the moment the internal nodes reach

the new stable state, including the hazard switching). The product siFi is named

Weighted Switching Activity (WSA) of node i and represents the only variable part

in the energy consumed at node i during test application. According to the above

formulation, the energy consumed in the circuit after application of a pair of successive

input vectors (Vk−1, Vk) can be expressed by:

EVK
=

1

2
.C0.V

2
DD

∑
i

s(i, k).Fi (2.2)

wherei ranges all the nodes of the circuits and s(i,k) number of switching provoked,

by Vk at node i. Consider now a pseudo-random test sequence of Lendthtest, the test

length required to achieve the targeted fault coverage, the total energy consumed in

the circuit during application of the complete test sequence is:

Etotal =
1

2
.C0.V

2
DD.

∑
k

.
∑
i

s(i, k).Fi (2.3)

Let us denote the clock period.as T. By definition, the instantaneous power is the

power consumed during one clock period. Therefore we can express the instantaneous

power consumed in the circuit after application of vectors (Vk−1,Vk)

as Pinst(Vk)=Evk/T The peak power consumption corresponds to the maximum of
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the instantaneous power consumed during the test session. It therefore corresponds

to the highest energy consumed during one clock period, divided by T. More formally,

it can be expressed by:

Ppeak = maxk[Pinst(Vk)] =
maxk(Evk)

T
(2.4)

Finally, the average power consumed during the test session is the total energy divided

by the test time, and is given as follows:

Pave =
Etotal

[(Lengthtest).T ]
(2.5)

According to the above expressions of the power and energy consumption, and assum-

ing a given CMOS technology and supply voltage for the circuit design, the number

of switching, of a node i in the circuit is the only parameter that has impact on both

the energy, the peak power and the average power consumption. Similarly, the clock

frequency used during testing has impact on both the peak power and the average

power. Finally, the test length the number of test patterns applied to the CUT, has

impact only on the total energy consumption. Consequently, when deriving a solution

for power and/or energy minimization during test, a designer or a test engineer has

to have these relationships in mind [2].

2.3 Low Power External Testing Techniques

Various techniques described in literature to ensure non destructive external testing

of an SoC using ATE are categorized in following subsections.

2.3.1 Low Power ATPG Algorithm

The basic goal of automatic test pattern generation (ATPG) was to decide the test

pattern for given design under Test (DUT) which gives maximum fault coverage.
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The current research in this field focuses on ATPG algorithm which not only gives

maximum fault coverage but also ensures the maximum fault coverage at lowest

possible power dissipation. In this category first of all Podem algorithm proposed

by Wang and Gupta and the method of exploiting the redundancy by fault dropping

proposed by Corno et al. has been covered in previous survey paper by P.Girard [2].

Few other methods are is also researched in this area. Polian I. et al [32]. propose

a heuristic method to generate test sequences which create worst-case power drop

by accumulating the high and low-frequency effects. The generated patterns need to

be sequential even for scan designs. They employ a dynamically constrained version

of the classical D-algorithm for test generation, i.e., the algorithm generates new

constraints on-the- fly depending on previous assignments. In an another approach Ho

Fai Ko, Nicolici N [14] suggested that scan chain division has been successfully used to

control shift power by enabling mutually exclusive flip-flops at different times during

the scan cycle. However, to control capture power without losing transition fault

coverage during at-speed scan test, the existing automatic test pattern generation

(ATPG) flows need to be modified. He presented a novel scan chain division algorithm

that analyzes the signal dependencies and creates the circuit partitions such that both

shift and capture power can be reduced when using the existing ATPG flows. Whereas

Sying-Jyan Wang et al. [41] present a low capture power ATPG and a power-aware

test compaction method. Two goals are achieved by the proposed ATPG. (1) The

growth of test pattern count is lower than the detection number n. (2) The peak

power becomes smaller as the detection number n increases. The test compaction

algorithm further reduces the number of test patterns as well as the average capture

power.

2.3.2 Ordering Techniques

The researches have widely explored the test vector reordering techniques to reduce

the switching power. The earlier method based on Hamming distance based reorder-
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ing proposed by P Girard and Debholkar are described in survey paper [27]. Girard’s

approach of vector ordering is enhanced by Paramasivam K, Gunavathi K, Sathishku-

mar P They have shown that the switching activity can be reduced up to 35 %[31].

In another method Roy S, Sen Gupta I, Pal A [34] proposed an AI-based approach

to order the test vectors in an optimal manner to minimize switching activity during

testing.

2.3.3 Input Control

Here the idea is to identify an input control pattern such that by applying the pattern

to the primary inputs of the circuit during the scan operation, the switching activity

in the combinational part can be minimized or even eliminated. Huang and Lee’s

basic idea of input control technique with existing vector- or latch-ordering techniques

that reduces the power consumption has been covered in previous survey paper by

P. Girard [27]. In the same area ElShoukry. M et al.[9] presented a technique of

gating partial set of scan cells. The subset of scan cells is selected to give maximum

reduction in test power within a given area constraint. An alternate formulation of the

problem is to treat maximum permitted test power and area overhead as constraints

and achieve a test power that is within these limits using the fewest number of gated

scan cells, thereby leading to least impact in area overhead. The area overhead is

predictable and closely corresponds to the average power reduction.

2.3.4 Vector Compaction and Data Compression

ATPG generated uncompacted test data contains a large number of don’t care bits.

There are number of test data compression techniques which explores the don’t care

filling options to optimize the compression of test data. The next generation com-

pression scheme does not only aims to maximum compression but also explores the

don’t care bit filling to give minimum switching activity and hence power reduc-

tion. Static compaction techniques to control scan vector power dissipation proposed
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by R. Sankaralingam et al. and a technique of Combining Low-Power Scan Test-

ing and Test Data Compression for System-on-a-Chip proposed by A. Chandra and

K. Chakrabarty has been covered in previous survey paper by P Girard [27]. Few

other methods are also suggested after that, for Vector Compaction which are based

on Don’t care filling. Among them Sying-Jyan Wang et al. [40] proposed an auto-

matic test pattern generation (ATPG) scheme for low power launch-off-capture (LOC)

transition test. Two techniques are explored in the proposed ATPG. A bidirectional

X-filling and vector replacement scheme. Whereas Kundu S, Chattopadhyay S [19]

have used a Genetic Algorithm based heuristic to fill the don’t cares. Their approach

produces an average percentage improvement in dynamic power and leakage power

over 0- fill, 1-fill, and Minimum transition fill (MT-fill) algorithms for don’t care fill-

ing . In an another approach Z. Chen et al. [8] proposed segment-based X-filling to

reduce test power and keep the defect coverage. The scan chain configuration tries

to cluster the scan flip-flops with common successors into one scan chain, in order to

distribute the specified bits per pattern over a minimum number of chains. Based on

the operation of a state machine, Jing-Ling Yang and Qiang Xu [17] elucidates a com-

prehensive frame for probability-based primary-input dominated X-filling methods to

minimize the total weighted switching activity (WSA) during the scan capture op-

eration. Experimental results demonstrate that the proposed approach significantly

reduces both average and peak WSAs. Whereas Tapas M and Santanu C [22] describe

the effect of don’t care filling of the patterns generated via automated test pattern

generators, to make the patterns consume lesser power. It presents a trade-off in the

dynamic and static power consumption. The effect is expected to be more prominent

for technologies beyond 100 nm.

2.3.5 Scan Chain Transformation

Here the scan architecture is designed in such a way that it maintains the test time, en-

ables reuse of the conventional scan architecture’s test patterns, and avoids decreasing
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the scan clock rate. Previously L. Whetsel’s approach of , Adapting Scan Architec-

tures for Low Power Operation and K.J.Lee’s approach of Peak-Power Reduction for

Multiple-Scan Circuits during Test Application has been covered in previous survey

paper by P Girard [27]. In addition to that Sinanoglu, O, Orailoglu A [37] proposed

a scan chain modification methodology that transforms the stimuli to be inserted to

the scan chain through logic gate insertion between scan cells, reducing scan chain

transitions . Based on this analysis, they developed an algorithms for transforming

a set of test vectors into power optimal test stimuli through cost-effective scan chain

modifications.

2.3.6 Clock Scheme Modification

Giving a clock to a whole circuit will give some unnecessary transition, which affects

on power and energy consumption. Here the techniques are described which manages

the clock distribution in such a way that overall it consumes less power. Previously

Pouya and Crouch’s ideas on optimization trade-offs for vector volume and test power

, Sankaralingam et al approach on reducing power dissipation during test using Scan

chain disable, Bonhomme et al’s approach based on a gated clock scheme for low

power scan testing of logic ics or embedded cores have are covered in previous survey

paper by P Girard [27]. It is found that many STUMPS architectures found in current

chip designs allow disabling of individual scan chains for debug and diagnosis, such

feature can be used for reducing the power consumption during test. Here Imhof M.E

et al. [16] presented an automated generation of a test plan that keeps fault coverage

as well as test time, while significantly reducing the amount of wasted energy by

disabling of individual scan chains for debug and diagnosis .

2.4 Low Power BIST Techniques

Various authors reported on techniques to cope with power problems during BIST.

In the following, these techniques for low power BIST are presented.



CHAPTER 2. LITERATURE SURVEY 13

2.4.1 Low Power Test Pattern Generators

In this category the BIST architecture is designed in such a way that it decreases

the circuits overall activity so that power consumption reduces significantly. Previ-

ously BIST strategy, called dual-speed LFSR was suggested by Wang and Gupta,

based on two different speed LFSRs. Also Corno et al proposed an approach on low

power BIST via non-linear hybrid cellular automata . Then a modified clock scheme

for a low power BIST test pattern generator was proposed by P Girard, In addition

to that Zhang et al suggested a POWERTEST tool , which is a Tool for Energy

Conscious Weighted Random Pattern Testing. Whereas Wang and Gupta proposed

LT-RTPG: A New Test-Per-Scan BIST TPG for Low Heat Dissipation. These all

have been covered in previous survey paper by P Girard [27]. After that Ahmed N

et al. [2]. presented a new low power test pattern generator using a linear feedback

shift register (LFSR), called LP-TPG, which inserts intermediate patterns between

the random patterns to reduce the transitional activities of primary inputs which

eventually reduces the switching activities inside the circuit under test, and hence,

power consumption. Hiirevren and Levent [18] proposed a polynomial-time algorithm

that converts the test pattern generation problem into combinatorial problem called

Minimum Set Covering. Solutions to that give the low-power design topology for

the test pattern sequence. Youbean K et al. [46] presents a new low power BIST

TPG scheme. It uses a transition monitoring window (TMW) that comprised of a

TMW block and a MUX. The proposed technique represses transitions of patterns

using the k-value which is a standard that is obtained from the distribution of TMW

to observe over transitive patterns causing high power dissipation in a scan chain.

K.Gunavathil et al. [11] proposed TPG based on Read Only Memory (ROM) which is

carefully designed to store the test vectors with minimum area over the conventional

ROM. This reduces the number of CMOS transistors significantly when compared

to that of LFSR/Counter TPG. Bin Z. et al [5] proposed approach to reconfigure

the CUT’s partial-acting-inputs into a short ring counter (RC), and keep the CUT’s
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partial-freezing-inputs unchanged during testing. S.Wang [44] presents a low hard-

ware overhead test pattern generator (TPG) for scan-based built-in self-test (BIST)

that can reduce switching activity in circuits under test (CUTs) during BIST and

also achieve very high fault coverage with reasonable lengths of test sequences. The

proposed BIST TPG decreases transitions that occur at scan inputs during scan shift

operations and hence reduces switching activity in the CUT. M.Nourani et al. [26]

proposed low-transition linear feedback shift register (LT-LFSR) technique. Transi-

tions are reduced in two dimensions: 1) between consecutive patterns and 2.) between

consecutive bits. The proposed architecture increases the correlation among the pat-

terns generated by LT-LFSR with negligible impact on test length. Bei Cao et al.[43]

presented an efficient algorithm to synthesize a built-in TPG from low power deter-

ministic test patterns without inserting any redundancy test vectors. The structure

of TPG is based on the non-uniform cellular automata (CA). And the algorithm is

based on the nearest neighborhood model, which can find an optimal non-uniform

CA topology to generate given low power test patterns. Li-gang Hou et al. [10]

proposed a low power dynamic LFSR (LDLFSR) circuit which achieves comparable

performance with less power consumption. Typical LFSR, a DFLSR[I], a LDLFSR

are compared on randomness property and inviolability property. Multi-layer percep-

tron neural networks are used to test these LFSRs’ inviolability property. H.-T. Lin

J.C.-M. Li. [20] presented ATPG technique, which simultaneously reduces capture

and shift power during scan testing. This ATPG performs power reduction during

dynamic test compaction so the test length overhead is very small. This method

implements several novel techniques, such as parity back trace, confined propagation,

dynamic controllability and post-fill test regeneration T.

2.4.2 LFSR Tunning

Here this category mainly emphasized on reduction energy consumption without mod-

ifying the fault coverage. Various BIST techniques are described here. Earlier Girard
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et al. address the problem of energy minimization during test application for BIST

enabled circuits[27]. In a random testing environment, a significant amount of energy

is wasted in the LFSR and in the CUT by useless patterns that do not contribute to

fault dropping. In this work, a new built-in self-test scheme for scan-based circuits is

proposed by Bhattacherya B.B. et al. [3] for reducing such energy consumption. A

mapping logic is designed which modifies the state transitions of the LFSR such that

only the useful vectors are generated according to a desired sequence. Experimental

results on ISCAS-89 benchmark circuits reveal a significant amount of energy savings

in the LFSR during random testing.

2.4.3 Vector Filtering BIST

Here main idea is to filter out some non detecting sequences so that over all switching

can be reduced and hence power consumption. Previously Girard et al. proposed

a test-vector-inhibiting technique to filter out some non detecting subsequences of a

pseudorandom test set generated by an LFSR. His work was extended by Manich et

al. by the filtering action to all the nondetecting subsequences. The authors use a

decoding logic to store the first and last vectors of the nondetecting subsequences

to be filtered and the same idea was implemented by Gerstendrfer and Wunderlich.

These authors combine a pattern-filtering technique with Hertwig and Wunderlich’s

technique to avoid scan-path activity during scan shifting. These all have been covered

in previous survey paper by P Girard [27]. After that S. Hatami et al. [13] proposed

a scan cell architecture that decreases power consumption and the total consumed

energy. In the method which is based on the data compression, the test vector set

is divided into two repeated and unrepeated partitions. The repeated part, which is

common among some of the vectors, is not changed during the new scan path where

new test vector will be filled. As a result, the test vector is applied to the circuit

under test in a fewer number of clock cycle, leading to a lower switching activity in

the scan-path during test mode.
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2.4.4 Circuit Partitioning

Main goal here is to partition the circuit in to sub circuit so that parallel testing

can be achieved . Girard et al. propose a novel low-power BIST strategy based on

circuit partitioning. This strategy partitions the original circuit into two structural

sub circuits so that two different BIST sessions can successively test each sub circuit.

This idea has been covered in previous survey paper by P Girard [27]. To address

the power in the scan chain, Swarup B et al [4] propose an efficient scan partitioning

technique that reduces both average and peak power in the scan chain during shift

and functional cycles. Whereas Qiang Xu et al. [33] proposed a novel low-power

virtual test partitioning technique where faults in the glue logic between subcircuits

can be detected by patterns with low power dissipation that are applied at the entire

circuit level, while the patterns with high power dissipation can be applied within a

partitioned subcircuit without loss of fault coverage. Experimental results show that

the proposed technique is very effective in reducing test power.

2.4.5 Low Power RAM Testing

Various RAM trasition reduction technique by reordering read and write access are

described for low power consumption. Cheung and Gupta propose a methodology

for low-power test of RAMs. The authors base their strategy on RAM transition

reduction by reordering the read and write accesses and the address counting scheme.

These measures decrease the energy consumption and keep test time the same, so they

also minimize the average power[2]. The idea has been covered in previous survey

paper by P Girard [27] A row bank-based precharge technique based on the divided

wordline (DWL) architecture is proposed by Shyue-Kung Lu et al. [21] for low-

power testing of embedded SRAMs. In low-power test mode, instead of precharging

the entire memory array, only the current accessed row bank is precharged. This will

result in significant power saving for the precharge circuitry. With the ever increasing

number of memories embedded in a system-on-chip (SoC), power dissipation due to
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test has become a serious concern. Here Yuejian Wu et al. [47] proposed a novel

low power memory BIST. Its effectiveness is evaluated on memories in 130 and 90

nm technologies. A significant power reduction can be achieved with virtually zero

hardware overhead.

2.5 Low Power DFT Techniques

Apart from internal and external techniques here DFT techniques are described for

low power testing. Here main goal is to reduce switching activity by adding some

hardware during test. Xiaoming Yu and Miron Abramovici [45] introduce two design-

for-testability (DFT) techniques based on clock partitioning and clock freezing to

ease the test generation process for sequential circuits. In the first DFT technique,

a circuit is mapped into overlapping pipelines by selectively freezing different sets of

registers so that all feedback loops are temporarily cut. An opportunistic algorithm

takes advantage of the pipeline structures and detects most faults using combinational

techniques. This technique is feasible to circuits with no or only a few self-loops. In

the second DFT technique, they use selective clock freezing to temporarily cut only

the global feedback loops. These DFT techniques do not introduce any delay penalty

into the data path, have small area overhead, allow for at-speed application of tests,

and have low power consumption. Min-Hao Chiu Li, J.C.-M [23] presents a Jump

scan technique (or J-scan) for low power testing. The J-scan shifts two bits of scan

data per clock cycle so the scan clock frequency is halved without increasing the test

time. The experimental data show that the proposed technique effectively reduces

the test power by two thirds compared with the traditional MUX scan. The presented

technique requires very few changes in the existing MUX-scan design for testability

methodology and needs no extra computation. The penalties are area overhead and

speed degradation.



Chapter 3

Reordering Techniques

Test power has become a serious problem with switching activity as well as in scan-

based testing. It can lead to prohibitive test power in the process of test application.

During the process of scan shifting, the states of the flip-flops are changing continu-

ally, which causes excessive switching activities. Test vector reordering for reducing

switching power is one of the general goal of low power testing. Here two techniques

Hamming distance based and AI-based approach is proposed to order the test vectors

in an optimal manner to minimize switching activity during testing.

3.1 Hamming Distance based Reordering technique

Very Large Scale Integration (VLSI) design plays a significant role in the fabrication

of modern Integrated Circuits(ICs) with smaller in size and with more features for

any electronics systems. Energy consumption and power dissipation are the major

concern in the VLSI design. Several factors have contributed to this trend. With

the advent of portable devices, for example low energy consumption has become one

of the major design goals in order to prolong battery life. Moreover the amount of

energy a circuit consumes is directly reflected in its heat dissipation, however requires

expensive packaging and cooling techniques which in turn increases system cost [1].

In addition, as power consumption increases, circuit reliability gets affected adversely

18
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due to electro-migration. This is applicable for both Design power and testing power.

Testing is a process of checking the fabricated ICs for any incorrect behavior due

to faults like logical fault, delay fault, fabrication faults[2], etc. Testing is done by

generating and applying a set of binary vectors called test vectors to the input of

the circuit. Fault is detected by verifying the output for the given test vector with

stored responses. Testing has to be done for all possible faults in the circuit. Hence

more test vectors may be required to test all the faults in complete circuit. Single

test vector may detect more than one fault and more than one test vectors can be

generated for a single fault. A set of test vectors[4] must be generated such that

more faults are covered with minimum number of test vectors. Testing is not only

done after the fabrication of ICs but also required when ICs are in usage. This is

called periodic testing which is required for all type of systems like PC, Laptop,

cell phones etc. The main problem under testing environment is that it results in

considerably higher circuit activity rate compared to normal mode operation, hence

causing above normal power dissipation. However if test vector sets are not optimized

for power[10], low power circuits dissipate two fold power under test as they do

at normal operating condition[2]. When the circuit is tested with pseudo-random

patterns, consecutive input test vectors are statistically independent which results

in increased switching activity in the circuit under test. Since in CMOS circuits

energy is primarily consumed by signal transition, the average power consumption

during testing is significantly higher than normal mode of operation. The Relationship

between hamming distance [6] and the average power of a circuit plays a significant

role to optimize the test power. In order to optimize, the hamming distance between

successive test vectors is used to arrange the test vectors in specific order so that

Total Hamming Distance(THD) is minimum. A test vector set with least hamming

distance is obtained by optimization technique. The test power obtained by applying

test patterns in the optimal order is regarded as the optimized test power. In order to

guarantee the proper operating conditions during test, the total power consumption

must not exceed the maximum power allowance for the circuit under test[2]. Another
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problem is that even if the average power dissipation over a sequence of test vectors

is small, the peak (or instantaneous) power dissipation may be sufficiently high to

destroy the CUT. In practice, destruction really occurs when the instantaneous power

exceeds the maximum power allowance during several successive test vectors. For this

reason, it is essential to take care of both average and peak power dissipation during

test application.

Many low power design techniques have been proposed at all levels of the design

hierarchy. However, all these techniques focus on low power dissipation during system

mode or standby mode, and during test mode. The simplest way to ensure non-

destructive testing of a CUT is to use ordering of test vectors, which causes switching

activity that is comparable to that during normal circuit operation. Several categories

of techniques can be found in the literature related to the low power testing. The

first category consists of ATPG (Automatic Test Pattern Generator) techniques[5],

in which new ATPGs are proposed with the intent of generating test patterns that

can reduce the power dissipated during test application in addition to the normal

ATPG objectives. The second category consists of ordering techniques in which the

switching activity is reduced by modifying the order in which test vectors of a given

test sequence are applied to the CUT. The paper [14] discussed about two methods

used for reordering of test vectors in order to reduce the dynamic power dissipation

during testing of combinational circuits. Two search methods 2-opt heuristic and a

genetic algorithm based approach have applied and results obtained for combinational

circuits. These techniques can be applied during external testing or deterministic

BIST (Built-In Self Test). In this paper we present a novel method, which aims

at minimizing switching activity during testing of combinational circuit. The test

vectors are reordered based on the hamming distance between successive test vectors.

Graph theory based reordering algorithm is proposed to solve the problem. Since

this problem is NP complete, the algorithm is developed through heuristic approach

which gives better optimum solution for such problems. Random heuristics are used

in previous approaches that may or may not give better solution. In this proposed
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algorithm structured heuristic is used to obtain better results than random heuristics.

3.1.1 Problem formulation

The power dissipation during testing [2] is minimized by reducing the number of

transition in the circuit. This is achieved by reducing the hamming distance between

successive test vectors. Usually test vectors are in random and hence it is necessary

to rearrange the order of occurrence of test vectors so that the hamming distance

between successive test vectors is minimum. In general the total switching power

in the whole circuit is proportional to the hamming distance of input test vectors.

Therefore the reordered test vector set with minimum hamming distance is used for

testing the CUT to reduce the switching power. The problem of minimizing switching

power is solved by graph theory using Hamiltonian path [3] technique. Graph G(V,E)

is defined with V nodes and E edges. The problem is formulated by considering the

test vector as node and hamming distance between them as edge cost of the graph.

Here the Hamiltonian path is a path with all nodes and minimum total edge cost.

Graph Theory based Reordering algorithm[12] is used to construct the Hamiltonian

path, which is resultant reordered test vector set whose total hamming distance is

minimum. Now the path developed by the algorithm is reordered test vector sequence

which offers less number of transitions at the input which in turn results in reduced

power dissipation in the circuit under test during testing [3].Heuristic approach is

used in the algorithm to find more suboptimal sequences.

3.1.2 Total Hamming Distance(THD)

Total hamming distance is defined as Sum of hamming distance between successive

test vectors in the sequence.

Let hamming distance d[ti, tj] be the total number of changes between i thth and

j test vector. The Total Hamming Distance(THD) for the whole test vector set is
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calculated by the following relation.

THD =
∑
i=1

d[ti, ti+1] (3.1)

where n represents total number of test vectors in the whole set. The overall procedure

to minimize the switching activity during testing is as follows.

a. Consider a digital circuit with p inputs and q outputs.

b. Generate all the test vectors to detect all the single stuck at faults[4] of the

circuit. Let the number of test vectors be n.

c. Find the hamming distance between each and every test vector and load the

same in array hd of size n x n. Let hd[i][j] be the array elements which gives

hamming distance between ith and jth test vectors.

d. Apply reordering algorithm to find the reordered test vector sequence with

minimum total hamming distance.

e. Perform fault simulation[4] with reordered test vector set which gives minimum

number of transition and hence less power dissipation.

f. Since Heuristic based algorithm generates more sub-optional sequences, select

the best sequence with least total switch activity.

The reordering algorithm used in step d is discussed in the next sub-section.

3.1.3 Reordering Algorithm:

The various parameters used in the algorithms are as follows: t1, t2,....tn be n test

vectors with m bits each. T={1,2,.....k,...n } where k represents kth position in the

vector set generated by ATPG.

R is a set to store ordered test vector sequence.

Q is a set to store T-R.
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Step 1: Select a test vector x such that swa init[x] is minimum in the array

swa init[ ]. Add x to set R.

Step 2: Select a test vector y such that hd[x][ymin] is minimum in the array.

Step 3: Add ymin to R; Q←T-R; xmin← ymin.

Step 4: From the array hd[xmin][j] when j varies as in Q, find y so that hd[x][ ymin]

is the smallest value. Go to step 3.

Step 5: In the step 4, if hd[xmin][j] has more than one smallest value, then such

number of reordered sequence will be generated for every xmin. These sequences are

called as sub-optimal sequences.

Finally the set R will have reordered test vector sequence with minimum hamming

distance which results in minimum switching activity during testing.

Figure 3.1: a.)Test Vectors for Full adder circuit b.) Switching matrix hd[n][n]

The above procedure is illustrated with simple full adder circuit with 3 inputs and

2 outputs. The test vector set that used to detect the entire single stuck at faults is

given in Table I. The set consists of 7 vectors with total hamming distance as 15 .

The vectors are represented by the order of occurrence for the sake of convenience.

The hamming distance array hd[ ][ ] of order n X n is constructed. This is given as

in fig 3.1. It is known that the number of bit changes between t1 and t2 test vectors
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in the table is three. Similarly between t2 and t3 test vectors is two. This is shown

in the array as hd[1][2]=3 and hd[2][3]=2 respectively. The hamming distance array

hd[ ][ ] is developed in this method.

On application of reordering algorithm to this matrix hd[ ] [ ], the reordered test

vectors are generated with minimum hamming distance.

The solution and the THD are given as follows:

Unordered sequence : t1 t2 t3 t4 t5 t6- t7 THD : 15

Ordered sequence : t3 t1 t4 t6 t2 t5 t7 THD : 6

The total hamming distance for the resultant ordered sequence is 6 which shows that

60 % of total hamming distance is reduced when compared with that of unordered

sequence. This reduces the switching activity and hence the power dissipation in the

circuit.

3.2 Artificial Intelligence approach

3.2.1 Brief overview

Advancements in semiconductor fabrication technology has helped the design engi-

neers to accommodate more number of transistors in a VLSI chip. With the prolifer-

ation of mobile battery-powered devices, reduction of power in the embedded VLSI

chips has become an active area of research. During the last decade, power reduction

techniques have been proposed at all levels of the design hierarchy - from system to

device levels. For the development of complex, high performance, low power devices

implemented in deep submicron technology, power management is a critical parame-

ter and it cannot be ignored even during testing. With the increase in the density of

the chips, the problem of testing has also increased manifold.

A related problem is to achieve power reduction during the actual testing of a chip [25].

Power consumption in test mode is considerably higher than the normal functional

mode of a chip. The reason is that test patterns cause as many nodes switching as
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possible, while a power saving system mode only activates a few modules at a time.

Thus, during testing switching activity in all the internal lines of a chip is often several

times higher than during normal operation. Sometimes parallel testing is used in SoCs

to reduce test application time, which results in excessive power dissipation. Again,

successive functional input vectors applied to a given circuit during system mode

have a significant correlation, while the correlation between consecutive test patterns

can be very low. Usually, there is no definite correlation between the successive test

patterns generated by an ATPG (for external testing) or by an LFSR (for BIST) for

testing of a circuit. This can cause significantly larger switching activity in the circuit

during testing than that during its normal operation. Abnormal power consumption

during testing leads to adverse effects on the chip and the testing process such as, (a)

this may give rise to severe hazards to the circuit reliability and lead to long or short-

term malfunction, (b) it can cause chip destruction due to excessive heat in absence

of proper heat dissipation mechanism, (c) it can increase the packaging and cooling

costs, (d) it can cause the chip to falsely fail the test due to noise problems such as,

IR and Ldi/ dt drops, which may be a source of yield loss and increase in production

cost, (e) it may make it difficult to obtain a carefully tested bare die to be used in

multichip modules (MCM) or what is called the Known Good Die problem (KGD)

and (f) it can dramatically shorten the battery life when on-line testing is considered.

For all these reasons, various techniques have been proposed to reduce the impact of

high power consumption during test application. Low power dissipation during test

application is becoming an equally important figure of merit in today’s VLSI circuits

design with BIST and is expected to become one of the major objectives in the near

future.

3.2.2 Prior Work

A survey on low power testing of VLSI circuits has been given in [27]. There are

several techniques for low power testing of VLSI circuits such as, test vector re-
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ordering, scan chain ordering, power-constrained test scheduling, use of multiple scan

chains, low power test pattern generation, vector compaction, etc. Test vector re-

ordering is a very well-known technique to reduce dynamic power dissipation during

combinational circuit testing through switching activity minimization in the circuit.

Test vector reordering is an essential task in testing VLSI systems because it affects

from two perspectives: power consumption and correlation among data used for test

data compression. The problem of test vector reordering can be mapped into finding

Hamiltonian cycle in a complete weighted graph, which is known to be NP-hard. So,

there is no polynomial time solvable algorithm for the problem. Therefore, it is essen-

tial to find a good heuristic-based solution for the problem. Existing approaches have

used several heuristics for solving this problem. In [19], the problem of test vector

reordering has been mapped into finding the Hamiltonian path in a fully-connected

weighted graph which is similar to the traveling salesman problem (TSP). As there

exists no polynomial time algorithm for TSP, approximation methods of solution have

been used. Solutions for three cases have been given: (i) reordering for maximal or

minimal activity, (ii) reordering of test vectors with a desired circuit activity across

the VLSI chip while achieving a high coverage for stuck-at faults, and (iii) reordering

for localized switching activities to maximize it in one part and minimize at other

part of the circuit. In another work [30], proposed greedy algorithm has guaranteed

decrease in power consumption without modifying the initial fault coverage. A second

technique based on Simulated Annealing (SA) has been proposed in which the greedy

solution is used as initial solution and it shows a considerable average power reduction

during test application. Here, only Hamming distance between test vectors has been

used to avoid simulation of the circuit and providing a solution (an Hamiltonian path

of minimum cost in the Hamming distance graph) in a short computation time. It

has been shown that there is a correlation between the Hamming distance and the

transition activity. But, if signal transitions in the internal line be considered, then

obviously optimal solution can be found.

Another work [28] has also considered the Hamming distance minimization be-
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tween adjacent vectors to reduce the dynamic power dissipation during testing. In

[42], reduction of power dissipation during test application has been studied both

for scan designs and for combinational circuits tested using built-in self-test (BIST).

They have shown that heuristics with good performance bounds can be derived for

combinational circuits tested using BIST and a post ATPG phase has been proposed

for reducing power dissipation during test application in full-scan circuits and for

pure combinational circuits. They have shown that scan-latch ordering along with

test-vector reordering can give considerable improvement in power dissipation and

considerable savings can be obtained by repeating some of the test vectors. In [12],

an evaluation of different heuristic approaches has been done in terms of execution

time and quality. Here, it has been shown that the Multi-Fragment heuristic per-

forms better than Christofides and Lin-Kernighan heuristics in terms of time. It also

outperforms the Christofides heuristic in terms of quality and achieves performance

very close to Lin-Kernighan. They recommended reordering algorithms to use the

Multi-Fragment heuristic for near-minimal ordered sets of vectors that result in both

reduced power consumption and enhanced data compression ratio. Recently, some

works have formulated test vector reordering problem as TSP and Genetic Algorithm

(GA) has been used to generate low power test patterns.

Chattapadhyay and Choudhary have shown proposed a GA-based formulation to

solve the problem of generating a test pattern set such that it has high fault coverage

and low power consumption has been proposed in [2]. They have shown a method

of selecting a subset of test vectors generated by an ATPG tool to reduce power

dissipation by sacri?cing a small amount of fault coverage. In [1], authors have studied

two well known search methods (2-opt heuristic and a GA-based approach) with

reduction in fault coverage. They have also combined those two methods for power

reduction.
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3.2.3 Motivation of the work and problem formulation

Motivation of the work

Most popular techniques for test power minimization orders the deterministic test

patterns and several approaches have been followed for test vector reordering such

as, ?nding minimum cost Hamiltonian path after mapping the problem into TSP

instance, finding optimal solution by applying GA or SA. Although the dynamic power

minimization problem by test vector reordering during VLSI testing is an old problem,

here we have proposed a new approach for solving it using Artificial Intelligence (AI).

This problem can again be viewed as finding optimal path from start to goal node

in a search space by applying informed search methods of AI, where start node is

the node when no test vector is selected and the goal node is the node when only

one test vector is remaining for selection. A* search algorithm is a very well-known

informed search method used in AI. It takes advantages of both ef?ciency of greedy

search and optimality of uniform-cost search by simply summing the two evaluation

functions. Thus, it is optimally ef?cient algorithm for finding optimal solution in an

informed search space. This has motivated us to apply A* search technique for test

vector reordering problem for dynamic power reduction during testing.

Problem formulation

Consider a test set for a combinational circuit is given by V = {v1,v2,...vk } with

a predefined fault coverage, where |V | =k. Each test vector is formed by a fixed

ordered set of bits bj i.e., vi =< b1,b2,...bl> where l =length of the test vectors or

the number of primary inputs (PIs) of the circuit. Assume ? be the initial ordering of

test vectors V . The problem of dynamic power minimization by test vector reordering

is to compute an optimal vector ordering of V such that total dynamic power dissi-

pation in the circuit during testing is minimized. The problem of reducing the peak

power dissipation is not considered here. Only the average power reduction has been

considered. Since, the power dissipation is directly proportional to switching activity,

the problem can be restated as to ?nd out an optimal path or optimal ordering of
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vertices
∏′ from the search space of having all possible orderings of vectors V such

that total switching activity in the circuit is minimized.

3.2.4 An A* based method for dynamic power minimization

by test vector reordering

Basic underlying principle for A* Algorithm

The A* algorithm combines features of uniform-cost search and pure heuristic search

to efficiently compute optimal solutions. A* is a best-first search in which the cost

associated with a node is given by the evaluation function f (n).

f(n) = g(n) + h(n) (3.2)

where g(n) is the cost of the path from the initial state to node n, and h(n) is the

heuristic estimate of the cost of a path from node n to a goal node. Thus, f (n)

estimates the lowest total cost of any solution path going through node n. At each

point, a node with lowest f -value is chosen for expansion. Ties among nodes of equal

f -value is broken in favor of nodes with lower h-values. The algorithm terminates

when a goal node is chosen for expansion. For a given node, the sum [current cost

+ heuristic value] is an estimation of the cost of reaching the ending node from the

starting node, passing by the current one. This value is used to continuously choose

the most promising path. In practice, the algorithm maintains two lists of nodes that

are filled and modified during the search: an OPEN list and a CLOSED list. OPEN

list is a priority queue, contains the tracks leading to nodes that can be explored in

increasing order of the evaluation function f (n). Initially, there is only the starting

node and at each step, the best node of OPEN list is taken out. Then, the best

successor of this node (according to the heuristic) is added to the list as a new track.

The CLOSED list stores the tracks leading to nodes that have already been explored.
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3.2.5 Cost function g(n)

A complete weighted graph T (V,E,W ) is constructed where V is the test set, E is

the set of edges and

Figure 3.2: Test Vectors of C17

Figure 3.3: Transition graph of C17

W resents the set of weights associated with each edge indicat-ing the total number

of signal transitions (i.e., total switch-ing activity) in the whole circuit considering

internal lines for consecutive application of two adjacent test vectors. So, T represents

a matrix of total transitions and it is called as Transition graph or T -graph. For

example, Fig. 3.3 represents the T -graph for the test vectors shown in Fig. 3.2 for

C17 benchmark circuit of ISCAS85. The cost function g(ni) of a successor ni of the

node n is calculated by g(ni)= g(n)+ W(n,ni),where W -value is taken from the T

-graph.
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3.2.6 Computing lower bound of switching activity: Heuris-

tic function h(n))

In the A*-based algorithm, lower bound of switching activity among the remaining

test vectors is taken as the heuristic function h(n) for a node n. Lower bound of signal

transition is computed by bit-wise scanning the test vectors to be selected to reach

the Goal node. If for ith bit of all the test vectors are 1 or 0, then the lower bound of

switching activity for ith bit is 0; otherwise, it is taken as 1. So, the maximum value

of the lower bound is equal to the length of the test vectors, l.

Theorem 1. The lower bound of switching activity for the remaining test vectors is

given by the sum of the lower bounds for all the bits.

An heuristic h is called an admissible heuristic, if it never overestimates the cost

to reach the goal. The above lower bound of signal transition is computed using a

procedure f ind lower bound() and it never overestimates the actual cost of reaching

the Goal node. Thus, it is an admissible heuristic. Some examples of calculating h()

value has been shown below for the test vectors shown in fig 3.2

v2 : 00110

v3 : 10111

v4 : 01101

v5 : 00101

v6 : 11011

.................

Lb(bitwise) 11111 =5

a.) For the remaining five test vector ¡v2,v3,v4,v5,v6¿ the lower bound h()=5

v3 : 10111

v4 : 01101

v5 : 00101

v6 : 11011

.................
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Lb(bitwise) 11110 =4

b.) For the remaining four test vector ¡v3,v4,v5,v6¿ the lower bound h()=5

v4 : 01101

v5 : 00101

.................

Lb(bitwise) 01000 =1

c.) For the remaining two test vector ¡v4,v5¿ the lower bound h()=1

3.2.7 The A* based algorithm:AITVR

.................................................. Algorithm 1 AITVR() ..................................................

1. Find the T matrix for the test set V

2. G(Source)=0;

3. H(source)=0;

4. F(source)=0;

5. Put Source in OPEN; found=False

6. while OPEN not empty and not(Found) do

7. Select a node n from OPEN with minimum f -value

8. Remove n from OPEN and put n in CLOSED

9. if n is a Goal node then

10. Found = True

11. else

12. Get the list of test vectors selected so far from Source to the node n. Let, this

is Vs’

14. Get the list (Vs’) of test vectors not selected so far from Source to the node n

15. Expand n (* consider each successor test vector to the next level in Vs’ *)

16. for each immediate successor ni of n do

17. g(ni) = g(n)+W(n,ni)

18. Find Vs’ for ni i.e., Vs’ (ni)
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19. h(ni) = find lower bound(Vs’ (ni)

20. f (ni) = g(ni)+h(ni)

21. Put ni in OPEN

22. Direct backward pointer from ni to n

23. end for

24. end if

25. end while

26. Find the remaining test vector vrem to be selected; vlast =last test vector

selected in the Goal node n

27. Find SWlast =W(vlast ,vrem)

28. Calculate total switching activity SW = f(n)+SWlast

29. Output SW and solution path
∏′ (* sequence of test vectors selected * ) by

tracing back pointers

..........................................................................................................

3.2.8 Time complexity of AITVR

Complexity of A*-based algorithm is obtained from its empirical performance. How-

ever, time complexities can be estimated for the heuristic computation, and node

expansion. The worst-case complexity for computing g() for each node is O(n2). If l

be the length of the test vectors, then the time complexity for calculating h()-value

for each node expanded is O(ln), in worst case. Thus, a single node generation in

AITVR requires time O(n2)+O(ln).

3.2.9 Empirical Observation

The proposed algorithm AITVR was implemented in MATLAB on an Windows plat-

form with an Intel Pentium IV proces- sor of 1 GHz clock speed and 1 GB RAM. For

evaluation of the proposed algorithm, S27 benchmark circuits were considered. First
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Figure 3.4: Finding optimal path from informed search space

test patterns were generated by the Mentor Graphics. DFT Advisor and Fast Scan

are used from Mentor Graphics to generate patterns.

Mentor Graphics ATPG tool with 100 % fault coverage and those were taken as initial

ordering of the test set. In this work, we have reduced dynamic power consumption

during test application without losing stuck-at fault coverage. A simulation-based

technique has been used to obtain the actual switching activity at the internal nodes of

a circuit using unit-delay model and the total Weighted Transition Matrix was formed.

The characteristics of the test patterns obtained from TetraMax are tabulated in Table

1. Experimental result shows that the dynamic power of a given combinational circuit

can be reduced by about 56.52% after applying the test vectors in the order given

by AITVR over the test vectors order given by Mentor Graphics, where as Hamming

distance method provides 21.97% reduction in switching activity on a average for all

the benchmarks.

The proposed algorithms finds the optimal ordering of test vectors from the search

space as shown by the path {2,3,1,4,6,5} from Start node to Goal node in Fig. 3.4.
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3.3 WTM based Reordering of Combine Test Vec-

tor and Output Response

3.3.1 Problem formulation

Consider a test set for a combinational circuit is given by T = {t1,t2, ..tk} and its

output response is given by O={o1,o2,.ok} with a predefined fault coverage, where |

T | = k. Each test vector is formed by a fixed ordered set of bits bj i.e., ti ={ b1,b2,

...bl }, where l =length of the test vectors or the number of primary inputs (PIs) of

the circuit. Assume
∏

be the initial ordering of test vectors T.

The problem of scan in scan out power minimization by test vector reordering is

to compute an optimal vector ordering of T such that total scan in scan out power

dissipation in the circuit during testing is minimized. The problem of reducing the

peak power dissipation is not considered here. Only the average power reduction has

been considered. Since, the power dissipation is directly proportional to switching

activity, the problem can be restated as to find out an optimal path or optimal

ordering of vertices from the search space of having all possible orderings of vectors

V such that total switching activity in the circuit is minimized.

3.3.2 Cost Function g(n)

A complete weighted graph X(T,O,E,W) is constructed where T is the test set, O is

the output response, E is the set of edges.

Weighted Transition Matrix(WTM) is used here to reorder the test patterns. Here

different test patterns passed through the output response and hence the switching

will occur and from that WTM is made as shown in figure 1 c. The corresponding

equation is also shown below.

WTM =
n∑

j=1

n∑
j=1

t(j, i)XORO(j, i) ∗ (n− i). (3.3)
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Figure 3.5: a.) Test Vector b.)Output Response

Figure 3.6: Test Vector passing through Output Response

WTM = 

0 2 3 2 4 4 4 4

5 0 2 1 5 5 1 3

4 2 0 2 4 4 4 1

6 4 1 0 6 1 2 2

3 1 4 3 0 3 5 5

5 3 2 1 5 0 3 3

3 1 4 3 3 3 0 5

6 4 1 0 6 6 2 0


and W represents the set of weights associated with each edge indicating the total

number of signal transitions (i.e., total switching activity) in the whole circuit consid-
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ering internal lines for consecutive application of two adjacent test vectors. So, WTM

(Weighted transition matrix) represents a matrix of total transitions and it is called

as Transition graph or T-graph. For example, Fig. 3.6 represents the T-graph for the

test vectors shown in Fig. 3.5(a),(b) for S27 benchmark circuit of ISCAS85. The cost

function g(ni) of a successor ni of the node n is calculated by g(ni) = g(n)+W(n,ni),

where W-value is taken from the T-graph.

The proposed algorithms finds the optimal ordering of test vectors from the search

space as shown by the path < 5,2,7,1,3,8,4,6 > from Start node to Goal node in Fig.

3.7.

Figure 3.7: Finding optimal path in informed search space

3.3.3 Empirical observation

The proposed algorithm AITVR was implemented in MATLAB on an Windows plat-

form with an Intel Pentium IV proces- sor of 1 GHz clock speed and 1 GB RAM. For

evaluation of the proposed algorithm, S27 benchmark circuits were considered. First

test patterns were generated by the Mentor Graphics. DFT Advisor and Fast Scan

are used from Mentor Graphics to generate patterns.

Mentor Graphics ATPG tool with 100% fault coverage and those were taken as initial

ordering of the test set. In this work, we have reduced dynamic power consumption

during test application without losing stuck-at fault coverage. A simulation-based
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technique has been used to obtain the actual switching activity at the internal nodes

of a circuit using unit-delay model and the total Weighted Transition Matrix was

formed.

Experimental result shows that the dynamic power of a given combinational circuit

can be reduced by about 22.11% after applying the test vectors in the order given

by AITVR over the test vectors order given by Mentor Graphics, where as Hamming

distance method provides 17.39% reduction in switching activity on a average for all

the benchmarks. These are shown in table I.

Table I: Comparison of Switching activity in Hamming and AI

Sr.
No

ISCAS
cir-
cuit

No.of
Test
Pat-
terns

Hamming %
reduc-
tion

Artificial
Intelli-
gence

% re-
duction

1 S27 23 19 17.39 10 56.52
2 S298 1595 1631 0 1328 16.73
3 S344 1475 1517 0 1244 15.66
4 S349 1602 1615 0 1312 18.10
5 S382 3951 4008 0 3595 9.01
6 S386 402 389 3.23 250 37.8
7 S400 4124 4139 0 3439 16.61
8 S420 3239 3241 0 2642 18.43
9 S444 4218 4187 0 3585 15.00
10 S510 754 697 7.55 536 28.9
11 S526 4523 4510 0.2 3969 12.24
12 S641 3181 3185 0 2674 15.93
13 S713 2590 2626 0 2165 16.40
14 S820 857 794 7.3 616 28.12
15 S832 886 815 8.01 653 26.29

Avg 22.11
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Bit Filling Algorithm

4.1 MT Fill Algorithm

The different techniques to reduce the dynamic power are: test vector ordering [29]

[30][39][42], scan-cell ordering [35][15][42], low power ATPG [36] etc. The don’t care

bits of the ATPG generated test patterns are often filled judiciously to reduce dynamic

power. Another way to reduce the dynamic power is to guard the circuit against the

scan-transitions. As it has been pointed out in [29][30][38], the transitions occurring

due to shifting-in the test patterns and shifting-out the responses is a major source of

dynamic power consumption, as it introduces a large number of ripples in the input to

the circuit[30].The don’t care bits (X’s) of test patterns are filled with specific values

(adjacent, 0 or 1) so as to minimize the occurrence of such transitions and thus the

dynamic power during testing. Compared to other solutions, such a filling technique

has the advantage to be applicable after the end of the design process and does not

require any modifications to the circuit. Classical non-random filling heuristics are

discussed in [24]. These are MT-filling (Minimum Transition filling), 0-filling, and

1-filling. For example, consider the test pattern 0X1X1XX0XX0XX. If we apply each

of the three nonrandom filling heuristics, the resulting pattern will be:

o 0011111000000 with MT-filling.

39
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o 0010100000000 with 0-filling.

o 0111111011011 with 1-filling.

Here in MT fill algorithm on either side of don’t care if there is ’1’ than don’t care

is filled up with ’1’otherwise ’0’. Whereas in ’0’ fill all don’t cares are filled up with

’0’s. and in 1-fill all don’t cares are filled up with ’1’s. As it can be seen that with

MT Fill only two switchings are there whereas with 0 fill and 1 fill there are four and

five switchings respectively. So MT Fill is the optimum method to reduce power.

Estimation of switching activity with artificial intelligence(AI) approach and com-

pression with selective Huffman approach for various benchmark circuits are shown

in table II and III respectively.

4.2 Frequency Directed Bit filling Algorithm

For the statistical codes, test data is divided into equal size blocks of B bits. To

improve the test data compression, the no. of distinct blocks in a given test set

should be reduced and frequency of occurrence for each distinct block should be

increased. For coding process, for each distinct block, the corresponding frequency of

occurrence is calculated. The Hamming distance of block B1 with highest frequency

of occurrence will be calculated from the B2 with the second highest frequency. The

Hamming distance is 1 if the bits on the same position of two blocks are opposite,

i.e. ”1” and ”0”.

The Hamming distance between two blocks is summation of such bits with opposite

values. The Hamming distance between 10X1 and 010X is 2 as its first and second

bits have opposite values. If the Hamming distance between B1 and B2 is more than

0, the Hamming distance with next block with descending order of frequency will be

calculated. Two blocks for which the Hamming distance is 0, will be merged and

a new block M1 will come into existence. The next block in the sequence will be

than compared with merged block M1.This process is repeated until further merging

is not possible. The process is repeated with the next highest frequently occurring
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still unmerged block. The merging has increased the number of specified bits. Still

there is a chance that few bits are unspecified. Such bits are replaced with zeroes.

Let’s understand the concept with one example

Table I: Test data set for frequency directed bit filling

X 0 1 1 1 X X X X 0 1 0 0 1 X X
1 1 0 1 1 1 X X 0 0 0 0 1 0 X X
1 1 0 1 X 1 X X 1 1 0 X 1 1 X X
0 1 0 1 1 0 X X X 0 1 X 1 0 X X

Consider the test data set with total 62 bits shown in table I. Here the bits size b

=4. To make the last block of size b, at the end of test set two don?t care bits are

appended.

Here the unique vectors are {10XX, 11XX, 1101, 01XX, X011, 1XXX, 0000, X010,

X1XX, 110X, 0101, X01X} with the corresponding frequencies {3, 2, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1}. Starting with B1: 10XX. The Hamming distance of B1 from B2, B3, B4

is 1, 1, 2 respectively but with B5, it is 0. So B1 will be merged with B5. 10XX and

X011 will make a merged block 1011 and frequency of this merged block is sum of

the individual block i.e. 4. This merged block M1 will be further compared with B6

to B12. B6 and B12 will be merged with M1. After one cycle of merging the merged

block 1101 has frequency 6. The next cycle of merging will start with B2 as it is

still unmerged. The same process will continue with all unmerged blocks. For given

example, the merged symbols are {1011, 1101, 0101, 0000, X010} with corresponding

frequencies 6, 6, 2, 1, 1}. The last merged symbol X010 still contains a dont care bit

which will be replaced by 0 and the merged symbol will be 0010.

4.2.1 For Optimization of Compression and Power Both



CHAPTER 4. BIT FILLING ALGORITHM 42

For filling the bits such that it improves power and compression both together, we

will have to find out the locations of bits which incorporate to compression heavily.

The same way the locations of the bits which incorporate to scan power heavily are

also necessary to know. Considering to test data compression, all the bits in test

vectors have equal weight. But for scan power, it is well known that the bit location

in scan-in and scan-out vectors is weighted in term of contribution to power.

For that, lets explore this concept.

Lets consider a sequence of scan-in and scan out like this.

1. A scan-in vector t1 is inserted to scan register which cause WTMload number of

transitions to occur. t1 scan-in vector generated the O1 output response. Here n is

number of bits in each test vector.

2. During scan-out of O1 from scan register, WTMunload transitions are occurred.

3. Now suppose that, the next scan-in vector selected is t3

4. So while O1 is being scanned out, t3 is being scanned-in. The WTMLoad for the

loading operation is given for t1 pattern containing n bits by equation

WTMLOADt1 =
n∑

i=1

(t1(i)XORt1(i + 1)) ∗ (n− i) (4.1)

Similarly for the unloading operation of O1, WTMUnload can be calculated as given

in equation

WTMunloadoi =
n∑

i=1

(O1(i)XORO1(i + 1)) ∗ i (4.2)

The sequence of unloading O1 scan-out pattern is in parallel with loading of t3 scan-in

pattern and so on.

So total WTM between t1-t3 which is denoted as WTM1-3 is calculated as below:

WTM1−3=WTMUNLOADo1 + WTMLOADt3 + (t3(1)XORO1(n)) ∗ i (4.3)
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In equation the last term considers the mismatch between the last bit of scan-out O1

vector and first bit of t3 scan-in vector. If these two bits have different values, it will

add total n transitions.

Now as we are discussing, the bit filling methods, we will consider WTM load and

WTMi-j for given test vector. If {B1, B2,. . . . . . .Bn} are the bits of vector t1, as

shown above from B1 to Bn, the contribution of bits to scan-in power increases

linearly. But the power contribution of bit n has one more term in overall equation

and it is depending on last scanout response. So from above equation, it can be

inferred that for test data compression, all the bits in test vector has equal weight

but for scan power the bits carry the location wise increasing weight. The last bit

has an added weight because of last output response also.

4.2.2 Zone wise Bit Filling

Let us divided the test vector {B1, B2,. . . . . . .Bn} in to three different zones.

Zone I : B1, B2,. . . . . . .Bk

Here the value of k is user defined. How to decide the value of K is described later

on. It is clear that 1<k<n. In the proposed adaptive bit filling method, zone-I is bit

filled using algorithm- I discussed above.

Zone II : Bk+1, Bk+2,. . . . . . .Bn-1

Zone – II is bit filled with minimum transition fill.

Zone III : Bn

Bit n in zone-III will be filled after considering all reordering options. The following

example clears the zone-III bit filling. Here scan-out response 1010 is being out while

scan-in vector 010X is being in.

Case-I : X is filled with opposite bit of the last bit of output response.

In this case, the transitions are as shown below in fig. 4.2.

Case-II: X is filled with same bit the as last bit of output response.

In this case, the transitions are as shown below in fig. 4.3:
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Figure 4.1: Test Vector Sequence

Figure 4.2: Transitions in case of Opposite Bit Filling

As it is made clear from above discussion, the bit filling of bit Bn will be done during

test vector reordering, the following algorithm II is proposed for filling of remaining

bits i.e. bits from B1 to Bn-1 .

Algorithm – II

1. Lets take test data set T = [m, n] where m is number of test vectors and n is

the number of bits in each test vector. This test data set is partially filled test set

generated by ATPG.

2. Enter the adaptive partition index k

3. For all bits from Bi, k+1 to Bi, n-1 , apply MT fill

algorithm for bit filling. Call this new matrix as Tmt

4. Divide the T into symbols of size s where n/s is an

integer u.

5. The total number of symbols will be STotal.
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Figure 4.3: Transitions in case of Same Bit Filling

6. Separate out the fully specified symbols with

partially specified symbols.

7. Arrange the fully specified vectors in descending

order of their frequency of occurrence. Name it Sfully.

8. Arrange the partially specified vectors in descending order of their frequency of

occurrence. Name it Spartially.

9. For each element Spi of Spartially (where n=i = 1),

follow the steps 9 to 12.

10. Find the bit location wise Hamming distance of Spi from first element Sf1of Sfully

.

11. If Hamming distance is zero, merge the Sp1 with Sf1. The frequency of Sf1will

be now increased by

frequency of Sp1.

12. If Hamming distance is not zero, compare it with the next element of Sp1. and

continue upto last element.

13. Still if the matching fully specified symbol is not

found, apply MT filling for that symbol and add it as

a new element to array of Sf1.

14. With this, The Spartially is merged in to Sfully.

15. Now as in Tmt, the symbols from 1 to +(k/s)+ in each row is still not processed
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for bit filling. Symbols from +(k/s)+ to (u-1) in each row are fully specified (because

of MT filling) and uth symbol in each row is still not to be processed (it is kept for

reordering).

16. So all the partially specified symbols within the range 1 to +(k/s)+ in each row

will be replaced with their corresponding fixed symbols.

17. The test set matrix T may now consist the don?t care

bits in last column only. Let?s call this matrix as T-1

4.3 Mixed approach : Frequency directed + MT

Fill

In the mixed approach the test vector is equally divided in two parts. In one part

frequency directed approach is to be applied and in another part MT Fill algorithm

is to be applied. After applying MT Fill to one part that data is to be mapped

in another part of test vector . Now make a list of groups and apply Compression

algorithm to that data and find percentage compression. For example fig 4.4 Shows

the list of test vectors. Since the length of the test vector is 6 we are equally dividing

in a segment of three bits each. That is shown in fig 4.5.a and 4.5.b. After MT Filling

in fig 4.6 map it to fig 4.5 a. as per the ascending order as shown . Now make a list

of groups with probability as in fig 4.6 and apply compression algorithm on that data

and find out percentage compression.

Again repeat the procedure of section 4.2.1 to generate WTM matrix. Estimation

of switching activity with artificial intelligence(AI) approach and compression with

selective Huffman appproach for various benchmark circuits are shown in table II and

III respectively.
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Figure 4.4: Test Vectors

Figure 4.5: Part of data for a.)Frequency Directed b.MT Fill)

Figure 4.6: MT Filled data is mapped in above fig.
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Table II: Comparison of Switching activity in different ISCAS Circuits

ISCAS
Circuits

Symbole
Size

SWITCHING

AI with
Freq.Directed

AI with
Freq.Directed
+ MT Fill

AI with
MT Fill

S298 2 1420 1160 1082
7 1273 1106 1082

S344 3 1241 1015 924
5 1224 1024 924

S382 3 3402 3248 3233
7 3409 3292 3233

S386 2 190 175 167
3 189 170 167

S400 3 3252 3051 3000
7 3427 3170 3000

S510 2 527 520 505
3 527 520 505

S526 3 3895 3668 3579
7 3772 3656 3579

S820 5 616 609 604
S832 5 686 673 630
S349 3 1404 1270 1213

5 1322 1219 1213
S344 3 3703 3600 3582

7 3613 3588 3582
S420 2 2342 2221 2142

4 2385 2164 2142
8 2261 2247 2142



CHAPTER 4. BIT FILLING ALGORITHM 49

Table III: Comparison of Compression in different ISCAS Circuits

ISCAS
Circuits

Symbole
Size

Copmression

Comp with
FD

Comp with
FD + MT
Fill

Comp with
MT Fill

S298 2 17.98 15.51 13.26
7 23.64 22.66 20.68

S344 3 23.07 22.44 21.53
5 22.56 20.15 18.97

S382 3 21.57 20.58 20.30
7 23.11 21.09 18.62

S386 2 35.38 35.08 33.39
3 47.07 46.78 44.44

S400 3 21.93 21.43 20.43
7 25.18 22.81 19.80

S510 2 29.60 29.10 28.60
3 20.64 20.40 20.14

S526 3 22.38 21.54 21.44
7 25.00 23.69 21.28

S820 5 17.25 17.06 16.70
S832 5 16.18 16.00 15.63
S349 3 22.14 20.47 19.76

5 17.38 15.95 15.71
S344 3 19.18 18.77 18.63

7 18.63 18.36 17.00
S420 2 34.16 33.15 32.75

4 21.76 20.64 20.58
8 27.26 26.18 24.67



Chapter 5

Compression Algorithm

Test compression involves compressing the amount of test data (both stimulus and

response) that must be stored on automatic test equipment (ATE) for testing with a

deterministic (automatic test pattern generation [ATPG]-generated) test set. This is

done by adding some additional on-chip hardware before the scan chains to decom-

press the test stimulus coming from the ATE and after the scan chains to compress

the response going to the ATE. This differs from built-in self-test (BIST) and hybrid

BIST in that the test vectors that are applied to the circuit under test (CUT) are ex-

actly the same as the test vectors in the original deterministic (ATPG-generated) test

set (no additional pseudo-random vectors are applied). Test compression can provide

a 10x or even 100x reduction in the amount of test data stored on the ATE. This

greatly reduces ATE memory requirements and even more importantly reduces test

time because less data has to be transferred across the limited bandwidth between

the ATE and the chip. Moreover, test compression methodologies are easy to adopt

in industry because they are compatible with the conventional design rules and test

generation flows used for scan testing.

Automatic test equipment (ATE) has limited speed, memory, and I/O channels. The

test data bandwidth between the tester and the chip, as illustrated in Figure 5.1, is

relatively low and generally is a bottleneck with regard to how fast a chip can be

tested . The chip cannot be tested any faster than the amount of time required to

50
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transfer the test data which is equal to:

AmountofTestDataonTester
(NumberofTesterChannels)(TesterClockRate)

Figure 5.1: Block diagram illustrating test data bandwidth

The idea in test compression is to compress the amount of test data (both stimulus

and response) that is stored on the tester. This provides two advantages. The first

is that it reduces the amount of tester memory that is required. The second and

more important advantage is that it reduces test time because less test data has to

be transferred across the low bandwidth link between the tester and the chip. Test

compression is achieved by adding some additional on-chip hardware before the scan

chains to decompress the test stimulus coming from the tester and after the scan

chains to compact the response going to the tester. This is illustrated in Figure

5.2. This extra on-chip hardware allows the test data to be stored on the tester in a

compressed form.

Test data is inherently highly compressible. Test vectors have many unspecified bits

that are not assigned values during ATPG (i.e., they are dont cares that can be

filled with any value with no impact on the fault coverage). In fact, typically only

1 to 5% of the bits have specified (care) values, and even the specified values tend

to be highly correlated due to the fact that faults are structurally related in the

circuit. Consequently, lossless compression techniques can be used to significantly

reduce the amount of test stimulus data that must be stored on the tester. The on-
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chip decompressor expands the compressed test stimulus back into the original test

vectors (matching in all the care bits) as they are shifted into the scan chains. Output

response is even more compressible than test stimulus because lossy compression (also

known as compaction) can be used.

Figure 5.2: Architecture for test compression

5.1 Test Stimulus Compression

A test cube is defined as a deterministic test vector in which the bits that are not

assigned values by the ATPG procedure are left as dont cares (Xs). Normally, ATPG

procedures perform random fill, in which all the Xs in the test cubes are filled ran-

domly with 1s and 0s to create fully specified test vectors; however, for test stimulus

compression, random fill is not performed during ATPG so the resulting test set con-

sists of incompletely specified test cubes. The Xs make the test cubes much easier

to compress than fully specified test vectors. As mentioned earlier, test stimulus

compression should be an information lossless procedure with respect to the specified

(care) bits in order to preserve the fault coverage of the original test cubes. After

decompression, the resulting test patterns shifted into the scan chains should match

the original test cubes in all the specified (care) bits. Many schemes for compressing
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test cubes have been proposed. They can be broadly classified into the three cate-

gories shown below; these schemes are described in detail in the following subsections

(shown in parentheses):

1. Code-based schemes These schemes use data compression codes to encode

the test cubes.

2. Linear-decompression-based schemes These schemes decompress the data

using only linear operations (e.g., linear feedback shift registers [LFSRs] and exclusive-

OR [XOR] networks).

3. Broadcast-scan-based schemes These schemes are based on broadcasting

the same value to multiple scan chains.

5.2 Code-Based Schemes

One approach for test compression is to use data compression codes to encode the

test cubes. Data compression codes partition the original data into symbols, and

then each symbol is replaced with a codeword to form the compressed data. The

decompression is performed by having a decoder that simply converts each codeword

into the corresponding symbol.

Data compression codes can be classified into four categories, depending on whether

the symbols have a fixed size (i.e., each symbol contains exactly n bits) or a variable

size (i.e., different symbols have different numbers of bits) and whether the codewords

have a fixed or variable size.

1. Fixed-to-fixed Dictionary code

2. Fixed-to-variable Huffman code

3. Variable-to-fixed Run-length code

4. Variable-to-variable Golomb code
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5.2.1 Dictionary Code (Fixed-to-Fixed)

In fixed-to-fixed coding, the original test cubes are partitioned into n-bit blocks to

form the symbols. These symbols are then encoded with codewords that each have b

bits. In order to get compression, b must be less than n. One can view each symbol

as an entry in a dictionary and each codeword as an index into the dictionary that

points to the corresponding symbol. There are 2n possible symbols and 2b possible

codewords, so not all possible symbols can be in the dictionary. If Sdictionary is the

set of symbols that are in dictionary and Sdata is the set of symbols that occur in the

original data, then if Sdata ⊆ Sdictionary, it is a complete dictionary; otherwise, it is a

partial dictionary. Compression can be achieved with a complete dictionary provided

that the number of distinct symbols that occur in the original data |Sdata | is much

less than 2n, the number of all possible symbols.

A test compression scheme that uses a complete dictionary was described in Figure

5.3. There are n scan chains,and the test cubes are partitioned into n-bit symbols

such that each scan slice corresponds to a symbol. Each scan slice is comprised of the

n-bits that are loaded into the scan chains in each clock cycle as illustrated in Figure

5.3. The Xs in the test cubes are filled so as to minimize the number of distinct

symbols (i.e., |Sdata |). The size of each codeword is b bits, where b = dlog2|Sdatae.

Note that, with this scheme, b channels from the tester can be used to load n scan

chains. Normally, b channels from the tester can only load b scan chains. By having

more scan chains, the length of each scan chain becomes shorter, thus reducing the

number of clock cycles required to load each scan vector and therefore reducing the

test time. This is a good illustration of how test compression reduces not only tester

storage but also test time.

A drawback of using a complete dictionary is that the size of the dictionary can

become very large, resulting in too much overhead for the decompressor. In , a

partial dictionary coding scheme was proposed in which the size of the dictionary

is selected by the user based on how much area the user wants to allocate for the
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Figure 5.3: Test compression using a complete dictionary

decompressor. If the size of the dictionary is 2b, then the 2b symbols that occur most

frequently in the test cubes are placed in the dictionary. For any symbol that is not

in the dictionary, the symbol is left unencoded and the dictionary is bypassed. An

extra bit is added to each codeword to indicate whether or not to use the dictionary.

5.2.2 Huffman Code (Fixed-to-Variable)

In fixed-to-variable coding, the original test cubes are partitioned into n-bit blocks to

form the symbols. These symbols are then encoded using variable-length codewords.

One form of fixed-to-variable coding is statistical coding, where the idea is to calculate

the frequency of occurrence of the different symbols in the original test cubes and make

the codewords that occur most frequently have fewer bits and those that occur least

frequently more bits. This minimizes the average length of a codeword. A Huffman

code is an optimal statistical code that is proven to provide the shortest average

codeword length among all uniquely decodable fixed-to-variable length codes. A

Huffman code is obtained by constructing a Test Compression Huffman tree. The

path from the root to each leaf in the Huffman tree gives the codeword for the binary

string corresponding to the leaf. An example of constructing a Huffman code can be
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seen in figure 5.4 and Figures 5.5. Figure 5.5 shows the frequency of occurrence of

each of the possible symbols. The example shown in Figure 5.5 has a total of 60 4-bit

symbols. Figure 5.6 shows the Huffman tree for this frequency distribution, and the

corresponding codewords are shown in figure 5.4.

Figure 5.4: Statistical Coding based on symbole frequencies

Figure 5.5: Example of test set divided into 4 bit block

The test cubes are partitioned into symbols and then the Xs in the test cubes are

filled to maximally skew the frequency of occurrence of the symbols. A selective

Huffman code in which only the k most frequently occurring symbols are encoded

is used. The reason for this is that using a full Huffman code that encodes all n-

bit symbols requires a decoder with 2n-1 states. By only selectively encoding the

k most frequently occurring symbols, the decoder requires only n+k states. It was
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Figure 5.6: Huffman Tree

shown that a selective Huffman code achieves only slightly less compression than a full

Huffman code for the same symbol size while using a much smaller decoder. Because

the decoder size grows only linearly with selective Huffman encoding, it is possible to

use a much larger symbol size, which significantly improves the effectiveness of the

code thereby achieving much more overall compression.

In selective Huffman coding, an extra bit is added at the beginning of each codeword

to indicate whether or not it is coded. As an example, consider selective Huffman

coding for the test set shown in Figure 5.5, where only the three most frequency

occurring symbols are encoded (i.e., k = 3). A Huffman tree is built only for the

three most frequently occurring symbols. The codewords are then constructed as

shown in figure 5.4. The first bit of the codewords for the three most frequently

occurring symbols is 1 to indicate that they are coded (and hence must pass through

the decoder). The first bit of the rest of the codewords is a 0 to indicate that they

are not coded (i.e., the remainder of the codeword is simply the unencoded symbol

itself).

A method for improving the compression with a statistical code by modifying the

test cubes without losing fault coverage is also described. The goal is to modify

the specified bits in the test cubes in a way that maximally skews the frequency
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distribution.

5.2.3 Run-Length Code (Variable-to-Fixed)

In variable-to-fixed coding, the original test cubes are partitioned into variablelength

symbols, and the codewords are each b-bits long. In run-length coding, one particular

variable-to-fixed coding scheme, the symbols consist of runs of consecutive 0s or 1s.

An example of a 3-bit run-length code for runs of 0s is given in figure 5.7. Each

codeword is 3 bits long and encodes different length runs of 0s. As an example, the

sequence 001 0001 01 0000001 1 000001 can be encoded into 010 011 001 110 000 101,

which is a reduction from 23 bits to 18 bits. For very long runs of 0s (longer than

7), codeword 111 can be used repeatedly as needed. Note that only data with an

unbalanced number of 0s and 1s can be efficiently compressed by a run-length code.

Figure 5.7: 3 Bit runlength code

Test compression based on a run-length code was proposed using a cyclical scan

architecture as shown in Figure 5.8. The cyclical scan architecture XORs the data

currently being shifted in with the previous test vector. Thus, instead of applying

the original test set, TD={t1,t2,t3.........tn} a difference vector set, Tdiff = t1, t1 ⊕

t2, t2 ⊕ t3, ......., t(n−1) ⊕ tn is applied instead. The advantage of this is that the test

vectors can be ordered so similar test vectors come after each other so the difference

vectors have many 0’s. This enhances the effectiveness of run-length coding.
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Figure 5.8: Cyclical scan architecture for applying difference vectors

5.2.4 Golomb Code (Variable-to-Variable)

In variable-to-variable coding, both the symbols and codewords have variable length.

A Golomb code [Chandra 2001] is a variable-to-variable code that evolved from the

run-length code. To construct a Golomb code, a specific parameter m, called the

group size (usually a power of 2), is first chosen. All the run-lengths are divided into

groups of size m denoted by A1,A2,A3...... The set of run-lengths {0,1,2,.....m-1} form

the first group A1, the set of run-lengths {m,m+1,m+2.....2m} form the second group

A2, and so on. Each codeword of a Golomb code consists of two parts: a group prefix

and a tail. A run-length L that belongs to group Ak is assigned a group prefix (k-1)

of ones followed by a zero. The tail is an index of the run-length in a group. If m is

chosen to be a power of 2 (i.e., m = 2N for some integer N), then each group contains

2N members, and a log2m-bit-long sequence (tail) can uniquely identify each member

within the group. Figure 5.9 shows an example of Golomb code in which each group

contains four run-lengths. In the original test sequence TD, the run-length of the 0s

before the first 1 is 2. Based on figure 5.9, the sequence 001 is encoded as 010, in

which the 0 is the prefix and 10 is the tail. Similar procedures are repeated until all

the run-lengths are processed. It can be found that the length of the test sequence can

be reduced from 43 to 32. In a Golomb code, each group contains the same number

of run-lengths and thus may still be inefficient in some cases.
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Figure 5.9: GOLOMB Code

In 2001, Chandra and Chakrabarty proposed a new scheme based on the observation

that the frequency of runs of 0s with run length less than 20 is high and even within

the range of 0 to 20, the frequency of runs of length l decreases rapidly with increasing

l. So test data compression can be more efficient if the runs of 0s with shorter run

length are mapped to shorter codewords. So further optimization can be achieved

using frequency-directed run-length (FDR) codes shown in figure 5.10. The FDR is

similar to Golomb code but the difference is the variable group size. The size of the

ith group is equal to 2i i.e. that group contains 2i members. Each codeword consists

of two parts-a group prefix and a tail. The group prefix is used to identify the group

to which the run belongs and the tail is used to identify the members within the

group.

The FDR code is very efficient for compressing data that has few 1s and long runs

of 0s but inefficient for data streams that are composed of both runs of 0s and runs

of 1s. Generally test vectors contain 0s and 1s in group i.e. there will be a run of 1s

followed by run of 0s and vice versa. Maleh and Abaji proposed an extension of FDR

(EFDR) shown in figure 5.11. Here the run of 0s followed by bit ’1’ and run of 1s

followed by bit ’0’ are coded same way as FDR but adding an extra bit at beginning

of FDR codeword. If that extra bit of codeword is 0, the run is of 0 type and if the

first bit is 1 then the run type is of ’1’.
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Figure 5.10: FDR Code

Figure 5.11: EFDR Code

Generally, the test set T is composed of alternative runs of zeros and run of ones.

In Alternative Run Length coding style, instead of adding the extra bit to each run

length code-word, only one bit will be added at beginning to indicate the type of

first run length and then successive run length is automatically alternate type. So all

run lengths are coded with normal FDR but at beginning, one bit will be added to

indicate the first run type as shown in figure 5.12.

An evolution in Alternate Run Length based FDR is Shifted Alternate Runlength

based FDR. Based on the fact that, in alternate FDR, there will be no run-length

of 0 sizes. So code word for run length size 0 is not needed now. This code word
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is assigned to run length size 1 and so on each code word is shifted to one position

higher. This helps in achieving higher compression compared to Alternate FDR.

Figure 5.12: SAFDR Code

The FDR code is composed from two parts, a prefix and a tail. In order to decompress

a FDR code, the on-chip decoder has to identify these two parts. Because the code

is not dependent on a group size as Golomb codes, the decoder has to detect the

length of the prefix in order to decode the tail. So, the FDR code requires a more

complicated decoder with higher area overhead. Therefore, regardless of the good

compression ratios the area overhead of FDR is a disadvantage. So a mix of Huffman

and FDR is proposed which in stead of only patterns of fixed-length uses patterns

of variable-length as input to the Huffman algorithm (VIHC). Here the compression

ratio is retained because of FDR and the area overhead is reduced using selective

Huffman Coding as shown in figure 5.13.
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Figure 5.13: VIHC Code



Chapter 6

Error Resilience

Error-resilience is the capability of a test data stream [which is transferred from

an automatic test equipment (ATE) to the device under test (DUT)] to tolerate

errors. These errors may occur in an ATE, either in the electronics components of the

loadboard or in the high-speed serial communication links. Initially, it is shown that

the combined effect of such errors and test data compression can seriously degrade

the test quality (as measured by coverage) of the compressed data streams. The

effects of errors on compressed streams are analyzed and various test data compression

approaches are evaluated.

6.1 Brief Overview

THE electronics industry has been highly affected by the widespread use of third-party

ready-to-use intellectual property (IP) cores [1] for assembling complex ICs. Recently,

the integration of multiple cores has resulted in the manufacturing of system-on-a-

chip (SoC) on the same silicon die. A complete test set for an SoC includes test sets

for each core (often provided by the core vendor). The aggregate volume of these

test sets can be very large, in most cases well in the range of a few gigabits. The

application of such large volume of test data requires significant storage facilities on

an ATE and may take a long time to execute. Large storage translates into higher

64
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equipment cost, while long test application time impacts the ATE throughput [devices

under test (DUTs) tested per unit time], thus increasing the overall cost of the test. To

address these problems, test data compression through so-called resource partitioning

has been introduced. By compressing the initial test sets, a smaller volume of data

is loaded on the ATE, reducing the cost of storage. Additionally, the compressed

test data is transferred to the DUT where it is decompressed and applied. As a

smaller volume of data is transferred, then test application time can be reduced

too. Traditionally, a reduction in data volume has been accomplished through vector

compaction [2]; however, compression can be applied to already compacted data to

further reduce its volume.

6.1.1 Previous Work done

Current literature has addressed compression mostly with respect to its efficiency in

reducing data volume (commonly quantified by the compression ratio), test applica-

tion time, and overhead complexity (often for the on-DUT decompression circuitry).

In [3], run-length coding has been proposed for compression. This has been ex-

tended by Golomb and frequency- directed-run length (FDR) coding techniques in

which variable-length codewords are used for runs of 0 [4], [5]. In [6], Huffman cod-

ing has been applied to fixed length symbols. The application of Huffman coding

to variable-length symbols has been studied in the so-called variable-input-huffman

coding (VIHC) [7]. To avoid the exponential complexity of a Huffman decoder with

an increasing length of symbols, [8] has introduced selective Huffman coding. For

manufacturing testing of VLSI systems such as SoC, the transfer of compressed data

between the ATE and the DUT must be also considered. In today’s ATE architec-

tures, the high volume and the gigahertz speed of communication may result in the

likely occurrence of errors in data transmission. These errors can be modeled by the

so-called bit-flips which affect the test data stream. [9] has statistically evaluated the

error resilience of Huffman coding to achieve a higher level of error resilience against
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bit-flips. This has been further expanded in [11] by analyzing the possible outcomes of

a bit-flip on compressed test streams and evaluating the loss of coverage as a measure

of error resilience for different compression techniques.

6.1.2 Basic Principles

Why Bit-Flips

Various scenarios can lead to bit-flips in the operation of the head of an ATE. The

presence of a transmission line between the ATE pins and the DUT may be affected

by noise in the so-called loadboard, leading to errors due to bit-flips. Moreover,

the generation of test inputs as pin waveforms to the DUT, can also introduce an

additional source of bit-flips (for example a ground bounce at the DUT receiver

connected to the loadboard can result in bit-flips if the voltage levels are close to the

margins such as for 3.3 or 1.5 V DUTs). In general, once the ATE test program and

loadboard are fully debugged, the occurrence of bit-flips can be reduced. However,

as testing requires very high speed (tens of millions ofATE cycles over hundreds of

pins), fewbit-flips must be considered to be unavoidable in ATE environments [13].

Bit-flips can negatively affect the testing process over its entire spectrum: while

developing test programs, bit-flips increase costs associated with debugging and de-

velopment, while reducing productivity. During manufacturing test, a bit-flip can

change data such that the coverage of the erroneous test set (as affected by bit-flips)

can be reduced.

Experimental Framework

For experimental evaluation of bit-flip effects and related phenomena, the MINTEST

dynamically compacted test-cubes for the full-scan versions of different benchmark

circuits are considered [2]. The location of the bit-flips is assumed to be uniformly

distributed over the entire bit-stream of a test set. This spreads bit-flips evenly and

permits to evaluate the results under the most stringent conditions. Bit-flip counts
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of 1, 2, 5, and 10 are used in experiments. Seven compression techniques (Golomb,

Huffman, Selective Huffman, FDR, EFDR, SAFDR and VIHC) are used to compress

the test vectors of each circuit.

Bit-Flips With Differentiation

In previous test data compression approaches, data is often preprocessed by vector

reordering and differentiation. Differentiation can further decrease error-resilience.

The difference vectorsD1,D2Dn are defined as D1=V1, D2=V2 XOR V1, Dn= Vn

XOR V (n-1) For decompression, the original vectors are restored from the difference

vectors as V1=D1, V2=D2 XOR V1, ..Vn=Dn XOR D(n-1) XOR.D2 XOR D1. By

substitution, ; therefore, if a bit-flip occurs in Di, then the process of restoring all

subsequent vectors (i.e. from the ith to the nth) will be affected.

To evaluate these phenomena, for each benchmark circuit, bit-flips are injected into

the reordered and differentiated test data stream. The reduction in coverage is the

measure by which the effect of bit-flips on differentiation is evaluated.

Bit-Flips Without Compression

The effect of a bit-flip is significant when test data compression is required. On av-

erage, bits in a compressed bit-stream carry more information compared with the

initial uncompressed stream because compression techniques rely on removing redun-

dancy. Consequently, on average, a bit-flip in a compressed bit stream can destroy

significantly more information. The coverage loss of uncompressed test streams due

to bit-flips represent a lower bound on the error-resilience. To properly quantify this

phenomena, bit-flips are injected into the uncompressed test data for each bench-

mark circuit, the erroneous test data is then fault simulated. Table II shows the fault

coverage results. The average coverage loss is only 0.01%-0.03% for 1 to 10 bit-flips.
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Table I: Bit Flip without Compression
Benchmark
Circuit

Fault Coverage Fault
coverage
In %

1 - Bit
flip

2 - Bit
flip

5 - Bit
flip

10 - Bit
flip

S27 98.00 96.00 96.00 95.50 98.00
S298 97.64 97.64 97.64 97.64 97.64
S344 99.28 99.28 99.28 99.00 99.28
S349 99.28 99.28 99.28 99.28 99.28
S382 97.94 97.94 97.94 97.94 97.94
S386 99.55 99.55 99.55 99.55 99.70
S400 97.59 97.59 97.59 97.59 97.59
S420 99.68 99.36 99.36 99.36 99.68
S444 98.22 98.22 98.22 98.22 98.22
S510 99.62 99.62 99.62 99.62 99.85
S526 97.95 97.95 97.95 97.95 97.95
S641 99.22 99.22 99.22 99.22 99.22
S713 99.23 99.23 99.13 99.13 99.23
S820 99.14 98.92 98.92 98.92 99.14
S832 97.17 97.17 97.17 97.17 98.39
S838 99.67 99.67 99.67 99.67 99.84

Bit-Flips With Compression

Consider a compressed test data with a compression ratio of 95%, i.e., a 20 reduction

in data volume. On average, each bit in the compressed bit stream is expanded into

20 bits of the initial uncompressed stream. If a bit-flip occurs in the compressed bit

stream, then we can expect 20 bits to be affected in the uncompressed stream. These

bits can be scattered over the uncompressed stream, thus, affecting multiple vectors

and seriously degrading the coverage of the decompressed test set. To quantify the

decrease in error-resilience when compression is employed, bit-flips are injected into

the compressed test stream of each circuit. Seven compression techniques (Golomb,

Huffman, Selective Huffman, FDR, EFDR, SAFDR and VIHC) are used to compress

the test vectors of each circuit. Tables II -VII show the average coverage as represen-

tative of error-resilience of different compression techniques. In all tables, a column
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corresponds to a specific bit-flip count; for example, ”1b” means only 1 bit-flip has

been injected. Huffman coding results in a much lower coverage loss due to bit-flips.

Table II: Bit Flip after Compression for Huffman Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 98.00 95.00 97.00 95.00 98.00
S298 97.47 97.64 97.64 97.30 97.64
S344 99.00 99.00 99.00 99.00 99.28
S349 98.70 98.70 98.70 98.55 99.28
S382 97.81 97.81 97.81 97.81 97.94
S386 99.39 99.39 98.79 98.79 99.70
S400 97.34 97.34 97.34 97.34 97.59
S420 99.68 99.68 99.20 99.20 99.68
S444 97.33 97.33 97.33 97.33 98.22
S510 99.39 99.39 99.39 99.08 99.85
S526 97.52 97.52 97.52 97.52 97.95
S641 99.13 99.13 99.13 98.83 99.22
S713 99.23 99.23 99.04 98.85 99.23
S820 98.92 98.92 98.92 98.86 99.14
S832 98.34 98.34 98.34 98.28 98.39
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Table III: Bit Flip after Compression for Selective Huffman Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 95.00 95.00 90.00 81.00 98.00
S298 97.30 97.30 97.30 97.30 97.64
S344 99.00 99.00 99.00 99.00 99.28
S349 98.70 98.70 98.70 98.70 99.28
S382 97.81 97.81 97.81 97.69 97.94
S386 99.39 99.39 99.39 99.20 99.70
S400 97.34 97.34 97.34 97.34 97.59
S420 99.68 99.68 99.20 99.20 99.68
S444 97.33 97.33 97.33 97.33 98.22
S510 99.39 99.39 99.08 98.69 99.85
S526 97.52 97.52 97.52 97.52 97.95
S641 99.13 99.13 98.93 98.93 99.22
S713 99.13 99.23 99.04 99.04 99.23
S820 98.92 99.14 98.86 98.86 99.14
S832 98.34 98.34 98.28 98.28 98.39
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Table IV: Bit Flip after Compression for FDR Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 95.00 98.00 97.00 97.00 98.00
S298 97.64 97.64 97.64 97.30 97.64
S344 99.28 99.00 99.00 99.00 99.28
S349 99.28 99.28 98.99 98.99 99.28
S382 97.94 97.94 97.94 97.81 97.94
S386 99.39 99.39 99.39 99.79 99.70
S400 97.59 97.59 97.59 97.34 97.59
S420 99.68 99.68 99.20 99.68 99.68
S444 98.22 98.22 97.71 97.71 98.22
S510 99.39 99.39 99.39 99.39 99.85
S526 97.95 97.95 97.95 97.74 97.95
S641 99.22 99.22 99.22 99.13 99.22
S713 99.23 99.23 99.23 99.23 99.23
S820 98.92 99.14 98.92 98.80 99.14
S832 98.34 98.34 98.34 98.17 98.39
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Table V: Bit Flip after Compression for EFDR Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 98.00 98.00 90.00 85.00 98.00
S298 97.64 97.30 97.30 97.30 97.64
S344 99.28 99.00 99.00 99.00 99.28
S349 98.70 98.70 98.55 98.55 99.28
S382 97.94 97.81 97.81 97.81 97.94
S386 99.09 99.70 98.79 98.18 99.70
S400 97.59 97.34 97.34 97.34 97.59
S420 99.68 99.68 99.20 99.20 99.68
S444 98.22 97.33 97.33 97.33 98.22
S510 99.85 99.39 99.08 98.85 99.85
S526 97.95 97.52 97.52 97.52 97.95
S641 99.13 99.13 99.13 99.13 99.22
S713 99.23 99.23 99.23 99.23 99.23
S820 99.14 98.92 99.03 98.69 99.14
S832 98.34 98.34 98.28 98.11 98.39
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Table VI: Bit Flip after Compression for SAFDR Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 98.00 90.00 86.00 85.00 98.00
S298 97.64 97.30 97.30 97.30 97.64
S344 99.28 99.00 99.00 99.00 99.28
S349 99.28 98.70 98.55 98.55 99.28
S382 97.94 97.81 97.81 97.81 97.94
S386 99.39 99.39 98.79 98.33 99.70
S400 97.59 97.34 97.34 97.34 97.59
S420 99.68 99.68 99.20 99.20 99.68
S444 98.22 97.33 97.33 97.33 98.22
S510 99.39 99.39 99.08 98.69 99.85
S526 97.95 97.52 97.52 97.52 97.95
S641 99.13 99.13 99.13 99.13 99.22
S713 99.23 99.23 99.23 99.23 99.23
S820 99.14 98.92 98.97 98.69 99.14
S832 98.34 98.34 98.17 98.11 98.39
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Table VII: Bit Flip after Compression for GOLOMB Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 95.00 90.00 67.00 65.00 98.00
S298 97.30 97.30 97.30 96.96 97.64
S344 99.00 99.00 99.00 99.00 99.28
S349 98.70 98.70 98.70 98.55 99.28
S382 97.81 97.81 97.81 97.81 97.94
S386 99.39 99.39 98.79 98.79 99.70
S400 97.34 97.34 97.34 97.34 97.59
S420 99.68 99.68 99.20 99.20 99.68
S444 97.33 97.33 97.33 97.33 98.22
S510 99.39 99.39 99.08 98.62 99.85
S526 97.52 97.52 97.74 97.52 97.95
S641 99.13 99.13 99.13 99.13 99.22
S713 99.23 99.23 99.23 99.23 99.23
S820 98.92 98.92 99.09 98.69 99.14
S832 98.34 98.34 98.17 97.95 98.39
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Table VIII: Bit Flip after Compression for VIHC Coding

Benchmark
circuit

Fault Coverage Max.
Fault
coverage
(%)

1b 2b 5b 10b
S27 98.00 64.00 67.00 85.00 98.00
S298 97.30 97.30 97.30 97.30 97.64
S344 99.00 99.00 99.00 99.00 99.28
S349 98.41 98.70 98.70 98.55 99.28
S382 97.81 97.81 97.81 97.81 97.94
S386 99.39 99.70 99.39 98.79 99.70
S400 97.34 97.34 97.47 97.47 97.59
S420 99.68 99.68 99.20 99.20 99.68
S444 97.33 97.33 97.33 97.33 98.22
S510 99.39 99.39 99.08 98.85 99.85
S526 97.52 97.52 97.52 97.52 97.95
S641 99.13 99.13 99.13 99.13 99.22
S713 99.23 99.23 99.23 99.23 99.23
S820 99.14 98.92 98.86 98.80 99.14
S832 98.34 98.34 98.28 98.17 98.39

6.2 Analysis

Consider the test data for a combinational (or full-scan sequential) circuit given by V

test vectors, each vector is assumed to be m bits long. A compression technique often

partitions the uncompressed test data into a set of allowed symbols ((si | 1) ≤ I ≤

S ) where S is the total number of different symbols. A coding technique maps

each symbol si to a corresponding codeword ci The compressed bit-stream can be

represented by an ordering Π of codewords, (CΠ(1), CΠ(2),.. CΠ(N)) , where N is

the total number of symbols/codewords in the test data. This section analyzes the

possible outcomes of bit-flips on the compressed test streams.
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6.2.1 Propagation and Shifts

A bit-flip can change the compressed sequence in a complex manner; this is a func-

tion of different parameters such as compression ratio, number of symbols, length of

symbols/codewords, and the ordering . However, a bit-flip always affects a codeword

in one of the following manners.

o The affected codeword is broken into [k ≥ 1] valid codewords.

o The affected codeword is broken into k ≥ 0 valid codewords and a so-called

”dangling suffix” which is not a valid codeword.

Consider the set of Huffman codewords given by 0,10, 110, 111. A bit-flip affecting

codeword 0 results into a zero valid codeword and a dangling suffix of 1 which is not

a valid codeword. A bit-flip affecting the first bit of codeword 10, results into 00, i.e.,

two valid codewords. A bit-flip at the second bit of codeword 111, results into 101,

i.e., one valid codeword and a dangling suffix of 1 which is not valid.

Figure 6.1: Conceptual view of the shift effect due to a bit-flip

The significant feature of the first case is that if a codeword CΠ(i) in the compressed bit

stream is affected by a bit-flip, then all codewords CΠ(i+1) to CΠ(N) occurring next,

will be unaffected. The only effect of the bit-flip is to have k additional codewords

between CΠ(i-1) and CΠ(i+1) as a result of CΠ(i) being broken. In this case, the

correct sequence of codewords starting from CΠ(i+1) is shifted by k codewords. This

is shown in Fig. 6.1.
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Figure 6.2: Conceptual view of the propagation effect due to a bit-flip.

The significant feature of the second case is that if a codeword CΠ(i) is affected by a

bit-flip, the dangling suffix will form a valid codeword with a portion of CΠ(i+1). This

effectively propagates the bit-flip to CΠ(i+1). If CΠ(i+1) is also left with a dangling

suffix, the suffix will form a valid codeword with a portion of CΠ(i+2) and so on. If

eventually CΠ(i+j) does not have a dangling suffix, error propagation will stop and

CΠ(i+j+1) to CΠ(N) will be unaffected. However, the entire compressed stream from

CΠ(i) to CΠ(i+j) is corrupted and, therefore, made useless. This is shown in Fig. 6.2.

A simple comparison between these two cases highlights the relationship between shift

and propagation due to a bit-flip. In the first case, a codeword CΠ(i) is lost and the

remaining codewords are shifted by at least one codeword (since k ¿ 1). In the second

case, j+1 codewords (from CΠ(i) to CΠ(i+j) ) are lost, and the remaining codewords

are shifted by at least one codeword. Propagation and shift only differ in the number

of lost (corrupted) codewords. A shift is a special case of propagation in which only

one codeword is lost, i.e j=0. Propagation always comes with shifts.

An important observation is that a coding technique with constant length codewords

will never have a propagation with j ¿ 0 independently of the number of bit-flips or

their location. This occurs because a bit-flip can never break a constant length code-

word into more than one valid codewords and a dangling suffix is never encountered.

This means that run-length codes will have at most one lost (corrupt) codeword and

a possible shift effect.
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6.2.2 Synchronization Loss

Define the length of a propagation effect by the number of codewords which are lost,

e.g., in the above discussion the length was j+1. On average the number of lost bits

at decompression is j+1 times the average codeword length i.e. (j+1)lcAV G For the

special case of shifts, the number of lost bits is lcAV G . This lost segment of test

stream is one contributing factor to coverage loss and a reduction in error-resilience.

Another contributing factor is due to the Synchronization Loss. After decompression,

I t is important that the unaffected sequence of bits (represented by codewords from

CΠ(i+j+1) to CΠ(N) ) appears exactly in the same location within the uncompressed

test stream as it would if there was no bit-flip. In the presence of bit-flips, this

sequence is preceded by a corrupt sequence of bits (represented by a number of corrupt

codewords which have replaced the lost codewords from CΠ(i) to CΠ(i+j) ). If the

number of such corrupt bits is different from the number of otherwise correct bits in

the uncompressed stream, then there is a loss of synchronization, i.e., the upcoming

unaffected sequence of bits will be misplaced. Synchronization loss acts as if the

unaffected sequence of bits is a random set of bits.

6.3 Improving Error-Resilience

The previous section highlights the importance of error resilience and the extend by

which bit-flips can negatively impact test data quality as measured by fault coverage.

This section deals with methodologies to increase error-resilience of the compressed

test streams by traditional techniques.

6.3.1 Traditional Techniques

An approach which addresses the negative effects of bit-flips, is based on the use

of error-correcting-codes (ECC); for example, the data downloaded from the ATE

workstation to the test head is often coded using additional bits such asHamming
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code, parity or cyclic-redundancy-codes (CRC).



Chapter 7

Hamming Code based technique

In telecommunication, a Hamming code is a linear error-correcting code named after

its inventor, Richard Hamming. Hamming codes can detect up to two simultaneous

bit errors, and correct single-bit errors; thus, reliable communication is possible when

the Hamming distance between the transmitted and received bit patterns is less than

or equal to one. By contrast, the simple parity code cannot correct errors, and can

only detect an odd number of errors.

In mathematical terms, Hamming codes are a class of binary linear codes. For

each integer m ≥ 2 there is a code with m parity bits and 2m - m - 1 data bits. The

parity-check matrix of a Hamming code is constructed by listing all columns of length

m that are pairwise independent. Hamming codes are an example of perfect codes,

codes that exactly match the theoretical upper bound on the number of distinct code

words for a given number of bits and ability to correct errors.

Because of the simplicity of Hamming codes, they are widely used in computer

memory (RAM). In particular, a single-error-correcting and double-error-detecting

variant commonly referred to as SECDED.

If more error-correcting bits are included with a message, and if those bits can be

arranged such that different incorrect bits produce different error results, then bad

bits could be identified. In a 7-bit message, there are seven possible single bit errors,

so three error control bits could potentially specify not only that an error occurred

80
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but also which bit caused the error.

Hamming studied the existing coding schemes, including two-of-five, and gener-

alized their concepts. To start with, he developed a nomenclature to describe the

system, including the number of data bits and error-correction bits in a block. For

instance, parity includes a single bit for any data word, so assuming ASCII words

with 7-bits, Hamming described this as an (8,7) code, with eight bits in total, of

which 7 are data. The repetition example would be (3,1), following the same logic.

The code rate is the second number divided by the first, for our repetition example,

1/3.

Hamming also noticed the problems with flipping two or more bits, and described

this as the ”distance” (it is now called the Hamming distance, after him). Parity

has a distance of 2, as any two bit flips will be invisible. The (3,1) repetition has a

distance of 3, as three bits need to be flipped in the same triple to obtain another code

word with no visible errors. A (4,1) repetition (each bit is repeated four times) has

a distance of 4, so flipping two bits can be detected, but not corrected. When three

bits flip in the same group there can be situations where the code corrects towards

the wrong code word.

7.0.2 Generating Algorithm

General algorithm

The following general algorithm generates a single-error correcting (SEC) code for

any number of bits.

1. Number the bits starting from 1: bit 1, 2, 3, 4, 5, etc.

2. Write the bit numbers in binary. 1, 10, 11, 100, 101, etc.

3. All bit positions that are powers of two (have only one 1 bit in the binary form

of their position) are parity bits.

4. All other bit positions, with two or more 1 bits in the binary form of their

position, are data bits.
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5. Each data bit is included in a unique set of 2 or more parity bits, as determined

by the binary form of its bit position.

a. Parity bit 1 covers all bit positions which have the least significant bit

set: bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

b. Parity bit 2 covers all bit positions which have the second least significant

bit set: bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.

c. Parity bit 4 covers all bit positions which have the third least significant

bit set: bits 47, 1215, 2023, etc.

d. Parity bit 8 covers all bit positions which have the fourth least significant

bit set: bits 815, 2431, 4047, etc.

e. In general each parity bit covers all bits where the binary AND of the

parity position and the bit position is non-zero.

The form of the parity is irrelevant. Even parity is simpler from the perspective

of theoretical mathematics, but there is no difference in practice.

This general rule can be shown visually:

Figure 7.1: Hamming code example

Shown are only 20 encoded bits (5 parity, 15 data) but the pattern continues

indefinitely. The key thing about Hamming Codes that can be seen from visual

inspection is that any given bit is included in a unique set of parity bits. To check for

errors, check all of the parity bits. The pattern of errors, called the error syndrome,

identifies the bit in error. If all parity bits are correct, there is no error. Otherwise,
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the sum of the positions of the erroneous parity bits identifies the erroneous bit. For

example, if the parity bits in positions 1, 2 and 8 indicate an error, then bit 1+2+8=11

is in error. If only one parity bit indicates an error, the parity bit itself is in error.

If, in addition, an overall parity bit (bit 0) is included, the code can detect (but

not correct) any two-bit error, making a SECDED code. The overall parity indicates

whether the total number of errors is even or odd. If the basic Hamming code detects

an error, but the overall parity says that there are an even number of errors, an

uncorrectable 2-bit error has occurred.

C1 = D1 xor D2 xor D4

C1 = 0 xor 1 xor 1

C1 = 0

C2 = D1 xor D3 xor D4

C2 = 0 xor 1 xor 1

C2 = 0

C3 = D2 xor D3 xor D4

C3 = 1 xor 1 xor 1

C3 = 1

So our Hamming code of 0111 becomes: 0001111

Now similarly to encoding, we must xor all bits whose row corresponds to the check

bit in question. The difference is, this time we must also xor in the check bit. The

result should be zero. If not, an error has occurred in transmission.

A1 = C1 xor D1 xor D2 xor D4

A1 = 0 xor 0 xor 1 xor 0

A1 = 1

A2 = C2 xor D1 xor D3 xor D4

A2 = 1 xor 0 xor 0 xor 0

A2 = 1

A3 = C3 xor D2 xor D3 xor D4

A3 = 1 xor 1 xor 0 xor 0
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A3 = 0

We can see that all three A’s are not equal to zero. This lets us know that there is

an error in the code. It also tells us where exactly the error is. If you read the errors

in reverse order, you will have the binary location of the error. Looking at this error,

we can see there is an error in location three. We simply flip the bit, and we get the

Huffman code: 1100

So the main advantage of Huffman code is that it removes single bit flip error so

no loss of fault coverage but the biggest disadvantage is that it takes more area as

shown in table I to VII.
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Table I: Area Overhead with Huffman Code

Bench Mark
Circuit

Area of
Bench mark
cirduit

Area of
Hamming
Decoder

Area
Overhead

S27 21 383 1823
S298 134 4760 3552
S344 158 4514 2856
S349 155 4599 2967
S382 106 8214 7749
S386 124 4558 3675
S400 191 8369 4381
S420 156 9249 4847
S444 190 8106 4266
S510 232 4763 2053
S526 226 8992 3978
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Table II: Area Overhead with selective Huffman Code

BenchMark
Circuit

Area of
Benchmark
circuit

Area of
Hamming
Decoder

Area Over-
head

S27 21 588 2800
S298 134 4939 3685
S344 158 4650 2943
S349 155 4856 3132
S382 106 9054 8541
S386 124 4530 3653
S400 191 9185 4808
S420 156 17258 11062
S444 190 8994 4733
S510 232 4718 2033
S526 226 9282 4107
S820 323 8464 2620
S832 333 8676 2605

Table III: Area Overhead with FDR Code

Benchmark
Circuit

Area of
Benchmark
circuit

Area of
Hamming
Decoder

Area Over-
head

S27 21 789 3757
S298 134 8484 6331
S344 158 4987 3156
S349 155 8488 5476
S382 106 8881 8378
S386 124 4463 3599
S400 191 9504 4975
S420 156 17348 11120
S444 190 8881 4674
S510 232 4998 2154
S526 226 17149 7588
S641 200 9292 4646
S713 201 8330 4144
S820 323 8180 2532
S832 333 8708 2615
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Table IV: Area Overhead with EFDR Code

Benchmark
Circuit

Area of
Benchmark
circuit

Area of
Hamming
Decoder

Area Over-
head

S27 21 833 3966
S298 134 8197 6117
S344 158 8048 5093
S349 155 8291 5349
S382 106 17524 16532
S386 124 4463 3599
S400 191 18351 9607
S420 156 17918 11485
S444 190 18003 9475
S510 232 8251 3556
S526 226 17938 7937
S641 200 17515 8757
S713 201 9485 4718
S820 323 9223 2855
S832 333 9234 2772

Table V: Area Overhead with SAFDR Code

Benchmark
Circuit

Area of
Benchmark
circuit

Area of
Hamming
Decoder

Area Over-
head

S27 21 838 3990
S298 134 8056 6011
S344 158 7987 5055
S349 155 8156 5261
S382 106 17397 16412
S386 124 4463 3599
S400 191 17906 9374
S420 156 17544 11246
S444 190 17397 9156
S510 232 8587 3701
S526 226 17399 7698
S641 200 17527 8763
S713 201 9280 4616
S820 323 9100 2817
S832 333 9096 2731
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Table VI: Area Overhead with GOLOMB Code

Benchmark
Circuit

Area of
Benchmark
circuit

Area of
Hamming
Decoder

Area Over-
head

S27 21 964 4590
S298 134 8658 6461
S344 158 7960 5037
S349 155 7885 5087
S382 106 17030 16066
S386 124 4463 3599
S400 191 17795 9316
S420 156 17721 11359
S444 190 17030 8963
S510 232 8639 3723
S526 226 17814 7882
S641 200 17084 8542
S713 201 9140 4547
S820 323 9060 2804
S832 333 9042 2715

Table VII: Area Overhead with VIHC Code

Benchmark
Circuit

Area of
Benchmark
circuit

Area of
Hamming
Decoder

Area Over-
head

S27 21 659 3138
S298 134 4871 3635
S344 158 4504 2850
S349 155 4610 2974
S382 106 8820 8320
S386 124 4463 3599
S400 191 9258 4847
S420 156 8968 5748
S444 190 8193 4312
S510 232 4828 2081
S526 226 9073 4014
S641 200 8826 4413
S713 201 7779 3870
S820 323 8409 2603
S832 333 8348 2506



Chapter 8

Cyclic redundancy check (CRC)

A cyclic redundancy check (CRC) is an error-detecting code designed to detect acci-

dental changes to raw computer data, and is commonly used in digital networks and

storage devices such as hard disk drives. A CRC-enabled device calculates a short,

fixed-length binary sequence, known as the check value or improperly the CRC, for

each block of data to be sent or stored and appends it to the data, forming a code-

word. When a codeword is received or read, the device either compares its check value

with one freshly calculated from the data block, or equivalently, performs a CRC on

the whole codeword and compares the resulting check value with an expected residue

constant. If the check values do not match, then the block contains a data error

and the device may take corrective action such as rereading or requesting the block

be sent again, otherwise the data is assumed to be error-free (though, with some

small probability, it may contain undetected errors; this is the fundamental nature of

error-checking).[1]

CRCs are so called because the check (data verification) code is a redundancy (it

adds zero information to the message) and the algorithm is based on cyclic codes.

CRCs are popular because they are simple to implement in binary hardware, are easy

to analyze mathematically, and are particularly good at detecting common errors

caused by noise in transmission channels.

CRCs are based on the theory of cyclic error-correcting codes. The use of sys-
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tematic cyclic codes, which encode messages by adding a fixed-length check value,

for the purpose of error detection in communication networks was first proposed by

W. Wesley Peterson in 1961.[2] Cyclic codes are not only simple to implement but

have the benefit of being particularly well suited for the detection of burst errors,

contiguous sequences of erroneous data symbols in messages. This is important be-

cause burst errors are common transmission errors in many communication channels,

including magnetic and optical storage devices. Typically, an n-bit CRC, applied to

a data block of arbitrary length, will detect any single error burst not longer than n

bits, and will detect a fraction 1-2-n of all longer error bursts.

8.0.3 Computation of CRC

To compute an n-bit binary CRC, line the bits representing the input in a row, and

position the (n+1)-bit pattern representing the CRC’s divisor (called a ”polynomial”)

underneath the left-hand end of the row.

Start with the message to be encoded:

11010011101100

This is first padded with zeroes corresponding to the bit length n of the CRC.

Here is the first calculation for computing a 3-bit CRC:

Figure 8.1: Padded bits with CRC

If the input bit above the leftmost divisor bit is 0, do nothing and move the

divisor to the right by one bit. If the input bit above the leftmost divisor bit is 1, the

divisor is XORed into the input (in other words, the input bit above each 1-bit in the

divisor is toggled). The divisor is then shifted one bit to the right, and the process
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is repeated until the divisor reaches the right-hand end of the input row. Here is the

entire calculation:

Figure 8.2: Computation if CRC

Since the leftmost divisor bit zeroed every input bit it touched, when this process

ends the only bits in the input row that can be nonzero are the n bits at the right-

hand end of the row. These n bits are the remainder of the division step, and will

also be the value of the CRC function (unless the chosen CRC specification calls for

some postprocessing).

The validity of a received message can easily be verified by performing the above

calculation again, this time with the check value added instead of zeroes. The re-

mainder should equal zero if there are no detectable errors.

Figure 8.3: Rules for divisor

and so on until:
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Figure 8.4: Correctness of CRC Check



Chapter 9

Two dimensional Parity check

Code

In this method the dataword is organized in table as shown in figure 9.1. The data

to be sent are arranged in separate rows 4 bit each. For each row and column 1

parity check bit is calculated as shown in figure 9.1 last row and last column . The

whole table is then sent to the receiver which finds syndrome for each row and each

column as shown in figure 9.2. If there is parity missmatch then it can be said that

intersection of that row and column gives error.

Figure 9.1: Two dimensional Parity check Matrix

The biggest disadvantage of such traditional technique is its increased extra bit

count as compared to its original compressed bits. Bit overhead comparision is shown

in table I to VIII.
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Figure 9.2: Effect of error on Two dimensional Parity check Matrix

Table I: Bits Overhead with Huffman Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 18 35 27 39
S298 406 714 514 718
S344 390 686 494 690
S349 420 735 529 739
S382 714 1253 899 1257
S386 300 525 379 529
S400 798 1400 998 1404
S420 928 1624 1164 1628
S444 735 1288 785 1292
S510 402 707 503 711
S526 833 1463 1042 1467
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Table II: Bits Overhead with Selective Huffman Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 23 42 34 46
S298 501 882 634 886
S344 440 770 554 774
S349 478 840 604 844
S382 812 1421 1019 1425
S386 390 686 494 690
S400 917 1610 1151 1614
S420 1136 1988 1424 1992
S444 837 1470 1054 1474
S510 444 777 559 781
S526 930 1631 1169 1635
S820 562 987 709 991
S832 566 994 714 998
S838 4400 7700 5504 7704

Table III: Bits Overhead with FDR Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 32 56 44 60
S298 522 917 659 923
S344 496 868 624 872
S349 534 938 674 942
S382 892 1561 1119 1565
S400 1010 1771 1269 1775
S420 1190 2086 1492 2090
S444 890 1561 1119 1565
S510 504 882 634 886
S526 1060 1855 1329 1859
S641 912 1596 1144 1600
S713 756 1323 949 1327
S820 694 1218 874 1222
S832 666 1169 839 1173
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Table IV: Bits Overhead with EFDR Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 39 70 54 74
S298 691 1211 869 1215
S344 701 1232 884 1236
S349 737 1295 929 1299
S382 1250 2191 1569 2195
S400 1630 2856 2044 2860
S420 1386 2429 1739 2433
S444 1338 2345 1679 2349
S510 684 1197 859 1201
S526 1434 2513 1799 2517
S641 1265 2219 1586 2223
S713 1011 1771 1269 1775
S820 918 1610 1154 1614
S832 934 1638 1174 1642

Table V: Bits Overhead with SAFDR Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 37 70 54 74
S298 601 1057 759 1061
S344 609 1071 769 1075
S349 649 1141 819 1145
S382 1095 1918 1375 1922
S400 1197 2471 1504 2475
S420 1409 2100 1769 2104
S444 1129 1981 1419 1985
S510 573 1008 724 1012
S526 1239 2170 1554 2174
S641 1115 1953 1399 1957
S713 911 1596 1144 1600
S820 809 1421 1019 1425
S832 795 1393 999 1397
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Table VI: Bits Overhead with GOLOMB Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 37 70 54 74
S298 623 1092 784 1096
S344 602 1057 759 1061
S349 647 1134 814 1138
S382 1050 1841 1319 1845
S400 1425 2499 1789 2503
S420 1211 2121 1519 2125
S444 1049 1841 1319 1845
S510 618 1085 779 1089
S526 1275 2233 1599 2237
S641 1080 1890 1354 1894
S713 865 1519 1089 1523
S820 820 1435 1029 1439
S832 819 1435 1029 1439

Table VII: Bits Overhead with VIHC Code

Benchmark
circuit

compressed
bits Origi-
nal

Compressed
Bits with
Hamming

Compressed
Bits with
Parity
Check

Compressed
Bits with
CRC

S27 25 49 39 53
S298 407 714 514 718
S344 391 686 494 690
S349 420 735 529 739
S382 715 1253 899 1257
S400 930 1631 1169 1635
S420 799 1400 1004 1404
S444 736 1288 924 1292
S510 402 707 509 711
S526 841 1477 1059 1481
S641 714 1253 899 1257
S713 629 1106 794 1110
S820 546 959 689 963
S832 550 966 694 970



Chapter 10

Conclusion and Future Scope

10.1 Conclusion

In this dissertation, we proposed Artificial Intelligence approach for Test vector re-

ordering for Low Power Testing ,then this approach is enhanced for scan in scan out

power reduction by using WTM based reordering then finally one new approach was

proposed that is combination of frequency directed and MT fill algorithm.

From the results it can be seen that average pecentage reduction in switching

activity is 22.11 % with Artificial Intelligence approach.

Also it is concluded that MT Fill algorithm gives low power but low compression,

Frequency directed approach gives high power and high compression, and Mixed

approach gives moderate power and moderate compression.

Final part has presented the importance of error-resilience for reliable compression

of test data in manufacturing testing of VLSI chips and systems. It has been evaluated

that bit-flips in uncompressed test streams can negligibly impact fault coverage, while

application of test data compression can seriously degrade test quality when such bit-

flips occur. An analysis of the errors caused by bit-flips is presented to indicate how

bit-flips can lead to change in test data stream and coverage loss.

Traditional techniques such as Hamming code based algorithm have been proposed
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to improve error-resilience by padding extra bits with the fixed length of code. The

goal is to make the transmission error free without any loss of fault coverage. The

biggest disadvantage with this technique is the area overhead and Bits overhead.

10.2 Future Scope

In future new techniques will be developed to achieve improved error resilience with

less area overhead and less bit overhead.
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