Workload Characterization Methodology
for OpenCL Kernels

By
Hiren A. Kotadiya
09MCEO019

i NIRMA

UNIVERSITY
INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering

Institute of Technology, Nirma University
Ahmedabad

May, 2011

Workload Characterization Methodology
for OpenCL Kernels

Major Project

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology in Computer Science and Engineering

By
Hiren A. Kotadiya
09MCEO019

Guided By
Mr. Samvit Kaul
Dr. S. N. Pradhan

UNIVERSITY
INSTITUTE OF TECHNOLOGY

i NIRMA

Department of Computer Science and Engineering
Institute of Technology, Nirma University
Ahmedabad

May, 2011

111

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Tech-
nology in Computer Science and Engineering at Institute of Technology, Nirma

University and has not been submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Hiren A. Kotadiya

v

Certificate

This is to certify that the Major Project entitled ” Workload Characterization
Methodology for OpenCL Kernels” submitted by Mr. Hiren A. Kotadiya
(09MCEO019), towards the partial fulfillment of the requirements for the degree of
Master of Technology in Computer Science and Engineering, Institute of Technology,
Nirma University, Ahmedabad is the record of work carried out by him under my
supervision and guidance. In my opinion, the submitted work has reached a level
required for being accepted for examination. The results embodied in this major
project, to the best of my knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

Date:
Dr. S. N. Pradhan Mr. Samvit Kaul
Professor and PG-Coordinator, Project Guide,
Department of Computer Engineering, Intel Technology India Pvt. Ltd.,
Institute of Technology, Bangalore.

Nirma University, Ahmedabad.

Prof. D. J. Patel Dr. K. Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,
Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

Abstract

Graphics Processing Units (GPUs) have enjoyed a dramatic increase in programma-
bility as well as in computational power, which allowed them to be utilized as co-
processors for general purpose applications. OpenCL, by the Khronos Group, is
an open standard for parallel programming using CPUs, GPUs and other types of
processors. The OpenCL standard offers a common API for program execution on
systems composed of different types of computational devices. While 3D Graph-
ics workload characterization is a well developed area and standard benchmarks are
available, comparatively little has been devoted to the analysis and characterization
of GPGPU workloads to assist future work in micro-architecture design, application
re-structuring and compiler optimizations. Design goal for ArchOCL software model
is to characterize the workload for OpenCL. ArchOCL is a software model which runs
any OpenCL application and produces interesting statistics that reveals the dynamic
behavior of the application. Development of ArchOCL model includes implementa-
tion of OpenCL APIs, Compiler enhancement to support OpenCL kernel compilation

and Statistics collection.

vi

Acknowledgements

A journey is easier when you travel together. Interdependence is certainly more
valuable than independence. This thesis is the result of work whereby I have been

accompanied and supported by many people.

With immense pleasure I express my sincere gratitude, regards and thanks to my
external guide Mr. Samvit Kaul for his excellent guidance and continuous encour-
agement at all the stages of my research work. I would like to thank my project
manager Mr. Biju P. Simon due to his continuous help and support. The chain
of my gratitude would be definitely incomplete if I would forget to thank Mr. M
Senthilnathan who shared with me his experience for serving my thesis work. His
interest and confidence in me was the reason for all the success I have made. It is

my pleasure to be associated with Intel Technology India Pvt. Ltd., Bangalore.

[am also thankful to my internal guide Dr. S. N. Pradhan, PG Coordinator,
Department of Computer Science and Engineering, Institute of Technology, Nirma
University, Ahmedabad, for providing me all the necessary guidance throughout the
term. I would like to thank Dr. K. Kotecha, Hon’ble Director, Institute of Tech-
nology, Nirma University, Ahmedabad for his unmentionable support, providing basic

infrastructure and healthy research environment.

Last, but not the least, no words are enough to acknowledge constant support of

my parents because of whom I am able to complete my dissertation work successfully.

Hiren A. Kotadiya
09MCEO019

Contents

[Declarationl iii
Certificate iv
[Abstractl v
[Acknowledgements| vi
Contents vii
[List of Figures| ix
[List of Tables| X
[Abbreviations| xi
(1__Introductionl 1
(1.1 OpenCL and CUDA| 1
(1.2 ArchOCL - Design Goal| 2
(.3 ArchOCL Software Architecturel 3
(1.4 Advantages| 4
(Lo Tamitationso 4
(1.6 Thesis Organization|. 4

[2 Literature Survey| 6
IQ I EII EII []l 6
2.2 OpenCL] 7
[2.2.1 OpenCL Architecturel. 7

2.2.2 Platform Modello 8

[2.2.3 Memory Model| oo 8

224 Execution Modell oo 9

[2.2.5 Programming Modell 0. 13

[2.2.6 OpenCL Framework{ 13

[2.2.7 OpenCL Summary| 14

vil

CONTENTS

(3 API Implementation|

[3.1 OpenCL Plattorm Layer|

BI1

Querying Platform|

B12

Querying Devicel

B.1.9

Contextsl

B2

OpenCL Runtime| o

B2l

Command Queues|

B.22

Memory Objects|,

B.2.3

Sampler Objects|

B24

Program Objects|

B2.5

Kernel Objects] o

B.2.6

FEvent Objects|

[3.3 OpenCL APIs for OpenGL interoperability]

4__Kernel Executionl

A1

An OpenCL application|

12

The "Kernel” Concept|

3

OpenCL Kernel Example: Binary Searchl

I

Partitioning the Workl oL

5

Synchronization|o oL

B Workload CI ation

[>.1 Kernel Call and Work Group Sizel

(5.2 Memory or Compute Intensive Workload|

(5.3 SLM Densityl oo

5.4 Instructions Breakdownl

[5.5 Memory Access Spread|

[.6 Average Channel Utilization|
b.7 Math Functions Breakdown|

0.9

5.8 Floating Point v/s Integer Operations|.

emory Bank Conflict{

.10 Cache Line Hitl oL

16
16
16
16
17
17
17
18
20
21
22
23
23

25
25
27
27
28
28

29
30
31
32
32
33
34
34
35
36
37

38
38
38

39

40

List of Figures

L1 ArchOCL and GPUl. 2
(.2 ArchOCL Architecturel 3
2.1 Platform modello 8
2.2 Memory Model|o o 9
[2.3 Work-item and Work-group Example| 10
2.4 OpenCL Program Flow|. 14
5.1 Bytes/Compute 31
5.2 SLM Density] 32
[5.3 Memory Access Spread|o 33
[0.4 Average Channel Utilization| 34
[5.5 Floating Point v/s Integer Operations|. 35
(.6 Bank Conflicl 36
bt Cache Line Hitl oo oo 37

X

List of Tables

(5.1 Kernel Call and WorkGroup Size|

Abbreviations

API
CPU
CU
CUDA
DSP
GPGPU
GPU
ISV
OpenCL
OpenGL
PE

SDK
SLM

Application Programming Interface
Central Processing Unit

Compute Unit

Compute Unified Device Architecture
Digital Signal Processor
General-Purpose computation on Graphics Processing Units
Graphics Processing Unit
Independent Software Vendor

Open Computing Language

Open Graphics Library

Processing Element

Software Development Kit

Shared Local Memory

xi

Chapter 1

Introduction

1.1 OpenCL and CUDA

Graphics Processing Units (GPUs) have enjoyed a dramatic increase in programma-
bility as well as in computational power, which allowed them not only to make an
impact on the game industry, but also to be utilized as coprocessors for general pur-
pose applications. Fifteen years ago, GPUs were fixed-function hardware accelerators
for the graphics pipeline rendering model defined by APIs such as OpenGL and Di-
rect3D. Over time, GPUs evolved to incorporate progressively more flexible and pro-
grammable components, culminating in the vertex and pixel shaders on which mod-
ern graphics applications are based. As GPUs became increasingly programmable,
many researchers explored ways to harness their parallel-processing potential by map-
ping relatively general-purpose computations onto the restricted paradigms offered by

graphics APIs. [4]

Open Computing Language (OpenCL) [1] and Compute Unified Device Architecture
(CUDA) [2] are two interfaces for GPU computing, both presenting similar features
but through different programming interfaces. Both OpenCL and CUDA call a piece
of code that runs on the GPU "a kernel”.

CHAPTER 1. INTRODUCTION 2

CUDA is a proprietary API and set of language extensions that works only on
NVIDIA’s GPUs. This may have been fine for students experimenting with a new
approach, but mainstream ISVs and other large-scale developers need the flexibility
inherent in industry standards. With a standard, cross-platform API, developers can
deliver solutions on multiple vendors’ hardware while streamlining their development

processes and timelines.

OpenCL , by the Khronos Group, is an open standard for parallel programming using
Central Processing Units (CPUs) , GPUs, Digital Signal Processors (DSPs) and other
types of processors. OpenCL promises a portable language for GPU programming,
capable of targeting very dissimilar parallel processing devices. The OpenCL stan-
dard offers a common API for program execution on systems composed of different

types of computational devices such as multicore CPUs, GPUs, or other accelerators.

[5]

1.2 ArchOCL - Design Goal

General-purpose application development for GPUs (GPGPU) has gained momentum
as a cost-effective approach for accelerating data and compute-intensive applications.

It has been driven by the introduction of C-based programming environments such

as NVIDIA’s CUDA, OpenCL and Intel’s Ct. [§]

CPU GPU

!

CPU ArchOCL

Figure 1.1: ArchOCL and GPU

CHAPTER 1. INTRODUCTION 3

While significant effort has been focused on developing and evaluating applications
and software tools, comparatively little has been devoted to the analysis and charac-
terization of applications to assist future work in compiler optimizations, application

re-structuring and micro-architecture design.

Design goal for ArchOCL software architecture is to characterize the workload for
OpenCL. ArchOCL is a software model which runs any OpenCL application and
produces interesting statistics that reveals the dynamic behavior of the application.
Statistics collected by ArchOCL is useful for GPU architecture design. It also helps

developers to effectively port their applications in OpenCL.
Example of statistics are Shared Memory Density which is a ratio of number of shared

memory access to number of global memory access, SIMD Channel Utilization which

is a number of threads active averaged over all dynamic instructions and many more.

1.3 ArchOCL Software Architecture

OpenCL Workload
APl Implementation

Memory

Thread :
Scheduler Graphics Core

Figure 1.2: ArchOCL Architecture

Texture

Sampler

CHAPTER 1. INTRODUCTION 4

1.4 Advantages
ArchOCL is useful for
e Manycore architecture research
e Designers to explore architectural design

e Designers to evaluate the impact of ways of parallelization on architectural

design

1.5 Limitations

As ArchOCL is a software model, we are not considering the performance impact. It
doesn’t give the execution time or any other performance related statistics. ArchOCL
takes more time to execute kernels compared to GPU, because it executes kernels on

CPU only.

1.6 Thesis Organization
The rest of the thesis is organized as follows.

Chapter [2| Literature survey on OpenCL includes details about GPGPU. It de-
scribes OpenCL Platform Model, Memory Model, Execution Model and Pro-
gramming Model. It also includes details about ATI Stream SDK and Mesa

Graphics Library.

Chapter |3 API Implementation includes description of OpenCL APIs for OpenCL
Platform Layer and OpenCL Runtime. It also describes OpenCL APIs that
allow applications to use OpenGL buffer, texture and render buffer objects as

OpenCL memory objects.

CHAPTER 1. INTRODUCTION 5

Chapter [Kernel Execution describes OpenCL kernel and its execution. It also
includes pattern that most OpenCL programs follow.

Chapter [5] Workload Characterization includes statistics provided by ArchOCL
model. ArchOCL provides Number of Kernel Calls, Global and Local Work-
Group Size, Memory or Compute Intensive Workload, SLM Density, Instruc-
tions Breakdown, Memory Access Spread, Average Channel Utilization, Math
Functions Breakdown, Floating Point v/s Integer Operations, Memory Bank
Conflict and Cache Line Hit.

Chapter [6] Conclusion & Future Work includes concluding remarks and scope for

further enhancement.

Chapter 2

Literature Survey

2.1 GPGPU

GPGPU stands for General-Purpose computation on Graphics Processing Units, also
known as GPU Computing. Graphics Processing Units (GPUs) are high-performance
many-core processors capable of very high computation and data throughput. Once
specially designed for computer graphics and difficult to program, today’s GPUs are
general-purpose parallel processors with support for accessible programming inter-
faces and industry-standard languages such as C. Developers who port their appli-
cations to GPUs often achieve speedups of orders of magnitude vs. optimized CPU
implementations. GPGPU have a major impact on the way programmers parallelize

their applications.

Up until now, GPGPU has been a research technology for early adopters - a new,
promising experimental capability for scientists, engineers, financial professionals and
others running compute-intensive applications. Two elements have kept GPGPU
largely in the ivory tower: first, the available APIs were proprietary and second, the
GPU has been treated as an independent application accelerator instead of as part

of a balanced heterogeneous architecture. OpenCL is a game-changing development

6

CHAPTER 2. LITERATURE SURVEY 7

in both respects.

Of course no application runs entirely on the GPU. Beyond the obvious need for
CPUs to drive execution, most mainstream applications are heterogeneous in nature.
They have some functions that accelerate well on multicore CPUs and others that are
perfectly suited for a GPU’s data parallel architecture. A good development platform
needs to take that into account - this is the difference between GPGPU as a niche
accelerator and GPGPU as a new baseline feature, ready for tomorrow’s systems and

applications.

2.2 OpenCL

2.2.1 OpenCL Architecture

OpenCL is an open industry standard for programming a heterogeneous collection
of CPUs, GPUs and other discrete computing devices organized into a single plat-
form. It is more than a language. OpenCL is a framework for parallel programming
and includes a language, API, libraries and a runtime system to support software
development. Using OpenCL, for example, a programmer can write general purpose
programs that execute on GPUs without the need to map their algorithms onto a 3D

graphics API such as OpenGL or DirectX. [I]

OpenCL uses following hierarchy of models:

Platform Model

Memory Model

Execution Model

e Programming Model

CHAPTER 2. LITERATURE SURVEY 8

2.2.2 Platform Model

The model consists of a host connected to one or more OpenCL devices. An OpenCL
device is divided into one or more compute units (CUs) which are further divided
into one or more processing elements (PEs) . Computations on a device occur within

the processing elements.

Compute Device

Processing compute Unit
Element

Figure 2.1: Platform model

2.2.3 Memory Model

Work-item(s) executing a kernel have access to four distinct memory regions:

Global Memory: This memory region permits read/write access to all work-items
in all work-groups. Work-items can read from or write to any element of a memory
object. Reads and writes to global memory may be cached depending on the capa-

bilities of the device.

Constant Memory: A region of global memory that remains constant during the
execution of a kernel. The host allocates and initializes memory objects placed into

constant memory.

CHAPTER 2. LITERATURE SURVEY 9

Privaita Privats Private
Mamory M ry Mimary

Figure 2.2: Memory Model

Local Memory: A memory region local to a work-group. This memory region can
be used to allocate variables that are shared by all work-items in that work-group. It
may be implemented as dedicated regions of memory on the OpenCL device. Alter-

natively, the local memory region may be mapped onto sections of the global memory.

Private Memory: A region of memory private to a work-item. Variables defined in

one work-item’s private memory are not visible to another work-item.

2.2.4 Execution Model

Execution of an OpenCL program occurs in two parts: kernels that execute on one
or more OpenCL devices and a host program that executes on the host. The host

program defines the context for the kernels and manages their execution.

The core of the OpenCL execution model is defined by how the kernels execute.

CHAPTER 2. LITERATURE SURVEY 10

-
L

local id: (4,2)
global id: (28,10)

11
1

1
N TIOTE

32

workgroup id; (3,1)
local size: 8x8=64

w LRa e

dimension; 2
global size: 32x32=1024
num of groups: 16

Figure 2.3: Work-item and Work-group Example

When a kernel is submitted for execution by the host, an index space is defined. An
instance of the kernel executes for each point in this index space. This kernel instance
is called a work-item and is identified by its point in the index space, which provides
a global ID for the work-item. Each work-item executes the same code but the spe-
cific execution pathway through the code and the data operated upon can vary per
work-item. Work-items are organized into work-groups. The work-groups provide a
more coarse-grained decomposition of the index space. Work-groups are assigned a
unique work-group ID with the same dimensionality as the index space used for the
work-items. Work-items are assigned a unique local ID within a work-group so that
a single work-item can be uniquely identified by its global ID or by a combination
of its local ID and work-group ID. The work-items in a given work-group execute

concurrently on the processing elements of a single compute unit.

The index space supported in OpenCL 1.0 is called an NDRange. An NDRange is an
N-dimensional index space, where N is one, two or three. An NDRange is defined by
an integer array of length N specifying the extent of the index space in each dimen-

sion. Each work-item’s global ID and local ID are N-dimensional tuples.

CHAPTER 2. LITERATURE SURVEY 11

The global ID components are values in the range from zero to the number of el-
ements in that dimension minus one. Work-groups are assigned IDs using a similar
approach to that used for work-item global IDs. An array of length N defines the
number of work-groups in each dimension. Work-items are assigned to a work-group
and given a local ID with components in the range from zero to the size of the work-
group in that dimension minus one. Hence, the combination of a work-group ID and
the local-ID within a work-group uniquely defines a work-item. Each work-item is
identifiable in two ways; in terms of a global index, and in terms of a work-group

index plus a local index within a work group.

Context and Command Queues

The host defines a context for the execution of the kernels. The context includes

the following resources:

Devices: The collection of OpenCL devices to be used by the host.

Kernels: The OpenCL functions that run on OpenCL devices.

Program Objects: The program source and executable that implement the

kernels

Memory Objects: A set of memory objects visible to the host and the
OpenCL devices.

The context is created and manipulated by the host using functions from the OpenCL
API. The host creates a data structure called a command-queue to coordinate execu-
tion of the kernels on the devices. The host places commands into the command-queue

which are then scheduled onto the devices within the context. These include:

e Kernel execution commands: Execute a kernel on the processing elements

of a device.

CHAPTER 2. LITERATURE SURVEY 12

e Memory commands: Transfer data to, from, or between memory objects, or

map and unmap memory objects from the host address space.

e Synchronization commands: Constrain the order of execution of commands.

The command-queue schedules commands for execution on a device. These execute
asynchronously between the host and the device. Commands execute relative to each

other in one of two modes:

e In-order Execution: Commands are launched in the order they appear in the
commandqueue and complete in order. In other words, a prior command on
the queue completes before the following command begins. This serializes the

execution order of commands in a queue.

e Out-of-order Execution: Commands are issued in order, but do not wait
to complete before following commands execute. Any order constraints are

enforced by the programmer through explicit synchronization commands.

Categories of Kernels

The OpenCL execution model supports two categories of kernels:

e OpenCL kernels are written with the OpenCL C programming language and
compiled with the OpenCL compiler. All OpenCL implementations support
OpenCL kernels.

e Native kernels are accessed through a host function pointer. Native kernels
are queued for execution along with OpenCL kernels on a device and share

memory objects with OpenCL kernels.

CHAPTER 2. LITERATURE SURVEY 13

2.2.5 Programming Model

The OpenCL execution model supports data parallel and task parallel programming
models, as well as supporting hybrids of these two models. The primary model driv-

ing the design of OpenCL is data parallel.

Data Parallel Programming Model

A data parallel programming model defines a computation in terms of a sequence
of instructions applied to multiple elements of a memory object. The index space
associated with the OpenCL execution model defines the work-items and how the

data maps onto the work-items.

Task Parallel Programming Model

The OpenCL task parallel programming model defines a model in which a single
instance of a kernel is executed independent of any index space. It is logically equiv-
alent to executing a kernel on a compute unit with a work-group containing a single

work-item.

2.2.6 OpenCL Framework

The OpenCL framework allows applications to use a host and one or more OpenCL
devices as a single heterogeneous parallel computer system. The framework contains

the following components:

e OpenCL Platform Layer: The platform layer allows the host program to

discover OpenCL devices and their capabilities and to create contexts.

e OpenCL Runtime: The runtime allows the host program to manipulate con-

texts once they have been created.

e OpenCL Compiler: The OpenCL compiler creates program executables that

contain OpenCL kernels.

CHAPTER 2. LITERATURE SURVEY 14

2.2.7 OpenCL Summary

Context
() 3 1
|qumm| Kernels |I.||mary uhjml |Dmnmmu nunuu|
4 E&j— : i
Ak |"" '“‘l Images Buffers
; mm‘:’ﬂ:j (1] m':rnll wl] wwum
[

{
il w g _ghobal_dilic
]'I.‘l] = afd] * b

Figure 2.4: OpenCL Program Flow

de. gl] s
GPU program ey

m
|

2.3 ATI Stream SDK

The ATI Stream Software Development Kit (SDK) is a complete development plat-
form created by AMD to allow developer to quickly and easily develop applications
accelerated by ATI Stream technology. The SDK allows developer to develop appli-
cations in a high level language, OpenCL. [3]

For Microsoft Windows platforms, the ATI Stream SDK installer installs the fol-
lowing packages on your system by default.

e ATTI Stream SDK Developer package. This includes:

— the OpenCL compiler and runtime

CHAPTER 2. LITERATURE SURVEY 15

— developer documentation
e ATTI Stream SDK Samples package. This includes:

— sample applications

— sample documentation

e ATTI Stream Profiler package
The ATTI Stream Profiler provides a Microsoft Visual Studio integrated view of
key static kernel characteristics such as workgroup dimensions, memory transfer

sizes, kernel execution time.

e Stream KernelAnalyzer package
Stream KernelAnalyzer is a tool for analyzing the performance of OpenCL for
ATT graphics cards. It gives accurate performance estimates for kernels and
even allows viewing disassembly of the generated hardware kernel, all without

having to run the application on actual hardware.

2.4 Mesa Graphics Library

Mesa is an open-source implementation of the OpenGL specification. OpenGL is a

programming library for writing interactive 3D applications. [9]

Mesa serves following purposes:

e Mesa is quite portable and allows OpenGL to be used on systems that have no

other OpenGL solution.

e Software rendering with Mesa serves as a reference for validating the hardware

drivers.

e A software implementation of OpenGL is useful for experimentation, such as

testing new rendering techniques.

Chapter 3

API Implementation

3.1 OpenCL Platform Layer

This section describes the OpenCL platform layer which implements platform-specific
features that allow applications to query OpenCL devices, device configuration infor-

mation, and to create OpenCL contexts using one or more devices.

3.1.1 Querying Platform

clGetPlatformIDs: The list of platforms available can be obtained using this API.

clGetPlatformInfo: This API gives specific information about the OpenCL plat-

form.

3.1.2 Querying Device

clGetDevicelDs: The list of devices available on a platform can be obtained using

the this API.

clGetDevicelnfo : This API gives specific information about an OpenCL device.

16

CHAPTER 3. API IMPLEMENTATION 17

3.1.3 Contexts

Contexts are used by the OpenCL runtime for managing objects such as command-
queues, memory, program and kernel objects and for executing kernels on one or more

devices specified in the context.

clCreateContext: This API creates an OpenCL context. An OpenCL context

is created with one or more devices.

clCreateContextFromType: This API creates an OpenCL context from a de-

vice type that identifies the specific device(s) to use.
clRetainContext: This API increments the context reference count.
clReleaseContext: This API decrements the context reference count.

clGetContextInfo: This API can be used to query information about a context.

3.2 OpenCL Runtime

This section describes the API calls that manage OpenCL objects such as command-
queues, memory objects, program objects, kernel objects for kernel functions in a
program and calls that allow you to enqueue commands to a command-queue such

as executing a kernel, reading or writing a memory object.

3.2.1 Command Queues

OpenCL objects such as memory, program and kernel objects are created using a
context. Operations on these objects are performed using a command-queue. The

command-queue can be used to queue a set of operations (referred to as commands)

CHAPTER 3. API IMPLEMENTATION 18

in order. Having multiple command-queues allows applications to queue multiple in-

dependent commands without requiring synchronization.

clCreateCommandQueue:This API creates a command-queue on a specific device.

clRetainCommandQueue: This API increments the command queue reference

count.

clReleaseCommandQueue: This API decrements the command queue reference

count.

clGetCommandQueuelnfo: This API can be used to query information about

a command-queue.

clSetCommandQueueProperty: This API can be used to enable or disable the

properties of a command-queue.

3.2.2 Memory Objects

Memory objects are categorized into two types: buffer objects, and image objects. A
buffer object stores a one-dimensional collection of elements whereas an image object
is used to store a two- or three- dimensional texture, frame-buffer or image. Elements
of a buffer object can be a scalar data type (such as an int, float), vector data type,

or a user-defined structure.

clCreateBuffer: A buffer object is created using this API.

clEnqueueReadBuffer & clEnqueueWriteBuffer: This APIs enqueue commands

to read from a buffer object to host memory or write to a buffer object from host

CHAPTER 3. API IMPLEMENTATION 19

memory.

clEnqueueCopyBuffer: This API enqueues a command to copy a buffer object
identified by src_buffer to another buffer object identified by dst_buffer.

clRetainMemObject: This API increments the memobj reference count.

clReleaseMemObject: This API decrements the memobj reference count.

clCreateImage2D: An image (1D, or 2D) object is created using this API.

clCreateImage3D: A 3D image object is created using this API.

clGetSupportedlmageFormats: This API can be used to get the list of image

formats supported by an OpenCL implementation.

clEnqueueReadImage & clEnqueueWriteImage: This APIs enqueue commands
to read from a 2D or 3D image object to host memory or write to a 2D or 3D image
object from host memory.

clEnqueueCopylmage: This API enqueues a command to copy image objects.

clEnqueueCopylmageToBuffer: This API enqueues a command to copy an image

object to a buffer object.

clEnqueueCopyBufferTolmage: This API enqueues a command to copy a buffer

object to an image object.

clEnqueueMapBuffer: This API enqueues a command to map a region of the

CHAPTER 3. API IMPLEMENTATION 20

buffer object given by buffer into the host address space and returns a pointer to this

mapped region.

clEnqueueMaplImage: This API enqueues a command to map a region in the
image object given by image into the host address space and returns a pointer to this

mapped region.

clEnqueueUnmapMemODbject: This API enqueues a command to unmap a pre-
viously mapped region of a memory object. Reads or writes from the host using the
pointer returned by clEnqueueMapBuffer or clEnqueueMaplmage are considered to

be complete.

clGetMemODbjectInfo: This API is used to get information that is common to

all memory objects (buffer and image objects).

clGetImagelnfo: This API is used to get information specific to an image object

created with clCreatelmage{2D—3D}

3.2.3 Sampler Objects

A sampler object describes how to sample an image when the image is read in the
kernel. The built-in functions to read from an image in a kernel take a sampler as an
argument. The sampler arguments to the image read function can be sampler objects
created using OpenCL functions and passed as argument values to the kernel or can

be samplers declared inside a kernel.

clCreateSampler: This API creates a sampler object.

clRetainSampler: This API increments the sampler reference count.

CHAPTER 3. API IMPLEMENTATION 21

clReleaseSampler: This API decrements the sampler reference count.

clGetSamplerInfo: This API returns information about the sampler object.

3.2.4 Program Objects

An OpenCL program consists of a set of kernels that are identified as functions de-
clared with the __kernel qualifier in the program source. OpenCL programs may also

contain auxiliary functions and constant data that can be used by __kernel functions.

A program object encapsulates the following information:

An associated context.

e A program source or binary.

The latest successfully built program executable, the list of devices for which

the program executable is built, the build options used and a build log.

e The number of kernel objects currently attached.

clCreateProgramWithSource: This API creates a program object for a context,
and loads the source code specified by the text strings in the strings array into the

program object.

clCreateProgramWithBinary: This API creates a program object for a context,
and loads the binary bits specified by binary into the program object.

clBuildProgram: This API builds (compiles & links) a program executable from
the program source or binary for all the devices or a specific device(s) in the OpenCL

context associated with program.

CHAPTER 3. API IMPLEMENTATION 22

clRetainProgram: This API increments the program reference count.

clReleaseProgram: This API decrements the program reference count.

clGetProgramInfo: This API returns information about the program object.

clGetProgramBuildInfo: This API returns build information for each device in

the program object.

3.2.5 Kernel Objects

A kernel is a function declared in a program. A kernel is identified by the __kernel
qualifier applied to any function in a program. A kernel object encapsulates the spe-
cific kernel function declared in a program and the argument values to be used when
executing this kernel function.

clCreateKernel: This API creates a kernel object.

clCreateKernelsInProgram: This API creates kernel objects for all kernel func-

tions in program.

clSetKernelArg: This API is used to set the argument value for a specific ar-

gument of a kernel.

clRetainKernel: This API increments the kernel reference count.

clReleaseKernel: This API decrements the kernel reference count.

CHAPTER 3. API IMPLEMENTATION 23

clGetKernellnfo: This API returns information about the kernel object.

clEnqueueNDRangeKernel: This API enqueues a command to execute a kernel

on a device.

3.2.6 Event Objects

An event object can be used to track the execution status of a command. The API
calls that enqueue commands to a command-queue create a new event object that is

returned in the event argument.

clWaitForEvents: This API waits on the host thread for commands identified by

event objects in event_list to complete.
clRetainEvent: This API increments the event reference count.
clReleaseEvent: This API decrements the event reference count.

clGetEventInfo: This API returns information about the event object.

3.3 OpenCL APIs for OpenGL interoperability

This section describes OpenCL APIs that allow applications to use OpenGL buffer,
texture and render buffer objects as OpenCL memory objects. This allows efficient

sharing of data between OpenCL and OpenGL. The OpenCL API may be used to

execute kernels that read and/or write memory objects that are also OpenGL objects.

clCreateFromGLBuffer: This API creates an OpenCL buffer object from an OpenGL
buffer object. API returns a valid OpenCL buffer object based on OpenGL context

passed as an argument.

CHAPTER 3. API IMPLEMENTATION 24

clCreateFromGLTexture2D/3D: This API creates an OpenCL 2D /3D image ob-
ject from an OpenGL 2D/3D texture object.

clGetGLObjectInfo: The OpenGL object used to create the OpenCL memory
object and information about the object type i.e. whether it is a texture, render

buffer or buffer object can be queried using this API.

clEnqueueAcquireGLObjects: This API creates is used to acquire OpenCL mem-
ory objects that have been created from OpenGL objects. These objects need to be
acquired before they can be used by any OpenCL commands queued to a command-

queue.

clEnqueueReleaseGLObjects: This API is used to release OpenCL memory ob-
jects that have been created from OpenGL objects. These objects need to be released

before they can be used by OpenGL.

Chapter 4

Kernel Execution

4.1 An OpenCL application

A kernel can be executed as a function of multi-dimensional domains of indices. Each
element is called a work-item; the total number of indices is defined as the global
work-size. The global work-size can be divided into sub-domains, called work-groups,
and individual work-items within a group can communicate through global or locally

shared memory. Work-items are synchronized through barrier or fence operations.

An OpenCL application is built by first querying the runtime to determine which
platforms are present. There can be any number of different OpenCL implementa-
tions installed on a single system. The next step is to create a context. An OpenCL
context has associated with it a number of compute devices (for example, CPU or
GPU devices). Within a context, OpenCL guarantees a relaxed consistency between
these devices. This means that memory objects, such as buffers or images, are allo-
cated per context; but changes made by one device are only guaranteed to be visible
by another device at well-defined synchronization points. For this, OpenCL provides
events, with the ability to synchronize on a given event to enforce the correct order

of execution.

25

CHAPTER 4. KERNEL EXECUTION 26

Many operations are performed with respect to a given context; there also are many
operations that are specific to a device. For example, program compilation and kernel
execution are done on a per-device basis. Performing work with a device, such as ex-
ecuting kernels or moving data to and from the device’s local memory, is done using a
corresponding command queue. A command queue is associated with a single device
and a given context; all work for a specific device is done through this interface. Note
that while a single command queue can be associated with only a single device, there
is no limit to the number of command queues that can point to the same device.
For example, it is possible to have one command queue for executing kernels and a

command queue for managing data transfers between the host and the device.

Most OpenCL programs follow the same pattern. Given a specific platform, select
a device or devices to create a context, allocate memory, create device-specific com-
mand queues, and perform data transfers and computations. Generally, the platform
is the gateway to accessing specific devices, given these devices and a correspond-
ing context, the application is independent of the platform. Given a context, the

application can:

e Create one or more command queues.

Create programs to run on one or more associated devices.

Create kernels within those programs.

Allocate memory buffers or images, either on the host or on the device(s).

Write data to the device.

Submit the kernel to the command queue for execution.

Read data back to the host from the device.

CHAPTER 4. KERNEL EXECUTION 27

4.2 The ”Kernel” Concept

Kernels are closed computational functions that execute independently on the GPU
core. The CPU first initiates a data transfer to the GPU, then sends a binary or text
version of the kernel and finally initiates asynchronous kernel execution on the GPU.
After kernel invocation, the CPU control turns to the next instruction, even though
the GPU is still executing the kernel. The CPU can probe when the execution is
finished and starts initiating the write-back operation of GPU results to the CPU

memory. [7]

4.3 OpenCL Kernel Example: Binary Search

__kernel void binarySearch(
__global uint4 * outputArray,
__const __global uint * sortedArray,
unsigned int findMe,
unsigned int globalLowerBound,
unsigned int globalUpperBound,
unsigned int subdivSize)

unsigned int tid = get_global_id(0);

unsigned int lowerBound = globallowerBound + subdivSize * tid;
unsigned int upperBound = lowerBound + subdivSize - 1;
unsigned int lowerBoundEle = sortedArray[lowerBound];
unsigned int upperBoundEle = sortedArray[upperBound];

if ((lowerBoundEle > findMe) | | (upperBoundEle < findMe))
{

return;

}

else

{
outputArray[0] .x = lowerBound; outputArray[0].y = upperBound;
outputArray[0] .w = 1;

}

CHAPTER 4. KERNEL EXECUTION 28

4.4 Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global NDRange.
The partition of the NDRange can have a significant impact on performance; thus,
it is recommended that the developer explicitly specify the global (#work-groups)
and local (#work-items/work-group) dimensions, rather than rely on OpenCL to set
these automatically. Work-groups cannot be split across multiple compute units, so
if the number of work-groups is less than the available compute units, some units are
idle. Work-items in the same work-group can share data through local memory and
also use high-speed local atomic operations. Thus, larger work-groups enable more
work-items to efficiently share data, which can reduce the amount of slower global
communication. However, larger work-groups reduce the number of global work-
groups, which, for small workloads, could result in idle compute units. Generally,
larger work-groups are better as long as the global range is big enough to provide 1-2
Work-Groups for each compute unit in the system; for small workloads it generally

works best to reduce the work-group size in order to avoid idle compute units. [3]

4.5 Synchronization

The two domains of synchronization in OpenCL are work-items in a single workgroup
and command-queue(s) in a single context. Work-group barriers enable synchroniza-
tion of work-items in a work-group. Each work-item in work-group must first execute
the barrier before executing any beyond the work-group barrier. Either all of, or none
of, the work-items in a work-group must encounter the barrier. As currently defined

in the OpenCL Specification, global synchronization is not allowed.

Chapter 5

Workload Characterization

Using ArchOCL, we executed and analyzed following ATI Stream SDK workloads.

e BinarySearch

e BinomialOption

e BitonicSort

e DCT

e DwtHaarlD

e FastWalshTransform
e FloydWarshall

e MatrixMultiplication
e MatrixTranspose

e Nbody

e PrefixSum

e RecursiveGaussian
e Reduction

e ScanLargeArrays

e SimpleConvolution

e SobelFilter

29

CHAPTER 5. WORKLOAD CHARACTERIZATION

5.1 Kernel Call and Work Group Size

30

Probably the most effective way to exploit the potential performance of the GPU

is to provide enough threads to keep the device completely busy. The programmer

specifies a three-dimensional NDRange over which to execute the OpenCL kernel.

ArchOCL model provides count for total number of kernels executed as well as local

and global work group size used to execute those kernels.

Table 5.1: Kernel Call and WorkGroup Size

Kernel | Global | Global | Global | Local | Local | Local
Call Size X | Size Y | Size Z | Size X | Size Y | Size Z
BinarySearch 1 256 1 1 256 1 1
BinomialOption 1 65280 1 1 255 1 1
BitonicSort 55 28160 55 55 14080 55 55
DCT 1 256 64 1 8 8 1
DwtHaar1D 1 512 1 1 512 1 1
Fast WalshTransform 10 5120 10 10 2560 10 10
FloydWarshall 256 | 16777216 | 256 256 65536 | 256 256
MatrixMultiplication 1 16 16 1 8 8 1
MatrixTranspose 1 64 64 1 16 16 1
Nbody 1 1024 1 1 256 1 1
PrefixSum 1 512 1 1 512 1 1
RecursiveGaussian 4 2048 1026 4 576 66 4
Reduction 1 256 1 1 256 1 1
ScanLargeArrays 3 1538 3 3 386 3 3
SimpleConvolution 1 4096 1 1 256 1 1
SobelFilter 1 512 512 1 256 1 1

CHAPTER 5. WORKLOAD CHARACTERIZATION 31

5.2 Memory or Compute Intensive Workload

ArchOCL model gives statistics like Amount of Local, Global and Constant memory
used and Total number of Integer and Floating Point operations executed. Using these
statistics, Global Bytes/Compute, SLM Bytes/Compute and Total Bytes/Compute
can be determined and workload can be characterized as either compute intensive or

memory intensive.

Bytes/Compute

B Global Bytes/Compute ESLM Bwtes/iCompute EBvites/iCompute

Mumber of Bytes
tn

BitonicSon b

Prefixsum
Reduction
SobelFilter

DwtHaar D

BinarySearch |t
Floydwarshall L __1___|

BinomialOption
MatrixTranspose
ScanLargeArrays

RecursiveGaussian

c
=
=
m
i
=
=
=
=
=
=
=
™
=

FastWalshTransform Ll L |

Figure 5.1: Bytes/Compute

Figure 5.1 shows that workloads like BinarySearch, BitonicSort, FastWalshTransform
do not use local memory, while workloads like Nbody, PrefixSum use very less global
memory. From Bytes/Compute statistics, workloads like BinomialOption, Reduction
can be considered as Memory Intensive, while workloads like SimpleConvolution,

SobelFilter can be considered as Compute Intensive.

CHAPTER 5. WORKLOAD CHARACTERIZATION 32

5.3 SLM Density

SLM density can be calculated as ratio of Shared Local Memory data access to Global

Memory data access.

SLM Density

BSLM Density

450
400
350
300
250
200
150
100

50

DCT
DwiHaar D |

FastiwalshTransform
Mbody

Bitanicsaort
Floydwarshall
PrefixSum
Reduction
SobelFilter

BinanySearch
MatrizMultiplication

SLM Density
[]
BinomialOption 00 T T T T]
MatrixTranspose
RecursiveGaussian
ScanlLargeArrays
SimpleCanvalution

Figure 5.2: SLM Density

Figure[5.2]shows that SLM density is high for workloads BinomialOptions and NBody,
which results in good performance because Shared Local Memory latency is less than

the Global memory.

5.4 Instructions Breakdown

ArchOCL model gives dynamic instruction count, which is the total number of in-
structions executed. It also gives separate count for each instructions like branch

instruction, barrier instruction, floating-point instruction, integer instruction, special

CHAPTER 5. WORKLOAD CHARACTERIZATION 33

instruction and memory instruction. Instruction breakdown provides an insight of the
usage of different functional blocks in the GPU. Branch instruction count provides
the control flow behavior. Due to warp divergence, the frequency of branch instruc-
tions plays a significant role in characterizing the workload. Barrier instruction count

shows synchronization behavior of the workload.

5.5 Memory Access Spread

ArchOCL model provides the average memory access spread for each load and store

operation during SIMD execution.

Memory Access Spread

BMemaory Access Spread

400
350
300
250
200 It
150
100

50 -

Bytes

DCT
CrwitHaar1 D

FastWwalshTransform
Mbody

BinarySearch
BitonicSort
FloydwWarshall
PrefixSum
Reduction
SobelFilter

BinomialOption
Matrixhultiplication
M atrixTranspose
RecursiveGaussian
ScanLargeArrays
SimpleConvolution

Figure 5.3: Memory Access Spread

Figure shows that workloads like RecursiveGaussian, MatrixTranspose have large

access spread.

CHAPTER 5. WORKLOAD CHARACTERIZATION 34

5.6 Average Channel Utilization

ArchOCL model provides average number of active channels during each instruction
execution, using which average channel utilization can be determined for different

SIMD width.

Channel Utilization

E5IMD4 ®SIMDE wSIMD6 @ SIMD 32

Mumberof Channels

BinarySearch
BinomialOption
BitonicSort
DwvtHaart O
FastWalshTransform
FloydWarshall

Ml atrixh ultiplication
MatrixTranspose
PrefixSum
RecursiveGaussian
Reduction
ScanLargeArrays
SimpleConvolution
SobelFilter

Figure 5.4: Average Channel Utilization

Figure [5.4] shows that most of the workloads behave well up to SIMD 32. For SIMD
32, minimum channel utilization is approximately 28 for BinarySearch and Scan-

LargeArrays. Workloads without branch and barrier show 100% channel utilization.

5.7 Math Functions Breakdown

Modern programmable GPUs have demonstrated their ability to significantly accel-
erate important classes of non-graphics applications; however, GPUs’ substandard
support for floating-point arithmetic can severely limit their usefulness for general-

purpose computing. Accuracy is going to be dependent on the vendor and GPU.

CHAPTER 5. WORKLOAD CHARACTERIZATION 35

Some functions are supported natively and others are emulated.

Hence total number of math function called during kernel execution is one of the
important characteristics. ArchOCL model gives statistics that how many times each
math function is being executed. Using this statistics, exact number of integer oper-

ations and floating point operations can be calculated.

5.8 Floating Point v/s Integer Operations

ArchOCL model provides separate count for Floating Point Operations and Integer

Operations executed during kernel executions.

Floating Point v/s Integer Operations

Binteger Operations @Floating Point Gperations

100% -
90% -
80% -
T0% -
60% -
50% -
40% -
30% -
20% -
10% -

0% -

Mumberaof Operations

BitonicSort
PrefixSum

Reduction
SobelFilter

DwitHaar1 O

FastWalshTransform

=
[}
=
m
@

73]
=
@
=
un]

BinomialQption
Floydwarshall
Matrixhultiplication
MatrixTranspose
RecursiveGaussian
ScanLargedrrays
SimpleCanvalution

Figure 5.5: Floating Point v/s Integer Operations

Figure [5.5] shows that Workloads like BinarySearch, BitonicSort do not have floating

point operations while workloads like NBody, RecursiveGaussian have more floating

CHAPTER 5. WORKLOAD CHARACTERIZATION 36

point operations compared to integer operations. This result depends on the type of

input data.

5.9 Memory Bank Conflict

In GPUs, the local memory is divided into memory banks. Each bank can only
address one dataset at a time, so load/store from/to the same bank leads to bank

conflict.

Memory Bank Conflict

E5MD4 ®SIMDE wSIMD16 = SIMD32

Mumberof Conflicts
[) "y o [#%] - L [p] = [=]

BinomialOption
OCT

DwiHaar1 D
matrixhultiplication
MatrixTranspose
Mbody

Prefixsum
RecursiveGaussian
Reduction
ScanlLargeArrays

Figure 5.6: Bank Conflict

Figure [5.6| shows bank conflict with 16 banks for different SIMD width. Workloads
like MatrixTranspose, RecursiveGaussian have no bank conflict for SIMD 4, 8 and

16. NBody has very less bank conflict for all SIMD width.

CHAPTER 5. WORKLOAD CHARACTERIZATION 37

5.10 Cache Line Hit

Cache Line or Cache Block is the smallest unit of memory than can be transferred
between the main memory and the cache. Rather than reading a single word or byte
from main memory at a time, each cache entry is usually holds a certain number of
words, known as a ”cache line” or ”cache block” and a whole line is read and cached
at once. This takes advantage of the principle of locality of reference: if one location
is read then nearby locations (particularly following locations) are likely to be read
soon afterward. The cache line is generally fixed in size, typically ranging from 16 to

256 bytes.

Cache Line Hit

B CacheLine Hit

Mumberof Cache Lines

£ e A= = £ @& = =L i S riks
uDQEEEmDmnEmn}DE
=) L o &L 5 o o 2 = 5 B 5 =
$EC2c05858828¢83z35:C3E
w 2 £ gcngZEggﬁgg
B A S m 8 m o LI = T
T Em fZE£DEE ©£QEHSA
E o G'ED =g = _|U
m = 2= D = = @
o mo L =y = o o
= B = T 2 E
= o =
m = [L)
L

Figure 5.7: Cache Line Hit

ArchOCL model provides statistics for average number of cache line hit during kernel
execution. Figure shows average number of cache line hit with 64 bytes cache

line. Workloads like MatrixTranspose, PrefixSum hit more than 1 cache line.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

ArchOCL is a software model to characterize OpenCL workload. Development of
ArchOCL model includes implementation of OpenCL APIs, Compiler enhancement
to support OpenCL kernel compilation and Statistics collection. ArchOCL model
gives many interesting statistics that reveals the dynamic behavior of the OpenCL
application. Statistics collected by ArchOCL is useful for GPU architecture design.
It also helps developers to effectively port their applications in OpenCL.

6.2 Future Work

e Upgrade ArchOCL Model for OpenCL 1.1
Current ArchOCL model supports OpenCL 1.0. OpenCL 1.1 has been released
by Khronos Group. OpenCL 1.1 contains features like new data types including
3-component vectors and additional formats, enhanced use of events to drive
and control command execution, additional OpenCL C built-in functions such

as integer clamp. Future plan is to upgrade ArchOCL model for OpenCL 1.1.

38

References

[1]

"The OpenCL Specification”, Version 1.0, Published by Khronos OpenCL Working
Group, Aaftab Munshi (ed.), 2009
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

NVIDIA, NVIDIA CUDA Compute Unified Device Architecture, Programming
Guide, 2nd ed, June 2008
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_
CUDA_Programming_Guide_2.0.pdf

Programming Guide V2.2, ATI Stream Computing, OpenCL, August 2010
http://www.amddevcentral.com/gpu/ATIStreamSDK/pages/Documentation.
aspx

J. Cohen and M. Garland, "Solving Computational Problems with GPU Comput-
ing” Computing in Science & Eng., vol. 11, no. 5, 2009, pp. 58-63.

John E. Stone, David Gohara, and Guochun Shi, "OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems” Computing in Science &
Eng., vol. 12, no. 3, 2010, pp. 66-73.

A. Kerr, G. Diamos, and S. Yalamanchili, ”Modeling gpu-cpu workloads and sys-
tems” in Third Workshop on General-Purpose Computation on Graphics Process-
ing Units, Pittsburg, PA, USA, March 2010.

Amr Bayoumi, Michael Chu, Yasser Hanafy, Patricia Harrell, and Gamal Refai
Ahmed, "Scientific and Engineering Computing Using ATI Stream Technology”
Computing in Science & Eng., vol. 11, no. 6, 2009, pp. 92-97.

A. Kerr, G. Diamos, and S. Yalamanchili, ”Characterization and Analysis of
GPGPU Kernels”, Georgia Institute of Technology, May-2009, CERCS, GIT-
CERCS-09-06

The Mesa 3D Graphics Library
http://www.mesa3d.org

39

http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://www.amddevcentral.com/gpu/ATIStreamSDK/pages/Documentation.aspx
http://www.amddevcentral.com/gpu/ATIStreamSDK/pages/Documentation.aspx
http://www.mesa3d.org

Index

Abstract,

Advantages, [4]

ATT Stream SDK, [I4]

Average Channel Utilization,

Cache Line Hit,
Compute Intensive Workload,
CUDA, 2

Design Goal,
Floating Point Operations,

GPGPU, [f
GPU,

Integer Operations,
Kernel,
Limitations, [4]

Memory Access Spread,
Memory Bank Conflict,
Memory Intensive Workload,
Mesa Graphics Library,

NDRange,

OpenCL, [2] [7]

40

OpenCL APIs,

OpenCL Execution Model, [9)
OpenCL Framework,

OpenCL Memory Model,
OpenCL Platform Model,
OpenCL Programming Model,

SLM Density,
Software Architecture,

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	OpenCL and CUDA
	ArchOCL - Design Goal
	ArchOCL Software Architecture
	Advantages
	Limitations
	Thesis Organization

	Literature Survey
	GPGPU
	OpenCL
	OpenCL Architecture
	Platform Model
	Memory Model
	Execution Model
	Programming Model
	OpenCL Framework
	OpenCL Summary

	ATI Stream SDK
	Mesa Graphics Library

	API Implementation
	OpenCL Platform Layer
	Querying Platform
	Querying Device
	Contexts

	OpenCL Runtime
	Command Queues
	Memory Objects
	Sampler Objects
	Program Objects
	Kernel Objects
	Event Objects

	OpenCL APIs for OpenGL interoperability

	Kernel Execution
	An OpenCL application
	The "Kernel" Concept
	OpenCL Kernel Example: Binary Search
	Partitioning the Work
	Synchronization

	Workload Characterization
	Kernel Call and Work Group Size
	Memory or Compute Intensive Workload
	SLM Density
	Instructions Breakdown
	Memory Access Spread
	Average Channel Utilization
	Math Functions Breakdown
	Floating Point v/s Integer Operations
	Memory Bank Conflict
	Cache Line Hit

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Index

