
Mathematical Modeling of
Clock Binary Tree

By

Viren R Gajjar

09MEC018

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2011

ii

Mathematical Modeling of
Clock Binary Tree

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

Viren R Gajjar

(09MEC018)

Under the Guidance of

Mr. Pawan Dwivedi

Intel Technology India Pvt. Ltd.

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2011

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in Communication Engineering at Nirma University and has not been submitted

elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Viren R Gajjar

iv

Certificate

This is to certify that the Major Project entitled ”Mathematical Modeling of

Clock Binary Tree” submitted by Viren R Gajjar(09MEC018), towards the

partial fulfillment of the requirements for the degree of Master of Technology in

the field of VLSI Design awared by Institute of Technology, Nirma University,

Ahmedabad is the record of work carried out by him under our supervision and

guidance. In our opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of our knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Date: Place: Ahmedabad

External Guide HOD

(Mr. Pawan Dwivedi) (Prof. A. S. Ranade)
Intel Technology India Pvt. Ltd. Professor, EC

Manager Director

(Lakshmi Venkatachalam) Dr. K. Kotecha
Intel Technology India Pvt. Ltd. Director, IT, NU

Internal Guide

(Dr. N. M. Devashrayee)
PG Coordinator (VLSI Design)
Nirma University

v

Acknowledgements

I would like to express my greatest thanks and appreciation towards all those with

whom I have worked at Institute of Technology, Nirma University, for their

cooperation and continuous evaluation.

I express my gratitude and great respect to all the people with whom I have worked

and interacted during the Internship at Intel Technologies Pvt. Ltd., Banga-

lore, India and who have directly or indirectly helped me to accomplish the project

goal. I would like to thank each one of them for their valuable guidance. I would like

to especially thank my project guide, Mr. Pawan Dwivedi, Intel Technologies

Corporation. His continuous evaluation, suggestions and feedback inspired me to

put the best effort in my work. Under his expert guidance, my work was in constant

phase of improvement. I thank him for his availability and support, in spite of his

busy work schedule. I would also like to thank Mr. Lakshmi Venkatachalam,

Intel Technologies Corporation to gave me opportunity to work in clock domain

and gave chance to work in Clock Binary Tree design and development.

I would like to express my sincere thanks to Dr. N. M. Devashrayee, PG Co-

ordinator VLSI Design department, for his valuable guidance and informative

suggestions for the betterment of the project throughout this major project phase.

I would also like to thank Prof. N. P. Gajjar, Nirma University, for his sin-

cere support and guidance. Finally would like to thank the entire Electronics &

Communication Department for providing me the platform to work efficiently

and fruitfully, at a prestigious corporation such as Intel Technology, India.

- Viren R Gajjar (09MEC018)

M.Tech (VLSI Design)

Nirma University, Ahmedabad, Gujarat

vi

Abstract

All the Digital circuits run on clock signal that also makes those circuits synchronous

by nature. In a synchronous digital system, clock signal is used to define a time

reference for the movement of data within that system. The clock distribution

network (or clock tree, when this network forms a tree) distributes the clock sig-

nals from a common point to all the elements that need it. Since this function is

vital to the operation of a synchronous system, much attention has been given to the

characteristics of these clock signals and the electrical networks used in their distri-

bution. Clock signals are often regarded as simple control signals. however, these

signals have some very special characteristics and attributes. As clock signal is the

only versatile signal thus routing this signal to all the block without skew is tough

task. This signal should also have higher driving strength so that it can drive num-

ber of modules. Therefore from the origin of clock, there should be a mechanism to

increase driving strength with zero skew to reach the RCB (Regional Clock Buffer).

Currently for Global clock distribution a structure called clock binary tree with

input connected to input and output connected to output of other gates, are used to

have minimum skew to complete clock binary tree. This thesis is a compilation of

algorithm developed to design clock binary tree and experiments done on different

tree structures, which are used or can be used in global clock distribution for clock

binary tree design.

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

Content ix

1 Introduction 1
1.1 List of Chapters . 2

1.1.1 ASIC Design Flow . 2
1.1.2 Related Terminology . 2
1.1.3 Problem Definition . 2
1.1.4 Algorithm and Implementation for Horizontal Tree 3
1.1.5 Algorithm and Implementation for Vertical Tree 3
1.1.6 Experiment On Routing of Horizontal Clock Binary Tree . . . 3
1.1.7 Experiment on Transition and Power optimization 3
1.1.8 Conclusion and Future work 3

List of Figures 1

2 ASIC Design Flow 4
2.1 Backend Design (Structural design) 4

2.1.1 Synthesis . 4
2.1.2 Floor plan . 4
2.1.3 Physical Synthesis . 5
2.1.4 CTS (Clock Tree Synthesis) 6
2.1.5 Routing . 6
2.1.6 Timing Analysis . 6
2.1.7 Layout Verification . 6
2.1.8 Tapeout . 7
2.1.9 Other steps of flow . 7

vii

CONTENTS viii

3 Related Terminology 8
3.1 Binary Tree . 8

3.1.1 Principle of Binary tree . 8
3.1.2 Types and Mathematical equation of Binary tree 9

3.2 Clock Binary Tree . 12

4 Problem Definition 14
4.1 Generate possible combination of tree structure by taking stage as input 14
4.2 Generate Coordinates of each cells/buffers for all tree structure 14
4.3 Synthesis all clock tree structures . 15
4.4 Simulate all possible combination for best results 15
4.5 Optimization of Clock Binary Tree Structures based on Skew,Transition

and Power . 15

5 Algorithm and Implementation for Horizontal Tree 17
5.1 Input from User . 17
5.2 Finding total possible tree structures 18
5.3 Equation for possible structures . 20
5.4 Finding X and Y location . 21

5.4.1 Finding X location . 21
5.4.2 Finding Y location . 23
5.4.3 Modification in Location by considering Cell height and width 24

5.5 QC of X and Y location . 25
5.6 Results of Algorithm . 28

5.6.1 PNG file of all clock tree structure 28
5.6.2 CSV file of all clock tree structure 29

6 Algorithm and Implementation for Vertical Tree 31
6.1 Generation of Vertical clock binary tree 31
6.2 Routing problem with cell placement 32
6.3 Solution to routing problem . 32

7 Experiment On Routing of Horizontal Clock Binary Tree 35
7.1 Routing Example of horizontal clock binary tree 35
7.2 Description of Uncertainty window 36
7.3 Experiment to minimize uncertainty window 37

8 Experiment on Transition and Power optimization 39
8.1 Concept of Transition improvement in Clock binary tree 39
8.2 Concept of Power for Clock binary tree 43

9 Conclusion 44

10 Acronyms 45

List of Figures

2.1 Back end design flow . 5

3.1 Binary tree . 9
3.2 Linearly increasing structure of tree 10
3.3 2(stage−1) structure of tree . 11
3.4 Clock Binary tree . 12

5.1 Input from User . 18
5.2 Comparison of tree structures . 19
5.3 Valid Structures for stage = 4 . 20
5.4 Flowchart to find X Co-ordinates for all cells 22
5.5 Finding Y Co-ordinates . 23
5.6 Modification in location of cells . 24
5.7 Shifting cell by width/2 and hight/2 25
5.8 Distance between cells for linear structures 26
5.9 Distance between cells for linear tree structure 26
5.10 Distance between cells for 2(stage−1) structure 27
5.11 Distance between cells for 2(stage−1) tree structure 27
5.12 PNG output of algorithm when stage = 4 28
5.13 CSV file output of algorithm when stage = 4 29

6.1 Interchanging X and Y coordinates 31
6.2 Routing problem with cell placement 32
6.3 Solution to routing problem . 33
6.4 Solution to routing problem after all position shifting 34

7.1 Routing Example of horizontal clock binary tree 35
7.2 Uncertainty window in horizontal clock binary tree 36
7.3 Horizontal Tree routing before experiment 37
7.4 Shorten wire-length on Horizontal Tree routing 38

8.1 Input Output Transition comparison 39
8.2 Input Output Transition with load connected 40

ix

LIST OF FIGURES x

8.3 Input Output Transition of clock buffer of (a)High Drive Strength
buffer (b)Low Drive Strength buffer 40

8.4 Input Output Transition of buffers connected to buffers 41
8.5 Capacitance measurement of clock binary tree 42

Chapter 1

Introduction

Today’s high performance systems need low skew clock generation and distribution.

Clock skew is defined as the difference in time between simultaneous clock transitions

within a system. The skew has become the major part of constraints that form the

upper boundary for the system clock frequency.

Optimized clock distribution are central to high performance of synchronous systems.

If clock distribution networks are not properly constructed, they may degrade system-

level performance. This compilation of thesis defines the skew in a system, describing

its effect on performance. Recommendation and supporting analysis are given for

designing near optimal clock networks. This thesis also illustrates that clock network

design can be a surprisingly complex task involving many tradeoffs.

Clock networks must be designed to minimize skew or the differences in delay through-

out a clocking network. It is ideal that every component, such as sequential elements,

i.e. flip-flops and latches that need clocking, should receive the edge of the clock

at the same time within each clock period. Fully synchronous designs require this

methodology. To ensure that the network operates as closely to the ideal as possible,

the skew must be minimized along the entire clocking network. This ensures that all

sequential elements see a common clock edge. For any design, with more than 100

1

CHAPTER 1. INTRODUCTION 2

flops and latches, it is strongly suggested that some form of clock tree structure for

clocking required. Buffer delays and wiring delays are the two most significant factors

contributing to skew. The clock topology can significantly contribute to skew. As

will be discussed, a good clock network must balance factors such as skew, risetime,

power and clock tree delays.

The goal of this experiment is to find out all the possible combination of clock tree

and simulate them. These simulation data can give proof that which design is better

in what sense. The prior concern is to get lesser skew in each stage of particular clock

binary tree.

1.1 List of Chapters

1.1.1 ASIC Design Flow

Study and understanding of whole IC manufacturing process will help to understand

the flow used in clock binary tree designing. This chapter explains the necessary

steps of IC manufacturing before actual synthesis of clock tree. Group of steps are

followed in predefined patter to manufacture every IC. This section has detailed steps

of Back-end design. Refer Chapter 2 for more information.

1.1.2 Related Terminology

This chapter is compilation of different terminologies used in experiments conducted

to design clock binary tree. It has detailed description of binary tree, types of binary

tree and clock binary tree. Refer Chapter 3 for more information.

1.1.3 Problem Definition

This chapter defines the problem statement for thesis. Refer Chapter 4 for more

information.

CHAPTER 1. INTRODUCTION 3

1.1.4 Algorithm and Implementation for Horizontal Tree

This chapter describes solution to the problem definition. It has detailed description

of algorithm which is developed to find possible valid binary tree and its implemen-

tation for Horizontal clock binary tree. This chapter depicts inputs taken from user,

implementation of algorithm, operation of algorithm and its results in pictorial form.

Refer Chapter 5 for more information.

1.1.5 Algorithm and Implementation for Vertical Tree

This chapter describes approach and implementation used in designing vertical clock

binary tree. working and functionality of algorithm is described in this chapter. refer

Chapter6 for more information.

1.1.6 Experiment On Routing of Horizontal Clock Binary

Tree

Experiment on synthesized Clock Tree structure is documented in this chapter. Rout-

ing of nets for clock binary tree is explained in this part. To achieve minimal skew

experiments on routing is exercised for all clock tree structures, for more information

refer Chapter7.

1.1.7 Experiment on Transition and Power optimization

Experiment on Transition and Power optimization is depicted in Chapter 8. This

chapter is compilation of experiment done to achieve good transition at the output

of each stage by changing driving strengths of clock buffers.

1.1.8 Conclusion and Future work

Outcome of experiments and algorithms are concluded here in this chapter. Refer

Chapter 9 for more information.

Chapter 2

ASIC Design Flow

As we know, there are many steps to follow to manufacture IC TO(tapeout). There

are several attributes associated with IC fabrication process. As Example Specs

designing, Architecture designing, Front end designing, Backend designing and at

last physical production of silicon. In this case many horizons to work together for a

single chip. This Chapter describes mainly a back-end design part of chip designing.

2.1 Backend Design (Structural design)

2.1.1 Synthesis

RTL (HDL - design) is the input to backend design flow and synthesis steps. Going

down in the abstraction level of ACIS design flow can be called Synthesis, which is

the process of converting HDL design to the netlist. Where, netlist can be defined as

connection of cells (basic gates), sometimes those cells are complex cells. These cell

information is been defined in technology library files.

2.1.2 Floor plan

Floor planning itself is a large topic, deals with block placement, IO planning, power

grid and top level clocks. Block placement is typically a placement of predefined

4

CHAPTER 2. ASIC DESIGN FLOW 5

Figure 2.1: Back end design flow

blocks called BLACK-BOX. IO pins are planned at the time of floor planning. Clock

binary tree is derived in parallel. Power ring and power grids and drop of points

of clock are designed on this stage too. In this process chip is divided into several

partitions to reduce execution time of the synthesis process.

2.1.3 Physical Synthesis

Physical synthesis is the logic optimization process in back-end flow. Library files are

input of the synthesis process. Standard cells like and, or, not, latch, etc. are placed

on the partition, placement of cells is the process, where logical code is converted

to particular cells as per its functionality. In case, if RTL has if-else block then by

doing synthesis the block will turn out to be 2x1 Mux after synthesis. Now 2x1 Mux

is defined in library file and synthesis process uses it to give netlist as final output.

Netlist is .v file, which contains connections of individual cells and cell types.

CHAPTER 2. ASIC DESIGN FLOW 6

2.1.4 CTS (Clock Tree Synthesis)

CTS mean clock tree synthesis, during floor plan clock binary trees are defined and

those are pushed top down the hierarchy. This can be divided in two parts global

CTS and local CTS. Where global is something which is already told, and local is

within partitions drop of points are defined priory. Clock distribution from RCBs to

local partition cells are also the part of CTS.

2.1.5 Routing

Metal layers should be defined priory to routing. Generally vertical routing and

horizontal routing are kept in different layers to increase simplicity in routing. This

process is iterative process where it finds the smallest path between two cells and

then places the wire. It takes care of constraints to use while placing wires.

2.1.6 Timing Analysis

Timing analysis can be carried out after routing of clock and when CTS is over. This

is basically calculating parasitics and delays of each and every wires which are routed.

Timing analysis is basically delay calculation of all possible paths for functionality

based on physical parameters (like parasitic), constraints and technology limitation

to see if operating frequency, which was targeted is met or not.

2.1.7 Layout Verification

Layout verification is the verification of physical aspects like spacing between two

metal lines, some technological limitation like pinch-off of the shape for the device

which we will be developing on silicon. This is the place where all DRC rules checking

happens. The layout verification also develops some new algorithms to overcome

problems like via density, Antenna effect reduction etc. hence layout verification is

the process of checking of layout matching the netlist. This process also maintains

CHAPTER 2. ASIC DESIGN FLOW 7

spacing rules.

2.1.8 Tapeout

Is the process of giving final database to mask shop. Mask shop separates all the

fabrication layers and those are used in fabrication laboratory.

2.1.9 Other steps of flow

During the entire back end flow there are some intermediate steps to follow, those are

listed as below.

1) FV - known as Formal verification where RTL (FUB) and netlist are being com-

pared and verified

2) ECO - Engineering Change Over : where late changes that are made directly to

netlist (without re-running synthesis), and compared to updated RTL to make sure

that both of them matches.

Chapter 3

Related Terminology

This chapter describes used terminology used in this experiments. It also has detailed

description of binary tree, types of binary tree and clock binary tree.

3.1 Binary Tree

Binary tree is a tree structure in which each node has at most two child nodes,

usually distinguished as “left” and “right”. Child nodes can again have two child

nodes respectively. Thus here the possibility for each node can be like having two

nodes as child or having 0. As shown in figure 3.1, stages are denoted on the right

side of the tree. Number written inside circle are basically number of nodes. Node 1

is the origin of entire tree thus, it is known as root of the tree.

3.1.1 Principle of Binary tree

Principle to generate Binary Tree is “Each buffer should face same amount of load

on both the side”. By following this principle only M’ry tree is possible, where M

is equal to 2k (even number). To remove interstage skew M’ry should be migrated

to binary. For example 4’ry tree has equal load from root node but distance from

root node for all stage2 cells are not same. By this basic understanding there can be

8

CHAPTER 3. RELATED TERMINOLOGY 9

Figure 3.1: Binary tree

two types of binary tree structure construction possible (1) Linear structure. and (2)

2(stage−1) structure. Refer 3.1.2 Types of Binary tree for more details.

3.1.2 Types and Mathematical equation of Binary tree

This section contains structures/types of binary tree which can be use in clock bi-

nary tree design where principle of Binary tree is maintained. This section also has

mathematical equations of both the tree structures.

Linearly increasing structure

As shown in figure 3.2, Text in circles are basically stage and number of node where

stage is the prefix and number of node is suffix. Here the basic concept of this tree

structure is that as number of nodes increase the stages also increase, that is the rea-

son why the name is give linear structure. As shown in figure, binary tree principle

CHAPTER 3. RELATED TERMINOLOGY 10

Figure 3.2: Linearly increasing structure of tree

also follows. For example, moving from stage2 to stage3 we can see that node2-1

facing node3-1 and node3-2 as load and node2-2 faces 3-2 and 3-3 load in other words

node3-2 is common for 2-1 and 2-2 node. Current from each node flows equally pro-

vided all the nodes within same stage are identical in nature.

Mathematical equation:

By referring to above structure we can derive that No. of nodes in each stage are

same as what stage they are into.

No. of Cells = Stage ————————————————————————- Eq1

But, we want to derive basic formula of this structure with respect to previous stage.

Hence, For stage = 1

No. of Cells in stage = 1 , else

No. of Cells in stage = No. of Cells in (stage - 1) + 1 ————————– Eq2

CHAPTER 3. RELATED TERMINOLOGY 11

2(stage−1) structure

Figure 3.3: 2(stage−1) structure of tree

As shown in figure 3.3 the text in circles are basically stage and number of node,

where stage is the prefix and number of node is suffix. Here the basic concept of

this tree structure is number of nodes are same as twice of stage hence tree structure

becomes as shown in figure and we can clearly observe that binary tree principle also

follows. We can also observe that each node is splitting by two to generate new nodes

from the original node. Current from each node flows equally provided all the nodes

within same stage are identical in nature.

Mathematical equation:

By referring above structure we can derive that No. of nodes in each stage are

double then its stage they are into.

No. of Cells = 2 * Stage —————————————————————– Eq3

CHAPTER 3. RELATED TERMINOLOGY 12

But we want to derive basic formula of this structure with respect to previous stage.

Hence, For stage = 1

No. of Cells in stage = 1 , else

No. of Cells in stage = 2 * (No. of Cells in (stage - 1)) ———————– Eq4

3.2 Clock Binary Tree

Figure 3.4: Clock Binary tree

As shown in figure 3.4 the top most horizontal line is knows as Clock binary tree of

clock network. This structure is basically known as global clock network where all

buffer increase driving strength of the clock signal and lessen the skew. As shown in

figure inputs and outputs of buffers are connected to inputs and outputs of other cells

CHAPTER 3. RELATED TERMINOLOGY 13

in the same stage, it is basically to decrease skew at the output of all buffers. Here

also it becomes mandatory to have identical buffer within the stage. This structure

is popular because it has advantage of lesser skew across the clock binary tree. If we

measure from left corner to right corner the skew between those end points becomes

very low with using this structure. If number of clock origins are different then

that many clock binary tree structures are required. Local distribution of clock is

generated by taking taping from clock binary tree itself and these tapings are such a

way that the end to end poins having skew difference near to zero.

Chapter 4

Problem Definition

4.1 Generate possible combination of tree struc-

ture by taking stage as input

First problem definition is to generate number of tree structures by taking number

of stage required as input from user. These all generated structures should also have

information regarding number of buffers in each stage.

4.2 Generate Coordinates of each cells/buffers for

all tree structure

There can be two possibilities

1) Horizontal clock tree structure

2) Vertical clock tree structure

Algorithm should find coordinates with respect to options given by user. Once number

of buffers in each stage are found based on vertical/horizontal structure entered by

user. Algorithm should find geometrical coordinates of physical placement of buffers

by taking length of clock binary tree and coordinates of origin as input from user.

Algorithm should be able to find X and y location of all the buffer cells for all

14

CHAPTER 4. PROBLEM DEFINITION 15

the tree structure and provided this X and Y coordinates should follow binary tree

principle, This also means that dimensions derived by this algorithm should have

perfect symmetry.

4.3 Synthesis all clock tree structures

All the coordinates of all the cells/buffers in structure should go to synthesis flow.

This synthesis flow is essentially comprises of placement of cells, selection of cells in

terms of driving capability, metal layer connection and routing. This part takes main

turnaround time as this process is bit slow.

4.4 Simulate all possible combination for best re-

sults

Once all the structures are gone through synthesis process and all Saved cels(designs

of different Structure after synthesis) are saved in then simulation data extraction

could be done. The designs is simulated for respective parameters.

• Stage skew

• Insertion delay

• Transition

• Power Trade off

4.5 Optimization of Clock Binary Tree Structures

based on Skew,Transition and Power

Based on simulation results one can be analyze, which structure needs what kind of

optimization. Some experiments have been exercised to get optimum skew numbers,

CHAPTER 4. PROBLEM DEFINITION 16

optimum transitions and optimum power numbers. Refer Chapter 7 for detailed

description of experiment on routing of Horizontal Clock Binary tree to reduce skew

numbers, these concepts also can be applied for vertical clock binary tree.

Experiment on Transition and Power optimization is depicted in Chapter 8. This

chapter is compilation of experiment done to achieve good transition at the output

of each stage.

Chapter 5

Algorithm and Implementation for

Horizontal Tree

This section is basically a solution to problem definition which is given in Chapter 4.

There can be many ways to derive all the structures of binary tree. One of the ways

is implemented and documented in these sections. This algorithm primarily takes

care of Eq2 and Eq4 to find possible tree structures. This algorithm tries all the

combination where both the equations are being applied on all the stages and comes

up with number of valid possibilities. This section also contains details description

of working of algorithm, primary inputs to algorithm and results and out comes of

algorithm. This algorithm is a perl script where it interacts with user buy using

standard input-output. To understand its primary input and working refer the next

sections.

5.1 Input from User

As shown in figure 5.1 primary inputs of algorithm are listed below.

• length of Clock binary tree (Distance between end cells)

Clock binary tree length is measured in micron, it is basically width of clock

17

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 18

Figure 5.1: Input from User

tree if Tree structure is horizontal.

• Height

It is the Y distance that user wants between of two stages.

• No. of stages

No. of stage, required to find out No. of combinations of valid Clock binary

tree.

• Coordinates of origin point

This are X and Y location of origin taken from user. This dimensions are added

as offset letter on, once coordinates of buffers are found by algorithm.

5.2 Finding total possible tree structures

Eq2 and Eq4 are used to generated total number of possibilities of clock tree. Figure

5.2 has two type of trees. One is completely constructed by linear and the other by

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 19

Figure 5.2: Comparison of tree structures

2(stage−1). By comparing both the structures of tree it can be said that linear and

2(stage−1) has one buffer in stage1 and two buffers in stage2 in all the conditions. Ir-

respective of equation being used to derive no of buffers the stage 1 and stage 2. for

both the combinations (linear or 2(stage−1)) always has same number of buffers. Hence

one should not try applying combinations on the same.

The next task is to find equation for valid possible combinations of clock binary tree

generated by taking stage as input from user. It is clear, that to find out possible com-

binations it is necessary to find No. of cells/buffers present in each stage. Once those

are found, based on number of buffers present in particular stage No. of cells/buffers

of the next stage could be derived. Refer 5.3 for more information on how algorithm

works and finds cells/buffers for particular stage and how algorithm generates all the

combination of possible tree structures.

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 20

5.3 Equation for possible structures

Figure 5.3: Valid Structures for stage = 4

To derive number of all possible combination of tree structure directly depends on

how many stages the structure has as input from user. The generating combination

is depended on two equations. As it is known that stage1 will always have one buffer

and stage2 will always have two buffers. In other way for any combination it should

be one and two for respective stages. E.g. where number of stage = 4

Now stage2 will always have two buffers and from stage2 to stage3 there can be

two combinations, generated using Eq2 and Eq4. For example Eq2 (linear) is used

to find number of cells for stage3 then the output will be 3 for stage3. and Eq4

(2(stage−1)) is used instead of Eq2 then the output will be 4 cells in stage3. Same

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 21

case applied for every stages, where the actual computation is done based on number

of cells present in previous stage. Hence, going further total combinations available

become 4 at last by using both the equations and its combinations. As shown in

figure 5.3 there can be 4 valid possible tree structures generated when stage=4. So

mathematical equation can be derived by this experiment.

Mathematical equation:

As we have seen in experiment the mathematical equation for number of possible tree

structures can be

No. of Possible Tree structure = 2(Stage−2) —————————————— Eq5

Hence Stage5̄ then no of combinations will become 8 and it goes on respectively.

5.4 Finding X and Y location

In the process first task is to find number of possible tree structures based on outcome

the next task is to find coordinates for cell placement for each tree structure, But

prime requirement is to maintain symmetric nature of tree.

5.4.1 Finding X location

Finding X location for all the cells present in particular tree combination can be

described by flow chart shown in figure 5.4. The precess of deriving X positions for

all the cells of particular tree structure could be repeated for every tree structure.

This is implemented in script by looping current set of logic. Length of clock binary

tree distance is taken from user as primary input and numberof cells in each stage is

derived by algorithm.

Now dividing total distance of last stage as user has entered by (No. of cells - 1)

gives the required distance between each cell for all the stages, say that as Dist x.

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 22

Figure 5.4: Flowchart to find X Co-ordinates for all cells

co-ordinates of origin point could be useful to add the offset, basically offset of half the

clock binary tree length and subtract from the origin (x) co-ordinates. That is how

left most position of clock binary tree is derived, say that as Left most. Algorithm

will find X-location of all the last stage cells and will add Dist x/2 to Left most and

there after it checks the combination of previous cell weather it is a linear case or

2(stage−1) case. If it is linear then Dist x remains same and algorithms finds all the

x locations for all the cells in current stage. If the combination of previous stage

is 2(stage−1) then algorithm doubles the Dist x and finds distances of all the cells in

current stage. This thing goes on till previous stage is not root. once stage is equal

to 1 algorithm directly assigns X-location value as X-location of origin. When these

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 23

iterations are over for one design, algorithm takes another structure and does. This

iteration this happens until all the combinations are finished. Now next task is to

find out Y location for all the cells of all the tree structures.

5.4.2 Finding Y location

Figure 5.5: Finding Y Co-ordinates

Finding Y location for all cells become easier as Height is predefined input, from user.

One more parameter is coordinates of origin also a userdefined Input. Algorithm takes

Height as offset and keeps on adding to the Y location of origin. Algorithm takes

care of stage and assigns Y location to all the cells of particular stage that is how it

becomes in parallel line as shown in figure 5.5. Finding X location and Y locations

are independent of each other and that makes them stand alone. Thus, we can find Y

location prior to X or Y location prior to X will always gives the same result however

algorithm does not have privilege to run them in whatever order it wants. as shown in

figure cross points are basically the cell location found by algorithm which are stored

in Arrays.

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 24

5.4.3 Modification in Location by considering Cell height and

width

Figure 5.6: Modification in location of cells

As described in previous topic the coordinates found by algorithm are denoted as

cross sign. Now placement of cells on derived location is exercised with help of TCL

scripts. TCL scripts run on backend tools. Cell positions are given to tools to place

cell, those placement of cells look as show in figure 5.6. Basically backend tool con-

siders those location as left-lower corner of cells and places accordingly.

If cells for all the stages are of equal height and width then this algorithm will work

properly, but we know all the stages can have different types of cells across the different

stages but it should be identical within a stage. Figure 5.6 is basically a example of

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 25

such case where width and height of cell is different. Because of difference in width

of cells there can be problem in symmetric nature of tree as shown in figure. for two

upper right cells, where thin-line and thick-line are of different length. Thus, load

cannot be equal for source cell and that lead to skew. Therefore design will give worst

results, therefore algorithm should be aware about it. Select buffer.csv file is taken as

input by algorithm were the data inside that file is number of stage, cell name used

for particular stage, width of that cell for particular stage and height of that cell for

particular stage. Algorithm already has details of Height and Width of each cell used

for specific stage thus the solution to this problem can be seen as show in figure 5.7.

Where the solution is basically shifting cell by half of the width and height and derive

new point of placement after this. This solution will essentially maintain symmetry

structure and hence not lead to skew.

Figure 5.7: Shifting cell by width/2 and hight/2

5.5 QC of X and Y location

Though algorithm finds proper locations for each cells but Quality checking of output

is must. Therefore algorithm itself does its quality checking by measuring difference

of X position for all the cell positions. As show in figure 5.8 and figure 5.10 buffer cells

are given name as ”buffer x y” where x is stage and y is no of node in particular stage.

Figure 5.9 is the QC result of figure 5.8 where linear equation is used. Figure 5.11

is QC result of figure 5.10. When the structure for particular stage is found to be

linear then algorithm does its X-location measurement as show in figure 5.8. For an

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 26

Figure 5.8: Distance between cells for linear structures

Figure 5.9: Distance between cells for linear tree structure

example distance between buffer3 1 and buffer2 1 should be equal to distance between

buffer3 2 to buffer2 1 then only symmetry can be confirmed. In figure 5.9 dis 3 1-2 1

is 33.33 micron and dis 3 2-2 1 is again 33.33. Thus, it is confirmed that both buffers

(buffer3 1 and buffer3 2) are place equidistance from buffer2 1. For others cells table

has same value hence it can be said that structure is having proper symmetry.

When the structure for particular stage is found to be 2(stage−1) then Algorithm does

its X-location measurement as show in figure 5.10. For an example distance between

buffer3 1 and buffer2 1 should be equal to distance between buffer3 2 to buffer2 1,

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 27

Figure 5.10: Distance between cells for 2(stage−1) structure

Figure 5.11: Distance between cells for 2(stage−1) tree structure

distance between buffer3 3 and buffer2 2 and buffer3 4 and buffer2 2 should be equal

then only symmetry can be confirmed.

In figure 5.11 dis 3 1-2 1 is 25 micron and dis 3 2-2 1 is again 25. Thus, it is confirmed

that both buffers (buffer3 1 and buffer3 2) are place equidistance from buffer2 1.

Same as this in figure 5.11, dis 3 3-2 2 is 25 micron and dis 3 4-2 2 is again 25. Thus,

it is confirmed that both buffers (buffer3 3 and buffer3 4) are place equidistance from

buffer2 2. Algorithm works well for both the cases. When both the approaches (linear

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 28

and 2(stage−1)) are separate or with mixed approach. Algorithm does QC check after

finding new location of cells by shifting them by cell width/2 and cell height/2 thus

it can be proved that output of algorithm is trustworthy to integrate in actual design

flow.

5.6 Results of Algorithm

Algorithm generates PNG file for giving pictorial view of all combinations of trees.

Graphical display can help to debug the symmetry properly in case there is misbehav-

ior in output of simulation. These results do not contain simulation and integration

part of all the tree structure.

5.6.1 PNG file of all clock tree structure

Figure 5.12: PNG output of algorithm when stage = 4

Figure 5.12 is the output of algorithm when input is given as stage = 4. Here we can

clearly see different combinations of structures are generated. For example Structure

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 29

1 is generated by 2(stage−1) equation for all the stages, Structure 4 is generated by

linear equation for all the stages and Structure 2 and structure 3 are mixed approach.

Algorithm generates different PNG files for all possible combinations, if stage input

is 5 then total 8 PNG files will be generated by name ”Global clock tree X” where X

is number of combinations that algorithm generates.

5.6.2 CSV file of all clock tree structure

Figure 5.13: CSV file output of algorithm when stage = 4

To track/store results of X and Y co-ordinates of all the cells with their respective

Clock tree structures algorithm stores its database into CSV file. Figure 5.13 is the

example how things are stored in CSV file. This file stores X and Y location by

CHAPTER 5. ALGORITHMAND IMPLEMENTATION FOR HORIZONTAL TREE 30

separating Clock tree Structure as shown in figure 5.13. The database are of Clock

Tree Structure 1 where the configuration is 1 - 2 - 3 - 6 for respective stages. Column

A is describing that data is of which stage, Column B describes how many nodes/cells

are there in stage and Column C gives name of cells which is used of particular stage

this information of name comes from Select buffer.csv file. CSV file has X and Y

location of all the cells. This CSV file also includes QC of X and Y location also.

Chapter 6

Algorithm and Implementation for

Vertical Tree

6.1 Generation of Vertical clock binary tree

By modifying existing output of Horizontal tree algorithm vertical clock binary tree

could be derived. Vertical clock binary tree is achieved by swapping x and y coor-

dinates with each other as illustrated in figure 6.1. Provided origin of vertical clock

binary tree is defined properly.

Figure 6.1: Interchanging X and Y coordinates

31

CHAPTER 6. ALGORITHMAND IMPLEMENTATION FOR VERTICAL TREE 32

6.2 Routing problem with cell placement

Figure 6.2: Routing problem with cell placement

Coordinates are derived by swapping the coordinates between x and y are shown

in figure 6.2 by ”+” signs, thereby placement of cells are as shown in figure. Cells

are always placed such that their left lower corner edge placed on that coordinates

found by algorithm. Considering all the cells are placed on swaped coordinates, if

connections are made from output to input of next stage cells then routing breaks

symmetry of its own this case is depicted in figure 6.2. As routing is not symmetry

results will have more skews.

6.3 Solution to routing problem

Solution of routing problem is to rearrange cell placement to get symmetry routing

between of cells. There can be two way of rearranging cell positions one is keeping

last stage cells at their position and push respective cells down such that symmetry

CHAPTER 6. ALGORITHMAND IMPLEMENTATION FOR VERTICAL TREE 33

Figure 6.3: Solution to routing problem

can be achieved and the other possibility is put first cell of tree (stage 1) at its own

position and shift up respective cells. As shown in figure 6.3 the concept of keeping

stage 1 cell at is position and shifting other cells upwards respectively. The distance

between cell and routing wire is taken as routing delta, usually that remains same

for all the cells, for generating symmetry structure delta value is taken to calculate

shift for all the cells. As shown in figure stage 2 cells are shifted up wards by 2 times

delta and + height of previous cell, here the previous cell means first stage cell. But

only shifting of 2nd stage will not help whole tree cells should shift with 2nd stage

cells and respectively shifting entire stage cells with shift of position of existing stage.

This process becomes the iterative process, which needs to go till the last stage is

operated, by going to the last stage tree structure becomes as shown in figure 6.4.

This figure has the last stage shift shown in it, this technique will also help when

cells have different height e.g. first 3 stage has lesser height compared to last stage

as shown in figure. but, the shift also has the parameter of previous cell height so it

would give symmetry in terms of cells with different height. While different width of

CHAPTER 6. ALGORITHMAND IMPLEMENTATION FOR VERTICAL TREE 34

cells will not become bottle neck for symmetry of tree, because Height value given by

user while running this algorithm will be maintained between of stage (this distance

is basically distance between centroid of the cell of stages).

Figure 6.4: Solution to routing problem after all position shifting

Chapter 7

Experiment On Routing of

Horizontal Clock Binary Tree

7.1 Routing Example of horizontal clock binary

tree

While routing the metal connections the scenario is as demonstrated in figure 7.1 ,

power grids are fixed prior to synthesis cycle thus those power lines becomes obstacle

for clock wire to route within that areas. One such example is demonstrated in below

figure.

Figure 7.1: Routing Example of horizontal clock binary tree

35

CHAPTER 7. EXPERIMENTONROUTINGOF HORIZONTAL CLOCK BINARY TREE 36

As shown in figure vertical connection to the horizontal are blocking due to power grid.

To drive more current to next level of buffer we need more vertical connections this

can be seen that there is a tradeoff between power grid and vertical wire connections.

7.2 Description of Uncertainty window

Figure 7.2: Uncertainty window in horizontal clock binary tree

During step of wire routing clock binary tree, there could be possibility that power

grid covers cell completely. This situation is rare but, still it degrades the result.

When power grip overlaps the clock cell, one of these example is illustrated in figure

7.2. As shown in figure, driver (bottom) cell is almost cover by power grid from right

hand side and same is the case for other two, they are covered from left hand side.

Now possible routing for connecting driver to load cells are also illustrated in figure,

it also states that the distance from driver cell to left load cell is comparatively lesser

than the distance between right load cell to driver cell. This minimum distance can

be defined as Minimum Uncertainty window and the maximum can be defined as

maximum uncertainty window. These windows can be defined by equations shown

below.

CHAPTER 7. EXPERIMENTONROUTINGOF HORIZONTAL CLOCK BINARY TREE 37

Minimum Uncertainty Window = Routing distance between cells - Extra metal

Maximum Uncertainty Window = Width of Stage (N) cells + Width of Stage

(N-1) cell + Routing distance between cells + Extra metal

7.3 Experiment to minimize uncertainty window

Figure 7.3: Horizontal Tree routing before experiment

Figure 7.3 shows Horizontal clock binary tree before beginning experiment for un-

certainty window optimization. Here the power grid is not covering entire cell. This

uncertainty won’t be equal to maximum or minimum as defined in previous section.

Driver cell still has lesser length to travel to load cell placed towards left hand side

compared to load cell placed towards right hand side. As demonstrated in figure left

hand side uncertainty window would be equal to minimum uncertainty window. To

optimize this uncertainty we can reduce horizontal wire length routed (connected) on

the cell, which is define as extra metal. This experiment will certainly optimize the

uncertainty windows on both the side as described in figure 7.4. After reducing metal

wire length the uncertainty window increases on the left hand side and uncertainty

window remains same as previous one on right hand side of the driver cell this would

give more symmetry to the routing of the clock binary tree structure.

CHAPTER 7. EXPERIMENTONROUTINGOF HORIZONTAL CLOCK BINARY TREE 38

Figure 7.4: Shorten wire-length on Horizontal Tree routing

Though this experiment gives more symmetry structure but it’s not worth to use this

concept as no of vertical connections are reduce as shown in figure 7.4. This would

reduce current flowing from the drivers and hence rise time of cell degrades. Though

we get some skew benefits out of this experiment. We would not use this experiment

as a solution to reduce uncertainty window and skew.

Chapter 8

Experiment on Transition and

Power optimization

8.1 Concept of Transition improvement in Clock

binary tree

All the cells have curve on input Vs. Output transition. Output transitions are

always good compared to input transition for all the clock cells. One such example is

depicted in figure 8.1. Here clock signal is applied to the input of clock buffer having

poor transition as shown in figure, on the contrary clock buffers improves transition

of the same signal based on input vs. output curves. These curves are predefined in

libraries used in design.

Figure 8.1: Input Output Transition comparison

39

CHAPTER 8. EXPERIMENTON TRANSITION AND POWEROPTIMIZATION 40

One such example of clock buffer with capacitive load is shown in figure 8.2. As

load increases output transition degrades compared to figure 8.1. Output transition

of clock buffer shown in figure 8.2 is poor. Hence driving capability of clock buffer

connected with capacitive load is lower to make output transition more powerful, the

size of buffer (driving strength of buffer) must be higher.

Figure 8.2: Input Output Transition with load connected

As Depicted in figure 8.3(b) lower size of buffer gives poor transition to the poor input

transition given to input of clock buffer. To improve such cases switching clock buffer

driving strength to upper level will help. As given in figure 8.3(a) improves output

transition of a buffer. Hence it can be said that transition numbers are dependent on

driving strength of clock buffer.

Figure 8.3: Input Output Transition of clock buffer of (a)High Drive Strength buffer
(b)Low Drive Strength buffer

CHAPTER 8. EXPERIMENTON TRANSITION AND POWEROPTIMIZATION 41

Clock binary tree is a meshed structure of cells where number of cells connected are

dependent upon the structure used to design that particular clock tree. Going from

first stage to the last stage, number of cells/buffers used in tree increases, number

of buffers are dependent on which structure is used. Hence, input capacitance of the

cell comes into account and net capacitance of the interconnection between stages

also needs to be calculated. Such one case is depicted in figure 8.4. Where input

Transitions and Output Transitions are shown across the interconnection of cells.

For understanding point of view this three cells topology is used in figure since it

follows binary tree concept. Input transition is bit slant and first clock buffer makes

it steep due to path load and input capacitance of cell load. Hence, input transition

of previous stage becomes poor. This concept goes on till the last stage where RCBs

are connected to clock buffer cells as load.

Figure 8.4: Input Output Transition of buffers connected to buffers

Capacitance load offered to clock buffers are as shown in figure 8.5. Where net

capacitance is denoted by Cnet and input pin capacitance of clock buffer is denoted

by Ci/p. To model the driving strength of tree structure all the capacitance values

are extracted to calculate actual capacitance called as total capacitance value, this is

denoted by CL in figure. Calculation of total capacitance is as follow.

CHAPTER 8. EXPERIMENTON TRANSITION AND POWEROPTIMIZATION 42

(1) Cnet is extracted from the design, for all the stages which are different.

(2) Ci/p is predefined in the library files based on what structure of tree is used in

particular stage number of cells are being multiplied with input pin cap value to

find out total Ci/p. In figure number of cells connected to buffer is 2 hence Ci/p is

multiplied by 2. These two capacitance values now added together to get total load

capacitance CL.

Figure 8.5: Capacitance measurement of clock binary tree

For particular stage

CL = Total(Cnet) + (No. of Cells in next stage)*(Ci/p) ——————– Eq6

Eq6 is used to calculate total load capacitance offered to existing stage cell/cells.

Every stage cells has limit of capacitance that it can drive without affecting quality of

signal. This value is called Cell-MAX-CAP value, Max cap value is again multiplied

by number of cells present in specific stage to get total Max cap value that can be

driven by particular stage. To decide the driving strength of that particular stage

CHAPTER 8. EXPERIMENTON TRANSITION AND POWEROPTIMIZATION 43

these values are important. Theoretically Max cap value should be greater than

Total(CL) for specific stage but practically there should be some optimistical guard

band to mitigate practical differences.

8.2 Concept of Power for Clock binary tree

Special cells are used in clock binary tree, with range of driving strengths. Hence,

selecting a proper one is crucial factor. As described in Section 8.1 to improve

transition switching from lower driving capability to higher is necessary if output

transitions are poor. But, over using driving capability unnecessarily increases ca-

pacitance value offered as load, hence increase in dynamic power. By experiment on

selecting different buffers it is found that the trade-off between selecting buffer size

and power requirement. Optimally selecting buffer size is always helping to improve

power numbers and Transitions of clock binary tree.

Chapter 9

Conclusion

These Horizontal and Vertical Clock binary Tree generator algorithms brought au-

tomated process for finding all possibilities/Stuctures of valid possible clock Binary

tree. Prior to this algorithm development manual heuristics were used to find out

actual structure and cell location to get expected output, this algorithm could ex-

plore such configuration of cell trees which was never simulated. In nutshell designing

algorithm could help the actual process by finding X and Y location and finding all

the possibilities of binary tree structures automatically.

To optimize skew numbers on various clock binary tree is experimented by exercising

different experiments, from these experiment the flow of process to get optimum skew

in specific clock binary tree structure is achieved. Transition numbers of each clock

binary tree is extracted from design based on capacitive load offered to each stage.

Based on comparison of results 2(stage−1) tree structure is proven to be more efficient

structure for giving good transition number at each stage and skew numbers. This

Tree structure also has the advantage of removing metal between buffers, could help

to improve skew numbers.

44

Chapter 10

Acronyms

Acronyms Descriptions

RCB Regional Clock Buffer
FF Flip Flop
FUB Functional Unit Block
HDL Hardware Descriptive Language
ASIC Application specific integrated circuit
RTL Register transfer language
IP Intellectual Property
GLS Gate Level simulation
SV System validation
MAS Micro architectural specification
FP Floor plan
CTS Clock tree synthesis
FV Formal verification
TO Tapeout
POP Product overview proposal
ECO Engineering change order
TCL Tool command language

45

	Declaration
	Certificate
	Acknowledgements
	Abstract
	Content
	List of Figures
	Introduction
	List of Chapters
	ASIC Design Flow
	Related Terminology
	Problem Definition
	Algorithm and Implementation for Horizontal Tree
	Algorithm and Implementation for Vertical Tree
	Experiment On Routing of Horizontal Clock Binary Tree
	Experiment on Transition and Power optimization
	Conclusion and Future work

	ASIC Design Flow
	Backend Design (Structural design)
	Synthesis
	Floor plan
	Physical Synthesis
	CTS (Clock Tree Synthesis)
	Routing
	Timing Analysis
	Layout Verification
	Tapeout
	Other steps of flow

	Related Terminology
	Binary Tree
	Principle of Binary tree
	Types and Mathematical equation of Binary tree

	Clock Binary Tree

	Problem Definition
	Generate possible combination of tree structure by taking stage as input
	Generate Coordinates of each cells/buffers for all tree structure
	Synthesis all clock tree structures
	Simulate all possible combination for best results
	Optimization of Clock Binary Tree Structures based on Skew,Transition and Power

	Algorithm and Implementation for Horizontal Tree
	Input from User
	Finding total possible tree structures
	Equation for possible structures
	Finding X and Y location
	Finding X location
	Finding Y location
	Modification in Location by considering Cell height and width

	QC of X and Y location
	Results of Algorithm
	PNG file of all clock tree structure
	CSV file of all clock tree structure

	Algorithm and Implementation for Vertical Tree
	Generation of Vertical clock binary tree
	Routing problem with cell placement
	Solution to routing problem

	Experiment On Routing of Horizontal Clock Binary Tree
	Routing Example of horizontal clock binary tree
	Description of Uncertainty window
	Experiment to minimize uncertainty window

	Experiment on Transition and Power optimization
	Concept of Transition improvement in Clock binary tree
	Concept of Power for Clock binary tree

	Conclusion
	Acronyms

