
A generic IP-XACT generator for configurable
Intellectual Property

By

Hemant Kashyap

09MCE007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2011

A generic IP-XACT generator for configurable
Intellectual Property

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Hemant Kashyap

09MCE007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2011

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in Computer Science and Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Hemant kashyap

iv

Certificate

This is to certify that the Major Project entitled ” A generic IP-XACT generator

for configurable Intellectual Property” submitted by Hemant Kashyap (09MCE007),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Computer Science and Engineering of Nirma University of Science and

Technology, Ahmedabad is the record of work carried out by him under my supervi-

sion and guidance. In my opinion, the submitted work has reached a level required for

being accepted for examination. The results embodied in this major project, to the

best of my knowledge, haven’t been submitted to any other university or institution

for award of any degree or diploma.

Mr. Mukesh Chopra Dr. S.N. Pradhan

Guide, Internal Guide and Professor,

Manager FDDF, Department Computer Engineering,

Technology Research and Development, Institute of Technology,

ST Microelectronics, Greater Noida Nirma University, Ahmedabad

Dr K Kotecha Prof. D. J. Patel

Director, Professor and Head,

Institute of Technology, Department of Computer Engineering,

Nirma University, Ahmedabad, Institute of Technology,

Nirma University, Ahmedabad

v

Abstract

As chip design became more and more complex and concept of reusable hardware de-

sign (Intellectual property) evolved. IP-XACT IEEE P 1685 standard was developed

for integrating and reusing Intellectual property within tool flows. IP-XACT IEEE

P1685 is a xml based standard for capturing metadata of a design (HDL code).It only

captures the metadata that is relevant to integration not the underlying functionality

of the design. Assembly tools which are based on IP-XACT read these metadata to

integrate IP’s. Hardware definition languages can contain various design configura-

tions in a single design based on macro definition .These macros values define the

actual the configuration of design that is actually synthesized.

IP-XACT currently has this limitation that it can only capture one hardware

configuration at a time. So for a configurable design designer has to manually create

different metadata for different configuration manually. In this report we present a

methodology to extend the standard to support configurable Intellectual Property.

Proposed methodology is such that it can be integrated into the existing assembly

tools without making additional changes to the tool. The proposed methodology

is assembly tool independent, which is acheaved by making communication between

assembly tool and configuring mechanism standardized by using TGI API’s and SOAP

protocol. Methodology provides a mechanism to append configurability information

into the metadata and a mechanism to generate a particular configuration.

This report presents an implementation for the methodology and a deployment

model. Integration and use model with different assembly tool is presented.

vi

Acknowledgements

I am deeply indebted to my thesis supervisor Mr Mukesh Chopra for his constant

guidance and motivation. He has devoted significant amount of his valuable time to

plan and discuss the thesis work. Without his experience and insights, it would have

been very difficult to do quality work.

I would also like to extend my gratitude to my Internal Guide Prof. S.N Pradhan

for his guidance and fruitful suggestions.

Here I would also like to thank my teammates at ST microelectronics espeically

Bhawna chopra and Sparsh Arun for their support and help.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Hemant Kashyap

09MCE007

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Tables ix

List of Figures 1

1 Introduction 2
1.1 IP-XACT based assembly . 2
1.2 Motivation . 4
1.3 Scope of Thesis . 4
1.4 Thesis Organization . 4

2 Literature Survey 6
2.1 Design flow and HDL . 6

2.1.1 HDL Languages . 7
2.2 HDL based assembly and Integration 8

2.2.1 TopDown . 8
2.2.2 Bottom up . 8
2.2.3 HDL Reuse . 9

2.3 IP-XACT standard . 9
2.3.1 IP-XACT Schema . 10
2.3.2 IP-XACT Objects and Interection 10
2.3.3 Generators and corresponding API’s specification. 11
2.3.4 TGI API . 12
2.3.5 Design Enviornment . 13

2.4 Configurable HDL Design . 14
2.5 Configurability in IP-XACT . 17

vii

CONTENTS viii

3 Problem Definition 18
3.1 Problem Definition . 18
3.2 Existing Methodology . 18

4 Proposed Methadology 20
4.1 Methodology . 20

4.1.1 Creating a generic Component 21
4.1.2 Configurability Syntax . 23
4.1.3 Generation mechanism . 24
4.1.4 Deploying the generator . 25

5 Implementation 27
5.1 Tools . 27

5.1.1 IP-XACT to Object oriented mapping 27
5.1.2 Axis tool . 29
5.1.3 JACL and TCLBlend . 31

5.2 Generator Design . 35
5.2.1 TGI API implementation and SOAP 36
5.2.2 Design Environment Generator Communication 38
5.2.3 Configuring Algorithm . 39
5.2.4 Design Environment updates 41

5.3 Result and Discussion . 41
5.3.1 Use model in ST Microelectronics 41
5.3.2 With Magillem design tool . 42
5.3.3 With In-house Developed IP-XACT assembly tool 43
5.3.4 With core Assembler . 44

6 Conclusion and Future Scope 46
6.1 Conclusion . 46
6.2 Future scope . 46

A IP-XACT component 48
A.1 Component Schema . 49

B Generators and TGI API 51
B.1 Method of communication . 51
B.2 Generator invocation . 52
B.3 Resolving the URL . 52

B.3.1 Example . 53
B.3.2 TGI API . 54

References 56

List of Tables

I HDL Languages . 7

I Configurability Requirement . 22

I JACL and TCLBlend comparision . 34
II TGI API implementation . 37
III Assembly tool feature support for configurable IP 45

I TGI API . 55

ix

List of Figures

1.1 IP-XACT Assembly flow . 3

2.1 Top down Design . 8
2.2 Bottom up design . 9
2.3 IP-XACT object Interection . 11
2.4 IP-XACT Design Enviornment . 13

4.1 Proposed Methodology Flow . 21
4.2 Generation Mechanism . 25

5.1 XML Beans . 28
5.2 Axis tool . 31
5.3 Axis tool comparision . 32
5.4 JACL Shell . 32
5.5 TCL Blend . 33
5.6 JACL and TCLBlend performence 35
5.7 Generator Architecture . 36
5.8 Axis tool code generation . 38
5.9 Design Enviornment Generator Interection 39
5.10 Generation Algorithm . 40
5.11 Component instantiation in magillem 42
5.12 Generator Invocation in Magillem . 43
5.13 IP-XACT assembly tool generator invocation 44
5.14 Generator invocation with coreAssembler 45

A.1 Component Schema . 49

1

Chapter 1

Introduction

This work aims at providing a methodology that extends IEEE P1685 standard [5] for

IP-XACT so that configurable Intellectual Property which is a design source code can

be handled within design flows. It has been a limitation of the standard that it cannot

handle designs which are configurable (contains macros).Configurable designs contain

multiple design configuration in a single source. The work in this thesis presents a

methodology that is design tool independent and standardized so that it can be used

in any IP-XACT based assembly tool flow.

1.1 IP-XACT based assembly

IP-XACT or IEEE P1685 is a standard for capturing meta data related to a HDL

code that can then be used for integration in a given tool flow. IP-XACT based

assembly is based first capturing the metadata related to design block into xml [11]

description then using that description for integration into IP-XACT based design.

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: IP-XACT Assembly flow

Figure 1.1 shows the IP-XACT based assembly flow.Through metadata it becomes

easy to integrate, reuse Intellectual property into tool flows .Tools working on inte-

gration of design block are independent of the actual design code written. IP-XACT

also allows for creating entities like bus interfaces that allow connections during inte-

gration to be specified in a group thus reducing the total number of connections.So

IP-XACT acctuly standardize the representation of information of a design which is

relevent to integration .

CHAPTER 1. INTRODUCTION 4

1.2 Motivation

IP-XACT based packaging and Assembly is getting more and more attention from

the designers. The standard uses xml based metadata capturing which can then be

used for integration purpose with tool flows hence reducing designer time. Also as

the standard defines proper syntax and semantic for metadata capture errors during

assembly (connecting different modules) are also reduced.

As IP-XACT is widely used it was always required to enhance the standard to

meet the designers requirement .One such requirement is to handle configurable Intel-

lectual property designs and a solution to generate a particular configuration for the

intellectual property. Designers use different assembly tools from different vendors so

the solution must be standard for all different tools.

1.3 Scope of Thesis

Objective of this thesis is to provide a methodology

a. To handle configurable Intellectual Properties in IP-XACT based assembly

flows.

b. Which is assembly tool Independent.

c. Is IEEE P1685 standard compliant .

Work of this thesis aims at overcoming a limitation of IP-XACT standard and to

enhance the standard to provide designer with a complete IP-XACT based assembly

flow.

1.4 Thesis Organization

This section describes as to how thesis is organized as

CHAPTER 1. INTRODUCTION 5

Chapter 1, Introduction This chapter provides an background of IP-XACT asssem-

bly flow .It also provides motivation and scope of this thesis.

Chapter 2, Literature Survey Chapter provides study of IP-XACT standard and

related terminology.It also discuss configurability in HDL.

Chapter 3, Problem Definition Elaborates problem definition and details about

existing methadology for handling configurability in intellectual property.

Chapter 4, Proposed Methadology This chapter details about the proposed methadol-

ogy and use model.It also discuss about the new syntax for configurability as

well as generation methodology.

Chapter 5, Implemantation Here details of implementation of above proposed

methadology is presented.Tools used in implementation are also discussed .Fi-

nally chapter provides results and outputs of the use model with different as-

sembly tools.

Chapter 6, Conclusion and future scope Finally this chapter presents conclusion

and future scope for the proposed solution.

Chapter 2

Literature Survey

2.1 Design flow and HDL

In electronics, a hardware description language or HDL is any language from a class

of computer languages, specification languages, or modeling languages for formal

description and design of electronic circuits, and most-commonly, digital logic. It can

describe the circuit’s operation, its design and organization, and tests to verify its

operation by means of simulation.[9]

HDL provides text based description of the functional and temporal behavior of

the hardware circuit. Synthesizer is a tool which converts the given HDL code to

netlist (which is interconnection of generic hardware primitives).

HDL is analogues to a software programming language but is very different. A

HDL has ability to handle many parallel processes executing simultaneously such

as flip-flop and adders. It can also represent timing delay information which is not

possible in a software programming language. Software programs are compiled for

a given microprocessor architecture where as HDL code is synthesized.HDL cannot

be used for software programming similarly software languages cannot be used for

modeling hardware.

However in terms of syntax they may appear same. Both types of languages can

6

CHAPTER 2. LITERATURE SURVEY 7

support conditional compilation (in terms of HDL it is synthesis).Both contains code

blocks and many other syntax like if else etc.

In recent times as electronic systems grow increasingly complex, and reconfigurable

systems become increasingly mainstream, there is growing desire in the industry for

a single language that can perform some tasks of both hardware design and software

programming. SystemC is an example of such-embedded system hardware can be

modeled as non-detailed architectural blocks (blackboxes with modeled signal inputs

and output drivers). The target application is written in C/C++, and natively com-

piled for the host-development system (as opposed to targeting the embedded CPU,

which requires host-simulation of the embedded CPU). The high level of abstraction

of SystemC models is well suited to early architecture exploration, as architectural

modifications can be easily evaluated with little concern for signal-level implementa-

tion issues.

2.1.1 HDL Languages

Many HDL languages have been designed for digital design few of them are listed in

table I

Language Description
VHDL Widely used language
Verilog Widely used language
Handle-C It is a rich subset of C, with non-standard extensions

to control hardware instantiation with an emphasis on
parallelism.

SystemC A standardized class of C++ libraries for high-level be-
havioral and transaction modeling of digital hardware
at a high level of abstraction, i.e. system-level

SystemVerilog A superset of Verilog, with enhancements to address
system-level design and verification

Table I: HDL Languages

From the above given HDL languages Verilog and VHDL are most widely used in the

industry other languages like SystemC are currently evolving.

CHAPTER 2. LITERATURE SURVEY 8

2.2 HDL based assembly and Integration

Generally in HDL blocks are written which has a defined periphery (Ports).These

blocks are known as leaf level blocks if they do not contain other blocks .These leaf

level blocks are then assembled together to form a complete design. Leaf level blocks

may contain primitive operations for the design. Two types of design methodology

are used [9].

2.2.1 TopDown

Figure 2.1: Top down Design

Here top level module specification are made first and then top module is broken

into low level modules based on functionality then in this way at last leaf level blocks

are designed.

2.2.2 Bottom up

This is reverse of Top Down approach. Other mixed strategy is also used where top

level specifications are made and by design architects. Whereas logic designers break

top level module in small blocks of functionality .Meanwhile circuit designers design

CHAPTER 2. LITERATURE SURVEY 9

Figure 2.2: Bottom up design

leaf level modules and lower hierarchical blocks they both the flows meet at a certain

point.

2.2.3 HDL Reuse

As design became more and more complex and concept of SOC (System on chip

evolved) where a chip can contain a microcontroller, memory and timers etc. This

makes design and interconnection between components very complex. Also design-

ers started reusing the components in chips like microcontroller or memory. This

made design process assembly and integration of given modules or IP’s (Intellectual

Property).

2.3 IP-XACT standard

IEEE P1685 standard for IP-XACT an extensible Markup Language (XML) schema1

for meta-data documenting intellectual property (IP) used in the development, im-

plementation, and verification of electronic systems and an application programming

interface (API) to provide tool access to the meta-data.This schema provides a stan-

CHAPTER 2. LITERATURE SURVEY 10

dard method to document IP that is compatible with automated integration tech-

niques. The API provides a standard method for linking tools into a system devel-

opment framework, enabling a more flexible, optimized development environment.

Tools compliant with this standard will be able to interpret, configure, integrate, and

manipulate IP blocks that comply with the IP meta-data description. The standard

is independent of any specific design processes. It does not cover those behavioral

characteristics of the IP that are not relevant to integration.

2.3.1 IP-XACT Schema

IEEE P1685 defines xml schema to capture HDL metadata .Xml uses xml 1.0 stan-

dard and use of xpath [12] expression is allowed for value dependency expression.

Along with the standard xpath function other functions are defined like spirit: num-

ber, spirit: translate etc ,however standard does not define implementation of these

functions.

2.3.2 IP-XACT Objects and Interection

In IP-XACT standard following objects [5] are defined as

a. A bus definition description defines the type attributes of a bus like if it is

addressable ,maximum slaves that can connect etc.

b. An abstraction definition description defines the representation attributes of a

bus,like ports and direction in master slave .

c. A component description defines an IP or interconnect structure ex a microcon-

troller.Please refer Appendix A for more information on IP-XACT component.

d. A design description defines the configuration of and interconnection between

components like between microcontroller and memory.

CHAPTER 2. LITERATURE SURVEY 11

e. An abstractor description defines an adaptor between interfaces of two different

abstractions.

f. A generator chain description defines the grouping and ordering of generators.

g. A design configuration description defines additional configuration information

for a generator chain or design description.

IP-XACT objects can interact as shown in the figure 2.3

Figure 2.3: IP-XACT object Interection

Every IP-XACT object is identified using four fields VLNV (Vendor ,library ,name

version) ,these values are mentioned in every object

2.3.3 Generators and corresponding API’s specification.

Generators are executable objects (e.g., scripts or binary programs) that may be in-

tegrated within a DE (referred to as internal) or provided separately as an executable

(referred to as external). Generators may be provided as part of an IP package (e.g.,

CHAPTER 2. LITERATURE SURVEY 12

for configurable IP, such as a bus-matrix generator) or as a way of wrapping point

tools for interaction with a DE (e.g., an external design netlister, external design

checker). An internal generator may perform a wide variety of tasks and may access

IP-XACT compliant meta-data by any method a DE supports. IP-XACT does not

describe these protocols. An external generator (often referred to as a TGI generator)

is an executable program or script invoked from within a DE to query or configure

design descriptions and their related component and abstractor descriptions. Ex-

ternal generators can use the TGI to access their IP-XACT meta-data descriptions

(as currently loaded into the DE) and perform the various operations associated

with those descriptions. In addition, external generators shall only operate upon IP-

XACT compliant meta-data through the defined TGI. Generators can be referenced

from a component, abstractor, or generator chain description. Generators can also

be grouped and ordered in generator chain descriptions and those chain descriptions

contained inside other chain descriptions. This sequencing of generators is critical for

providing script-based support for SoC flow creation. Description of implementation

and usage of Generator is not defined in the standard.

For more informatation please refer Appendix B.

2.3.4 TGI API

The tight generator interface (TGI) is the method a generator uses to efficiently ac-

cess a design or component description in a DE-independent and generator-language-

independent manner. Therefore, a generator running on two different DEs produces

the same results. TGI method signature is defined by the standard but it is to the

Design Environment to implement the API’s and use model.

Ex getComponentVLNV gets the component object VLNV currently in context.

For more information please refer Appendix B.

CHAPTER 2. LITERATURE SURVEY 13

Figure 2.4: IP-XACT Design Enviornment

2.3.5 Design Enviornment

A DE enables the designer to work with IP-XACT design IP through a coordinated

front-end and IP design database. These tools create and manage the top-level meta-

description of system design and may provide two basic types of services: design

capture, which is the expression of design configuration by the IP provider and design

intent by the IP user; and design build, which is the creation of a design (or design

model) to those intentions.

As part of design capture, a system design tool shall recognize the structure and

configuration options of imported IP. In the case of structure, this implies both the

structure of the design [e.g., how specific pin-outs refer to lines in the hardware

description language (HDL) code] as well as the structure of the IP package (e.g.,

where design descriptions and related generators are provided in the packaged IP

data-structure). In the case of configuration, this is the set of options for handling

the imported IP (e.g., setting the base address and offset, bus width) that may be

expressed as configurable parameters in the IP-XACT meta-data. As part of de-

CHAPTER 2. LITERATURE SURVEY 14

sign build, generators may be provided internally by a system design tool to achieve

the required IP integration or configuration, or provided externally (e.g., by an IP

provider) and launched by the system design tool as appropriate.

A Design Environment is called P1685 compliant if it supports import Export of

IP’s in IEEE P1685 format. Also it supports TGI API’s for interfacing with external

generators.

2.4 Configurable HDL Design

As discussed earlier a HDL language like a software programming language can con-

tain conditional compilation statements [9].

For ex in C language we have compiler directives “#ifdef” and “#endIf” for con-

ditional compilation based on some macro value defined as “#define”. Ex

#ifdef MACRO

Controlled text

#endif

Here “controlled text” is only compiled when MACRO is defined else not .These

compiler directives decide the actual structure of code which will be compiled after

preprocessing of macros.

Similarly in HDL languages these conditional compilation statements represent

which provides a way for conditional synthesizing. Here this report will take example

of Verilog and try and understand kind of conditional compilation statements.

Verilog supports macros as “‘define ¡name¿ ¡value¿” and then these defined values

can be used in any the HDL program.

Conditional compilation can be achieved as by using using following Syntax in

verilog.

The ‘ifdef, ‘else, ‘elsif, and ‘endif compiler directives work together in the following

manner:

CHAPTER 2. LITERATURE SURVEY 15

a. When an ‘ifdef is encountered, the ifdef text macro identifier is tested to see if

it is defined as a text macro name using ‘define within the Verilog HDL source

description.

b. If the ifdef text macro identifier is defined, the ifdef group of lines is compiled

as part of the description and if there are ‘else or ‘elsif compiler directives, these

compiler directives and corresponding groups of lines are ignored.

c. If the ifdef text macro identifier has not been defined, the ifdef group of lines is

ignored.

(1) If there is an ‘elsif compiler directive, the elsif text macro identifier is tested

to see if it is defined as a text macro name using ‘define within the Verilog

HDL source description.

(2) If the elsif text macro identifier is defined, the elsif group of lines is compiled

as part of the description and if there are other ‘elsif or ‘else compiler

directives, the other ‘elsif or ‘else directives and corresponding groups of

lines are ignored.

(3) If the first elsif text macro identifier has not been defined, the first elsif

group of lines is ignored.

(4) If there are multiple ‘elsif compiler directives, they are evaluated like the

first ‘elsif compiler directive in the order they are written in the Verilog

HDL source description.

(5) If there is an ‘else compiler directive, the else group of lines is compiled as

part of the description.

And other set of syntax are

The ‘ifndef, ‘else, ‘elsif, and ‘endif compiler directives work together in the following

manner:

CHAPTER 2. LITERATURE SURVEY 16

a. When an ‘ifndef is encountered, the ifndef text macro identifier is tested to see

if it is defined as a text macro name using ‘define within the Verilog HDL source

description.

b. If the ifndef text macro identifier is not defined, the ifndef group of lines is com-

piled as part of the description and if there are ‘else or ‘elsif compiler directives,

these compiler directives and corresponding groups of lines are ignored.

These compiler Directives are useful when

a. Selecting different representations of a module such as behavioral, structural,

or switch level.

b. Choosing different timing or structural information

c. Selecting different stimulus for a given run

d. Selecting if some port, register is defined.

For example in verilog [9]

The example below shows a simple usage of an ‘ifdef directive for conditional com-

pilation. If the identifier behavioral is defined, a continuous net assignment will be

compiled in; otherwise, an and gate will be instantiated.

module and op (a, b, c);

output a;

input b, c;

‘ifdef behavioral

wire a = b & c;

‘else

and a1 (a,b,c);

‘endif

endmodule

Using these directives different configuration of a single HDL code can be defined

CHAPTER 2. LITERATURE SURVEY 17

2.5 Configurability in IP-XACT

IP-XACT currently has this limitation that it cannot express the macro related config-

urability in the IP-XACT object and hence it can only capture a single configuration

of HDL code. It means that for a particular configuration user needs to manually

create metadata description related to each configuration required and then use it in

assembly flow.

Chapter 3

Problem Definition

This chapter presents the problem definition and existing methadology

3.1 Problem Definition

IP-XACT currently has this limitation that it cannot capture metadata related to

a design which is configurable (contains many configurations based on macro defi-

nitions).These designs do occur frequently as they are designed to be reused with

different configurations. So a methodology is required which is IP-XACT IEEEP

1685 compliant and is assembly tool independent. As IEEE P1685 standard specifies

the manipulation or generation of metadata (component object) must be independent

of the design environment. It means that generation of a particular configuration of

metadata cannot be generated from design environment. The methodology must

provide a solution that for a configurable design a particular design configuration

metadata description is generated at the time of IP-XACT based integration.

3.2 Existing Methodology

Existing methodology is to manually create various metadata descriptions possible

for a design component and use them in integration. This is very time consuming

18

CHAPTER 3. PROBLEM DEFINITION 19

and error prone.

Chapter 4

Proposed Methadology

This chapter describes the prescribed methodology and use model.

4.1 Methodology

The Proposed methodology comprises of two parts.

a. Creating a generic metadata for configurable IP’s which contains all possible

configuration information of the design. Then adding configurability informa-

tion into the metadata description which can be controlled by parameters to

generate configuration specific metadata.

b. A configuring mechanism that provides configured component whenever design

environment reads a component from an IP-XACT database

.

As shown in the figure when metadata (IP-XACT component object is created) at

that time a generic IP-XACT component is created by reading all possible configura-

tions into a single metadata (component).Then configurability information is added to

the metadata description process is described later. This configurability information

is in terms of new XML defined tags that captures configurability information.

20

CHAPTER 4. PROPOSED METHADOLOGY 21

Figure 4.1: Proposed Methodology Flow

Once a generic metadata is created and configurability information is added then

when Design environment instantiates a component a generator program is invoked

which returns a configured component to the design environment. So a certain design

configuration is only instantiated.

4.1.1 Creating a generic Component

An IP-XACT component is the central placeholder for the objects meta-data. Com-

ponents are used to Describe cores (processors, co-processors, DSPs, etc.), peripherals

(memories, DMA controllers, timers, UART, etc.), and buses (simple buses, multi-

layer buses, cross bars, network on chip, etc.).It captures the data that is relevant for

integration purpose like ports and interfaces at periphery.

CHAPTER 4. PROPOSED METHADOLOGY 22

A component may contain information related to

a. Ports in design

b. Bus interfaces

c. Register information

d. Address Blocks

e. RTL Parameters

Configurability required in a component for a configurable design is [8].

Required in Type
Ports Presence/Number of ports/Naming of ports
Bus interfaces Presence/Number/physical port names in port maps
Registers Presence/
Instance Naming Updating
VLNV Updating

Table I: Configurability Requirement

For a configurable RTL design first a generic metadata is created which contains

all possible configurations (taking into account all the possible port instantiations)

To express this configurability new syntax were added to the XML to express this

configurability.It was seen that two types of configurability was required.

a. Presence absence of an entity : this requires if an entity is present or not in a

given component or not.like a port should be present or not etc.

b. Looping for an entity Looping means no of instances of a port so if a design

requires that a array of ports to be created with a change in name.

This configurability information can be added into the IP-XACT component ven-

dor extension field in IP-XACT component elements these fields are ignored by stan-

dard IP-XACT.

CHAPTER 4. PROPOSED METHADOLOGY 23

4.1.2 Configurability Syntax

The Syntax for configurability is explained here VE should be associated with ”Con-

figIp” prefix namespace and are written as <configIp:if> . <configIp:presence>

</configIp:presence> is the top most element containing other elements .All con-

figuration elements are written inside this tag.

a. if - Governs existence of an entity in context based on xpath expression.(Context

is described later)

<configip:presence>

<configIp:if expr=”xpath” />

</configIp: presence>

Single If governs the presence of port .If expr is evaluated to true port exits

otherwise false .Here entity in context is port itself as no tag is preceding the if

condition.

b. loop - Governs number of existence of entity in context. In case of nested

statements, it would be passed sequentially. Like if configIp:if is written after

configIp:loop then it expresses for(each loop iteration) if(expr)

<configip:presence>

<configIp:loop start=”xpath” end=”xpath” incr=”xpath” loopvariable=”i” >

targ $i ack

</configIp:loop>

</configIp: presence>

Single loop governs how many instance of a given port exists i.e. (end-start)

with port names governed by the pattern specified as loop value .For example

in this case if start=0 end=5 and incr=1 then 5 new ports will be added as

targ 0 ack, targ 1 ack, targ 2 ack, targ 3 ack, targ 4 ack.

CHAPTER 4. PROPOSED METHADOLOGY 24

Expressions used are based on Xpath expressions which contains variables defined in

parameter and model paramterer in component.

For example lets take example of a port configurability a port Defined in one of the

configuration in verilog as

‘ifdef macro

input ack[10:0];

‘endif

IP-XACT component it will become

<spirit:port>

<spirit:name>ack</spirit:name>

<spirit:wire>

<direction>in</spirit:direction>

<spirit:vector>

<spirit:left>10</spirit:left>

<spirit:right>0</spirit:right>

</spirit:vector>

</spirit:wire>

<spirit:vendorExtension>

<config:presence>

<config:if expr=”id(’macro’)”/>

<config;presence>

</spirit:vendorExtension>

</spirit:port>

Here macro becomes a component parameter which is boolean type and its presence

or absence governs if this port is Present in component or not.

CHAPTER 4. PROPOSED METHADOLOGY 25

4.1.3 Generation mechanism

Once a generic description is created and configurability information is added then the

configuration mechanism is required when design environment instantiates a particu-

lar component. As shown in figure when design environment instantiates a component

object at that time it invokes generator program.

Figure 4.2: Generation Mechanism

Location of generator is specified into the component itself in the generator section

along with required parameters as shown. Communication between Design environ-

ment and Generator is through TGI API (Tight Generator Interface) which can be

implemented using SOAP.

Design enviornment in itself hosts a SOAP server which implements TGI com-

mands .When Design Enviornment wants to interect with generator it first starts the

server embedded in it then starts the generator and calls the

4.1.4 Deploying the generator

Generator can be deployed in one of the two ways :

a. File System Generator can be deployed as on a filesystem and can be accessed

CHAPTER 4. PROPOSED METHADOLOGY 26

using file system path file:path to executable (e.g., file:/usr/jdoe/bin/mygen.pl

or file:../bin/ mygen) defines the path for invoking the generator on the machine

from which the DE was invoked.

b. Web Server Generator can be hosted on a web server and can be invoked as

http://web address:port number (e.g., http://www.acme.com/generator:1500)

defines the URL of a generator implemented as a Web-based server.

Chapter 5

Implementation

This chapter presents implementation of the above prescribed methodology.

5.1 Tools

In this section we discuss about the tools and technologies that were studied to

implement the methodology.

5.1.1 IP-XACT to Object oriented mapping

IP-XACT is a xml based standard so to work with ip-xact it was required to have a

mechanism for read and manipulate IP-XACT documents programmatically hence an

API was required. These API will help to access and manipulate IP-XACT documents

programmatically.

One approach is to use DOM (Document object model)[11] to parse the IP-XACT

documents and then apply then create IP-XACT documents as a simple xml file and

then validate it with IP-XACT schema. However there are a few problems with this

approach.

a. To create or manipulate a valid IP-XACT programmer must know all the

rules/constraints and entities to add or manipulate for ex if he want to add

27

CHAPTER 5. IMPLEMENTATION 28

an IP-XACT element he should know all the details and schema rules.

b. Code to add or manipulate the IP-XACT must be written from scratch .As IP-

XACT is quite a big standard this process is time consuming and error prone.

Another way is to map the IP-XACT schema to Object oriented structure[13].As

XML in itself is Object oriented it can be mapped to an object oriented programming

language.

XML Beans

XMLbeans [3] is a tool that allows you to map XML to object oriented paradigm and

allows for generation of a java library for accessing and manipulating the given XML.

This maps XML tags and elements to Java features and constructs and provides API

as ”set” and ”get”. While a major use of XMLBeans is to access your XML instance

data with strongly typed Java classes there are also API’s that allow you access to

the full XML infoset (XMLBeans keeps XML Infoset fidelity) as well as to allow you

to reflect into the XML schema itself through an XML Schema Object model.

Figure 5.1: XML Beans

It takes input XML schema and generates corresponding Object oriented mapping.

Major features of XMLBeans are

a. Full XML Schema support. XMLBeans fully supports XML Schema and the

corresponding java classes provide constructs for all of the major functionality

of XML Schema. This is critical since often times you do not have control

CHAPTER 5. IMPLEMENTATION 29

over the features of XML Schema that you need to work with in Java. Also,

XML Schema oriented applications can take full advantage of the power of XML

Schema and not have to restrict themselvs to a subset.

b. Full XML Infoset fidelity. When unmarshalling an XML instance the full XML

infoset is kept and is available to the developer. This is critical because because

of the subset of XML that is not easily represented in java. For example, order

of the elements or comments might be needed in a particular application.

API that it provides is:

a. XmlObject The java classes that are generated from an XML Schema are all

derived from XmlObject. These provide strongly typed getters and setters

for each of the elements within the defined XML. Complex types are in turn

XmlObjects. For example getCustomer might return a CustomerType (which

is an XmlObject). Simple types turn into simple getters and setters with the

correct java type. For example getName might return a String.

b. XmlCursor From any XmlObject you can get an XmlCursor. This provides

efficient, low level access to the XML Infoset. A cursor represents a position in

the XML instance. You can move the cursor around the XML instance at any

level of granularity you need from individual characters to Tokens.

c. SchemaType XMLBeans provides a full XML Schema object model that you

can use to reflect on the underlying schema meta information. For example, you

might want to generate a sample XML instance for an XML schema or perhaps

find the enumerations for an element so that you can display them.

5.1.2 Axis tool

SOAP Protocol

SOAP [10], originally defined as Simple Object Access Protocol, is a protocol specifi-

cation for exchanging structured information in the implementation of Web Services

CHAPTER 5. IMPLEMENTATION 30

in computer networks. It relies on Extensible Markup Language (XML) for its mes-

sage format, and usually relies on other Application Layer protocols, most notably

Remote Procedure Call (RPC) and Hypertext Transfer Protocol (HTTP), for message

negotiation and transmission. SOAP can form the foundation layer of a web services

protocol stack, providing a basic messaging framework upon which web services can

be built. This XML based protocol consists of three parts: an envelope, which defines

what is in the message and how to process it, a set of encoding rules for expressing in-

stances of application-defined data types, and a convention for representing procedure

calls and responses.

SOAP and WSDL

One of the major usage of SOAP protocol is to implement networked service .These

networked service requests are a way to request XML-related functionality from a

remote machine over a network such as the Internet. SOPA is used to enable these

network services provides XML based data exchange. In this service model there

is one client which also implements SOAP client and queries the server.The server

implements the server side of the service and is usually hosted on an HTTP server.

The queries are RPC based when SOAP is using HTTP as underlying protocol. The

server provides the list of service which are methods or API that client can call on

the service through a WSDL file (Web Service Description File).So by describing a

WSDL file we can generate the given client and server side code automatically with

given tools.

Axis [1] is a SOAP implementation generator which generates client and server

side of SOAP implementation in java given a wsdl file as shown in the figure. This

was used to implement the client side of TGI API implementation.

If we compare Axis with other SOAP implementation we find that it has lowest

latency delay as compared to others as shown in the table for character string message

[15].

CHAPTER 5. IMPLEMENTATION 31

Figure 5.2: Axis tool

5.1.3 JACL and TCLBlend

One of these tools is used to create user interface which is a TCL based shell.

JACL

Jacl [6] is an implementation of a Tcl interpreter written entirely in Java. As a result,

a Java program can easily embed a Jacl interpreter in an existing Java program. This

ability to add a scripting language to a Java application is analogous to the ability to

add scripting to a C based application provided by the C implementation of Tcl. Jacl

allows Tcl scripts to call Tcl commands written in Java. Jacl also allows Tcl scripts

to use Java classes, objects and methods directly.

The benefits of using Jacl are: no need for a separate interpreter process, pure

Java implementation, and the ability to call Java methods from Tcl scripts.

The drawbacks are that Jacl cannot make use of a Tcl extension written in C,

and Jacl does not implement all the features provided by the C based of Tcl. Jacl

CHAPTER 5. IMPLEMENTATION 32

Figure 5.3: Axis tool comparision

currently does not implement ”interp”, ”socket”, ”fileevent”, and some less important

utility procedures that are available in the C based of Tcl.

Figure 5.4: JACL Shell

As shown in the figure JACL has a TCL shell interface to the user and an un-

derlying java core which processes the TCL commands and maintains shell session.

Shell can be extended by adding new java classes and methods and then invoking the

commands on shell. Java interface from the shell is through the java API provided

by JACL ex java::new ¡class¿ creates a new object of the class on shell.

CHAPTER 5. IMPLEMENTATION 33

Figure 5.5: TCL Blend

TCLBlend

TclBlend [2] combines some of the benefits from both Jacl and the Feature package to

provide a best of both worlds approach. Using TclBlend, a Java program can embed

a C based Tcl interpreter like the Feather package. TclBlend also allows Tcl scripts

to use Java classes, objects, and methods like Jacl. Both TclBlend and Jacl provide

the ability to extend the Tcl interpreter with new Tcl commands implemented in

Java code.

Using this feature is like using the C language to write new Tcl command for a C

based Tcl interpreter. In addition, TclBlend and Jacl use the Java reflection feature

(java.lang.reflect package) to allocate Java objects and invoke Java methods at run-

time. This allows Tcl scripts to create, access Java objects, and execute Java methods

directly without first creating Tcl commands. The difference between TclBlend and

Jacl is that TclBlend uses a C based Tcl interpreter to execute Tcl scripts while Jacl

uses a Java based Tcl interpreter to execute Tcl scripts.

The benefits of using TclBlend are: no need for a separate interpreter process, the

ability to call Java methods from Tcl scripts, and the ability to use a C based Tcl

interpreter which can use Tcl extensions written in C. The C based Tcl interpreter is

CHAPTER 5. IMPLEMENTATION 34

much faster than the Java based Tcl implementation.

The drawback is that the Java program is not a pure Java implementation, which

requires the programmer to distribute several operating system dependent shared

library files in addition to the Java classes. Feature comparision TCL,jacl and

TCLBlend.

Feature comparision TCL,jacl and TCLBlend

Embedded
TCL
interp

Pure java TCL 8 fea-
ture

Java access C access

Standard
TCL

yes No Yes No Yes

JACL No Yes No Yes No
TCLBlend Yes No Yes Yes Yes

Table I: JACL and TCLBlend comparision

Performance Evaluation

To evaluate the performance of the given three shells we use three different categories

of commands.

a. String manipulation. Sting toupper,trim etc.

b. Arithmetic expression. expr.

c. Input/output. file read/write

If we analyze the results we can see that although JACL is worst performer for

all type of commands if performs worst in the case of input output operations. This

is to do with the fact that Java IO is slower as compared to C based IO as in case of

standard TCL.

CHAPTER 5. IMPLEMENTATION 35

Figure 5.6: JACL and TCLBlend performence

5.2 Generator Design

In this section we discuss the design and implementation of the generator program.

Architecture

Generator program architecture comprises of a parsing library and communication

mechanism .It has four main parts as shown in the figure.

a. Soap Client: - This client implements SOAP client which is responsible for TGI

related communication with the design environment. SOAP communication is

described in later sections.

b. Parsing Library: - This library actually implements the IP-XACT xml schema

to object oriented mapping this is achieved through the XMLBeans tool to

convert the IP-XACT schema to object oriented mapping.

Library is available as a jar file which can then be used for parsing and ma-

nipulating IP-XACT objects.XML Beans can also generate Documentation (in

javadoc format) for the generated API’s. These API include classes for creating

and manipulating the IP-XACT objects.

CHAPTER 5. IMPLEMENTATION 36

Figure 5.7: Generator Architecture

c. Configuring library: - This library contains the implementation of the config-

urability algorithm. Algorithm is implemented as java classes. This library uses

Parsing library for manipulation of IP-XACT component.

d. Generator Core :- It is the main control for the generator program, it is the one

which initializes the generator program , it includes

(1) Initializing the SOAP client for communication with the design environ-

ment.

(2) Applying the configuration algorithm on the component.

(3) Maintaining the log files and performing input output.

5.2.1 TGI API implementation and SOAP

To have the methodology design tool independent it was required that the communi-

cation between design environment and generator program be standardized .For this

CHAPTER 5. IMPLEMENTATION 37

purpose TGI (Tight generator Interface) API’s were used as specified in IEEE P1685

standard.

Following are few of the TGI Commands that were used

TGI API Description
‘ init Initialize communication

between design environ-
ment and generator.

end End communication
getGeneratorContextComponentInstanceID ID for the component in-

stance associated with the
currently invoked generator.

getComponentInstanceComponentID ID for the component asso-
ciated with given instance
(crossing from design to
component file).

getComponentInstanceXML Return the component
XML in text format.
Schema version is DE
dependent.

Table II: TGI API implementation

As shown in the execution scenario the TGI API’s are implemented using the

SOAP protocol to make the communication between design environment and gener-

ator standardized.

SOAP Client is created with the help of Axis tool which reads a wsdl file to gen-

erate client and server stub which can then be modified.TGI commands are provided

as a wsdl file and Axis generates its client and server side stubs.

As shown in the figure TGI API as a wsdl are given then Axis will convert that

into client and server side implementation. It is to be noted that it is not required

to have both client and server side implementation of Axis are to be used only client

can do with a compliant server implementation.

CHAPTER 5. IMPLEMENTATION 38

Figure 5.8: Axis tool code generation

5.2.2 Design Environment Generator Communication

As shown in the sequence diagram the generator and design environment commu-

nication starts with design environment starting the web server and then generator

starts the SOAP client which then communicates with design environment.

As shown in the figure the TGI communication starts with init command and

ends with end TGI command.

CHAPTER 5. IMPLEMENTATION 39

Figure 5.9: Design Enviornment Generator Interection

5.2.3 Configuring Algorithm

The algorithm that configures the given component works as The Configuring algo-

rithm works as follows

a. Connect to the Design Environment server initialize TGI Communication.

b. Read the xml component from the design environment.

c. Use argument list to resolve parameters in component .two types of parameters

are resolved based on embedded XPATH expression.

(1) Component parameters

(2) Model Parameters

CHAPTER 5. IMPLEMENTATION 40

Figure 5.10: Generation Algorithm

d. Resolve the source of the component .This is done to check that the compo-

nent in context is a already configured component. Also resolve the configured

component name.

e. Configure the component .Configuration is done in following sequence

(1) Ports

(2) Bus Interfaces

(3) Registers

f. Validate the component to be IP-XACT compliant.

g. Register the new component with design environment.

CHAPTER 5. IMPLEMENTATION 41

5.2.4 Design Environment updates

Along with the implementation of the methodology it was required to update the

existing in-house IP-XACT assembly tool IP-XACT assembler. Updates were to

provide API support in the tool to allow user to add configurability information in

the IP-XACT component.

An TCL based user interface was created with the help of TCLBlend where tool

core which is written in java was plugged into TCLBlend .Then new library was cre-

ated to add the configurability information in a IP-XACT component. These API

are available as commands as TCL based commands. Example.

addNamespace ”config” ”www.st.com”

addConfig ”port” ”PT1” ”stlib” element ”if” attribute ”expr 1” value ””

5.3 Result and Discussion

In this section we present the implementation results to show that the above de-

fined methodology is design environment independent. Here we show its usage with

different design tools.

5.3.1 Use model in ST Microelectronics

At ST Microelectronics the generator is available on a central area and is available

through Unicad Setup (Central CAT tool setup facility).Designers and packagers cre-

ating and packaging IP-XACT components can reference this generator from a central

location itself. This model helps in updating the generator program and also to main-

tain version information.

CHAPTER 5. IMPLEMENTATION 42

5.3.2 With Magillem design tool

Magillem[7] is an IP-XACT design tool which is developed in java and to support

configurable IP’s an evaluation version was provided form the vendor which includes

a SOAP server as defined in the above mentioned methodology. The magillem is a

GUI based design tool.

Figure 5.11: Component instantiation in magillem

CHAPTER 5. IMPLEMENTATION 43

Figure 5.12: Generator Invocation in Magillem

In magillum the configurability information can be added in GUI mode and then

can be saved. Then at time of assembly when user instantiates a given generic IP-

XACT component user has to manually invoke the generator. Snapshots

5.3.3 With In-house Developed IP-XACT assembly tool

IP-XACT design tool [4] developed in ST is a TCL shell based tool all the API’s

are available as TCL command.Adding the configurability information is through the

TCl commnds only.

The assembly flow is table based where user specifies the assembly commands in

a table which are then executed.

CHAPTER 5. IMPLEMENTATION 44

Figure 5.13: IP-XACT assembly tool generator invocation

5.3.4 With core Assembler

Core Assembler [14] is a IP-XACT assembly tool form Synopsys .It is developed in

C and has both shell as well as GUI based interface. It supports auto invocation of

generator while instantiating any IP. Generator invocation in Core Assembler.

CHAPTER 5. IMPLEMENTATION 45

Figure 5.14: Generator invocation with coreAssembler

Table below shows the support for the methodology in different IP-XACT Assem-

bly Tools

IP-XACT as-
sembly Tool

Magillem Core Assembler

Support for Adding Configurability In-
formation

Yes Yes No

SOAP server implementation. Yes Yes Yes
Auto Invocation of generator Yes No Yes
Remote invocation for generator No Yes Yes

Table III: Assembly tool feature support for configurable IP

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

IP-XACT IEEEP 1685 is fast becoming a standard for reusing and integrating intel-

lectual property in design flows, as it evolves new requirements are being explored

to improve the usage and to complete the standard. The methodology proposed in

this thesis report is aims at overcoming one of the limitations of IEEE P1685 stan-

dard. It provides a methodology to address configurability due to macro definition

in IP-XACT based assembly. The works aims at providing a Design environment

independent methodology. It helps in automating the complete IP-XACT assembly

flow and providing a vendor neutral solution. Implementation presented in this chap-

ter is done in java and interaction model presented is through SOAP hence making

the implementation design environment independent. New syntax has been proposed

to define configurability and an algorithm to configure the component. Tools and

technology used is implementation are discussed and presented.

6.2 Future scope

In future the work can be extended to create an optimized generator program that can

configure large components in less time. Exploring configurability requirements with

46

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 47

HDL languages such as systemc etc. Make configurability syntax as part of IEEE

P1685 standard. So that these configurability syntax are automatically generated as

part of RTL Parsing.

Appendix A

IP-XACT component

An IP-XACT component is the central placeholder for the objects meta-data. Com-

ponents are used to describe cores (processors, co-processors, DSPs, etc.), peripherals

(memories, DMA controllers, timers, UART, etc.), and buses (simple buses, multi-

layer buses, cross bars, network on chip, etc.). An IP-XACT component can be of

two kinds: static or configurable. A DE cannot change a static component. A config-

urable (or parameterized) component has configurable elements (such as parameters)

that can be configured by the DE and these elements may also configure the RTL

or TLM model. An IP-XACT component can be a hierarchical object or a leaf ob-

ject. Leaf components do not contain other IP-XACT components, while hierarchical

components contain other IP-XACT sub-components. This can be recursive by hav-

ing hierarchical components that contain hierarchical components, etc.-leading to the

concept of hierarchy depth. The IP being described may have a completely different

hierarchical arrangement in terms of its implementation in RTL or TLM to that of its

IP-XACT description. So, a description of a large IP component may be made up of

many levels of hierarchy, but its IP-XACT description need only be a leaf object as

that completely describes the IP. On the other hand, some IP can only be described

in terms of a hierarchical IP-XACT description, no matter what the arrangement of

the implementation hierarchy.

48

APPENDIX A. IP-XACT COMPONENT 49

A.1 Component Schema

Each IP component normally identifies one or more bus interfaces. Bus interfaces

are groups of ports that belong to an identified bus type . The purpose of the bus

interface is to map the physical ports of the component to the logical ports of the

abstraction definition. This mapping provides more information about the interface.

There are seven possible modes for a bus interface: a bus interface may be a master,

slave, or system interface, and may be direct or mirrored. The seventh interface mode

is the monitor mode. A monitor interface can be used to connect IP into the design

for verification.

Figure A.1: Component Schema

APPENDIX A. IP-XACT COMPONENT 50

Other main elements of an IP-XACT component are:

a. Model The model element describes the views, ports, and model-related param-

eters of a component.

b. Ports Ports in the design this is an unbounded list.It contains information about

the ports on pheriphery.Few fields it captures are name ,direcction,default value

and if it is a vector then the left/right of the vector. Views

c. Views define grouping of source files for different purpose like simulation, syn-

thesis etc.Each view has a corresponding name and a fileset which is collection

of file paths for that view.their are few standard view defined by IP-XACT as

behavioural,synthesis,simulation etc.

d. Model Parameters These are the parameters defined in the HDL code .These

parameters are used in HDL to control the size of a port, register or for some

other control purpose .These parameters are captured in IP-XACT as model

parameters along with a unique ID for them ,default value,type and any con-

straint on minimum or maximum value.These model parameters are used in

XPath expressions for ex to resolve left right of a vector port.

e. Component Generator This contains Generator related information which in-

cludes generator path, name and arguments.Generators are explained in Ap-

pendix B.

f. Parameters These are the parameters that apply on the whole of the component

and can be used anywhere.These are analogous to the model parameters but

they are for IP-XACT component where as model parameters are extracted

form the HDL design.

Appendix B

Generators and TGI API

IP-XACT generators are tools that are invoked from within a DE to perform an

operation required by the user of the DE. For example, generators can be provided to

verify the configuration of a subsystem, generate an address map, or write a netlist

representation of the subsystem in a target language such as Verilog or ystemC. To

perform their various operations, most generators need access to the IP-XACT meta-

data describing the subsystem, as currently loaded into the DE. Generators need

both read- and write-access to the IP-XACT meta-data. All generators are external

applications running in a separate address space from the DE.

B.1 Method of communication

The DE and the generator communicate with each other by sending messages to

each other utilizing the SOAP standard. SOAP provides a simple means for sending

XML-format messages using HTTP or other transport protocols. The TGI restricts

the set of allowed transport protocols to HTTP and a file-based protocol. All gen-

erators are required to support the HTTP protocol, but support for the file-based

protocol is optional. The same rules apply to the DE-it shall support the use of the

HTTP protocol, but is not required to support the file-based protocol, even though

a generator may allow it. The protocols supported by a generator are specified using

51

APPENDIX B. GENERATORS AND TGI API 52

the transportMethod element within the componentGenerator element.

The information required to use a particular transport protocol shall be passed

to the generator by the DE when it is invoked, as described in G.2. For the HTTP

protocol, the generator is passed a URL of the form http://host name:port number.

All SOAP messages sent to the DE shall be sent using the referenced URL. For the

file-based protocol, the generator is passed a URL of the form file://file name. In this

case, all SOAP messages are written to the specified file.

B.2 Generator invocation

All of the information known by the DE about a particular generator comes from an

instance of the componentGenerator elements. These elements provides the following

information.

a. Name is the name of the generator as seen within the DE.

b. Executable is the URL defining the location of the generator.

B.3 Resolving the URL

The URL defining the generator executable shall resolve to one of the following forms.

a. file:path to executable (e.g., file:/usr/jdoe/bin/mygen.pl or file:../bin/ mygen.pl)

defines the path for invoking the generator on the machine from which the DE

was invoked.

b. file://machine name/path to executable (e.g., file://server1/tmp/othergen.pl)

defines the path for invoking a generator on the specified machine.

c. http:/

itemaddress:port number (e.g., http://www.acme.com/generator:1500) defines

the URL of a generator implemented as a Web-based server.

APPENDIX B. GENERATORS AND TGI API 53

All file references are relative to the location of the XML description in which

the file reference is contained. For the file-based generators, the DE shall invoke the

generator as a sub-process with a command line built up as:

executable -url transport URL generator parameter arguments

The generator parameter arguments are the parameters from the componentGener-

ator element with the user-specified values. Each parameter causes two additional

arguments to be passed to the generator with the following format: -parameter name

parameter value. The transport URL is created by the DE, but is guaranteed to

specify a protocol supported by the generator as defined by the transport methods

within the componentGenerator. The DE is responsible for ensuring any passed pa-

rameters can be interpreted correctly. This URL is to be used in the generator to set

up the SOAP communication channel. For Web-based generators, the DE shall send

a message to the address and port defined as the executable.

The format of this message is

url=transport URL&generator parameter arguments

In this case, the generator parameters are formatted using the standard HTTP pa-

rameter passing syntax. The specified transport URL shall be used by the generator

for any return messages to the DE. The invocation syntax described above applies

only to generators with an API type of TGI. Generators with an API type of none

are invoked as described above, excluding the transport URL argument.

B.3.1 Example

This example shows file-based and Web-based componentGenerator elements.

<spirit:componentGenerator>

<spirit:name>myGenerator</spirit:name>

<spirit:parameter spirit:name=”param1” spirit:resolve=”user”

spirit:id=”param1”>default1</spirit:parameter>

<spirit:parameter spirit:name=”param2”>fixedValue</spirit:parameter>

APPENDIX B. GENERATORS AND TGI API 54

<spirit:apiType>TGI</spirit:apiType>

<spirit:transportMethods>

<spirit:transportMethod>file</spirit:transportMethod>

</spirit:transportMethods>

<spirit:generatorExe>../bin/myGenerator.pl</spirit:generatorExe>

</spirit:componentGenerator>

produces the following output.

path to XML/../bin/myGenerator -url http:/host:port -param1 default1 -param2 fixed-

Value

Whereas:

<spirit:componentGenerator>

<spirit:name>myWebGenerator</spirit:name>

<spirit:parameter spirit:name=”param” spirit:resolve=”user”

spirit:id=”myParamID”>defaultValue</spirit:parameter>

<spirit:apiType>TGI</spirit:apiType>

<spirit:generatorExe>http://www.acme.com:1500</spirit:generatorExe>

</spirit:componentGenerator>

produces the following output.

http://www.acme.com:1500?url= http%3a%2f%2fhost%3aport&

param1=default1 ¶m2=fixedValue

B.3.2 TGI API

The TGI API defines the set of legal SOAP messages that can be sent from a generator

to a DE, along with the format of the responses the generator can expect from a given

request (message) to the DE. The API shall provide the means of getting and setting

values within the IP-XACT design currently represented in the DE.

APPENDIX B. GENERATORS AND TGI API 55

Category Description
Get Commands which get attribute or element

values. These commands are available for
getting all information from the design and
component schemas. If the attribute or ele-
ment does not exist, this may return a default
value, an empty string, or an empty array.

Set Commands which set element values. These
commands are available to set each element
for which the resolve attribute is legal. Set-
ting the value of the element fails unless the
resolve value is user or generator. Set rou-
tines return a Boolean value where a true
return code implies a successful operation. If
false is returned, the SOAP fault code shall
provide additional information detailing the
failure.

Traversal Commands That return a list of elements
Administrative Commands That do not deal directly with the IP-XACT

meta-data.

Table I: TGI API

References

[1] Apache. Axis Developer manual. www.apacheaxis.com.

[2] Apache. TCL Blend developer guide. Apache, 2007.

[3] XML Beans. XML Beans User Manual. http://xmlbeans.apache.org/.

[4] Internal document. IP-XACT Assembly tool Developer Guide. ST Microelec-
tronics, 2010.

[5] IEEE. Ip-xact p1685 standard, 2010.

[6] Brian Smith Ioi K. Lam. Jacl: A tcl implementation in java. Fifth Annual
Tcl/Tk Workshop Boston, 2000.

[7] Magillem. Migillem IP-XACT Assembly tool User Manual. Magillem, 2011.

[8] Internal Document ST microelectronics. Configurable IP generator User guide.
ST Microelectronics, 2011.

[9] Samir Palnitkar. Verilog HDL A guide to Digital Design and Synthesis, volume 1.
SunSoft Press, 1996.

[10] Simple Object Access Protocol (SOAP) 1.1 Specification. Technical report,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[11] XML 1.0 specification. Technical report, http://www.w3.org/TR/xml/.

[12] Xpath 1.0 Specification. Technical report, http://www.w3.org/TR/xpath/.

[13] Wolfgang Ecker Volkan Esen Ulrich Nageldinger Thomas Steininger. Uml based
code generation for the hw/sw interface. Design automation conference, 2008.

[14] Synopsys. CoreAssembler E2010-09 User Guide. Synopsys, 2011.

[15] Dan Davis y and Manish Parashar. Latency performance of soap implementa-
tions. 2002.

56

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	IP-XACT based assembly
	Motivation
	Scope of Thesis
	Thesis Organization

	Literature Survey
	Design flow and HDL
	 HDL Languages

	HDL based assembly and Integration
	TopDown
	Bottom up
	HDL Reuse

	IP-XACT standard
	IP-XACT Schema
	IP-XACT Objects and Interection
	Generators and corresponding API's specification.
	TGI API
	Design Enviornment

	Configurable HDL Design
	Configurability in IP-XACT

	Problem Definition
	Problem Definition
	Existing Methodology

	Proposed Methadology
	Methodology
	Creating a generic Component
	Configurability Syntax
	Generation mechanism
	Deploying the generator

	Implementation
	Tools
	IP-XACT to Object oriented mapping
	Axis tool
	JACL and TCLBlend

	Generator Design
	 TGI API implementation and SOAP
	Design Environment Generator Communication
	Configuring Algorithm
	Design Environment updates

	Result and Discussion
	Use model in ST Microelectronics
	With Magillem design tool
	With In-house Developed IP-XACT assembly tool
	With core Assembler

	Conclusion and Future Scope
	Conclusion
	Future scope

	IP-XACT component
	Component Schema

	Generators and TGI API
	Method of communication
	Generator invocation
	Resolving the URL
	Example
	TGI API

	References

