
Simulation Of Events in WiMAX Element Management System
and Optimize communication

PREPARED BY :

Jigar Shah
09MCE014

GUIDED BY :

Mr. Thomas Nishanth

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY
AHMEDABAD

Simulation of Events in WiMAX Element Management System
and Optimize communication

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By
Jigar Shah
(09MCE014)

Guided By
Mr. Thomas Nishanth

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
AHMEDABAD-382481

May 2011

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology in
Computer Science and Engineering at Nirma University and has not been submitted
elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Jigar Shah

iii

Certificate

This is to certify that the Major Project entitled ”Simulation of Events in WiMAX
Element Management System and Optimize communication” submitted by Jigar Shah
(09MCE014), towards the fulfillment of the requirements for the degree of Master of
Technology in Computer Science and Engineering of Nirma University of Science and
Technology, Ahmedabad is the record of work carried out by him under my supervision
and guidance. In my opinion, the submitted work has reached a level required for being
accepted for examination. The results embodied in this major project, to the best of my
knowledge, haven’t been submitted to any other university or institution for award of
any degree or diploma.

K. S. Raju,
Manager,
R&D Center,
Motorola,
Hyderabad.

Dr.S.N.Pradhan,
Professor and PG-Coordinator,
Department of Computer Engineering,
Institute of Technology,
Nirma University, Ahmedabad.

Prof.D.J.Patel Dr.K.Kotecha
Professor and Head, Director,
Department of Computer Engineering, Institute of Technology,
Institute of Technology, Nirma University, Ahmedabad.
Nirma University, Ahmedabad.

iv

Abstract

An Element management system (EMS) consists of systems and applications that are
concerned with managing network elements (NE) on the network element management
layer (NEL) of the Telecommunication Management Network model.

As recommended by ITU-T, the Element Management System’s key functionality is
divided into five key areas - Fault, Configuration, Accounting, Performance and Security
(FCAPS). Portions of each of the FCAPS functionality fit into the TMN models. On the
northbound the EMS interfaces to Network Management Systems and or Service Man-
agement Systems depending on the deployment scenario. Southbound the EMS talks to
the devices.

This dissertation addresses two key factors in WiMAX-EMS, namely enhance the
performance of WiMAX-EMS and improve the quality. First part, improve quality, deals
with removing loop holes.Second part, enhance performance deals with multithreading
concept and synchronization problem between EMS and NE, which are communicating
through SNMP.

v

Acknowledgements

My sincere thanks to the fine people around me who helped me in completing this project
work. Their wisdom, clarity of thought and support motivated me to bring this project
to its present state. First, I wish to thank Mr. Vishwanath Kotta (Senior Manager) for
giving me an opportunity to work on this project. His continued support, guidance and
vision have helped me in this project, and it has truly been a pleasure working with him.

My heartfelt thanks go to Mr. K Raju, Mr. Nishanth Thomas and my team members
for their invaluable guidance, which not only enabled me to sort out the technical issues
but also helped me in updating my knowledge, which undoubtedly will also be useful in
the future.

I wish to place on record my gratitude to Motorola, Hyderabad for providing me an
opportunity to work with them on this project of such importance. My stay in the orga-
nization has been a great learning experience and a curtain raiser to an interesting and
rewarding career. This exposure has enriched me with technical knowledge and has also
introduced me to the attributes of a successful professional.

I wish to express my deep gratitude towards Dr. S.N. Pradhan (PG Coordinator) and
all professors at Nirma Institute of technology who taught the fundamental essentials to
undertake such a project. Without their valuable guidance it would have been extremely
difficult to grasp and visualize the project theoretically.

Finally, I would like to thank my parents and friends for their constant love and sup-
port and for providing me with the opportunity and the encouragement to pursue my
goals.

- Jigar Shah
09MCE014

vi

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Figures ix

1 Project Introduction 1
1.1 Introduction . 1
1.2 Objective . 1
1.3 Scope of work . 1
1.4 Motivation . 2
1.5 Thesis Organization . 2

2 Literature Survey 3
2.1 EMS (Element Management System) . 3
2.2 Management function area (FCAPS) . 4

2.2.1 Fault Management . 5
2.3 SNMP . 7

2.3.1 Overview and basic concepts . 7
2.3.2 Management Information Base (MIB) 8
2.3.3 Protocol Details . 8
2.3.4 SnmpV3 . 9

3 Problem Definition 11
3.1 Events . 12

3.1.1 Resync Event . 12
3.1.2 Statechange Event . 14

3.2 Performance Issues . 20
3.3 Detail description of Each Issue . 21

3.3.1 Single threading concept in Resync 21
3.3.2 Single threading concept in processing Events 21
3.3.3 Out of synchronization between Manager and Agent, which are

communicating using SNMP Protocol 22

vii

4 Technology, Solution and Methodology 31
4.1 Tools and Technology . 31
4.2 Solution . 31

4.2.1 Solution for Single threading concept in Resync 31
4.2.2 Solution for Single threading concept in processing events 34
4.2.3 Solution for Out of synchronization between Manager and Agent,

which are communicating using SNMP Protocol 35

5 Implementation and Result 37

6 Conclusion and Future work 44
6.1 Conclusion . 44
6.2 Future work . 44

7 References 45

viii

List of Figures

2.1 Position of EMS in Network Management 4
2.2 Five layer TMN Network Management Architecture 5
2.3 Table 1. A Subset of FCAPS Functionality 5
2.4 FM Alarm Life cycle . 6
2.5 SNMP PDU . 8

3.1 NE overall state transition diagram . 16
3.2 Down NEs are in red color . 22
3.3 Event viewer shows all alarms and events 23

ix

1

Project Introduction

1.1 Introduction

EMS (Element Management System)

• An Element management system (EMS) consists of systems and applications that
are concerned with managing network elements (NE) on the network element man-
agement layer (NEL) of the Telecommunication Management Network model.

• As recommended by ITU-T, the Element Management System’s key functionality
is divided into five key areas - Fault, Configuration, Accounting, Performance and
Security (FCAPS). Portions of each of the FCAPS functionality fit into the TMN
models. On the northbound the EMS interfaces to Network Management Systems
and or Service Management Systems depending on the deployment scenario. South-
bound the EMS talks to the devices.

• An element management system (EMS) manages one or more of a specific type of
telecommunications network element (NE). Typically, the EMS manages the func-
tions and capabilities within each NE but does not manage the traffic between
different NEs in the network. To support management of the traffic between itself
and other NEs, the EMS communicates upward to higher-level network manage-
ment systems (NMS) as described in the telecommunications management network
(TMN) layered model.

1.2 Objective

Simulation of events to verify EMS functionality (For Fault management module) and
improve and optimize FM (Fault Management)module in a way that performance and
quality of FM module increased

1.3 Scope of work

As the title suggests the goal of this project, work carried out in this research is useful
in improving performance and quality of the Element Management system.

1

This project is divided into two goal, one improve the quality of the EMS by removing
the bottleneck through simulation of Events of FM module and second, enhance the per-
formance of FM module by applying multithreading concept and solving synchronization
problem in SNMP protocol.

1.4 Motivation

WiMAX-EMS is used to monitor more than 1000 Network element. So it is expected to
consume less time to process events for all network elements as it is working with more
than 1000 network elements. EMS again has to work with NMS its parent system so it
should always be optimized for consuming less time.

1.5 Thesis Organization

The rest of the thesis is organized as follow.

Chapter 2, Literature Survey, includes the overview of WiMAX-EMS and SNMP pro-
tocol.

Chapter 3, Problem Definition, includes problem regarding quality and performance.

Chapter 4, Technology, solution and methodology, includes solution and methodology
of the problem. And technology used to solve problem.

Chapter 5, Implementation and Result, includes implementation of solution and re-
sult of that solution.

Chapter 6, Conclusion and Future work, concludes this project with a summary, and
provides possible directions for relevant future research.

2

2

Literature Survey

2.1 EMS (Element Management System)

• An Element management system (EMS) consists of systems and applications that
are concerned with managing network elements (NE) on the network element man-
agement layer (NEL) of the Telecommunication Management Network model.

• As recommended by ITU-T, the Element Management System’s key functionality
is divided into five key areas - Fault, Configuration, Accounting, Performance and
Security (FCAPS). Portions of each of the FCAPS functionality fit into the TMN
models. On the northbound the EMS interfaces to Network Management Systems
and or Service Management Systems depending on the deployment scenario. South-
bound the EMS talks to the devices.

• An element management system (EMS) manages one or more of a specific type of
telecommunications network element (NE). Typically, the EMS manages the func-
tions and capabilities within each NE but does not manage the traffic between
different NEs in the network. To support management of the traffic between itself
and other NEs, the EMS communicates upward to higher-level network manage-
ment systems (NMS) as described in the telecommunications management network
(TMN) layered model.

Position of EMS in Network Architecture

As shown in figure, NEs in the network each communicate with their respective EMS. The
NE specific EMSs communicate via either proprietary or, preferably, an open, standard,
northbound interface to a higher level NMS that provides integrated multivendor network
management.

Networks to be managed

Devices, systems and/or anything else requiring some form of monitoring and manage-
ment

• Telecommunications equipment
Telecom switches, BTS, BSC, trunks, subscriber lines, etc.

• Data Networks
LANs, WANs, Modems, Repeaters, Hubs, Bridges, etc.

3

Figure 2.1: Position of EMS in Network Management

2.2 Management function area (FCAPS)

Fault : RAS Quality Assurance, Alarm Surveillance, Fault Localization, Fault Correc-
tion, Testing, Trouble Administration

Configuration : Network Planning and Engineering, Installation, Service Planning and
Negotiation, Provisioning, Status and Control

Accounting : Pricing, Usage Measurement, Collections and Finance, and Enterprise
Control

Performance : Quality Assurance, Performance Monitoring, Performance Control, and
Performance Analysis

Security : Prevention, Detection, Containment and Recovery, and Security Administra-
tion

• Portions of each of the FCAPS functionality will be performed at different layers of
the TMN architecture. As an example, fault management at the EML is detailed
logging of each discrete alarm or event. The EMS then filters the alarms and
forwards them to an NMS that perform alarm correlation across multiple nodes
and technologies to perform root cause analysis. A subset of FCAPS functionality
is listed in Table.

4

Figure 2.2: Five layer TMN Network Management Architecture

Figure 2.3: Table 1. A Subset of FCAPS Functionality

2.2.1 Fault Management

In network management, Fault Management is the set of functions that detect, isolate,
and correct malfunctions in a WiMAX-EMS, compensate for environmental changes, and
include maintaining and examining error logs, accepting and acting on error detection
notifications, tracing and identifying faults, carrying out sequences of diagnostics tests,
correcting faults, reporting error conditions, and localizing and tracing faults by exam-
ining and manipulating database information. When a fault or event occurs, a network
element will often send a notification to the network operator using a protocol such as
SNMP. An alarm is a persistent indication of a fault that clears only when the triggering
condition has been resolved.

5

FM Alarm Life Cycle

Figure 2.4: FM Alarm Life cycle

Types of Events

6

2.3 SNMP

• Simple Network Management Protocol (SNMP) is a UDP-based network protocol.
It is used mostly in network management systems to monitor network attached
devices for conditions that warrant administrative attention. SNMP is a component
of the Internet Protocol Suite as defined by the Internet Engineering Task Force
(IETF). It consists of a set of standards for network management, including an
application layer protocol, a database schema, and a set of data objects.

• SNMP exposes management data in the form of variables on the managed systems,
which describe the system configuration. These variables can then be queried (and
sometimes set) by managing applications.

2.3.1 Overview and basic concepts

In typical SNMP use, one or more administrative computers called managers have the
task of monitoring or managing a group of hosts or devices on a computer network.
Each managed system executes, at all times, a software component called an agent which
reports information via SNMP to the manager. Essentially, SNMP agents expose man-
agement data on the managed systems as variables. The protocol also permits active
management tasks, such as modifying and applying a new configuration through remote
modification of these variables. The variables accessible via SNMP are organized in hi-
erarchies. These hierarchies, and other metadata (such as type and description of the
variable), are described by Management Information Bases(MIBs).

An SNMP-managed network consists of three key components:

• Managed device

• Agent software which runs on managed devices

• Network management system (NMS) software which runs on the manager

A managed device is a network node that implements an SNMP interface that allows
unidirectional (read-only) or bidirectional access to node-specific information. Managed

7

devices exchange node-specific information with the NMSs. Sometimes called network
elements, the managed devices can be any type of device, including, but not limited to,
routers, access servers, switches, bridges, hubs, IP telephones, IP video cameras, com-
puter hosts, and printers.

An agent is a network-management software module that resides on a managed device.
An agent has local knowledge of management information and translates that informa-
tion to or from an SNMP specific form.

A network management system (NMS) executes applications that monitor and control
managed devices. NMS’s provide the bulk of the processing and memory resources re-
quired for network management. One or more NMSs may exist on any managed network.

2.3.2 Management Information Base (MIB)

SNMP itself does not define which information (which variables) a managed system should
offer. Rather, SNMP uses an extensible design, where the available information is defined
by management information bases (MIBs). MIBs describe the structure of the manage-
ment data of a device subsystem; they use a hierarchical namespace containing object
identifiers (OID). Each OID identifies a variable that can be read or set via SNMP. MIBs
use the notation defined by ASN.1.

2.3.3 Protocol Details

SNMP operates in the Application Layer of the Internet Protocol Suite (Layer 7 of the
OSI model). The SNMP agent receives requests on UDP port 161. The manager may
send requests from any available source port to port 161 in the agent. The agent response
will be sent back to the source port on the manager. The manager receives notifications
(Traps and InformRequests) on port 162. The agent may generate notifications from any
available port.

SNMPv1 specifies five core protocol data units (PDUs). Two other PDUs, GetBulkRe-
quest and InformRequest were added in SNMPv2 and carried over to SNMPv3.

All SNMP PDUs are constructed as follows:

Figure 2.5: SNMP PDU

The seven SNMP protocol data units (PDUs) are as follows:

GetRequest A manager-to-agent request to retrieve the value of a variable or list of
variables. Desired variables are specified in variable bindings (values are not used).
Retrieval of the specified variable values is to be done as an atomic operation by
the agent. A Response with current values is returned.

8

SetRequest A manager-to-agent request to change the value of a variable or list of
variables. Variable bindings are specified in the body of the request. Changes to all
specified variables are to be made as an atomic operation by the agent. A Response
with (current) new values for the variables is returned.

GetNextRequest A manager-to-agent request to discover available variables and their
values. Returns a Response with variable binding for the lexicographically next
variable in the MIB. The entire MIB of an agent can be walked by iterative ap-
plication of GetNextRequest starting at OID 0. Rows of a table can be read by
specifying column OIDs in the variable bindings of the request.

GetBulkRequest Optimized version of GetNextRequest. A manager-to-agent request
for multiple iterations of GetNextRequest. Returns a Response with multiple vari-
able bindings walked from the variable binding or bindings in the request. PDU
specific non-repeaters and max-repetitions fields are used to control response be-
havior. GetBulkRequest was introduced in SNMPv2.

Response Returns variable bindings and acknowledgement from agent to manager for
GetRequest,SetRequest, GetNextRequest, GetBulkRequest and InformRequest. Er-
ror reporting is provided by error-status and error-index fields. Although it was used
as a response to both gets and sets, this PDU was called GetResponse in SNMPv1.

Trap Asynchronous notification from agent to manager. Includes current sysUpTime
value, an OID identifying the type of trap and optional variable bindings. Destina-
tion addressing for traps is determined in an application specific manner typically
through trap configuration variables in the MIB. The format of the trap message
was changed in SNMPv2 and the PDU was renamed SNMPv2-Trap.

InformRequest Acknowledged asynchronous notification from manager to manager.
This PDU use the same format as the SNMPv2 version of Trap. Manager-to-
manager notifications were already possible in SNMPv1 (using a Trap), but as
SNMP commonly runs over UDP where delivery is not assured and dropped pack-
ets are not reported, delivery of a Trap was not guaranteed. InformRequest fixes
this by sending back an acknowledgement on receipt. Receiver replies with Re-
sponse parroting all information in the InformRequest. This PDU was introduced
in SNMPv2.

2.3.4 SnmpV3

SNMPv3 is defined by RFC 3411-RFC 3418 (also known as ’STD0062’). SNMPv3 pri-
marily added security and remote configuration enhancements to SNMP.

SNMPv3 provides important security features:

• Confidentiality - Encryption of packets to prevent snooping by an unauthorized
source.

• Integrity - Message integrity to ensure that a packet has not been tampered within
transit.

9

• Authentication - to verify that the message is from a valid source.

As of 2004 the IETF recognizes Simple Network Management Protocol version 3
as defined by RFC 3411-RFC 3418 (also known as STD0062) as the current standard
version of SNMP. The IETF has designated SNMPv3 a full Internet standard, the highest
maturity level for an RFC.

10

3

Problem Definition

Simulation of events to verify EMS functionality (For Fault management module) and

improve and optimize FM (Fault Management)module in a way that performance and

quality of FM module increased.

Scope

As the title suggests the goal of this project, work carried out in this
research is useful in improving performance and quality of the Element
Management system.

This project is divided into two goal, one improve the quality of the EMS
by removing the bottleneck through simulation of Events of FM module
and second, enhance the performance of FM module by applying multi-
threading concept and solving synchronization problem in SNMP protocol.

11

Part 1 : Improve Quality by removing bottleneck through simulation of
Events, because at the end of simulating events give a report which
contains whether expected result has been got for all events and it
also gives time taken by all events. If result is not same as expected
result then do changes in source code and improve quality.

3.1 Events

Description of main events

3.1.1 Resync Event

FM Resync Processing : A Resync Mechanism that enables the EMS to
acquire from NE its complete snapshot of current state profile and active
alarms list by sftp file, besides the EMS’s normal NE event processing.

What this feature is:

• An entire resync operation for all resyncable NEs(CAPC and AP with
their MO FRUs) when EMS startup

• The resync operation against one resyncable NE (CAPC and AP)
after its reboot

• The resync operation for specified NE manually triggered by operator
from Node Properties GUI.

• The reinforcement for the EMS’s normal NE event processing, for
which the resync processing must provides interface to maintain the
proper event processing order per NE.

12

EMS startup Resync scheduling

NE Reboot Resync scheduling

13

3.1.2 Statechange Event

NE(AP/CAPC) can be in different state like UP, DOWN ,IMPAIRED,
NOT PRESENT etc. State of the NE is decided based on different Action.

BootStrapAction : When new NE will be added, NE has to upload
XML file which contains details like SNMP keys, object Id etc.. So EMS
can get detail of each NE and can store in database for future use.

Sample of bootstrap XML file:

<?xml version="1.0" encoding="UTF-8"?> <SecurityBootstrapData

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="D:\WiMax\EMS-NE ICD\test1.xsd">

<Diffie-HellmanParameters>

<Prime>"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E0

88A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A

6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A3620FFFFF

FFFFFFFFFFF"

</Prime> </Diffie-HellmanParameters> <snmpTargetAddrTable>

<snmpTargetAddrEntry snmpTargetAddrName="800000A103111111111

111">

<snmpTargetAddrTAddress>203.8.31.30</snmpTargetAddrTAddress>

</snmpTargetAddrEntry> </snmpTargetAddrTable> <usmUserTable>

<usmUserEntry usmUserEngineID="800000A103222222222222"

usmUserName="admin_1">

<usmUserSecurityName>admin_1</usmUserSecurityName>

<usmUserAuthProtocol>usmHMACSHAAuthProtocol</usmUserAuthProtocol>

<usmUserPrivProtocol>usmAESPrivProtocol</usmUserPrivProtocol>

</usmUserEntry> <usmUserEntry

usmUserEngineID="800000A103222222222222" usmUserName="operator">

<usmUserSecurityName>operator</usmUserSecurityName>

<usmUserAuthProtocol>usmHMACSHAAuthProtocol</usmUserAuthProtocol>

<usmUserPrivProtocol>usmAESPrivProtocol</usmUserPrivProtocol>

</usmUserEntry> <usmUserEntry

usmUserEngineID="800000A103222222222222" usmUserName="guest">

<usmUserSecurityName>guest</usmUserSecurityName>

<usmUserAuthProtocol>usmHMACSHAAuthProtocol</usmUserAuthProtocol>

<usmUserPrivProtocol>usmAESPrivProtocol</usmUserPrivProtocol>

14

</usmUserEntry> </usmUserTable>

StateChangeEvent Action : State of NE can be changed explicitly
through this action.

AlarmAction : When something goes wrong in NE, NE generates
alarm and send it to EMS. EMS change the state of NE based on alarm.
Ex if state of NE is UP and when EMS gets an alarm from NE, EMS will
change the state of NE from UP to IMPAIRED.

NE Added Removed Action : This action will be generated when
new NE will be added or removed.

Fru Added Removed Action : This action will be generated when
new Fru will be added or removed.

HeartbeatAction : EMS generates this action at regular interval of
time to check the status of NE whether NE is UP or DOWN. If EMS will
not get response from NE before predefined time, it will make NE state
down.

15

NE overall state Transition diagram

Figure 3.1: NE overall state transition diagram

State Inputs

Each state input shall at a minimum include the NE’s NodeId as the
mechanism to identify the associated NE node. The list below contains all
possible inputs that trigger an overall NE node state calculation and node
state modifications. These inputs shall implement an interface that will
enable the State Mechanism to process a variety of different input types.

1. Node Connectivity Change - Connection Loss and Connection Reestab-
lished

2. Alarm Set

3. Alarm Cleared

4. StateChange Event

16

5. Bootstrap Modification - Bootstrap Started and Bootstrap Completed

6. Resync (Information to completely refresh the state store associated
with an NE that includes the presence of active alarms)

Node Connectivity Change Connection Loss and Connection Reestab-
lished Change The Node Connectivity Change input is received when
the EMS loses connectivity to the NE and when the EMS regains con-
nectivity to the NE. For a connection loss, this input is reported by the
HeartBeatMonitor thread. After receiving this input, the State Mech-
anism shall transition the NE’s overall node state to UNKNOWN and
rolldown this state to its displayable FRUs (Refer to UNKNOWN
State Rolldown.) This transition will only occur if the NE’s current
state has not already transitioned to UNKNOWN or is not DOWN,
(from not UNKNOWN to UNKNOWN) (from UNKNOWN to not
UNKNOWN) and if the NE has been bootstrapped. For a connec-
tion reestablished, this input is generally reported by the HeartBeat
thread. It shall trigger the transition from the UNKNOWN state
to the displayable node’s previous state (Refer to UNKNOWN State
Rolldown).This input contains no additional data other than the NE’s
Node ID. If modified, the current displayable node statuses shall be
made available for distribution. Note: displayable node statuses in-
clude the current NE overall node status and the displayable FRUs.

Alarm Set The Alarm Set input is received when the EMS receives an ac-
tive alarm from the NE. It is reported by the HeavyWeight thread that
processes alarms and statechange events. It is generated to trigger a
potential transition of the NE’s overall node state to IMPAIRED. The
NE’s overall node state can only transition to this state if it is boot-
strapped, connected to the EMS, and its current state is not DOWN.
Only type and Node Id are necessary for this input. It is a light weight
input since no database accesses is required. This input only impacts
the NE node’s overall state. There is no rolldown of the IMPAIRED
state to the NE’s displayable FRU nodes. This input is ignored if the
current NE overall node state is already IMPAIRED or UNKOWN. If
modified, the NE overall node status update shall be made available
for distribution.

Alarm Cleared The Alarm Clear input is received when the EMS re-
ceives a clear alarm from the NE. It is reported by the HeavyWeight
thread that processes alarms and statechange events. It is generated

17

to trigger a possible recalculation of the NE’s overall node state. If the
NE’s overall node state is in the IMPAIRED state and there are no
active FRUs, then the database should be queried for active alarms.
If there are no active alarms, then the NE’s overall node state shall
transition to the UP state. Only the Node Id is necessary for this
input. It is can be a heavy weight input since database access may
occur. This input only impacts the NE node’s overall state. There is
no rolldown UP state. This input is ignored if the NE’s overall node
current state is not IMPAIRED or UNKNOWN. If modified, the cur-
rent NE overall node status shall be made available for distribution.

StateChange Event The StateChange Event input is received when the
EMS receives a statechange event from the NE. It is reported by the
HeavyWeight thread that processes alarms and statechange events.
This input may trigger a recalculation of the NE’s overall node state.
Displayable FRU StateChange Event: (Shannon) we shall do some-
thing for Displayable FRU status. When a current NE overall node
state of UP/IMPAIRED/DOWN If an input for a statechange event
for a displayable FRU is received with an operational state of Down
and it is not already down, the current state for that displayable FRU
shall transition to the DOWN state and its previous states shall be
set to null. The current NE’s overall node state shall transition to the
IMPAIRED state only if it was in the UP state. If modified, the cur-
rent displayable node statuses shall be made available for distribution.

When the current NE overall node state is UP/IMPAIRED/DOWN
If an input for a statechange event for a displayable FRU is received
with an operational state of something other than DOWN and it is
not already in that state, then the current state of that displayable
FRU shall transition to that state and its pre- vious state shall be set
to null. The current NE’s overall state shall be reevaluated if it is not
already in the UP state. (See NE overall state calculation). If modi-
fied, the current displayable node statuses shall be made available for
distribution.

When the current NE overall node state is UNKNOWN In this con-
dition, if an input for a statechange event for a displayable FRU is
received with an operational state that is different from its previous

18

state, then its previous state shall transition to that state and its cur-
rent state shall remain UN-KNOWN. No NE overall state calculation
shall occur and no displayable status shall be distributed. (Shannon)
I did not see the reason for state change that way. The event recep-
tion does not mean a connection establishment? This part shall also
be read with reference to UNKNOWN State Rolldown.

Note: It is necessary to process state information when the NE is
in the UN-KNOWN state to enable the rollback to a previous state
when the NE connection is reestablished. This rollback to a last
known state is a requirement.

Bootstrap Modification Bootstrap Started and Bootstrap Completed
There are two types of input related to bootstrap modfication. One
for a bootstrap request which is generated when a new managed NE is
added or following an operator initiated rebootstrap operation. The
other is for a bootstrap completion which occurs when the NE and
the EMS have exchange keys and are capable of communicating via
SNMP v3 protocol.

Bootstrap Request This type of input will transition the current NE’s
overall node state to NOT PRESENT along with all of its displayable
FRUs node states if they are not already in that state. The previous
states of the NE’s displayable nodes shall be erased and the con-
tainer of non-displayable FRU states cleared. Finally, the current
displayable node statuses shall be made available for distribution.

Bootstrap Completion This type of input will transition the current
NE’s overall node state to KICK-START COMPLETE along with its
displayable FRU nodes if the current NE’s overall state is in the NOT
PRESENT state. The previous states of the NE’s dis-playable nodes
should already be set to null. Finally, the current displayable node
statuses shall be made available for distribution.

Resync Information to completely refresh the state store associated with
an NE that includes the presence of active alarms The resync input
is sent by the NE’s ResyncJob after the resync process has completed
processing its files and before it has processed its PendingQueue of

19

alarms and statechange events. This input shall contain the follow-
ing: a flag indicating if active alarms are present; the NE’s Physical
Node state; a list of dis-playable FRU states; and the list of DOWN
non-displayable FRUS. The FRU state information shall include the
FRU’s identity (Managed Object Class and Managed Object ID) and
its operational state.

When the current NE overall node state is in UNKNOWN In this
scenario, the NE’s non-displayable FRU states shall be refreshed, the
NE’s Physical Node State shall be updated, and the previous NE’s dis-
playable FRU states are updated. No NE overall node state calcula-
tion is performed and no current displayable statuses are distributed.

When the current NE overall node state is DOWN/KICKSTART
COMPLETE/UP/ IMPAIRED In this scenario, the NE’s non-displayable
FRU states shall be refreshed; the NE’s Physical Node State shall be
updated along with the current NE’s displayable FRU states. The
current NE overall node state shall be calculated. All previous node
states shall be erased. The current displayable node statuses shall be
made available for distribution.

Note: if the NE’s overall node state is NOT PRESENT, disregard
this resync input.

Part 2 : Enhance performance of FM module by applying multithreading
concept and solving synchronization problem in SNMP protocol.

3.2 Performance Issues

There are three performance issues

1. Single threading concept in Resync

2. Single threading concept in processing events

3. Out of synchronization between Manager and Agent, which are com-
municating using SNMP Protocol

20

3.3 Detail description of Each Issue

3.3.1 Single threading concept in Resync

• EMS must have latest information regarding state and alarm of all
NEs, there is no issue when EMS is up. It will gather all information
regarding the same.

• But when EMS goes down and after some time when it comes up, on
that time to get updated information from all NEs, it sends request
to all NEs.

• All NEs response back with latest information by uploading state and
alarm file.

• But here while sending request to all NEs (more than 1000 NEs) EMS
is using only single thread to fulfill this task and because of that it
consumes too much time to complete whole process.

• And because of that performance of EMS is going down.

3.3.2 Single threading concept in processing Events

• Whenever problem occurs in NE side, It sends an Alarm to EMS. On
getting Alarm EMS does process on that and basis on the Alarm or
Event, it will change the state of NE.

Impaired state : if it receives an alarm (yellow color)

Down state : if it receives an down state change event (NE is not
working, Red color) etc

Event Types :

1. Heartbeat Event

2. Alarm

3. Cneomi management Event

Problem:

• There are more than 1000 NEs in the network, so many alarms or
events come within the sort interval of time.

21

Figure 3.2: Down NEs are in red color

• EMS has to process all the events or alarms to update the status of
each and every NE.

How EMS is handling events or alarms.

• Obviously some parallel process is required to process this many
alarms within sort interval.

• EMS used to handle with multithreading concept. For each type
of event EMS was using different thread. For heartbeat -¿ heartbeat
thread For cneomi management event -¿ light weight thread For alarm
-¿ heavy weight thread But, here only three threads were running each
having their on queue of event data which it operates on. Because
of only three threads it was consuming too much time to process all
events.

3.3.3 Out of synchronization between Manager and Agent, which
are communicating using SNMP Protocol

Optimization In Communication

• Snmp take cares of two types of classes

• Confirmed Class : The Confirmed Class contains all protocol oper-
ations which cause the receiving SNMP engine to send back a re-
sponse. For example, [RFC3416] defines the following operations
for the Confirmed Class: GetRequest-PDU, GetNextRequest-PDU,

22

Figure 3.3: Event viewer shows all alarms and events

GetBulkRequest-PDU, SetRequest-PDU, and InformRequest-PDU.
Note : In this type of class authenticator is Receiver

• Unconfirmed Class : The Unconfirmed Class contains all protocol op-
erations which are not acknowledged. For example, [RFC3416] defines
the following operations for the Unconfirmed Class: Report-PDU,
Trapv2-PDU, and GetResponse-PDU. Note: In this type of class au-
thenticator is Sender Authenticator means a lot here, because packet
has Engine Boot value and Engine Time value of authenticator, which
require to prevent from REPLAY attack. You can find more detail in
next section.

Replay Protection Each SNMP engine maintains three objects:

• snmpEngineID, which (at least within an administrative domain)
uniquely and unambiguously identifies an SNMP engine.

• snmpEngineBoots, which is a count of the number of times the SNMP
engine has re-booted/re-initialized since snmpEngineID was last con-
figured; and,

• snmpEngineTime, which is the number of seconds since the snm-
pEngineBoots counter was last incremented.

Each SNMP engine is always authoritative with respect to these ob-
jects in its own SNMP entity. It is the responsibility of a non- authorita-
tive SNMP engine to synchronize with the authoritative SNMP engine, as
appropriate.

23

An authoritative SNMP engine is required to maintain the values of its
snmpEngineID and snmpEngineBoots in non-volatile storage.

msgAuthoritativeEngineID
The msgAuthoritativeEngineID value contained in an authenticated

message is used to defeat attacks in which messages from one SNMP en-
gine to another SNMP engine are replayed to a different SNMP engine. It
represents the snmpEngineID at the authorita- tive SNMP engine involved
in the exchange of the message.

When an authoritative SNMP engine is first installed, it sets its local
value of snmp EngineID according to a enterprise-specific algorithm (see
the definition of the Textual Convention for SnmpEngineID in the SNMP
Architecture document [RFC3411]).

msgAuthoritativeEngineBoots and msgAuthoritativeEngine-
Time

The msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime
values contained in an authenticated message are used to defeat attacks in
which messages are replayed when they are no longer valid. They represent
the snmpEngineBoots and snmpEngineTime values at the authoritative
SNMP engine involved in the exchange of the message.

Through use of snmpEngineBoots and snmpEngineTime, there is no
requirement for an SNMP engine to have a non-volatile clock which ticks
(i.e., increases with the passage of time) even when the SNMP engine is
powered off. Rather, each time an SNMP engine re-boots, it retrieves,
increments, and then stores snmpEngineBoots in non-volatile storage, and
resets snmpEngineTime to zero.

When an SNMP engine is first installed, it sets its local values of sn-
mpEngineBoots and snmpEngineTime to zero. If snmpEngineTime ever
reaches its maximum value (2147483647), then snmpEngineBoots is in-
cremented as if the SNMP engine has re-booted and snmpEngineTime is
reset to zero and starts incrementing again.

24

Each time an authoritative SNMP engine re-boots, any SNMP engines
holding that authoritative SNMP engine’s values of snmpEngineBoots and
snmpEngineTime need to re-synchronize prior to sending correctly authen-
ticated messages to that authoritative SNMP engine. Note, however, that
the procedures do provide for a notification to be accepted as authentic
by a receiving SNMP engine, when sent by an authoritative SNMP engine
which has re-booted since the receiving SNMP engine last (re-)synchro-
nized.

If an authoritative SNMP engine is ever unable to determine its latest
snmpEngineBoots value, then it must set its snmpEngineBoots value to
2147483647.

Whenever the local value of snmpEngineBoots has the value 2147483647
it latches at that value and an authenticated message always causes an
notInTimeWindow authentication failure.

In order to reset an SNMP engine whose snmpEngineBoots value has
reached the value 2147483647, manual intervention is required. The en-
gine must be physically visited and re-configured, either with a new sn-
mpEngineID value, or with new secret values for the authentication and
privacy protocols of all users known to that SNMP engine. Note that even
if an SNMP engine re-boots once a second that it would still take approx-
imately 68 years before the max value of 2147483647 would be reached.

Time Window The Time Window is a value that specifies the window
of time in which a message generated on behalf of any user is valid. This
memo specifies that the same value of the Time Window, 150 seconds, is
used for all users.

Time Synchronization
Time synchronization, required by a non-authoritative SNMP engine in

order to proceed with authentic communications, has occurred when the
non-authoritative SNMP engine has obtained a local notion of the author-
itative SNMP engine’s values of snmpEngineBoots and snmpEngineTime
from the authoritative SNMP engine. These values must be (and remain)
within the authoritative SNMP engine’s Time Window. So the local no-

25

tion of the authoritative SNMP engine’s values must be kept loosely syn-
chronized with the values stored at the authoritative SNMP engine. In
addition to keeping a local copy of snmpEngineBoots and snmpEngine-
Time from the authoritative SNMP engine, a non-authoritative SNMP
engine must also keep one local variable, latestReceivedEngineTime. This
value records the highest value of snmpEngineTime that was received by
the non-authoritative SNMP engine from the authoritative SNMP engine
and is used to eliminate the possibility of replaying messages that would
prevent the non-authoritative SNMP engine’s notion of the snmpEngine-
Time from advancing.

A non-authoritative SNMP engine must keep local notions of these val-
ues (snmpEngineBoots, snmpEngineTime and latestReceivedEngineTime)
for each authoritative SNMP engine with which it wishes to communicate.
Since each authoritative SNMP engine is uniquely and unambiguously
identified by its value of snmpEngineID, the non-authoritative SNMP en-
gine may use this value as a key in order to cache its local notions of these
values.

Time synchronization occurs as part of the procedures of receiving an
SNMP message. As such, no explicit time synchronization procedure is
required by a non-authoritative SNMP engine. Note, that whenever the
local value of snmpEngineID is changed (e.g., through discovery) or when
secure communications are first established with an authoritative SNMP
engine, the local values of snmpEngineBoots and latestReceivedEngine-
Time should be set to zero. This will cause the time synchronization to
occur when the next authentic message is received.

Problem
During implementation / test of my snmp management application I

ran into some issues with regards to timeliness management.

1. snmpEngineTime calculations uses ”System.currentTimeMillis()” as
reference. ”System.currentTimeMillis()” is based on system time
which may change forward / backwards at any time (like user set-
ting of time / ntp activation / daylight saving /)

26

Simple testsequences (On Manager side)

• snmp.get

• modify systemtime

• snmp.get

• The effect of setting system time backwards in step 2 is that
the snmpEngineTime used in messages will be increased with the
time that systemtime was set backwards. This results in a usm-
StatsNotInTimeWindows report from the agent and the manager
now recovers fine from the usage of the wrong snmpEngineTime

• The effect of setting system time forward in step 2 is that the
snmpEngineTime used in messages will be decreased with the
time that systemtime was set forward. This results in a usmStat-
sNotInTimeWindows report from the agent but in this case the
manager ”ignores” the report from the agent and tries to retrans-
mit the message, thus ending in a timeout on the api level.

All future communication to the snmp agent will now fail with time-
outs.

2. Changing system may just as well happen on the agent side as well, so
I decided to make similar test for such cases. The agent I did such test
on, is based on NESIM. It turned out that this agent implementation
also is affected by changes to system time. (the manager application
is still based on snmp4j as above)

The testsequence is similar to before:

• snmp.get

• modify time in agent

• snmp.get

• Agent time is adjusted forwards with some value larger than 150 sec-
onds. A usmStatsNotInTimeWindows-report is send from the agent
to the manager in step 3 and the manager now recovers fine.

• Agent time is adjusted backwards with some value larger than 150
seconds. Behaviour is similar to 1b and end result is also that all
future communication fails with timeout.

27

Example :

• First will see How communication start

Suppose EngineBoot and EngineTime of NE is 6 and 10.

• Now four scenarios of simulation

1. Decrease EMS system time

2. Increase EMS system time

3. Decrease NE system time

4. Increase NE system time

All four scenarios won’t create problem but two.

28

1. Decrease EMS system time (It won’t create problem)

2. Increase EMS system time

29

• Now EMS continues to reject packet for the same reason.

• And because of that Heartbeat of all NEs also be rejected, which
causes all NEs to go down in UNKNOWN state.

captionAll NEs are in Unknown state

30

4

Technology, Solution and
Methodology

4.1 Tools and Technology

• Core Java

• SNMP Protocol (For Communication)

• Clearcase

• Emma Tool to measure Coverage

• NESIM (Simulator for WiMAX network)

• Eclipse

4.2 Solution

Here is a solution for all performance issues

4.2.1 Solution for Single threading concept in Resync

• Multithreading

• Problem with multithread (how to correlate Response with Request)

• Solution for that

– Add Correlation Tag with Handler in HashMap

– Correlation Tag is nothing but a counter which is used to correlate
response with request

31

• On Response(of upload Request) fetch handler as per the correlation
tag and do further processing

How SNMP comes into picture in this solution

Network Management Protocol

• Communication protocol between managers and agents

• Protocol provides a standard way to exchange management informa-
tion between managers and agents

Object Identifier (OID):

• Global identifier for a particular object type.

• An OID consists of a sequence of integers, which specify the position
of the object in the global object identifier tree.

• Ex : PDU contains OID, Value (OID for filepath, Path value)

captionHow to identify OID

Private MIB Registration

• Companies can register their private MIB extensions in the global
MIB tree by contacting the Internet Assigned Numbers Authority
(IANA).

– http://www.iana.org/

32

• Company broadcast their ID

• Ex Motorola : 1.3.6.1.2.2225

Interface

• To achieve all this layer on top of Snmp needs to be developed where
all extra OIDs can be added.

• And that OIDs can be set in PDU as a variable binding with its value
as per the Snmp Protocol.

• This OIDs are hard coded on both the side which communicate with
each other so both the party can identify the field.

Class Diagram

Class Specification SNMPMgr:

• Implementing MessageHandler, handling ’SNMP RESYNC ALARM
STATE REQUEST’ message, scheduling resync for specified NE by
operator manually from Node Properties GUI.

RestartResyncMgr:

• Up to an entire resync operation for all resyncable NEs(CAPC and
AP with their MO FRUs) when EMS startup

CneomiNotificationProcessor:

• Handling inventory resync event, scheduling resync operation against
one rebooted NE

33

ResyncManagers:

• As the ResyncJob pool, to cache and execute all the resync operations

ResyncThreadPoolExecutor:

• Extending ThreadPoolExecutor, as the ResyncManager kernel to sched-
ule and execute the ResyncJobs

ResyncJob:

• Resync procedure for one NE

PendingEventQueue:

• A queue to cache the event from SNMPTrapProcessor for future pro-
cessing by ResyncJob during resync process, one queue for one NE,
one ResyncJob, unique with NodeId.

PendingEventQueueManager:

• A managing class for all PendingEventQueue

4.2.2 Solution for Single threading concept in processing events

• Here heartbeat event comes after every 40 seconds to say NE is alive.
Frequency of cneomi management event is also low such that it can
be handled by one thread. But frequency of alarm is too high.

• So obvious solution is to increase the number of heavyweight threads
which handles all alarm such a way that performance of EMS will be
enhanced by consuming less time to process alarm.

For heartbeat → 1 heartbeat thread

For cneomi management event → 1light weight thread

For alarm → 10 heavy weight threads

Class Diagram

• Each thread is having individual queue for event data.

How heavy weight thread distribute each event data :

m_hw_thread_size = 10 int nodeId = fmNodeInfo.getNodeId().getInt();

m_hwList[(nodeId % m_hw_thread_size)].addToEventQ(event, fmNodeInfo,eventType);

Flow:

34

4.2.3 Solution for Out of synchronization between Manager and
Agent, which are communicating using SNMP Protocol

Root Cause of the problem :

• EMS and NE both are dependant on NTP server for Time.

• Setting the clock with NTP for our boxes that lack a battery backed
clock. They start up in 1970 and suddenly (back to the future)they
are in 2004. Looking at the code there also seemed to be an overflow
problem occuring after 248 days and some tests seemed to verify this.
Both large time changes and the 248 days overflow causes the agent
to get stuck in ”notInTimeWindow”-mode.

• It is all related to the fact that the engineTime is calculated with get-
timeofday and in centiseconds. It is then stored in a signed (normally
32 bit) integer. On most platforms this value overflows after 23̂1100
seconds 248,5 days.

Proposed Solution
(1)

• SNMP uses System.currentMilliSecond() to calculate time.Instead of
that we have started using System.nenoTime which givs time in neno
second, precision wise it gives more accurate result.

• Though this can not solve this problem, but this can delay overow by
some more days. So problem can be delayed by some more days

35

(2)

• Objective : On getting Report from NE side saying usmStatsNotIn-
TimeWindow ...call new ReportHandler and set Engine Boot and En-
gine Time for that particular NE as 0 , 0 on manager side. So commu-
nication won’t stop between manager and agent. New ReportHandler
has been written to handle usmStatsNotInTimeWindow.

• Scenario :

– First Manager and Agent both are not in sync → On that time
manager will send SNMP SET request to NE and NE will re-
ply back with Report (usmStatsNotInTimeWindow) and man-
ager will set that (Engine Boot and Engine Time).

– Now communication is going smoothly as both r in sync. But if I
change the time of NESIM (Decrease system time), so both wont
be in sync. Now when manager sends SET or GET request to NE,
NE will reply back with Report (usmStatsNotInTimeWindow),
because manager has higher value of NE Boot or time difference
is more than 150.

• On getting this Report, ReportHandler gets invoke from SNMP stack
and set the Engine Boot and Engine Time for that particular NE as 0
, 0 on manager side. And from second request Manager will set Time
and Boot value from NE as describe above. So communication won’t
stop between manager and agent.

36

5

Implementation and Result

Part 1, Implementation: Improve Quality by removing bottleneck through
simulation of Events, because at the end of simulating events give a report
which contains whether expected result has been got for all events and it
also gives time taken by all events.

If result is not same as expected result then do changes in source code
and improve quality.

Simulation of Event:

public void run() {

FmNodeInfo fmNodeInfo = null;

try{

NodeId nodeId = nodeInfo.getNodeId();

try {

fmNodeInfo =(FmNodeInfo)LocalNodeInfoMgr.getIns

tance().getNode(nodeId);

if(fmNodeInfo == null)

{

logger.warning("The nodeinfo for this nodeid: "

+ nodeId.toString()

+ " may be deleted or stale.");

return;

}

logger.finest("The new nodeinfo is: " + fmNodeInfo.

toString());

}

catch (NMSException e) {

37

logger.warning("There is a exception when query

node by nodeId: " + e.getErrorCode()+

"" + e.getMsg());

return;

}

if(!ResyncUtil.isResyncable(fmNodeInfo))

{

logger.warning("The nodeinfo for this nodeid: " +

nodeId.toString() + " is not resyncable.");

return;

}

this.nodeInfo = fmNodeInfo;

this.logger.info("ResyncJob begins for "+DescriptionBuild

er.getNodeDisplayName(this.nodeInfo));

this.resynPrg.getTimer().time();

//begining

//begin Pending Events

pendingEventQueue=this.pendingEventQueueManager.beginPend

ingEvent(this.getNodeInfo().getNodeId();

sendUploadCommands();

ResyncStatus status=this.resynPrg.awaitUploadComplete();

this.parseData(status);//first parse according to the status

status=this.resynPrg.awaitUploadComplete();

this.parseData(status);//the second parse

this.updateNEState();

ResyncResult result=this.resynPrg.getResyncResult();

this.executeResyncHandlers(result);

}

catch(Throwable t) {

this.logger.log(Level.SEVERE, "ResyncJob for "

+Descri ptionBuilder.getNodeDisplayName(this.nodeInfo)

+" breaks down.", t);

this.resynPrg.updateProcStatus(ResyncStatus.FAIL,

"aborted by exception:"+t.getMessage());

ResyncResult result=new ResyncResult(ResyncResult.

Status.FAILED,

"aborted by exception:"+t.getMessage(), this.nodeInfo);

this.executeResyncHandlers(result);

}finally{

38

this.processPendingEvents();

//it’s important to clear the pending event queue no matter the job

succeeds or fails. Or the pending event will be piled up.

this.resynPrg.getTimer().time();//the end

ResyncResult result=this.resynPrg.getResyncResult();

if(result==null)

result=new ResyncResult(Status.ABORTED, "resync job

aborted as node may be deleted", null,

resynPrg.getTimer());

this.executeResyncHandlers(result);

this.logger.info(DescriptionBuilder.finalLogString

(result));

}

}

Part 2, Implementation and Result: Enhance performance of FM mod-
ule by applying multithreading concept and solving synchronization prob-
lem in SNMP protocol.

1. Multi threading concept in Resync

Result :

Number of threads Average Time (second)
5 42
9 30
10 30
11 31
15 40

Implemented: 10 threads

2. Multi threading concept in processing events

// Processor queues

private SnmpTrapPreProcessor m_lwProcessor = null;

private SnmpTrapPreProcessor m_hwProcessor = null;

private SnmpTrapPreProcessor m_heartBeatProcessor = null;

public static SnmpTrapPreProcessor m_hwList[] = null;

39

public static int m_hw_thread_size = 10;

public static final String FM_TRAP_HANDLER_QUEUE_SIZE =

"FM_TRAP_HANDLER_QUEUE_SIZE";

public static final int FM_TRAP_HANDLER_DEFAULT_QUEUE_SIZE =

5000;

private int m_queue_size = FM_TRAP_HANDLER_DEFAULT_QUEUE_SIZE;

private BlockingQueue<CommandResponderEvent> msgQ = null;

private String ipStr=null

FmNodeInfo fmNodeInfo = FmNodeMap.getInstance()

.getNodeFromCache

(ipAddr.getInetAddress().getHostAddress());

if (fmNodeInfo == null)

{

m_hwProcessor.addToEventQ (event, null,eventType);

return;

}

if (eventType != null) switch (eventType)

{

case COMMUNICATIONS_ALARM:

case ENVIRONMENTAL_ALARM:

case EQUIPMENT_ALARM:

case PROCESSING_ERROR_ALARM:

case QUALITY_OF_SERVICE_ALARM:

case INTEGRITY_VIOLATION_EVENT:

case OPERATIONAL_VIOLATION_EVENT:

case PHYSICAL_VIOLATION_EVENT:

case SEC_SERVICE_MECH_VIOLATION_ALARM:

case TIME_DOMAIN_VIOLATION_EVENT:

case CLMIB2_STATE_CHANGE_EVENT:

/* if(ipAddr.toString().indexOf("/")>=0)

ipStr=ipAddr.toString().substring

(0,ipAddr.toString().indexOf("/"));

int ipInt=new Integer(ipStr.charAt(ipStr.length()-1))

.intValue();

40

if(ipInt%2==0)

m_hwProcessor.addToEventQ (event, fmNodeInfo);

else

m_hwProcessor_test.addToEventQ(event, fmNodeInfo);

*/

/*if (ipAddr.toString().indexOf("/") >= 0) {

ipStr =

ipAddr.toString().substring(0,

ipAddr.toString().indexOf("/"));

}*/

int nodeId = fmNodeInfo.getNodeId().getInt();

m_hwList[(nodeId % m_hw_thread_size)].addToEventQ(event,

fmNodeInfo,eventType);

Result : It’s depend on number and type of event are coming from
NE side. But by applying multithreading cocept performance of pro-
cessing event enhanced.

3. Out of synchronization between Manager and Agent, which are com-
municating using SNMP Protocol

public synchronized int checkTime(final UsmTimeEntry entry)

{

int now = (int) (System.currentTimeMillis() / 1000);

if (localTime.getEngineID().equals(entry.getEngineID()))

{

/* Entry found, we are authoritative */

if ((localTime.getEngineBoots() == 2147483647) ||

(localTime.getEngineBoots() != entry.getEngineBoots())

||

(Math.abs(now + localTime.getTimeDiff() -

entry.getLatestReceivedTime()) > 150)) {

if (logger.isDebugEnabled()) {

logger.debug(

"CheckTime: received message outside time

window (authorative):"+

((localTime.getEngineBoots() !=

entry.getEngineBoots()) ? "engineBoots differ" :

41

""+(Math.abs(now + localTime.getTimeDiff() -

entry.getLatestReceivedTime()))+"

> 150"));

}

return SnmpConstants.SNMPv3_USM_NOT_IN_TIME_WINDOW;

}

else {

if (logger.isDebugEnabled()) {

logger.debug("CheckTime: time ok (authorative)");

}

return SnmpConstants.SNMPv3_USM_OK;

}

}

else {

UsmTimeEntry time = (UsmTimeEntry) table.get

(entry.getEngineID());

if (time == null) {

return SnmpConstants.SNMPv3_USM_UNKNOWN_ENGINEID;

}

if ((entry.getEngineBoots() < time.getEngineBoots()) ||

((entry.getEngineBoots() == time.getEngineBoots()) &&

(time.getTimeDiff() + now >

entry.getLatestReceivedTime() + 150)) ||

(time.getEngineBoots() == 2147483647)) {

if (logger.isDebugEnabled()) {

logger.debug(

"CheckTime: received message outside time window

(non authorative)");

}

return SnmpConstants.SNMPv3_USM_NOT_IN_TIME_WINDOW;

}

else {

if ((entry.getEngineBoots() > time.getEngineBoots()) ||

((entry.getEngineBoots() == time.getEngineBoots())

&&(entry.getLatestReceivedTime() > time

.getLatestReceivedTime()))) {

/* time ok, update values */

time.setEngineBoots(entry.getEngineBoots());

time.setLatestReceivedTime(entry

42

.getLatestReceivedTime());

time.setTimeDiff(entry.getLatestReceivedTime() - now);

}

if (logger.isDebugEnabled()) {

logger.debug("CheckTime: time ok (non authorative)");

}

return SnmpConstants.SNMPv3_USM_OK;

}

}

}

Result : SNMP stack will be reset for all NEs (with their EngineBoot
and EngineTime) and communication will continue

43

6

Conclusion and Future work

6.1 Conclusion

Fault management module is a heart of WiMAX Element, so performance
of WiMAX-EMS is enhanced by enhancing performance of FM.

Simulation of events has improved the quality by fixing loopholes in
FM. Performance of FM module has been enhanced by applying multi-
threading concept in processing Resync event and in processing alarm and
performance has also been enhanced by resetting SNMP stack.

6.2 Future work

The current solution of synchronization problem in SNMP is just a workaround;
there is nothing wrong in SNMP4j code. Root cause is in NTP server
(server used for Time synchronization), so to solve this problem at server
side will be the main priority.

Quality of WiMAX-EMS can be improved a lot by doing same thing
for other module like configuration management etc.

44

7

References

1. RFC 3412

2. RFC 3414

3. compass.mot.com

4. www.net-snmp.org/tutorial/tutorial-5/.../snmptrap.html

5. http://www.dpstele.com/layers/l2/snmp_l2_tut_part1.php

6. http://download.oracle.com/javase/1.5.0/docs/api/java/util/
concurrent/BlockingQueue.html

7. EMS Overview. Motorola Internal

8. FM overview. Motorola Internal

9. NESIM EMS environment setup. Motorola Internal

10. Wlan default.property and Oracle configuration. Motorola Internal

11. Bootstrap overview (SNMPV3). Motorola Internal

12. EMS Active Alarm Viewer LLD. Motorola Internal

13. FM State Handling Mechanism. Motorola Internal

14. FM Resync Process. Motorola Internal

45

www.net-snmp.org/tutorial/tutorial-5/.../snmptrap.html
http://www.dpstele.com/layers/l2/snmp_l2_tut_part1.php
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	Project Introduction
	Introduction
	Objective
	Scope of work
	Motivation
	Thesis Organization

	Literature Survey
	EMS (Element Management System)
	Management function area (FCAPS)
	Fault Management

	SNMP
	Overview and basic concepts
	Management Information Base (MIB)
	Protocol Details
	SnmpV3

	Problem Definition
	Events
	Resync Event
	Statechange Event

	Performance Issues
	Detail description of Each Issue
	Single threading concept in Resync
	Single threading concept in processing Events
	Out of synchronization between Manager and Agent, which are communicating using SNMP Protocol

	Technology, Solution and Methodology
	Tools and Technology
	Solution
	Solution for Single threading concept in Resync
	Solution for Single threading concept in processing events
	Solution for Out of synchronization between Manager and Agent, which are communicating using SNMP Protocol

	Implementation and Result
	Conclusion and Future work
	Conclusion
	Future work

	References

