
Automatic conversion of source code for
multi core architecture

By

Malay A. Andhariya

Roll No: 09MCE001

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May, 2011

Automatic conversion of source code for multi core
architecture

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Malay A. Andhariya

Roll No: 09MCE001

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May, 2011

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in Computer Science and Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Malay A. Andhariya

iv

Certificate

This is to certify that the Major Project entitled ”Automatic conversion of source

code for multi core architecture” submitted by Malay A. Andhariya (09MCE001),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Computer Science and Engineering of Nirma University, Ahmedabad is the

record of work carried out by him under my supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination.

The results embodied in this major project, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Dr. S.N. Pradhan Prof. D. J. Patel

Guide, Professor and PG-Coordinator, Professor and Head,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr K Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad

v

Abstract

As personal computers have become more prevalent and more applications have been

designed for them, the end-user has seen the need for a faster, more capable system

to keep up with new applications. Speedup has been achieved by increasing clock

speeds and, more recently, adding multiple processing cores to the same chip. The

clock speeds of processors have reached physical limit, so multi cores are seen as vi-

able way to increase the performance. IBM, in collaboration with Sony Computer

Entertainment and Toshiba Corporation, established a relationship with the primary

objective of developing a new processor with dramatically increased performance, re-

sponsiveness and security. The result of the relationship is Cell Broadband Engine

(Cell/B.E.) technology, an advanced IBM Power Architecture technology-based mi-

croprocessor.

The Cell/B.E. processor is an asymmetric multi-core processor that is optimized for

parallel processing and streaming applications. Though originally developed for gam-

ing application, it is found to be useful for general purpose computing. The problem

is, there is no application in market readily available with these library functions and

can use all the processor of the architecture. The main objective of this thesis is to

develop software, which is able to identify independent execution tasks and converts

automatically in such a way that the modified code executes parallel on different cores

and give the better performance.

This thesis work is mainly concentrated on the computational part of the source

code. Report contains general study of the Cell BE architecture, SDK tool kit, differ-

ent methods to get performance benefit, implementation of intermediate tool to find

out functions and their dependencies from the source code and the implementation

of the complete algorithm, testing and analysis of the developed software.

vi

Acknowledgements

It gives me great pleasure in expressing thanks and profound gratitude to my guide

Dr. S.N. Pradhan, Professor & M.Tech Coordinator, Department of Computer

Science and Engineering, Institute of Technology, Nirma University, Ahmedabad for

his valuable guidance and continual encouragement throughout part one of the Major

project. I heartily thankful to him for his time to time suggestions and the clarity of

the concepts of the topic that helped me a lot during this study.

I would like to extend my gratitude to Prof. D.J.Patel, H.O.D., Department

of Computer Science and Engineering, Institute of Technology, Nirma University,

Ahmedabad for fruitful discussions and valuable suggestions during meetings and for

their encouragement.

I would like to thanks Dr. Ketan Kotecha, Honorable Director,Institute of Tech-

nology, Nirma University, Ahmedabad for providing basic infrastructure and healthy

research environment.

I would also thank my Institution, all my faculty members in Department of Com-

puter Science and my colleagues without whom this project would have been a distant

reality. Last, but not the least, no words are enough to acknowledge constant sup-

port and sacrifices of my family members because of whom I am able to complete my

dissertation work successfully.

- Malay A. Andhariya

09MCE001

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

Contents vii

List of Tables ix

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Objective of the Work . 2
1.2 Scope of the Work . 2
1.3 Motivation of the Work . 2
1.4 Thesis Organization . 2

2 Cell BE Architecture 4
2.1 Design goals . 4
2.2 Architecture . 5
2.3 Performance . 6
2.4 Advantages . 6
2.5 Application - PLAYSTATION 3 . 8

3 Programming Concepts 10
3.1 SDK 3.0[12] . 11
3.2 The SDK contains the following components 12
3.3 CellBE Libraries[12] . 14
3.4 Installation of SDK[1] . 17

3.4.1 Getting source: . 17

vii

CONTENTS viii

3.4.2 Prepare to install: . 18
3.4.3 Mounting: . 18
3.4.4 Installing the base SDK stuff: 18

4 Problem Definition 20
4.1 Methods for performance optimization[8] 20

4.1.1 Vector data types intrinsics 20
4.1.2 Task parallelism and managing SPE threads 21

4.2 Dynamic loading of SPE for task parallelism 21
4.3 Problem with the definition . 22
4.4 Benefits of this approach . 23

5 Dependency analysis tool 24
5.1 Dependencies . 24
5.2 Pseudo code . 26
5.3 Functions Developed . 26
5.4 Output . 27

5.4.1 Input file . 27
5.4.2 Output files . 28
5.4.3 Dependency graph . 29

5.5 Performance evaluation . 30

6 Automatic code conversion 31
6.1 Algorithm . 31
6.2 Output . 32

6.2.1 Input file . 32
6.2.2 Output files . 34

6.3 Performance Evaluation . 40
6.4 Limitations . 41

7 Conclusion and Future Work 42
7.1 Conclusion . 42
7.2 Future Work . 43

Web References 44

References 45

Index 46

List of Tables

2.1 execution times and performance improvement[8] 7
2.2 performance gains achieved in various calculations[8] 8

6.1 Performance evaluation . 41

ix

List of Figures

2.1 A block diagram of the Cell/B.E. processor[8] 6

4.1 Storage of a CellBE architecture[12] 22

5.1 Dependency graph . 30
5.2 Performance evaluation . 30

x

Abbreviations

ALF Accelerated Library Framework

BLAS Basic Linear Algebra Subprograms

CellBE Cell Broadband Engine

DaCS Data Communication and Synchronization

DMA Dynamic Memory Allocation

EDP Enhanced Double Precision

EIB Element Interconnect Bus

GPU graphics processing units

MFC Memory Flow Controller

MPMD multiple-program-multiple-data

PPE Power Processor Element

SDK Software Development Toolkit

SIMD Single Instruction Multiple Data

SPE Synergistic Processor Elements

xi

Chapter 1

Introduction

IBM, in collaboration with Sony Computer Entertainment and Toshiba Corporation,

established a relationship with the primary objective of developing a new processor

with dramatically increased performance, responsiveness and security. The result

of the relationship is technology, an advanced IBM Power Architecture technology-

based microprocessor. This report contains general study CellBE architecture, IBM

toolkit to program for this architecture, libraries and system call, different methods

for performance optimization on Cell BE, explanation of the definition, Intermediate

tool to identify functions and their dependency in a source code, implementation of

the complete software.

This report also contains testing and performance evaluation of the tool which has

been used in the software to identify function and their dependency from any C source

code. It also includes testing of the complete software and its performance analysis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Objective of the Work

The objective of this research is to provide a better utilization of the resources of Cell

BE to obtain better performance and to save manual efforts and time to learn the

SDK and to prepare a program for Cell BE.

1.2 Scope of the Work

The scope of this work is to optimize Processor elements and to reduce the com-

putation time with the play station 3 and other IBM servers which are using this

architecture. Same method of developing the software can be applied for different

multi core architecture also.

1.3 Motivation of the Work

• To identify the independent computational tasks from the given C/C++ source

code.

• Increase the computation power by distributing the independent tasks to all the

available processing elements.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Detail study of the CellBE architecture, design goals, performance,

advantages and application of it like PS3.

Chapter 3, Programming concepts with CellBE, SDK 3.0, components of SDK,

CellBE libraries its installation.

CHAPTER 1. INTRODUCTION 3

chapter 4, Explanation of the Definition, methods for performance optimization,

steps to be performed with the selected method, benefit of the software.

chapter 5, Implementation of Dependency analysis tool, Types of dependency,

pseudo code, functions developed, output, dependency graph.

chapter 6, Implementation of Automatic code converting software, Algorithm, out-

puts, performance evaluation and limitations.

chapter 7, Conclusion and Future work, concluding remarks and future work is

presented.

Chapter 2

Cell BE Architecture

IBM, in collaboration with Sony Computer Entertainment and Toshiba Corporation,

established a relationship with the primary objective of developing a new processor

with dramatically increased performance, responsiveness and security. The results of

the relationship is Cell Broadband Engine (Cell/B.E.) technology, an advanced IBM

Power Architecture technology-based microprocessor.

2.1 Design goals

The group understood that conventional microprocessors have performance limita-

tions and traditional improvements were not going to meet current and future de-

mands for greater processor performance. Another equally important goal was to

overcome the increasing power consumption, cooling resources and floor space needed

by systems based on conventional microprocessors that were trying to meet the ever-

increasing processing demands of organizations.

The Cell/B.E. processor is an asymmetric multi-core processor that is optimized for

parallel processing and streaming applications. Unlike symmetric multi-core, cache-

based architectures which may not be able to efficiently handle streaming applications,

Cell/B.E. technology is designed to offer very high performance and fast response.

The Cell/B.E. processor includes a and eight highly optimized engines called .

4

CHAPTER 2. CELL BE ARCHITECTURE 5

Cell/B.E. processor performance is about an order of magnitude better than tradi-

tional processors for applications that can take advantage of its SIMD capability. The

PPE is intended to run the operating system and coordinate computation. Each SPE

is able to perform mostly the same as, or better than, a General Purpose Processor

with SIMD running at the same frequency. A key performance advantage comes from

its eight decoupled eDP SPE SIMD engines with dedicated resources including large

register files and channels.

Another important design difference is the memory architecture. Cell/B.E processor

memory architecture uses dedicated, on-die local memory storage for each SPE with

a separate unit for managing data transfers, plus the use of XDR RAMBUS memory

that can operate at CPU clock speeds (>3GHz compared to <1GHz of DDR RAM

used in PCs), eliminating the need for large L2 cache memory and data latency.

2.2 Architecture

The following figure shows the architecture block diagram of the Cell/B.E. processor.

The PPE accesses the main memory via the L1 and L2 cache in the traditional way,

thus accessing the whole main memory. There is a latency penalty caused by two

layer caching. However, the SPEs can only operate directly on their own 256 KB local

memory. Each SPE has a programmable MFC that allows fast data transfer between

the main memory and the local store. The SPEs can also communicate with each

other and with the PPE via the very high speed EIB. Most of the compute power

of the Cell/B.E. processor comes from the SPEs. Each SPE is capable of executing

up to 8 floating point or 32-bit integer operations per cycle, a total of 64 operations

in a single cycle. Alternatively, they can execute 128 16-bit operations or 256 8-bit

operations in parallel. A good application design for Cell/B.E. technology uses the

PPE for main control and disk I/O tasks, while all computation intensive tasks are

distributed to the SPEs.

CHAPTER 2. CELL BE ARCHITECTURE 6

Figure 2.1: A block diagram of the Cell/B.E. processor[8]

2.3 Performance

Performance specification highlights of the Cell/B.E. processor [1]:

• 241 million transistors

• 9 cores, 10 parallel execution threads

• > 230 GFlops single precision

• Up to 25 GB/s memory bandwidth

• Up to 75 GB/s I/O bandwidth

• > 230 GB/s bandwidth on the EIB

• Frequency > 4GHz

2.4 Advantages

It helps companies to overcome the limitations of today’s microprocessors and tar-

gets current and future compute-, data- and memory-intensive application workloads.

CHAPTER 2. CELL BE ARCHITECTURE 7

Currently, Cell/B.E. technology is available from IBM on select IBM BladeCenter

products and from IBM Business Partners in industry-standard form factors. The

Cell/B.E. is a microprocessor architecture jointly developed by Sony, Toshiba, and

IBM. Originally used in cutting edge gaming applications to speed up physics simu-

lations and catch up with the 3D graphics rendering speeds provided by advanced ,

Cell/B.E. architecture has now been integrated into enterprise-class technology sys-

tems.

The Cell/B.E. processor’s breakthrough multi-core architecture and ultra high-speed

communications capabilities deliver vastly improved, real-time response. Effectively

delivering ”supercomputer-like performance” by incorporating advanced multipro-

cessing technologies used in sophisticated IBM servers, Cell/B.E. is especially suitable

for high-performance workloads. Matching the superior performance of the eHiTS al-

gorithms with the acceleration derived from using the Cell/B.E processor allows the

eHiTS Lightning application to provide unprecedented accuracy and throughput for

flexible ligand docking to the life sciences Industry.

The following table shows execution times and performance improvement reached

for one example program, the Lennard-Jones 6-12 Potential calculation, part of the

eHiTS program. The next table illustrates the performance gains achieved in various

System PPU only -
Power Mac

Dual core Intel
Xeon processor
2.4 GHz

IBM Bland
center

Time 3m34s 1m14s 1.0s
Performance im-
provement

1x 3x 214x

Table 2.1: execution times and performance improvement[8]

calculations on the IBM BladeCenter QS21 with two 3.2GHz Cell/B.E. processors

compared to traditional CPUs at equivalent clock speeds.

CHAPTER 2. CELL BE ARCHITECTURE 8

eHiTS Scoring 112x
Rigid fragment Docking 58x
Pose matching 37x
Flexible Chain Fitting 92x
Conformation Minimization 84x
Final Optimization 55x
Total (Complete flexible Docking) 62x

Table 2.2: performance gains achieved in various calculations[8]

2.5 Application - PLAYSTATION 3

The PLAYSTATION 3 is unusual for a gaming console for two reasons. First, it is

incredibly more open than any previous console. While most consoles do everything

possible to prevent unauthorized games from being playable on their system, the PS3

goes in the other direction, even providing direct support for installing and booting

foreign operating systems. Of course, many of the game-related features such as

video acceleration are locked out for the third-party operating systems, but this series

focuses on more general-purpose and scientific applications anyway.

The real centerpiece for the PS3, however, is its processor – the Cell Broadband Engine

chip (often called the Cell BE chip). The Cell BE architecture is a radical departure

from traditional processor designs. The Cell BE processor is a chip consisting of

nine processing elements (note the PS3 has one of them disabled, and one of them

reserved for system use, leaving seven processing units at your disposal). The main

processing element is a fairly standard general-purpose processor. It is a dual-thread

Power Architecture element, called the Power Processing Element, or PPE for short.

The other eight processing elements, however, are a different story.

The other processing elements within the Cell BE are known as Synergistic Processing

Elements, or SPEs. Each SPE consists of:

• A vector processor, called a Synergistic Processing Unit, or SPU

• A private memory area within the SPU called the local store (the size of this

CHAPTER 2. CELL BE ARCHITECTURE 9

area on the PS3 is 256K)

• A set of communication channels for dealing with the outside world

• A set of 128 registers, each 128 bits wide (each register is normally treated as

holding four 32-bit values simultaneously)

• A Memory Flow Controller (MFC) which manages DMA transfers between the

SPU’s local store and main memory

While the Cell BE processor has been out for a while in specialized hardware, the

PS3 is the first Cell BE-based device that has been affordable and readily available.

And, with Linux, anyone who wants to can program it.

Chapter 3

Programming Concepts

The performance exhibited by the Cell/B.E. is not delivered simply by recompiling

existing C/C++ code for the Cell/B.E. processor. There are several key differences

in coding for the Cell/B.E. processor compared to traditional CPUs:

• The PPE and the SPE are not binary compatible. The code needs to be com-

piled with a different compiler to generate code fragments that run on the SPE.

Simple POSIX threads cannot be scheduled by the OS to run on the SPE.

• A thread running on an SPE can only directly access the 256 KB local storage

of that SPE. This small amount of memory must contain the code, the data and

the execution stack at any one time. Of course, data or code can be shuffled

back and forth between the main memory and the local store via DMA calls, but

those have to be explicitly programmed and managed by the code. Furthermore,

the DMA calls in the code have to be designed to use double buffering or similar

tricks to streamline data and avoid stalling due to latency.

• The power of the SPEs comes from SIMD vector operations, where the same

instruction is executed for multiple data entries. An SPE using dual pipe can

execute 8 instructions per cycle. These are two different instructions each exe-

cuted on 4 parallel data units and those data units must reside in a consecutive

block of memory or in a single 128-bit register. High performance can therefore

10

CHAPTER 3. PROGRAMMING CONCEPTS 11

only be reached if the data is organized in a very specific way that is suitable

for SIMD calculations.

• SPEs do not have branch prediction hardware. This was one of the simplifica-

tions compared to traditional CPUs that allowed the engineers to pack more

computation cores into the chip. The downside of this is that branches in the

code are more costly and lead to a loss in pipeline efficiency. A single branch

miss costs an 18-cycle delay and 144 (from 18x8) potential instruction execu-

tions are lost! Therefore, code must be written by minimizing branches. If a

choice needs to be made, it is often worth computing both alternatives and se-

lecting the most appropriate one from the results rather than inserting a branch

to compute only what is necessary.

3.1 SDK 3.0[12]

SDK for Multicore Acceleration V3.0 contains the essential tools required for de-

veloping programs for the Cell/B.E. based server the IBM BladeCenter QS21 with

libraries, frameworks, and application development tools. The Synergistic Processing

Elements (SPE) will be used for offloading numerically intensive computing functions

from more general-purpose x86 and IBM POWER-based processors.

The SDK is designed to allow customers, research institutions, and universities to

port and optimize applications and algorithms quickly with existing software devel-

opment staff.

Focusing on programmer productivity, the SDK includes tools for improving appli-

cation development and performance optimization. Market segment enablement is

offered through libraries such as BLAS.

The SDK is offered through IBM Passport Advantage with support through IBM

support channels. Along with the SDK, a number of beta and prototype components

are available.

The beta and prototype components found on developerWorks are available under

CHAPTER 3. PROGRAMMING CONCEPTS 12

the International License for Early Release of Programs.

Four development platforms can be used to facilitate application development: x86,

x86fi64, PPC64, and Cell/B.E. Architecture.

The SDK V3 is closely aligned with Red Hat Enterprise Linux 5 Update 1.

3.2 The SDK contains the following components

• An Eclipse-based IDE for building, compiling, and debugging applications lever-

aging the compilers, programming model frameworks, and analysis tools of the

SDK.

• Development libraries and frameworks:

– The ALF provides a programming environment for data and task parallel

applications and libraries. The ALF API is designed to provide library

developers a set of interfaces to simplify library development on hetero-

geneous multicore systems. Library developers can use the framework to

offload the computationally intensive work to the accelerators, facilitat-

ing the development of more complex applications by combining several

function offload libraries.

– The DaCS library provides a set of services designed to ease the develop-

ment of applications and application frameworks in a heterogeneous mul-

titiered (for example, memory hierarchy) system. The DaCS services are

implemented as a set of APIs that provide a layer of architectural neutral-

ity for application developers on a variety of multicore memory hierarchy

systems.

– BLAS is a widely used API for commonly used linear algebra operations

in HPC and other scientific domains. BLAS is widely used as the basis for

other high-quality linear algebra software.

CHAPTER 3. PROGRAMMING CONCEPTS 13

– SIMD math libraries are available for the PowerPC Processor Element

(PPE) Vector/SIMD Multimedia Extension and the Synergistic Processing

Unit (SPU).

• Performance tools:

– The FDPR-Pro tool gathers information for feedback-directed optimiza-

tion through static code analysis.

– Performance Debugging Tool provides tools to analyze the execution of

Cell/B.E. applications and track problems to optimize performance.

• Example source code:

– Examples, libraries, demos, and code to demonstrate the use of tools,

libraries, and hardware features are available. A tutorial to guide the user

through the creation of an example application is also included.

• Mathematical Acceleration Subsystem (MASS) consists of libraries of mathe-

matical intrinsic functions tuned for optimum performance on SPE and PPE.

These libraries offer improved performance over the standard mathematical li-

brary routines, are thread-safe, and can be used by C, C++, and Fortran ap-

plications. The PPE libraries support both 32-bit and 64-bit compilations.

• Compiler:

– The GNU toolchain compiler , including compilers, the assembler, the

linker, and miscellaneous tools, is available for both the PowerPC Pro-

cessor Unit (PPU) and Synergistic Processor Unit (SPU) instruction set

architectures. On the PPU, it replaces the native GNU toolchain, which

is generic for the PowerPC Architecture, with a version that is tuned for

the Cell/B.E. PPU processor core. The GNU compilers are the default

compilers for the SDK.

CHAPTER 3. PROGRAMMING CONCEPTS 14

– IBM XL C/C++ compiler for Multicore Acceleration for Linux is an ad-

vanced, high-performance cross-compiler that is tuned for the Cell Broad-

band Engine Architecture (CBEA). The XL C/C++ compiler, which is

hosted on an x86, IBM PowerPC technology-based system, or an IBM

BladeCenter QS21, generates code for the PPU or SPU. The compiler

requires the GCC toolchain for the CBEA, which provides tools for cross-

assembling and cross-linking applications for both the PowerPC Processor

Element (PPE) and Synergistic Processor Element (SPE).

– GNU ADA compiler comes in an existing Cell/B.E. processor and an x86

cross-compiler. The initial version of this compiler supports code genera-

tion for the PPU processor.

– IBM XL Fortran for Multicore Acceleration for Linux, the latest addition

to the IBM XL family of compilers, is a cross compiler. It adopts proven

high-performance compiler technologies that are used in its compiler family

predecessors. It also adds new features that are tailored to exploit the

unique performance capabilities of processors that are compliant with the

new CBEA.

3.3 CellBE Libraries[12]

• The SPE Runtime Management Library (libspe) constitutes the standardized

low-level application programming interface (API) for application access to the

Cell/B.E. SPEs. This library provides an API to manage SPEs that are neutral

with respect to the underlying operating system and its methods. Implementa-

tions of this library can provide additional functionality that allows for access

to operating system or implementation-dependent aspects of SPE runtime man-

agement. These capabilities are not subject to standardization. Their use may

lead to non-portable code and dependencies on certain implemented versions of

the library.

CHAPTER 3. PROGRAMMING CONCEPTS 15

• SIMD Math Library : The traditional math functions are scalar instructions and

do not take advantage of the powerful single instruction, multiple data (SIMD)

vector instructions that are available in both the PPU and SPU in the CBEA.

SIMD instructions perform computations on short vectors of data in parallel,

instead of on individual scalar data elements. They often provide significant

increases in program speed because more computation can be done with fewer

instructions.

• The Mathematical Acceleration Subsystem (MASS) consists of libraries of math-

ematical intrinsic functions, which are tuned specifically for optimum perfor-

mance on the Cell/B.E. processor. Currently the 32-bit, 64-bit PPU, and SPU

libraries are supported. These libraries offer the following advantages:

– Include both scalar and vector functions, are thread-safe, and support both

32-bit and 64-bit compilations

– Offer improved performance over the corresponding standard system li-

brary routines

– Are intended for use in applications where slight differences in accuracy or

handling of exceptional values can be tolerated

• The library:

– The Basic Linear Algebra Subprograms (BLAS) library is based upon a

published standard interface for commonly used linear algebra operations

in high-performance computing (HPC) and other scientific domains. It

is widely used as the basis for other high quality linear algebra software,

for example LAPACK and ScaLAPACK. The Linpack (HPL) benchmark

largely depends on a single BLAS routine (DGEMM) for good perfor-

mance.

– The BLAS API is available as standard ANSI C and standard FORTRAN

77/90 interfaces. BLAS implementations are also available in open source

CHAPTER 3. PROGRAMMING CONCEPTS 16

(netlib.org).

– The BLAS library in IBM SDK for Multicore Acceleration supports only

real single-precision (SP) and real double-precision (DP) versions. All SP

and DP routines in the three levels of standard BLAS are supported on

the PPE. These routines are available as PPE APIs and conform to the

standard BLAS interface.

– Some of these routines are optimized by using the SPEs and show a marked

increase in performance compared to the corresponding versions that are

implemented solely on the PPE. These optimized routines have an SPE

interface in addition to the PPE interface. The SPE interface does not

conform to, yet provides a restricted version of, the standard BLAS inter-

face. Moreover, the single precision versions of these routines have been

further optimized for maximum performance by using various features of

the SPE.

• ALF Library:

– The provides a programming environment for data and task parallel ap-

plications and libraries. The ALF API provides library developers with a

set of interfaces to simplify library development on heterogeneous multi-

core systems. Library developers can use the provided framework to offload

computationally intensive work to the accelerators. More complex applica-

tions can be developed by combining the several function offload libraries.

Application programmers can also choose to implement their applications

directly to the ALF interface.

– The ALF supports the programming module where multiple programs can

be scheduled to run on multiple accelerator elements at the same time.

The ALF library includes the following functionality:

∗ Data transfer management

CHAPTER 3. PROGRAMMING CONCEPTS 17

∗ Parallel task management

∗ Double buffering and dynamic load balancing

• The library:

– The Data Communication and Synchronization (DaCS) library provides

a set of services for handling process-to-process communication in a het-

erogeneous multi-core system. In addition to the basic message passing

service, the library includes the following services:

∗ Mailbox services

∗ Resource reservation

∗ Process and process group management

∗ Process and data synchronization

∗ Remote memory services

∗ Error handling

– The DaCS services are implemented as a set of APIs that provide an ar-

chitecturally neutral layer for application developers. They structure the

processing elements, referred to as DaCS elements (DE), into a hierarchi-

cal topology. This includes general purpose elements, referred to as host

elements (HE), and special processing elements, referred to as accelerator

elements (AE). HEs usually run a full operating system and submit work

to the specialized processes that run in the AEs.

3.4 Installation of SDK[1]

3.4.1 Getting source:

Grab the following from IBM DeveloperWorks, as directed in a directory e.g. /tmp/sdkfiles/

• cell-install-3.1.0-0.0.noarch.rpm

CHAPTER 3. PROGRAMMING CONCEPTS 18

• oCellSDK-Devel-RHELfi3.1.0.0.0.iso

• CellSDK-Extras-RHELfi3.1.0.0.0.iso

3.4.2 Prepare to install:

Apply the commands

• rpm -ivh /tmp/sdkfiles/cell-install-3.1.0-0.0.noarch.rpm

• /opt/cell/cellsdk uninstall

That did some clean-ups/housekeeping. Redid the install binaries as instructed:

• yum install *ppu* *spu* numactl numactl-devel

3.4.3 Mounting:

Apply the commands

• mkdir /mnt/sdk

• mkdir /mnt/sdkextras

That creates mount point and to mount the installation files.

• mount -o loop /tmp/sdkfiles/CellSDK-Devel-RHELfi3.1.0.0.0.iso /mnt/sdk

• mount -o loop /tmp/sdkfiles/CellSDK-Extras-RHELfi3.1.0.0.0.iso /mnt/sdkextras

3.4.4 Installing the base SDK stuff:

Apply the commands

• cd /mnt/sdk/ppc64/

• yum –nogpgcheck localinstall *

CHAPTER 3. PROGRAMMING CONCEPTS 19

That installs SDK and now to install extra packages.

• cd /mnt/sdkextras/ppc64/

• yum –nogpgcheck localinstall *

and finally unmount the image.

Chapter 4

Problem Definition

4.1 Methods for performance optimization[8]

There are numbers of way by which a programme can be written to get performance

benefit of CellBE. They are explained as follows.

4.1.1 Vector data types intrinsics

The vector data types intrinsics is a set of intrinsics that is provided to support the

VMX instructions, which follow the AltiVec standard.The vector registers are 128 bits

and can contain either sixteen 8-bit values (signed or unsigned), eight 16-bit values

(signed or unsigned), four 32-bit values (signed or unsigned), or four single-precision

IEEE-754 floating-point values.

VMX data types and Vector/SIMD Multimedia Extension intrinsics can be used in a

seamless way throughout a C-language program. The programmer does not need to

set up to enter a special mode. The intrinsics may be either defined as macros within

the system header file or implemented internally within the compiler.

20

CHAPTER 4. PROBLEM DEFINITION 21

4.1.2 Task parallelism and managing SPE threads

Programs that run on the Cell/B.E. processor typically partition the work among

the eight available SPEs since each SPE is assigned with a different task and data to

work on. Regardless of the programming model, the main thread of the program is

executed on the PPE, which creates sub-threads that run on the SPEs and off-load

some function of the main program.

There are two main methods to load SPE programs:

• Static loading of SPE object Statically compile the SPE object within the

PPE program. At run time, the object is accessed as an external pointer that

can be used by the programmer to load the program into local storage. The

loading itself is implemented internally by the library API by using DMA.

• Dynamic loading of SPE object Compile the SPE as stand-alone applica-

tion. At run time, open the executable file, map it into the main memory, and

then load it into the local storage of the SPE. This method is more flexible

because you can decide, at run time, which program to load, for example, de-

pending on the run time parameters. By using this method, you save linking

the SPE program with the PPE program at the cost of lost encapsulation, so

that the program is now a set of files, and not just a single executable.

4.2 Dynamic loading of SPE for task parallelism

This method best suites to this these as it loads SPE threads dynamically so whenever

any individual function call identifies, we can call an SPE thread to compute that task

independently. It is also very simple to call an SPE thread from PPE execution. It

requires to create an image of the SPE function independently, Create a linux thread

from PPE program and load that image in to the thread along with some required

parameters.

Following are the steps to do the same:

CHAPTER 4. PROBLEM DEFINITION 22

• Find out the independent functions.

• Copy each individual function code into a separate file for SPEs.

• Copy the main code in to the main file for PPE.

• Create the image of the SPE files.

• Create the linux thread from the PPE program at whenever the function calls

and copy the image of that SPE file.

4.3 Problem with the definition

As explained in the architecture, in CellBE each SPE and PPE has its own separate

local storage and a common global storage memory. Following is the detailed storage

of CellBe.

As shown in figure, all the storage spaces are connected to each other through a high

Figure 4.1: Storage of a CellBE architecture[12]

CHAPTER 4. PROBLEM DEFINITION 23

speed bus so that data transfer takes less amount of time. The main challenge is to

copy required variables in to respective local storage of SPE and PPE.

To solve this problem this algorithm puts the global variables into a common header

file and includes that file in each SPE and PPE file. It also finds out the local variables

of each function and puts them into the the local storage space at run time.

4.4 Benefits of this approach

Cell BE architecture is one of the multi core architectures available to get the higher

performance. This kind of architectures required a specific system calls and program-

ming structure to get its performance benefit. For a developer, it is very difficult

and a time consuming task to learn such new programming method. This software is

developed to automatic convert the normal code written in C programming language

into a code, which runs nicely on the Cell BE architecture to utilize its hardware

features and get optimal performance. Same algorithm can be used to develop such

softwares for different multi core architectures like CUDA to save the man power and

time.

Chapter 5

Dependency analysis tool

This tool is developed to find out a functional dependency graph for a C program.

Here for this thesis i have considered programs written in C programming language

only.

5.1 Dependencies

There may many kind of dependencies in a program like, Functional dependency,

Variable dependency, Module dependency, etc. This tool generates a functional de-

pendency graph and doesn’t consider any other kind of dependency.

There are mainly three kind of functional dependency.

a. Direct Dependency is a kind of dependency in which a function is called

within another function e.g.

void fun1{

...

fun2()

...

}

24

CHAPTER 5. DEPENDENCY ANALYSIS TOOL 25

fun1 is directly dependent on fun2.

b. Indirect Dependency is a kind of dependency in which return value of a

function is passed as an argument of another function e.g.

void fun1{

...

a=fun2()

fun3(a)

...

}

fun3 is indirectly dependent on fun2.

c. Transitive Dependency is a kind of dependency in which a function called

in a function is already dependent on another function e.g.

void fun1{

...

fun2()

...

}

void fun2{

...

fun3()

...

}

fun1 is Transitively dependent on fun3.

CHAPTER 5. DEPENDENCY ANALYSIS TOOL 26

5.2 Pseudo code

This tool is made to run on Yellow Dog Linux, so most of the coding has been done

using C++ programming and Linux Shell scripts. This tool internally uses three

kind of storage such as stack, 1D link list and 2D link list at different level, for

different purposes. Following is the Pseudo code for the tool Which provides enough

knowledge, how it works.

Read (main file of the software)

Get (all the included c files)

Write (into a stack)

Get (global variables)

Write (into a common header file)

WHILE stack is not empty

Read (a file on the top of the stack)

Get (find out the declared functions)

IF it is a main function THAN

Write (into main_ppu.c file)

ELSE

Write (into FUN_spu.c file)

END IF

Read (these files line by line)

Get (variable declared in that line and find out dependant functions)

Write (variables into a link list and functions in to a 2D link list)

END WHILE

5.3 Functions Developed

Following are the functions, developed within the tool.

• RmvCmt removes comments from a file, to consider only the part of program

CHAPTER 5. DEPENDENCY ANALYSIS TOOL 27

which is going to be compiled.

• FindFile finds included .c files from a file so that later on it can scan all the .c

files and find out functions and their dependency graph.

• FindVar finds variables declared in a file to put those variables in to the local

memory of SPEs accordingly.

• FindFcn finds functions defined in a file and stores them in to a 1D link list.

• FindDpn finds functional dependency for each function and generate a graph.

5.4 Output

This tool gives two kind of output.

a. Separate .c files :- This tool will give a independent .c file for each function

definition.

b. Functional dependency graph :- This tool also provides a functional depen-

dency graph for each function declared in the program.

Following is the complete explanation of the output formate of this tool with the help

of an example.

5.4.1 Input file

Here is the tst.c file which is given as the input to this tool.

#include<stdio.h>

int x;

void tst1(){

int i,j;

CHAPTER 5. DEPENDENCY ANALYSIS TOOL 28

tst2();

printf("Hi. this is test 1.\n");

}

void tst2(){

int i,j;

printf("Hi. this is test 2.\n");

}

int main(){

int i,j;

printf("Hi. this is main.\n");

tst1();

return 0;

}

This file has three member functions tst1, tst2 and main defined. tst1 is dependent

on tst2, main is dependent on tst1 and tst2 is an independent function in this file.

5.4.2 Output files

Here are the separate .c files which this tool gives as output for the tst.c file described

above.

• tst2.c

#include<stdio.h>

int x;

void tst2(){

int i,j;

printf("Hi. this is test 2.\n");

}

CHAPTER 5. DEPENDENCY ANALYSIS TOOL 29

• tst1.c

#include<stdio.h>

int x;

void tst1(){

int i,j;

tst2();

printf("Hi. this is test 1.\n");

}

• main.c

#include<stdio.h>

int x;

int main(){

int i,j;

printf("Hi. this is main.\n");

tst1();

return 0;

}

5.4.3 Dependency graph

Following is the dependency graph, in the form of 2D link list, generated for the file

tst.c described above.

CHAPTER 5. DEPENDENCY ANALYSIS TOOL 30

Figure 5.1: Dependency graph

5.5 Performance evaluation

This tool has been applied no of different c programs to evaluate its performance and

the Following is the performance evaluation graph generated from the results.

Figure 5.2: Performance evaluation

Chapter 6

Automatic code conversion

This algorithm is developed to convert a normal program written in c programming

language which runs on a single CPU into a complete package including number

of files which can run properly on a CellBE architecture and can get performance

benefits of the architecture.

6.1 Algorithm

Read main file of the software

Find out all the included c files

Read all the c files one by one

Find out the global variables and included files

Write them into a common header file

Find out declared functions

If it is a main function Than

Write it into main_ppu.c file

Else

Write it into FUN_spu.c file

Read all the FUN_spe.c files

31

CHAPTER 6. AUTOMATIC CODE CONVERSION 32

Find out functional dependence

If there is a inter functional dependence Than

Write the function definition into that FUN_spe.c file

else

Leave the FUN_spe.c file as it is

Read main_ppu.c file line by line

Write appropriate SDK code at respective place

Find out the function calls in the definition

Call appropriate SPE threads instead of function calls

Include the header file to all the SPU and PPU files.

Compile all the FUN_spe.c files using SPU compiler

Compile the main_ppu.c file using PPU compiler

Run the main file

6.2 Output

This algorithm takes a .c file as an input and gives a complete package with number

of files. Following are the input and output

6.2.1 Input file

Consider a program, with two files test1.c and test2.c is given as an input to this

algorithm. Among these two files test1.c is the main file which includes test2.c file to

use its functionality. These files are as follows.

• test1.c

#include<stdio.h>

CHAPTER 6. AUTOMATIC CODE CONVERSION 33

#include "test2.c"

int x;

void tst1(){

int i,j;

tst3();

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is test 1.\n");

}

void tst2(){

int i,j;

tst3();

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is test 2.\n");

}

int main(){

int i,j;

tst1();

tst2();

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is main.\n");

return 0;

}

• test2.c

#include<stdio.h>

CHAPTER 6. AUTOMATIC CODE CONVERSION 34

void tst3(){

int i,j;

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is tst 3.\n");

}

There are three sub function and a main functions are declared. main function is

dependent on functions tst1 and tst3, which are dependent on function tst2.

6.2.2 Output files

This algorithm gives a separate .c file for each function and one .sh file to compile

the program. following are the output files.

• tst1 spu.c

#include "hdr_ppu.h"

#include <stdint.h>

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

static parm_context ctx __attribute__ ((aligned (128)));

volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));

volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

void tst3(){

int i,j;

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

CHAPTER 6. AUTOMATIC CODE CONVERSION 35

printf("Hi. this is tst 3.\n");

}

void tst2() {

int i;

printf("Hi. this is test 2.\n");

}

int main(int speid , uint64_t argp){

uint32_t tag_id;

int i,j;

if((tag_id=mfc_tag_reserve())==MFC_TAG_INVALID){

printf("SPE: ERROR - can’t reserve a tag ID");

return 1;

}

mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);

mfc_write_tag_mask(1<<tag_id);

mfc_read_tag_status_all();

tst3();

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is tst 1.\n");

mfc_tag_release(tag_id);

return 0;

CHAPTER 6. AUTOMATIC CODE CONVERSION 36

}

• tst2 spu.c

#include "hdr_ppu.h"

#include <stdint.h>

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

static parm_context ctx __attribute__ ((aligned (128)));

volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));

volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

void tst3(){

int i,j;

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is tst 3.\n");

}

int main(int speid , uint64_t argp){

uint32_t tag_id;

int i,j;

if((tag_id=mfc_tag_reserve())==MFC_TAG_INVALID){

printf("SPE: ERROR - can’t reserve a tag ID");

return 1;

}

CHAPTER 6. AUTOMATIC CODE CONVERSION 37

mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);

mfc_write_tag_mask(1<<tag_id);

mfc_read_tag_status_all();

tst3();

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is tst 2.\n");

mfc_tag_release(tag_id);

return 0;

}

• main ppu.c

#include "hdr_ppu.h"

#include <stdint.h>

#include <libspe2.h>

#include </opt/cell/sdk/usr/include/cbe_mfc.h>

#include <pthread.h>

volatile char in_data[BUFF_SIZE] __attribute__ ((aligned(128)));

volatile char out_data[BUFF_SIZE] __attribute__ ((aligned(128)));

volatile parm_context ctx[NUM_SPES] __attribute__ ((aligned(16)));

spe_program_handle_t *program[BUFF_SIZE];

typedef struct spu_data {

spe_context_ptr_t spe_ctx;

pthread_t pthread;

void *argp;

} spu_data_t;

spu_data_t data[NUM_SPES];

CHAPTER 6. AUTOMATIC CODE CONVERSION 38

void *spu_pthread(void *arg) {

spu_data_t *datp = (spu_data_t *)arg;

uint32_t entry = SPE_DEFAULT_ENTRY;

if(spe_context_run(datp->spe_ctx,&entry,0,datp->argp,NULL,NULL)<0){

perror ("Failed running context");

exit (1);

}

pthread_exit(NULL);

}

int main(){

int ppunum;

int i,j;

char spe_names[NUM_SPES][20] = {"tst2","tst1"};

for(ppunum=0; ppunum<NUM_SPES; ppunum++){

ctx[ppunum].ea_in = (uint64_t)in_data + ppunum*(BUFF_SIZE/NUM_SPES);

ctx[ppunum].ea_out= (uint64_t)out_data + ppunum*(BUFF_SIZE/NUM_SPES);

data[ppunum].argp = &ctx;

}

for(ppunum=0; ppunum<NUM_SPES; ppunum++){

if ((data[ppunum].spe_ctx = spe_context_create (0, NULL)) == NULL) {

perror("Failed creating context"); exit(1);}

if (!(program[ppunum] = spe_image_open(&spe_names[ppunum][0]))) {

perror("Fail opening image"); exit(1);}

if (spe_program_load (data[ppunum].spe_ctx, program[ppunum])) {

perror("Failed loading program"); exit(1);}

}

CHAPTER 6. AUTOMATIC CODE CONVERSION 39

for(ppunum=0; ppunum<NUM_SPES; ppunum++){

if(pthread_create(&data[ppunum].pthread,NULL,&spu_pthread,&data[ppunum])){

perror("Failed creating thread"); exit(1);}

}

for(ppunum=0; ppunum<NUM_SPES; ppunum++){

if (pthread_join (data[ppunum].pthread, NULL)) {

perror("Failed joining thread"); exit (1);}

if (spe_context_destroy(data[ppunum].spe_ctx)) {

perror("Failed spe_context_destroy"); exit(1);}

}

for(i=0;i<9999;i++)

for(j=0;j<9999;j++);

printf("Hi. this is main.\n");

printf(")PPE:) Complete running all super-fast SPEs"); return (0); }

• hdr ppu.h

#include<stdio.h>

#include<stdint.h>

#define NUM_SPES 2

#define BUFF_SIZE 256

typedef struct{

uint64_t ea_in;

uint64_t ea_out;

} parm_context;

• run.sh

CHAPTER 6. AUTOMATIC CODE CONVERSION 40

g++ find_var.cpp -o fndvar -Wno-deprecated

g++ find_fnc.cpp -o fndfcn -Wno-deprecated

./fndfcn $1

./cmpl.sh

echo "Compiled successfully..."

echo "To run : ./main "

• cmpl.sh

spu-gcc tst1_spu.c -o tst1

spu-gcc tst2_spu.c -o tst2

ppu-gcc main_ppu.c -o main -lspe2 -lpthread

6.3 Performance Evaluation

To compare the performance of the program, the same program with two files having

three functions with few dependancies has been written and executed using different

parallel programming methods. The result shows comparative performance benefit

of the program converted using this algorithm. Following are the result with respect

to Real, User and System time usage.

Here the data in the table shaws that the execution of a program distributade

on different processors using this tool take comparatively less time as compare to

sequential, multi-threading and multi-processing wxwcution of the same program on

the same machine.

CHAPTER 6. AUTOMATIC CODE CONVERSION 41

real user sys
sequential program 0m9.225s 0m8.945s 0m0.082s
using multi-processing 0m8.268s 0m7.952s 0m0.051s
using multi-threading 0m8.787s 0m14.503s 0m0.116s
Distributed on different proces-
sors using this algorithm

0m4.757s 0m1.738s 0m0.026s

Table 6.1: Performance evaluation

6.4 Limitations

This algorithm has some limitations because of the limitations of the architecture and

some other issue, which are mentioned below.

• Less Independent functions, Less benefit :

This algorithm works better with the program having more number of indepen-

dent functions. It will not affect to the performance of a sequential program

with no independent function.

• SPE limitation :

SPE has a limitation that it can not call another SPE. Only PPE can assign

works to SPE and can call its thread so this algorithm will consider inter func-

tional dependence as a sequential program.

• IO interface :

Because of limited number of resources, Performance of the program degrades

as the number of IO interface increases. Each PPU and SPU have to wait for

the resource to be free if it is using by someone else.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Cell BE is a very powerful architecture for computational tasks and can perform bet-

ter as compare to other architecture if it is used with proper programming. A simple

program written for a single CPU also runs properly on this architecture but it uses

power of PPU only, though it is developed using multi-threading or multi-processing

programming techniques. To get the benefit of the architecture some of the system

calls and some intrinsics should be used in the program, and to learn programming

with CellBE SDK is a very time consuming and difficult task. A good programmer

will take more than a month to learn architecture of CellBE and to be aware of the

system calls of SDK.

This algorithm is useful to convert a sequential program into a program which runs

properly on a multi-core architecture to get its architectural benefit. I have applied

this algorithm for CellBE architecture. I have developed a tool which convert a se-

quential C language program into a list of programs which runs nicely and optimally

on CellBE architecture. This tool saves time and affords of a developer to learn a

complete SDK functionality.

42

CHAPTER 7. CONCLUSION AND FUTURE WORK 43

There are some limitations with the architecture and the SDK, And so this tool

also has several limitations which can be further resolved to make this tool more

better.

7.2 Future Work

After working on this topic for almost a year, i am able to complete several tasks and

to prove some of the things. I have found out some of the tasks and problems which

can be worked on and can be resolved.

• IBM SDK provides supporting system calls and intrinsic for C, C++ and ma-

chine level programming language only. I have applied this algorithm and de-

velop a tool which converts a program written in C. Same algorithm can be

applied to make a tool for programs written in other programming languages

like C++.

• This architecture supports parallel computing in two ways. One is independent

computing using execution on SPUs and second is vectorization in which same

operation like addition, multiplication etc... can be applied on multiple data at

a time using SIMD. This algorithm only takes care of first method so second

method of optimization (Vectorization) can also be applied to optimize the

performance. Mix approach can also be tried to get the best performance.

• This SDK has some limitations like an SPE can not call another SPE. Because

of such limitations only PPE can assigned a task to SPEs and can call them

for computation, inter function dependence is not taken care in this algorithm.

This problem can be solved by different approach.

Web References

[1] http://www.ibm.com

[2] http://www.cs.berkeley.edu/∼dsw/

[3] http://cs.ecs.baylor.edu/∼donahoo/tools/valgrind

[4] http://publications.csail.mit.edu/abstracts/abstracts06/pgbovine/pgbovine.html

[5] http://cs.swan.ac.uk/∼csoliver/oksatlibrary/internetfihtml/doc/doc/Valgrind/3.5.0/html/manual-
writing-tools.html

44

References

[1] Inbal Ronen, Nurit Dor, Sara Porat and Yael Dubinsky,”Combined Static and
Dynamic Analysis for Inferring Program Dependencies Using a Pattern Lan-
guage” ,IBM Haifa Research Lab Mount Carmel, Haifa 31905, Israel,–2006.

[2] Jeremy W. Nimmer and Michael D. Ernst”Static verification of dynamically de-
tected program invariants: Integrating Daikon and ESC/Java”, MIT Lab for
Computer Science 200 Technology Square Cambridge, MA 02139 USA.

[3] Miryung Kim and Andrew Petersen, An Evaluation of Daikon: A Dynamic In-
variant Detector, miryung, petersen,at cs.washington.edu.

[4] Kenichi Nakao,Lettix LDM:Analysis of Software Artifacts, –Mar 25, 2008.

[5] Wolfram Amme, Peter Braun, Eberhard Zehendner, Data Dependence Analysis
of Assembly Code, Computer Science Department Friedrich Schiller University
Jena, –Septembre 1999.

[6] Francoise Balmas, DDFgraph: a Tool for Dynamic Data Flow Graphs Visualiza-
tion, Universite Paris 8 (France).

[7] Stephen McCamant, Dynamic Variable Comparability Analysis for C and C++
Programs”,MIT Computer Science and Artificial Intelligence Laboratory, 32 Vas-
sar Street, Cambridge MA, 02139 USA.

[8] ”programing with CellBE”,IBM.

[9] philip J. Guo, A Scalable Mixed-Level Approach to Dynamic Analysis of C and
C++ Programs,May 16, 2005.

[10] Seunghwa Kang and David A. Bader,”Optimizing JPEG2000 Still Image Encod-
ing on the Cell Broad- band Engine”,Georgia Institute of Technology, Atlanta,
GA 30332, 2008.

[11] Krste Asanovic and Ras Bodik,”The Landscape of Parallel Computing Research:
A View from Berke- ley”,UC Berkeley EECS, Aug 18, 2009.

[12] ”C/C++ Language Extensions for Cell Broadband Engine Architecture”, IBM,
2008.

45

Index

Advantages, 6

Algorithm, 31

Application of Cell BE, 8

Architecture, 5

Automatic code conversion, 31

Conclusion, 42

Definition, 20

Dependency analyzing tool, 24

Dependency graph, 29

Design goals, 4

Evaluation, 40

Functions, 26

Future Work, 43

Installation of SDK, 17

Introduction of Cell BE, 1

Libraries, 14

Limitations, 41

Performance, 6

Performance of tool, 30

Programming Concept, 10

Pseudo code, 26

SDK 3.0, 11

SDK components, 12

Type of dependencies, 24

46

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Objective of the Work
	Scope of the Work
	Motivation of the Work
	Thesis Organization

	Cell BE Architecture
	Design goals
	Architecture
	Performance
	Advantages
	Application - PLAYSTATION 3

	Programming Concepts
	SDK 3.0twe
	The SDK contains the following components
	CellBE Librariestwe
	Installation of SDK[1]
	Getting source:
	Prepare to install:
	Mounting:
	Installing the base SDK stuff:

	Problem Definition
	Methods for performance optimizationeig
	Vector data types intrinsics
	Task parallelism and managing SPE threads

	Dynamic loading of SPE for task parallelism
	Problem with the definition
	Benefits of this approach

	Dependency analysis tool
	Dependencies
	Pseudo code
	Functions Developed
	Output
	Input file
	Output files
	Dependency graph

	Performance evaluation

	Automatic code conversion
	Algorithm
	Output
	Input file
	Output files

	Performance Evaluation
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	Web References
	References
	Index

