
IMPLEMENTATION OF SECURITY ALGORITHM

USING CUDA

By

Snehal K. Ambulkar

08MCES51

Department of

Computer Science and Engineering

Ahmedabad-382481

May 2011

IMPLEMENTATION OF SECURITY ALGORITHM

USING CUDA

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Snehal K. Ambulkar

Guided By

Prof. Samir Patel

Department of

Computer Science and Engineering

Ahmedabad-382481

ii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in Computer Science and Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Snehal K. Ambulkar

iii

Certificate

This is to certify that the Major Project entitled “Implementation Of Security

Algorithm Using CUDA” submitted by Snehal K. Ambulkar (08MCES51),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Computer Science and Engineering of Nirma University, Ahmedabad is the

record of work carried out by her under my supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination.

The results embodied in this major project, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Prof. Samir Patel Dr. S.N.Pradhan

Guide,Senior Associate Professor, Professor and PG-Coordinator,

Department of CSE, Department of CSE,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Prof. D.J. Patel Dr. K.Kotecha

Professor & Head, Director,

Department of CSE, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

iv

Abstract

Multicore processors are now present in many home based systems. This chance

presents a massive challenge to application developers who must design a sufficient

and suited parallelism onto each parallel algorithm. Considering today’s hardware

performance, in order to obtain best results, a proper programming strategy for op-

timum mapping of all processes to existing resources is necessary. The presence of

multiple cores in a single chip requires applications with a higher level of parallelism.

The use of suitable mapping algorithms can lead to a great performance improve-

ment considering computing time at smaller energy consumption. Mapping a set of

algorithms onto a multi core platform requires using a parallel programming model,

which describes and controls the communication, concurrences, and synchronization

of all components involved. Basic goal of CUDA is to help programmers focus on the

task of parallelization of the algorithms.

v

Acknowledgements

My deep sense of gratitude to Prof. Samir Patel, Senior Associate Professor for

his continual encouragement throughout the Major project. Being my project guide,

he has taken the pain to go through the project.

My deepest thank to Dr. S.N.Pradhan, Professor and PG-Coordinator of

Department of Computer Engineering, Institute of Technology, Nirma University,

Ahmedabad for giving his valuable inputs and correcting various documents of mine

with attention and care.

I would like to thank Dr. Ketan Kotecha, Hon’ble Director, Institute of Tech-

nology, Nirma University, Ahmedabad and Prof. D.J. Patel Head of Department,

for their unmentionable support, providing basic infrastructure and healthy research

environment.

I would also like to thank to all my colleagues and friends and those who are

directly or indirectly involved in this project without whom this project would have

been a distant reality. Last, but not the least, no words are enough to acknowledge

constant support and sacrifices of my family members because of whom I am able to

complete my dissertation work successfully.

Finally, I would like to thank GOD for his blessings.

- Snehal K. Ambulkar

Contents

Declaration ii

Certificate iii

Abstract iv

Acknowledgements v

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 General Overview . 1

1.2 Motivation . 2

1.3 Objective . 2

1.4 System Requirements . 3

1.5 Technical Specifications . 3

1.6 Thesis Organization . 3

2 Literature Survey 5

2.1 CPU and GPU Comparison . 5

2.2 CUDA Introduction . 6

2.3 Advantages . 6

vi

CONTENTS vii

2.4 Limitations . 7

2.5 Current & Future use of CUDA Architecture 7

2.6 CUDA Processing Flow . 8

2.7 CUDA Programming Model . 9

2.7.1 Function Qualifiers . 10

2.7.2 Built-In Variables . 11

2.8 CUDA Memory Model . 12

2.9 GPU/CPU Synchronization . 14

2.10 Memory Optimization . 15

2.10.1 Host-Device Data Transfers 15

2.11 CUDA Event API . 16

2.12 NVIDIA GeForce G105M . 16

2.12.1 Features . 17

3 Tools and Techniques 18

3.1 CUDA installation . 18

3.2 CUDA Compiler - NVCC . 19

3.3 CUDA Occupancy Calculator . 19

3.3.1 Role Of CUDA compiler . 20

3.3.2 Limitation . 20

3.3.3 Notes about Occupancy . 21

3.3.4 Kernel Usage . 21

3.4 NVIDIA Compute Visual Profiler . 22

3.4.1 Compute program . 22

3.5 Microsoft Visual Studio 2008 . 23

3.5.1 Specific Steps . 24

3.6 Sample Project . 25

3.6.1 main.cpp . 25

3.6.2 KernelWraper.cu . 26

CONTENTS viii

3.6.3 MyKernel.cu . 27

4 Data Encryption Standard 28

4.1 Introduction . 28

4.2 Modes of Operation for Encryption Algorithms 30

4.2.1 Block Cipher . 30

4.2.2 Stream Cipher . 30

4.3 Modes of Operation for Block Ciphers 32

4.3.1 ECB (Electronic Code Book) 32

4.3.2 CBC (Cipher Block Chaining) 33

4.3.3 CFB (Cipher Feedback) . 33

4.3.4 OFB (Output Feedback) . 34

4.4 Conventional DES Implementation 35

5 Implementation 39

5.1 CUDA-DES algorithm implementation using Proposed Model 40

5.1.1 Theoretical Analysis for Security Algorithm 40

5.1.2 Amdahl’s law : . 41

5.1.3 CUDA Program Flow : . 42

6 Result and Analysis 45

6.1 Experiment 1 . 45

6.2 Experiment 2 . 46

6.3 Experiment 3 . 47

6.4 Result Analysis . 49

7 Conclusion and Future Work 52

7.1 Conclusion . 52

7.2 Future Work . 53

Web References 54

CONTENTS ix

Bibliography 56

Index 57

List of Figures

2.1 CUDA Architecture . 6

2.2 Processing Flow . 8

2.3 CUDA Programming Model . 9

2.4 Memory Space . 12

2.5 A set of SIMD multiprocessor with on-chip shared memory 13

3.1 Threads per Block . 20

3.2 Custom Build Rule . 24

3.3 Property page . 25

4.1 Main parts of DES Algorithm . 29

4.2 Block Cipher . 30

4.3 Stream Cipher . 31

4.4 Electronic Code Book . 32

4.5 Cipher Block Chaining . 33

4.6 Cipher Feedback . 34

4.7 Output Feedback . 35

4.8 DES Architecture . 37

4.9 Single round of DES algorithm . 38

4.10 DES Architecture for one round . 38

5.1 Proposed Model . 39

5.2 Amdahl’s Law for Speedup . 41

x

LIST OF FIGURES xi

5.3 CUDA Flow . 43

6.1 CPU Encryption . 46

6.2 GPU Encryption . 46

6.3 Encryption for 16 round DES on CPU 47

6.4 Decryption for 16 round DES on CPU 47

6.5 Encryption for 16 round DES on CPU + GPU 49

6.6 Decryption for 16 round DES on CPU + GPU 49

6.7 CPU Encryption using file . 50

6.8 CPU + GPU Encryption using file 51

6.9 Results for Encryption in terms of time 51

List of Tables

I Results for Encryption . 45

II Results for Encryption and Decryption on CPU 48

III Results for Encryption and Decryption on CPU + GPU 48

IV Results for Encryption in terms of time in seconds 48

xii

Chapter 1

Introduction

1.1 General Overview

According to websters, Architecture is an “Art or Science of building; a method

or style of building”. Computer architecture comprises both the art and science of

designing new and faster computer systems to satisfy ever increasing demand for more

powerful systems. A computer architect specifies the modules that form the computer

system at a functional level of detail and also specifies the interfaces between these

modules. The exact mix of hardware, software and firmware used to implement

the module depends on performance requirements, cost and availability of hardware,

software and firmware.

Performance and cost are the two major parameters for evaluation of architecture.

Here, the aim is to maximize performance while minimizing the cost(i.e. to maximize

the performance-to-cost ratio). The progress in technologies provides new choices each

year. The architect has not only base his or her decisions on the choices available

today, but also keep in mind the expected changes in technology during life of system.

The architectural feature that provides the optimum performance-to-cost ratio today

may not be the best feature for tomorrow’s technology.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation

Multicore [12](dual, quad etc) processors are now present in many home based sys-

tems. This chance presents a massive challenge to application developers who must

design a sufficient and suited parallelism onto each parallel algorithm. Mapping a

set of algorithms onto a multi core platform requires using a parallel programming

model, which describes and controls the communication, concurrences, and synchro-

nization of all components involved. The correct use of synchronization and locking

mechanisms is complex and it has proven to be a challenging implementation.

It is often said that limits of semiconductor technology have already been reached

and no significant performance improvements are possible by technology improve-

ments alone. History has always proven this statement to be false. But we always

make the best out of the existing technology. The alternative architectures utilize the

parallel and overlapped(pipelined)processing possibilities.Parallel processing is con-

sidered as the fourth wave of computing. Parallel processing architectures utilize a

multiplicity of processors and provide for building computer system with order of

magnitude performance increase. In order to utilize parallel processing architectures

efficiently,an extensive redesign of algorithms and data structures is needed.

Using CUDA, the latest NVIDIA GPUs[10][13] become accessible for computation

like CPUs. Unlike CPUs however, GPUs have a parallel throughput architecture

that emphasizes executing many concurrent threads slowly, rather than executing a

single thread very fast.

1.3 Objective

Objective of this thesis is to implement complex Data Encryption Standard (DES)

algorithm using CUDA environment so as to study relative performance of CPUs and

GPUs.

CHAPTER 1. INTRODUCTION 3

1.4 System Requirements

To use CUDA on your system, you will need the following installed:

- CUDA-enabled GPU(here, GeForce G105M)

- Device driver[4]

- CUDA software (available at no cost from http://www.nvidia.com/cuda)

- Microsoft Visual Studio .NET 2003, Microsoft Visual Studio 2008, or the corre-

sponding versions of Microsoft Visual C++ Express Edition.

- NVCC Compiler.[3]

1.5 Technical Specifications

Technical Specification of GeForce G105M GPU Device:

- Total amount of global memory: 521601024 bytes

- Number of multiprocessors: 1

- Number of cores: 8

- Total amount of constant memory: 65536 bytes

- Total amount of shared memory per block: 16384 bytes

- Total number of registers available per block: 8192

- Warp size: 32

- Maximum number of threads per block: 512

- Maximum size of each dimension of a block: 512 x 512 x 64

- Maximum size of each dimension of a grid: 65535 x 65535 x 1

- Clock rate: 0.78 GHZ

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature survey on CUDA describes CPU & GPU. It also describes

CHAPTER 1. INTRODUCTION 4

CUDA Programming Model ,Memory Architecture and various memory opti-

mization techniques.

Chapter 3, Here, how to use CUDA Technology and various tools is described.

Chapter 4, Various modes of encryption/decryption is described here.

Chapter 5, This chapter describes algorithm implementation using CUDA and the-

oretical analysis for speedup.

Chapter 6, describes results and analysis of results.

Chapter 7, Conclusion and Future work is given in this chapter.

Chapter 2

Literature Survey

2.1 CPU and GPU Comparison

• CPU cores are designed to execute a single thread of sequential instructions

with maximum speed and GPUs are designed for fast execution of many parallel

instruction threads.

• CPUs use SIMD and GPUs use SIMT.

• GPUs contain much larger number of dedicated ALUs then CPUs.

• CPUs reduce memory access latencies using large caches as well as branching

prediction. GPUs solve the problem of memory access latencies using simulta-

neous execution of thousands threads when one thread is waiting for data from

memory, a GPU can execute another thread without latencies.

• CPUs use caches to increase their performance owing to reduced memory access

latencies and GPUs use caches or shared memory to increase memory band-

width.

5

CHAPTER 2. LITERATURE SURVEY 6

2.2 CUDA Introduction

CUDA (an acronym for Compute Unified Device Architecture)[1] is a parallel com-

puting architecture developed by NVIDIA[8]. CUDA is the computing engine in

NVIDIA GPUs(Graphics Processing Units) that is accessible to software developers

through variants of industry standard programming languages. Figure 2.1 shows the

Figure 2.1: CUDA Architecture

CUDA architecture. Using CUDA, the latest NVIDIA GPUs become accessible for

computation like CPUs. Unlike CPUs however, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent threads slowly, rather than

executing a single thread very fast. This approach of solving general purpose prob-

lems on GPUs is known as GPGPU[4]. CUDA works with all NVIDIA GPUs from

the G8X series onwards, including GeForce, Quadro and the Tesla line.

2.3 Advantages

CUDA has several advantages over traditional general purpose computation on GPUs

(GPGPU) using graphics APIs[9].

• Scattered reads - code can read from arbitrary addresses in memory.

CHAPTER 2. LITERATURE SURVEY 7

• Shared memory - CUDA exposes a fast shared memory region (16KB in size)

that can be shared amongst threads. This can be used as a user-managed cache,

enabling higher bandwidth than is possible using texture lookups.

• Faster downloads and readbacks to and from the GPU.

• Full support for integer and bitwise operations, including integer texture lookups.

2.4 Limitations

• CUDA uses a recursion-free, function-pointer-free subset of the C language,

plus some simple extensions. However, a single process must run spread across

multiple disjoint memory spaces, unlike other C language runtime environments.

• Texture rendering is not supported.

• The bus bandwidth and latency between the CPU and the GPU may be a

bottleneck.

• Threads should be running in groups of at least 32 for best performance, with

total number of threads numbering in the thousands. Branches in the pro-

gram code do not impact performance significantly, provided that each of 32

threads takes the same execution path; the SIMD [11]execution model becomes

a significant limitation for any inherently divergent task.

2.5 Current & Future use of CUDA Architecture

Some of the current and future usages of CUDA are as follows:

• Accelerated rendering of 3D graphics

• Real Time Cloth Simulation

• Distributed Calculations, such as predicting the native conformation of proteins

CHAPTER 2. LITERATURE SURVEY 8

• Medical analysis simulations, for example virtual reality based on CT and MRI

scan images

• Physical simulations, in particular in fluid dynamics

• Accelerated encryption, decryption and compression

• Artificial intelligence etc.

2.6 CUDA Processing Flow

Figure 2.2: Processing Flow

Figure 2.2 shows CUDA processing flow. The steps for processing flow are as

follows:

1. Copy data from main memory to GPU memory

2. CPU instructs the process to GPU

3. GPU execute parallel in each core

4. Copy the result from GPU memory to main memory

CHAPTER 2. LITERATURE SURVEY 9

2.7 CUDA Programming Model

Figure 2.3: CUDA Programming Model

The Compute Unified Device Architecture, proposed by NVIDIA for its G80, G92

and GT200 etc. graphics processors, exposes a programming model that integrates

host and GPU code in the same C++ source files. The main programming introduced

by the programming model is an explicitly parallel function invocation (kernel) which

is executed by a user-specified number of threads. Every CUDA kernel is explicitly

invoked by host code and executed by the device, while the host-side code contin-

ues the execution asynchronously after instantiating the kernel. The programmer is

provided with a specific synchronizing function call to wait for the completion of the

active asynchronous kernel computation.

The CUDA programming model abstracts the actual parallelism implemented by the

hardware architecture, providing the concepts of block and thread to express concur-

rency in algorithms. A block captures the notion of a group of concurrent threads.

Blocks are required to execute independently, so that it has to be possible to execute

them in any order (in parallel or in sequence). Therefore, the synchronization prim-

itives semantically act only among threads belonging to the same block. Intra-block

CHAPTER 2. LITERATURE SURVEY 10

communications among threads use the logical shared memory associated with that

block. Since the architecture does not provide support for message-passing, threads

belonging to different blocks must communicate through global memory which is

entirely mapped to the on-chip memory. The concurrent accesses to logical shared

memory by threads executing within the same block are supported through an ex-

plicit barrier synchronization primitive.

A CUDA program consists of one or more phases that are executed on either the host

(CPU) or a device such as a GPU. CUDA uses parallel computing model, when each

of SIMD [11]processors executes the same instruction over different data elements in

parallel. GPU is a computing device, co-processor (device) for a CPU (host), pos-

sessing its own memory and processing a lot of threads in parallel. A kernel is a GPU

function executed by threads.[6] Figure 2.3shows that the host issues a succession

of kernel invocations to the device. Each kernel is executed as a batch of threads

organized as a grid of thread blocks.

Thread blocks are executed in the form of small groups called warps (32 threads each).

It is minimum volume of data, which can be processed by multiprocessors. As its not

always convenient, CUDA allows to work with blocks containing 64 - 512 threads.

Grouping blocks into grids helps avoid the limitations and apply the kernel to more

threads per call. It also helps in scaling. If a GPU does not have enough resources, it

will execute blocks one by one. Otherwise, blocks can be executed in parallel, which

is important for optimal distribution of the load on GPUs of different levels, starting

from mobile and integrated solutions.[8]

2.7.1 Function Qualifiers

• device The device qualifier declares a function that is: - Executed on the

device. - Callable from the device only.

• global The global qualifier declares a function that is: - Executed on the

device. - Callable from the host only.

CHAPTER 2. LITERATURE SURVEY 11

• host The host qualifier declares a function that is: - Executed on the host.

- Callable from the host only.

It is equivalent to declare a function with only the host qualifier or to declare it

without any of the host , device , or global qualifier; in either case the function

is compiled for the host only. However, the host qualifier can also be used in

combination with the device qualifier, in which case the function is compiled

for both the host and the device.

• Restrictions

1) device and global functions do not support recursion.

2) device and global functions cannot declare static variables inside their

body.

3) device and global functions cannot have a variable number of argu-

ments.

4) device functions cannot have their address taken; function pointers to

global functions, on the other hand, are supported.

5) The global and host qualifiers cannot be used together.

6) global functions must have void return type.

7) Any call to a global function must specify its execution configuration.

8) A call to a global function is asynchronous, meaning it returns before the

device has completed its execution.

9) global function parameters are currently passed via shared memory to the

device and limited to 256 bytes.

2.7.2 Built-In Variables

• gridDim - This variable is of type dim3 and contains the dimensions of the grid.

• blockIdx - This variable is of type uint3 and contains the block index within

the grid.

CHAPTER 2. LITERATURE SURVEY 12

• blockDim - This variable is of type dim3 and contains the dimensions of the

block.

• threadIdx - This variable is of type uint3 and contains the thread index within

the block.

• WarpSize - This variable is of type int and contains the warp size in threads.

• Restrictions - It is not allowed to take the address of any of the built-in variables

and to assign values to any of the built-in variables.

2.8 CUDA Memory Model

Figure 2.4: Memory Space

CUDA memory model[9] allows byte wise addressing, support for gather and scat-

ter. There are quite a lot of registers per each streaming processor, up to 1024. Access

to these registers is very fast, they can store 32-bit integer or floating point numbers.

Each thread has access to the following memory types: Figure 2.4 shows that thread

CHAPTER 2. LITERATURE SURVEY 13

has access to the devices DRAM and on-chip memory through a set of memory spaces

of various scopes.

• Global memory : the largest volume of memory available to all multiproces-

sors in a GPU, from 256 MB to 1.5 GB in modern solutions (and up to 4 GB in

Tesla). It offers high bandwidth, over 100 GB/s for top solutions from NVIDIA,

but it suffers from very high latencies (several hundred cycles). Non-cacheable,

supports general load and store instructions, and usual pointers to memory.

• Local memory : small volume of memory, which can be accessed only by one

streaming processor. It’s relatively slow, just like global memory.

Figure 2.5: A set of SIMD multiprocessor with on-chip shared memory

• Shared memory : 16-KB memory (in graphics processors of the state-of-the-

art architecture) shared between all streaming processors in a multiprocessor.

It’s fast memory, just like registers. This memory provides interaction between

threads, it’s controlled by developers directly and features low latencies. Ad-

vantages of shared memory: it can be used as a controllable L1 Cache, reduced

CHAPTER 2. LITERATURE SURVEY 14

latencies when ALUs access data, fewer calls to global memory.Figure 2.5 shows

a set of SIMD multiprocessor with on-chip shared memory.

• Constant storage - memory area of 64 KB (the same concerns modern GPUs),

read only for all multiprocessors. It’s cached by 8 KB for each multiprocessor.

This memory is rather slow latencies of several hundred cycles, if there are no

required data in cache.

• Texture memory : is available for reading to all multiprocessors. Data are

fetched by texture units in a GPU, so the data can be interpolated linearly

without extra overheads. Cached by 8 KB for each multiprocessor. Slow as

global memory latencies of several hundred cycles, if there are no required data

in cache.

It goes without saying that global, local, texture, and constant memory is phys-

ically the same memory. They differ only in caching algorithms and access

models. CPU can refresh and access only external memory: global, constant,

and texture memory.

2.9 GPU/CPU Synchronization

• Context based

cudaThreadSynchronize() - Blocks until all previously issued CUDA calls from

a CPU thread complete.

• Stream based

cudaStreamSynchronize(stream) - Blocks until all CUDA calls issued to given

stream complete.

cudaStreamQuery(stream)

a. Indicates whether stream is idle

b. Returns cudaSuccess, cudaErrorNotReady, ...

c. Does not block CPU thread

CHAPTER 2. LITERATURE SURVEY 15

• Stream based using events

Events can be inserted into streams:cudaEventRecord(event, stream)

Event is recorded then GPU reaches it in a stream. Recorded = assigned a

timestamp (GPU clocktick).

cudaEventSynchronize(event) - Blocks until given event is recorded.

cudaEventQuery(event)

a. Indicates whether event has recorded.

b. Returns cudaSuccess, cudaErrorNotReady

c. Does not block CPU thread.

2.10 Memory Optimization

There are two types of memory optimizations:

1. Data transfers between host and device.

2. Device memory optimizations.

2.10.1 Host-Device Data Transfers

Device to host memory bandwidth much lower than device to device bandwidth. It

has a 8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280). In minimize

transfers intermediate data can be allocated, operated on and deallocated without

ever copying them to host memory. In group transfers one large transfer much better

than many small ones.

Host Synchronization

• All kernel launches are asynchronous: control returns to CPU immediately and

kernel executes after all previous CUDA calls have completed.

• cudaMemcpy () is synchronous control returns to CPU after copy completes

and copy starts after all previous CUDA calls have completed.

CHAPTER 2. LITERATURE SURVEY 16

• cudaThreadSynchronize() blocks until all previous CUDA calls complete.

• Async API provides GPU CUDA - call streams non-blocking cudaMemcpyAsync.

2.11 CUDA Event API

- Events are inserted (recorded) into CUDA call streams.

- Usage scenarios:

• measure elapsed time for CUDA calls(clock cycle precision)

• query the status of an asynchronous CUDA call

• block CPU until CUDA calls prior to the event are completed

- AsyncAPI sample in CUDA SDK:

cudaEvent t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel(((grid,block)))(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

2.12 NVIDIA GeForce G105M

The Nvidia GeForce G105M is a higher clocked GeForce 9300M G and therefore a

DirectX 10 capable graphics adapter for small and thin notebooks. Compared to the

CHAPTER 2. LITERATURE SURVEY 17

9300M G, the GeForce G105M features only 8. To overcome this downside, it features

a higher clock speed. Furthermore, it integrates the new VP3 video processor (8400M,

9300M G had VP2) with more video features and better hd-video decoding support.

GeForce G105M GPUs play all the latest games with all the detail, lighting and

special effects the way they were meant to be played. The Pure Video HD processor

plays full HD and Blu-ray movies with cinematic quality and battery sipping power.

The included CUDA technology improves video and photo editing productivity by

handling tasks up to 5 times faster than mainstream CPUs.

2.12.1 Features

• High Performance GeForce DirectX 10 Graphics Processor GeForce G105M in-

cludes a powerful DirectX 10, Shader Model 4.0 graphics processor, offering full

compatibility with past and current game titles with all the texture detail, high

dynamic range lighting and visual special effects the game developer intended

the consumer to see.

• CUDA technology NVIDIA CUDA technology unlocks the power of the GPU’s

processing cores to accelerate the most demanding system tasks - such as video

encoding - delivering up to 5x the performance over traditional notebook CPUs

for applications that support CUDA technology.

• NVIDIA PureVideo HD technology The combination of high-definition video

decode acceleration and post-processing that delivers unprecedented picture

clarity, smooth video, accurate color, and precise image scaling for movies and

video. Feature requires supported video software. Feature may vary by product.

• NVIDIA Hybrid SLI - Hybrid Power technology Hybrid Power technology in-

telligently powers up the GeForce G105M for optimal performance when you

are plugged in and turns it off when you unplug to extend battery.

Chapter 3

Tools and Techniques

3.1 CUDA installation

CUDA installation[2] consists of:

a. Driver : Required component to run CUDA applications.

b. CUDA Toolkit (compiler,libraries)

c. CUDA SDK[7](example codes)

The CUDA Toolkit is a C language development environment for CUDA-enabled

GPUs. The CUDA development environment includes:

• NVCC compiler

• CUDA libraries

• CUDA runtime driver is included into the standard NVIDIA driver

• Profiler

The CUDA Developer SDK provides examples with source code to help you get

started with CUDA. Examples include:

• Matrix multiplication

18

CHAPTER 3. TOOLS AND TECHNIQUES 19

• Thread Migration

CUDA includes C/C++ software development tools, function libraries, and a hard-

ware abstraction mechanism that hides the GPU hardware from developers. Although

CUDA requires programmers to write special code for parallel processing, it does not

require them to explicitly manage threads in the conventional sense, which greatly

simplifies the programming model. CUDA development tools work alongside a con-

ventional C/C++ compiler, so programmers can mix GPU code with general-purpose

code for the host CPU.

3.2 CUDA Compiler - NVCC

• Any source file containing CUDA language extensions (.cu) must be compiled

with nvcc.

• NVCC is a compiler driver works by invoking all the necessary tools and com-

pilers like cudacc, g++, cl,. . . .

• NVCC can output:

- Either C code (CPU Code)- To be compiled with the rest of the application

using another tool.

- Or PTX object code directly.

• An executable with CUDA code requires: - The CUDA core library (cuda) -

The CUDA runtime library (cudart)

3.3 CUDA Occupancy Calculator

The CUDA Occupancy Calculator ,as shown in figure 3.1allows you to compute the

multiprocessor occupancy of a GPU by a given CUDA kernel. The multiprocessor

occupancy is the ratio of active warps to the maximum number of warps supported

CHAPTER 3. TOOLS AND TECHNIQUES 20

on a multiprocessor of the GPU. Each multiprocessor on the device has a set of N

registers available for use by CUDA program threads. These registers are a shared

resource that are allocated among the thread blocks executing on a multiprocessor.

The size of N on

- GPUs with compute capability 1.0-1.1 is N = 8192

- GPUs with compute capability 1.2-1.3, is N = 16384.

- GPUs with compute capability 2.0, is N = 32768.

Figure 3.1: Threads per Block

3.3.1 Role Of CUDA compiler

The CUDA compiler attempts to minimize register usage to maximize the number of

thread blocks that can be active in the machine simultaneously.

3.3.2 Limitation

If a program tries to launch a kernel for which the registers used per thread times the

thread block size is greater than N, the launch will fail.

CHAPTER 3. TOOLS AND TECHNIQUES 21

Maximizing the occupancy can help to cover latency during global memory loads

that are followed by a syncthreads(). The occupancy is determined by the amount of

shared memory and registers used by each thread block. Because of this, programmers

need to choose the size of thread blocks with care in order to maximize occupancy.

This GPU Occupancy Calculator can assist in choosing thread block size based on

shared memory and register requirements.

3.3.3 Notes about Occupancy

Higher occupancy does not necessarily mean higher performance. If a kernel is not

bandwidth bound, then increasing occupancy will not necessarily increase perfor-

mance. If a kernel invocation is already running at least one thread block per mul-

tiprocessor in the GPU, and it is bottlenecked by computation and not by global

memory accesses, then increasing occupancy may have no effect. In fact, making

changes just to increase occupancy can have other effects, such as additional in-

structions, spills to local memory (which is off chip), divergent branches, etc. For

bandwidth-bound applications, on the other hand, increasing occupancy can help

better hide the latency of memory accesses, and therefore improve performance.

3.3.4 Kernel Usage

To determine the number of registers used per thread in your kernel, simply compile

the kernel code using the option –ptxas-options = -v to nvcc. This will output

information about :

1) Register,

2) Local memory,

3) Shared memory, and

4) Constant memory

usage for each kernel in the .cu file. However, if your kernel declares any external

shared memory that is allocated dynamically, you will need to add the (statically

CHAPTER 3. TOOLS AND TECHNIQUES 22

allocated) shared memory reported by ptxas to the amount you dynamically allocate

at run time to get the correct shared memory usage. An example of the verbose

ptxas output is as follows: ptxas info : Compiling entry function ‘ Z8my kernelPf’

for ‘sm 10’ ptxas info : Used 5 registers, 8+16 bytes smem Let’s say “my kernel”

contains an external shared memory array which is allocated to be 2048 bytes at run

time. Then our total shared memory usage per block is 2048+8+16 = 2072 bytes. We

enter this into the box labeled “shared memory per block (bytes)” in this occupancy

calculator, and we also enter the number of registers used by my kernel, 5, in the box

labeled registers per thread. We then enter our thread block size and the calculator

will display the occupancy.

3.4 NVIDIA Compute Visual Profiler

3.4.1 Compute program

Execute a CUDA or OpenCL program (referred to as Compute program in this doc-

ument) with profiling enabled and view the profiler output as a table. The table has

the following columns for each GPU method:

• GPU Timestamp : GPU start time stamp in micro seconds.

• Method : GPU method name. This is either “memcpy*” for memory copies

or the name of a GPU kernel. Memory copies have a suffix that describes the

type of a memory transfer, e.g. “memcpyDToHasync” means an asynchronous

transfer from Device memory to Host memory.

• GPU Time : It is the execution time for the method on GPU.

• CPU Time : It is sum of GPU time and CPU overhead to launch that Method.

At driver generated data level, CPU Time is only CPU overhead to launch the

Method for non-blocking Methods; for blocking methods it is sum of GPU time

and CPU overhead. All kernel launches by default are non-blocking. But if

CHAPTER 3. TOOLS AND TECHNIQUES 23

any profiler counters are enabled kernel launches are blocking. Asynchronous

memory copy requests in different streams are non-blocking.

• Stream Id : Identification number for the stream

• Columns only for kernel methods :

– Occupancy : Occupancy is the ratio of the number of active warps per

multiprocessor to the maximum number of active warps.

– Profiler counters: Refer the profiler counters section for list of counters

supported.

– grid size X : Number of blocks in the grid along dimension X

– grid size Y : Number of blocks in the grid along dimension Y

– block size X : Number of threads in a block along dimension X

– block size Y : Number of threads in a block along dimension Y

– block size Z : Number of threads in a block along dimension Z

– dyn smem per block : Dynamic shared memory size per block in bytes

– sta smem per block : Static shared memory size per block in bytes

– reg per thread : Number of registers per thread

• Columns only for memcopy methods :

– mem transfer size : Memory transfer size in bytes

– hostmem transfer type : Type of host memory during transfer from DtoH

or HtoD. It can be either pageable or pagelocked.

3.5 Microsoft Visual Studio 2008

As far as implementation of Security Algorithm is concerned, it is very important to

have the knowledge of development environment. So, this phase of project develop-

ment includes:

CHAPTER 3. TOOLS AND TECHNIQUES 24

a. Study of Visual Studio.

b. Building Sample Project in Visual Studio Environment.

c. Integration of .cu and .cpp files in a project.

3.5.1 Specific Steps

One should use following steps for creating new project in visual studio environment:

a. Create a new project using the standard MS wizards (e.g. an empty console

project).

b. Implement your host (serial) code in .c or .cpp files.

c. Implement your wrappers and kernels in .cu files.

d. Add the NvCudaRuntimeApi.rules (right click on the project, Custom Build

Rules(see Figures 3.2 and 3.3), tick the relevant box).

e. Add the CUDA runtime library.

f. Add the CUDA include files.

g. Then just build your project and the .cu files will be compiled to .obj and added

to the link automatically

Figure 3.2: Custom Build Rule

CHAPTER 3. TOOLS AND TECHNIQUES 25

Figure 3.3: Property page

3.6 Sample Project

Here the sample project called “New Project” is given, which includes three source

files as:

1) main.cpp

2) KernelWraper.cu

3) MyKernel.cu

Here, main.cpp file contains wrapper function which is available in KernelWrapper.cu

file. Now, KernelWrapper.cu file contains global kernel function which in turn is

available in MyKernel.cu file.

Hence, in this way wrapper function is important for CUDA program development

in visual studio environment.

3.6.1 main.cpp

#include <iostream >

#include<conio.h >

void RunTest();

CHAPTER 3. TOOLS AND TECHNIQUES 26

//forward declaration

int main(int argc, char** argv)

{

RunTest();

std::cout <<“It is working Fine...\n”;

getch();

return 0;

}

3.6.2 KernelWraper.cu

#include <iostream >

global void TestDevice(int *deviceArray);

//forward declaration

void RunTest()

{

int* hostArray;

int* deviceArray;

const int arrayLength = 16;

const unsigned int memSize = sizeof(int) * arrayLength;

hostArray = (int*)malloc(memSize);

cudaMalloc((void**) &deviceArray, memSize);

std::cout <<“Before device\n”;

for(int i=0;i<arrayLength;i++)

{

hostArray[i] = i+1;

std::cout <<hostArray[i] <<“\n”;

}

std::cout <<“\n”;

CHAPTER 3. TOOLS AND TECHNIQUES 27

cudaMemcpy(deviceArray, hostArray, memSize, cudaMemcpyHostToDevice);

TestDevice <<<4, 4 >>>(deviceArray);

cudaMemcpy(hostArray, deviceArray, memSize, cudaMemcpyDeviceToHost);

std::cout <<“After device\n”;

for(int i=0;i<arrayLength;i++)

{

std::cout <<hostArray[i] <<“\n”;

}

cudaFree(deviceArray);

free(hostArray);

std::cout <<“Done!!\n”;

}

3.6.3 MyKernel.cu

#ifndef MY KERNEL

#define MY KERNEL

global void TestDevice(int *deviceArray)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

deviceArray[idx] = deviceArray[idx]*deviceArray[idx];

}

#endif

Chapter 4

Data Encryption Standard

4.1 Introduction

Security is a prevalent concern in information and data systems of all types. Histori-

cally, military and national security issues drove the need for secure communications.

Recently, security issues have pervaded the business and private sectors. E-commerce

has driven the need for secure internet communications. Many businesses have fire-

walls to protect internal corporate information from competitors. In the private

sector, personal privacy is a growing concern. Products are available to scramble

both e-mail and telephone communications. One means of providing security in com-

munications is through encryption. By encryption, data is transformed in a way that

it is rendered unrecognizable. Only by decryption can this data be recovered. Os-

tensibly, the process of decryption can only be performed correctly by the intended

recipient(s). The validity of this assertion determines the “strength” or “security” of

the encryption scheme.[15] Many communications products incorporate encryption as

a feature to provide security. This application report studies the implementation of

one of the most historically famous and widely implemented encryption algorithms,

the Data Encryption Standard (DES).[3][5]

28

CHAPTER 4. DATA ENCRYPTION STANDARD 29

• What is DES?

Developed in 1974 by IBM in cooperation with the National Securities Agency (NSA),

DES has been the worldwide encryption standard for more than 20 years. For these

20 years it has held up against cryptanalysis remarkably well and is still secure against

all but possibly the most powerful of adversaries. Because of its prevalence through-

out the encryption market, DES is an excellent interoperability standard between

different encryption equipment.[16] The predominant weakness of DES is its 56-bit

key which, more than sufficient for the time period in which it was developed, has

become insufficient to protect against brute-force attack by modern computers. As

a result of the need for a greater encryption strength, DES evolved into triple-DES.

Triple-DES encrypts using three 56-bit keys, for an encryption strength equivalent to

a 168-bit key. This implementation, however, requires three times as many rounds

for encryption and decryption and highlights a second weakness of DES speed. DES

was developed for implementation on hardware, and DES implementations in soft-

ware are often less efficient than other standards which have been developed with

software performance in mind.[1][3]

Figure 4.1: Main parts of DES Algorithm

CHAPTER 4. DATA ENCRYPTION STANDARD 30

4.2 Modes of Operation for Encryption Algorithms

a. Block Cipher

b. Stream Cipher

4.2.1 Block Cipher

An encryption scheme that “the clear text is broken up into blocks of fixed length,

and encrypted one block at a time”. Usually, a block cipher encrypts a block of clear

text into a block of cipher text of the same length. In this case, a block cipher (figure

4.2)can be viewed as a simple substitute cipher with character size equal to the block

size.

Figure 4.2: Block Cipher

4.2.2 Stream Cipher

Stream ciphers (figure 4.3) operate on streams of data one bit at a time as a continu-

ous stream. DES belongs to a category of ciphers called block ciphers. Block ciphers,

as opposed to stream ciphers, encrypt messages by separating them into blocks and

encrypting each block separately. Stream ciphers, on the other hand, operate on

streams of data one bit at a time as a continuous stream. DES encrypts 64-bit blocks

CHAPTER 4. DATA ENCRYPTION STANDARD 31

Figure 4.3: Stream Cipher

of plaintext into 64-bit blocks of ciphertext. Plaintext, used in the context of cryptog-

raphy, is the name commonly given to the body of a message before it is encrypted,

i.e. the unaltered text of the message which is to be sent. Likewise, ciphertext is the

name commonly given to the encrypted version of the message body which is meant

to be indecipherable to any person who does not have the decryption key.

The simplest implementation of a block cipher is to separate the plaintext into con-

tiguous blocks, encrypt each block into ciphertext blocks, and group these ciphertext

blocks together as the ciphertext output. This mode of operation is referred to as

Electronic Code Book (ECB) mode (figure 4.4). The distinguishing property of this

mode is that identical blocks of plaintext always encrypt to the same ciphertext. This

is undesirable in some applications.

It is possible to introduce feedback between blocks by feeding the results of the previ-

ous encryption block into the input of the current block. The first block of feedback is

a randomly generated block called the initialization vector. When this is done, each

ciphertext block is not only dependent on the plaintext block that generated it but

on each of the preceeding blocks as well, including the initialization vector. Identical

plaintext blocks will now only encrypt to the same ciphertext block if each of the

proceeding blocks are identical and the initialization vectors are identical. This mode

of operation is referred to as Cipher Block Chaining (CBC) mode (figure 4.5).

Other modes of operation exist as well. Two other common modes, Output Feed Back

(OFB) mode and Cipher Feed Back (CFB) modes use a block encryption algorithm

CHAPTER 4. DATA ENCRYPTION STANDARD 32

to generate a stream cipher.[12][13]

4.3 Modes of Operation for Block Ciphers

4.3.1 ECB (Electronic Code Book)

This is the regular DES algorithm, exactly as described above. Data is divided

into 64-bit blocks and each block is encrypted one at a time. Separate encryptions

with different blocks are totally independent of each other. This means that if data

is transmitted over a network or phone line, transmission errors will only affect the

block containing the error. It also means, however, that the blocks can be rearranged,

thus scrambling a file beyond recognition, and this action would go undetected. ECB

is the weakest of the various modes because no additional security measures are im-

plemented besides the basic DES algorithm. However, ECB (figure 4.4) is the fastest

and easiest to implement, making it the most common mode of DES seen in commer-

cial applications. This is the mode of operation used by Private Encryptor.[14][16]

Figure 4.4: Electronic Code Book

CHAPTER 4. DATA ENCRYPTION STANDARD 33

4.3.2 CBC (Cipher Block Chaining)

In this mode of operation, each block of ECB encrypted ciphertext is XORed with

the next plaintext block to be encrypted, thus making all the blocks dependent on

all the previous blocks. This means that in order to find the plaintext of a particular

block, you need to know the ciphertext, the key, and the ciphertext for the previous

block. The first block to be encrypted has no previous ciphertext, so the plaintext

is XORed with a 64-bit number called the Initialization Vector, or IV for short. So

if data is transmitted over a network or phone line and there is a transmission error

(adding or deleting bits), the error will be carried forward to all subsequent blocks

since each block is dependent upon the last. If the bits are just modified in transit

(as is the more common case) the error will only affect all of the bits in the changed

block, and the corresponding bits in the following block. The error doesn’t propagate

any further. This mode of operation is more secure than ECB because the extra XOR

step adds one more layer to the encryption process. CBC is shown in figure 4.5.

Figure 4.5: Cipher Block Chaining

4.3.3 CFB (Cipher Feedback)

As shown in figure 4.6, blocks of plaintext that are less than 64 bits long can be

encrypted. Normally, special processing has to be used to handle files whose size

CHAPTER 4. DATA ENCRYPTION STANDARD 34

is not a perfect multiple of 8 bytes, but this mode removes that necessity (Private

Encryptor handles this case by adding several dummy bytes to the end of a file before

encrypting it). The plaintext itself is not actually passed through the DES algorithm,

but merely XORed with an output block from it, in the following manner: A 64-bit

block called the Shift Register is used as the input plaintext to DES. This is initially

set to some arbitrary value, and encrypted with the DES algorithm. The ciphertext

is then passed through an extra component called the M-box, which simply selects

the left-most M bits of the ciphertext, where M is the number of bits in the block we

wish to encrypt. This value is XORed with the real plaintext, and the output of that

is the final ciphertext. Finally, the ciphertext is fed back into the Shift Register, and

used as the plaintext seed for the next block to be encrypted. As with CBC mode, an

error in one block affects all subsequent blocks during data transmission. This mode

of operation is similar to CBC and is very secure, but it is slower than ECB due to

the added complexity.

Figure 4.6: Cipher Feedback

4.3.4 OFB (Output Feedback)

This is similar to CFB mode, except that the ciphertext output of DES is fed back

into the Shift Register, rather than the actual final ciphertext. The Shift Register is

CHAPTER 4. DATA ENCRYPTION STANDARD 35

set to an arbitrary initial value, and passed through the DES algorithm. The output

from DES is passed through the M-box and then fed back into the Shift Register

to prepare for the next block. This value is then XORed with the real plaintext

(which may be less than 64 bits in length, like CFB mode), and the result is the final

ciphertext. Note that unlike CFB and CBC, a transmission error in one block will

not affect subsequent blocks because once the recipient has the initial Shift Register

value, it will continue to generate new Shift Register plaintext inputs without any

further data input. However, this mode of operation is less secure than CFB mode

because only the real ciphertext and DES ciphertext output is needed to find the

plaintext of the most recent block. Knowledge of the key is not required. Figure 4.7

shows output feedback.

Figure 4.7: Output Feedback

4.4 Conventional DES Implementation

DES relies upon the encryption techniques of:

- confusion and

- diffusion.

Confusion is accomplished through substitution. Specially chosen sections of data

are substituted for corresponding sections from the original data. The choice of the

CHAPTER 4. DATA ENCRYPTION STANDARD 36

substituted data is based upon the key and the original plaintext.

Diffusion is accomplished through permutation. The data is permuted by rearranging

the order of the various sections. These permutations, like the substitutions, are based

upon the key and the original plaintext.

The substitutions and permutations are specified by the DES algorithm. Chosen

sections of the key and the data are manipulated mathematically and then used as

the input to a look-up table. In DES these tables are called the S-boxes and the

P-boxes, for the substitution tables and the permutation tables, respectively. In

software these look-up tables are realized as arrays and key/data input is used as the

index to the array. Usually the S- and P-boxes are combined so that the substitution

and following permutation for each round can be done with a single look-up. In order

to calculate the inputs to the S- and P-box arrays, portions of the data are XORed

with portions of the key. One of the 32-bit halves of the 64-bit data and the 56-bit

key are used. Because the key is longer than the data half, the 32-bit data half is sent

through an expansion permutation which rearranges its bits, repeating certain bits, to

form a 48-bit product. Similarly the 56-bit key undergoes a compression permutation

which rearranges its bits, discarding certain bits, to form a 48-bit product. The S-

and P-box look-ups and the calculations upon the key and data which generate the

inputs to these table look-ups constitute a single round of DES (figure 4.9, 4.10) This

same process of S- and P-box substitution and permutation is repeated sixteen times,

forming the sixteen rounds of the DES algorithm (figure 4.1, 4.8). There are also

initial and final permutations which occur before and after the sixteen rounds. These

initial and final permutations exist for historical reasons dealing with implementation

on hardware and do not improve the security of the algorithm. For this reason they

are sometimes left out of implementations of DES. They are, however, included in

this analysis as they are part of the technical definition of DES.[1][12]

CHAPTER 4. DATA ENCRYPTION STANDARD 37

Figure 4.8: DES Architecture

CHAPTER 4. DATA ENCRYPTION STANDARD 38

Figure 4.9: Single round of DES algorithm

Figure 4.10: DES Architecture for one round

Chapter 5

Implementation

This chapter describes the mathematical model for CUDA-DES implementation along

with detailed theoretical analysis. DES is a cryptographic algorithm, making heavy

use of bit-wise operations. It encrypts and decrypts data in groups of 64-bits using

64-bits key. For encryption, groups of 64-bits of plaintext are fed into the algorithm

to produce groups of 64-bits of ciphertext. The actual experimental results obtained

are described in the next chapter.

Figure 5.1: Proposed Model

39

CHAPTER 5. IMPLEMENTATION 40

5.1 CUDA-DES algorithm implementation using

Proposed Model

Figure 5.1 shows the proposed model for DES encryption. This model takes 64

bits as the input and uses data parallelism approach at the start for parallelization

purpose. While the key module uses temporal parallelism. Here we are considering

that keys are preprocessed and so readily available during each round of 16 round DES

algorithm. So, we are following the standard architecture of DES which is described

in chapter 4 along with proposed model for implementation.

5.1.1 Theoretical Analysis for Security Algorithm

Considering combined data and temporal parallelism[17], this method almost halves

the time taken by single pipeline.

Let

Number of processes = n,

Time for one block = p,

Number of processors = k,

Time to distribute blocks to k processors = kq.

Observe that this time is proportional to number of processors.

Time to complete n blocks by single processor = np,

Time to complete n blocks by k processors = kq + np/k ,

So, Speedup due to parallel processing = np/[kq + (np/k)] = k/[1 + (k*k*q/np)]

If k*k*q <<np then speedup is nearly equal to k (i.e. number of processors)

It is found that this will be true if time to distribute the jobs is small.

Now, applying above formula to the proposed model, it is found that speedup is

nearly equal to number of processors as the time to distribute the data is very small.

Here in this case, by analysis maximum theoretical speedup found is 6x.

CHAPTER 5. IMPLEMENTATION 41

5.1.2 Amdahl’s law :

Amdahl’s law[16] is used to find the maximum expected improvement to an overall

system when only part of the system is improved. It is often used in parallel com-

puting to predict the theoretical maximum speedup using multiple processors. The

speedup of a program using multiple processors in parallel computing is limited by

the sequential fraction of the program. For example, if 95% of the program can be

parallelized, the theoretical maximum speedup using parallel computing would be 20

as shown in the figure 5.2, no matter how many processors are used. Amdahl’s law is

Figure 5.2: Amdahl’s Law for Speedup

a model for the relationship between the expected speedup of parallelized implemen-

tations of an algorithm relative to the serial algorithm, under the assumption that

the problem size remains the same when parallelized.

Parallelization :

In case of parallelization, Amdahl’s law states that if P is the proportion of a pro-

gram that can be made parallel (i.e. benefit from parallelization), and (1 - P) is the

proportion that cannot be parallelized (remains serial), then the maximum speedup

CHAPTER 5. IMPLEMENTATION 42

that can be achieved by using N processors is:

1/[(1-P)+(P/N)]

In the limit, as N tends to infinity, the maximum speedup tends to 1 / (1 - P). In

practice, performance to price ratio falls rapidly as N is increased once there is even

a small component of (1 - P). As an example, if P is 90%, then (1 - P) is 10%, and

the problem can be speed up by a maximum of a factor of 10, no matter how large

the value of N used.

For example, if for a given problem size a parallelized implementation of an algorithm

can run 10% of the algorithm’s operations arbitrarily quickly (while the remaining

90% of the operations are not parallelizable), Amdahl’s law states that the maxi-

mum speedup of the parallelized version is 1/(1 - 0.10) = 1.111 times as fast as the

non-parallelized implementation.

5.1.3 CUDA Program Flow :

CUDA program flow is presented in figure 5.3. This is the important flow which is

followed during development of CUDA-DES.

First step is to program start with CUDA event.

We have to create and start timer in next step.

Define number of threads to be used along with memory size. We can test program

different number of threads.

After that we have to assign host and device memory.

Setup the execution parameters like block and grid dimensions.

Kernel function is executed in the next step.

Finally stop and destroy the timer.

Free the host and device memory at the end of program.

In our GPU implementation, we implement the data parallel portions of DES by

assigning each thread the task of processing one data point. These threads are inde-

CHAPTER 5. IMPLEMENTATION 43

Figure 5.3: CUDA Flow

pendent and can execute in parallel. Datapoints in each permutation of DES can be

processed simultaneously.

Parallel Programmability :

• Parallel Execution : The powerful compute capability of GPUs stem for

their vast available parallelism. In CUDA, we write programs with C-like lan-

guage. CUDA is currently best suited for a SPMD programming style in which

threads execute the same kernel but may communicate and follow divergent

paths through that kernel.[18]

• Synchronization : Placing barriers in CUDA is somewhat different. CUDA’s

CHAPTER 5. IMPLEMENTATION 44

runtime library provides programmers with a specific barrier statement, sync-

threads(), but the limitation of the function is that it can only synchronize

all threads within a thread block. To achieve global barrier functionality, the

programmer must allow the current kernel to complete and start a new ker-

nel. This is currently fairly expensive, thus rewarding algorithms which keep

communication and synchronization localized within thread blocks as long as

possible.

Control Flow :

In GPUs, control flow instructions can significantly impact the performance of a pro-

gram by causing threads of same 32-thread SIMD warp to diverge. Since the different

execution paths must be serialized, this increases the total number of instructions ex-

ecuted.

For example, in DES sequential program, the programmer can use it statements to

specify permutations, but directly using similar implementation on GPU performs

poorly.

Bit-wise Operations :

Bit-wise operations dominate the DES algorithm, which includes the lot of bit permu-

tations and shifting. GPU implementations of these operations become very complex,

since they must be built using high level language constructs and fine-grained control

flow that tend to cause SIMD divergence.

Our CUDA DES implementation is comprised of several small kernels. Inside a CUDA

kernel, we can use fast on-chip shared memory for data sharing, but there is no con-

sistent state in the shared memory, so between two kernels, state flushes are required,

then data must be read back for the next pass.[7]

Chapter 6

Result and Analysis

This chapter presents results and analysis for DES and CUDA-DES encryption and

decryption. Total three experiments has been performed and obtained results are

given in following sections.

6.1 Experiment 1

In first experiment, 64-bit plaintext and key are generated inside the program to

produce the ciphertext for CUDA-DES encryption. Initially, encryption has been

done for single round of DES on CPU and GPU respectively and then for 16 rounds

of DES on CPU and CPU+GPU respectvely. Figure 6.1 shows CPU encryption

whereas figure 6.2 shows CPU+GPU encryption. The table I shows encryption

results.

CPU/GPU Time (seconds)
CPU 1.185000
CPU+GPU 1.092000

Table I: Results for Encryption

45

CHAPTER 6. RESULT AND ANALYSIS 46

Figure 6.1: CPU Encryption

Figure 6.2: GPU Encryption

6.2 Experiment 2

The another experiment has been successfully done in which the input is hexadecimal

plaintext and hexadecimal key. Here it is observed that the time taken by encryption

and decryption is same. Figures 6.3 and 6.4 show output for CPU encryption and

decryption respectively.

Figures 6.5 and 6.6 show output for encryption and decryption on CPU+GPU. The

table II shows results for CPU and the table III shows results for CPU+GPU.

CHAPTER 6. RESULT AND ANALYSIS 47

Figure 6.3: Encryption for 16 round DES on CPU

Figure 6.4: Decryption for 16 round DES on CPU

6.3 Experiment 3

In this experiment, hexadecimal string file.txt is used as input. Testing is done

for speedup using input file sizes like 1KB, 10KB, 100KB. The outputs for CPU and

CPU+GPU encryptions for file size 1KB are shown in figures 6.7 and 6.8 respectively.

Final results for encryption are shown in table IV. Here it is observed that as file size

increases CPU takes more time whereas CPU+GPU takes comparatively less time

and so accordingly we get speedup 6.9.

CHAPTER 6. RESULT AND ANALYSIS 48

CPU CPU Encryption CPU Decryption
Input 123abc456def7890 e82826953a1f16e9
Key 123456789abcdef 123456789abcdef
Output e82826953a1f16e9 123abc456def7890
Time (seconds) 0.156000 0.156000

Table II: Results for Encryption and Decryption on CPU

CPU+GPU Encryption Decryption
Input 123abc456def7890 1e322da2d067052
Key 123456789abcdef 123456789abcdef
Output 1e322da2d067052 123abc456def7890
Time (seconds) 0.125000 0.125000

Table III: Results for Encryption and Decryption on CPU + GPU

1 KB 10 KB 100 KB
CPU 0.172000 1.435000 7.925000
CPU + GPU 0.156000 1.248000 6.810000
Speedup 1.10 1.15 1.16

Table IV: Results for Encryption in terms of time in seconds

CHAPTER 6. RESULT AND ANALYSIS 49

Figure 6.5: Encryption for 16 round DES on CPU + GPU

Figure 6.6: Decryption for 16 round DES on CPU + GPU

6.4 Result Analysis

• As first experiment uses different block sizes ranging from 128, 256 and 512,

thread size as 32 and 64, the time ranging from 0.140000 to 0.125000 is observed.

The optimized result is found when the block size is 256 and thread size is 32.

• From the second experiment it is observed that encryption and decryption takes

same time.

• From the third experiment best speedup observed for CUDA-DES encryption

is 1.16x for input file of size 100KB. It is clear from theoretical analysis that we

could get maximum speedup upto 6x.

• Here, experimental results and analysis results for Amdahl’s law (described in

CHAPTER 6. RESULT AND ANALYSIS 50

Figure 6.7: CPU Encryption using file

chapter 5) are found to be nearly same.

• So, GeForce G105M gives speedup of 1.16x for the security algorithm using

CUDA.

CHAPTER 6. RESULT AND ANALYSIS 51

Figure 6.8: CPU + GPU Encryption using file

Figure 6.9: Results for Encryption in terms of time

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Implementation of mapping a set of algorithms onto a multi core platform using a

CUDA programming model, which describes and controls the communication, con-

currences, and synchronization of all components involved is a challenging task.

Considering today’s hardware performance, in order to obtain best results, a proper

programming strategy for optimum mapping of all processes to existing resources is

necessary.

DES is a complex algorithm that uses many effective encryption techniques including

a lot of bit permutations and shifting. GPU implementations of these operations

become very complex. Hence for DES parallelization experiment, it is observed that

GeForce G105M gives speedup of 1.16x for key generation part. From theoretical

analysis, it is clear that maximum theoretical speedup that can be obtained is 6x.

Hence, GPU can be efficiently used for the parallel program developement.

52

CHAPTER 7. CONCLUSION AND FUTURE WORK 53

7.2 Future Work

• There is a scope for parallelization of triple DES and AES as they are more

secured.

• To achieve more parallelism in the program for utilizing the high no of cores to

achieve good better speedup.

• Also memory as well as code optimization can be useful for getting the better

speedup.

• One can use different GPUs to find out the speedup for comparison.

Web References

[1] http://www.hbeongpgpu.com/whatiscuda.htm

[2] http://www.nvidia.com/object/cuda_get.html

[3] http://developer.nvidia.com/object/cuda_3_1_downloads.html

[4] http://driverscollection.com/?H=GeForce%20G%20105M\&By=NVidia\&SS=

Windows%20Vista

[5] http://www.nvidia.com/Download/PreScan.aspx?lang=en-us

[6] http://www.nvidia.com/object/cuda_learn_products.html

[7] http://www.softpedia.com/progDownload/CUDA-SDK-Download-107212.

html

[8] http://www.stillhq.com/gpg/source-1.0.3/cipher/des.html

[9] http://www.eventid.net/docs/desexample.asp

[10] http://impact.crhc.illinois.edu/ftp/report/impact-08-01-mcuda.pdf

[11] http://gpgpu.org/wp/wp-content/uploads/2009/06/02-CUDA_basic.pdf

[12] http://www.many-core.group.cam.ac.uk/projects/

[13] http://www.nvidia.com/object/gpu_technology_conference.html

[14] http://www.conxx.net/rijndael_anim_conxx.html

[15] http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

[16] http://en.wikipedia.org/wiki/Amdahl’s_law

54

http://www.hbeongpgpu.com/whatiscuda.htm
http://www.nvidia.com/object/cuda_get.html
http://developer.nvidia.com/object/cuda_3_1_downloads.html
http://driverscollection.com/?H=GeForce%20G%20105M\&By=NVidia\&SS=Windows%20Vista
http://driverscollection.com/?H=GeForce%20G%20105M\&By=NVidia\&SS=Windows%20Vista
http://www.nvidia.com/Download/PreScan.aspx?lang=en-us
http://www.nvidia.com/object/cuda_learn_products.html
http://www.softpedia.com/progDownload/CUDA-SDK-Download-107212.html
http://www.softpedia.com/progDownload/CUDA-SDK-Download-107212.html
http://www.stillhq.com/gpg/source-1.0.3/cipher/des.html
http://www.eventid.net/docs/desexample.asp
http://impact.crhc.illinois.edu/ftp/report/impact-08-01-mcuda.pdf
http://gpgpu.org/wp/wp-content/uploads/2009/06/02-CUDA_basic.pdf
http://www.many-core.group.cam.ac.uk/projects/
http://www.nvidia.com/object/gpu_technology_conference.html
http://www.conxx.net/rijndael_anim_conxx.html
http://www.yolinux.com/TUTORIAL S/LinuxTutorialPosixThreads.html
http://en.wikipedia.org/wiki/Amdahl's_law

Bibliography

[1] Smid, M.E.,Branstad, D.K.,NBS,“Data Encryption Standard: past and fu-
ture”,Gaithersburg, MD;IEEE,August 2002.

[2] Introducing multithreaded programming:POSIX Threads and NVIDIAs CUDA.

[3] Seung-Jo Han, Heang-Soo Oh, “The improved data encryption standard (DES)
algorithm”, Jongan Park,IEEE,August 2002.

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,Jeremy W. Sheaf-
fer, Kevin Skadron “A Performance Study of General-Purpose Applications on
Graphics Processors Using CUDA”.

[5] Federal Information Processing Standards Publication 46-3,1999 October 25.

[6] Greg Ippolito,YoLinux Tutorial: POSIX thread (pthread) libraries,Jan 2007.

[7] Giovanni Agosta , Alessandro Barenghi ,Fabrizio De Santis , and Gerardo
Pelosi,“Record Setting Software Implementation of DES Using CUDA”.

[8] CudaReferenceManual.pdf.

[9] NVIDIA CUDA C Programming Guide.

[10] David Kirk/NVIDIA and Wen-mei W. Hwu,”Lecture Series” ,University of Illi-
nois, Urbana-Champaign,2007-2009 ECE 498AL.

[11] Michael D. McCool,“Scalable Programming Model For Massively Multicore Pro-
cessors”,Canada; Proceedings of IEEE,Vol. 96,No. 5,May 2008.

[12] William M. Daley,Raymond G. Kammer,“DATA ENCRYPTION STANDARD
(DES)”,FEDERAL INFORMATION PROCESSING STANDARDS PUBLICA-
TION,FIPS PUB 46-3,October 1999.

[13] Brandon P. Luken, Ming Ouyang, and Ahmed H. Desoky,“AES and DES En-
cryption with GPU”,Louisville,August 2002.

[14] R. Stephen Preissig,“Data Encryption Standard (DES) Implementation on the
TMS320C6000”,SPRA702,November 2000.

55

BIBLIOGRAPHY 56

[15] Behrouz A. Forouzan,Debdeep Mukhopadhyay,“Cryptography and Network Se-
curity”,2nd edition,Tata McGraw Hill,2008,ISBN-0-07-070208-X.

[16] Andrew S. Tanenbaum,“Computer Networks”,3rd edition, Prentice
Hall,1997,ISBN-81-203-1165-5.

[17] V. Rajaraman, C. Siva Ram Murthy,“Parallel Computers Architecture and Pro-
gramming”, Prentice Hall,2000,ISBN-81-203-1621-5.

[18] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron. and John
Lach,“Accelerating Compute-Intensive Applications with GPUs and FPGAs”.

Index

Abstract, iv

Acknowledgements, v

Certificate, iii

Conclusion and Future Work, 52

Data Encryption Standard, 28

Implementation, 39

Introduction, 1

Literature Survey, 5

Result and Analysis, 45

Tools and Techniques, 18

57

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	General Overview
	Motivation
	Objective
	System Requirements
	Technical Specifications
	Thesis Organization

	Literature Survey
	CPU and GPU Comparison
	CUDA Introduction
	Advantages
	Limitations
	Current & Future use of CUDA Architecture
	CUDA Processing Flow
	CUDA Programming Model
	Function Qualifiers
	Built-In Variables

	CUDA Memory Model
	GPU/CPU Synchronization
	Memory Optimization
	Host-Device Data Transfers

	CUDA Event API
	NVIDIA GeForce G105M
	Features

	Tools and Techniques
	CUDA installation
	CUDA Compiler - NVCC
	CUDA Occupancy Calculator
	Role Of CUDA compiler
	Limitation
	Notes about Occupancy
	Kernel Usage

	NVIDIA Compute Visual Profiler
	Compute program

	Microsoft Visual Studio 2008
	Specific Steps

	Sample Project
	main.cpp
	KernelWraper.cu
	MyKernel.cu

	Data Encryption Standard
	Introduction
	Modes of Operation for Encryption Algorithms
	Block Cipher
	Stream Cipher

	Modes of Operation for Block Ciphers
	ECB (Electronic Code Book)
	CBC (Cipher Block Chaining)
	CFB (Cipher Feedback)
	OFB (Output Feedback)

	Conventional DES Implementation

	Implementation
	CUDA-DES algorithm implementation using Proposed Model
	Theoretical Analysis for Security Algorithm
	Amdahl's law :
	CUDA Program Flow :

	Result and Analysis
	Experiment 1
	Experiment 2
	Experiment 3
	 Result Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Web References
	Bibliography
	Index

