
Implementation Of Watermarking Technique Using

NVIDIA GPUs

By

Ms.Aspriha Das

08MCES52

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2011

Implementation of watermarking Technique using

NVIDIA GPUs

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Aspriha Das
(08MCES52)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2011

iii

Dedication

To my Mother Mrs. Susmita Das for her unconditional love and to my loving Husband

Mr. Rajiv Trivedi for his endless support and being a great motivator in my life.

iv

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Technology

in Computer Science and Engineering at Nirma University and has not been submit-

ted elsewhere for a degree.

b. Due acknowledgement has been made in the text to all other material used.

Ms.Aspriha Das

v

Certificate

This is to certify that the Major Project entitled ”Implementation of watermarking Tech-

nique using NVIDIA GPUs.” submitted by Ms.Aspriha Das (08MCES52), towards the

partial fulfillment of the requirements for the degree of Master of Technology in Computer

Science and Engineering of Nirma University of Science and Technology, Ahmedabad is

the record of work carried out by her under my supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination. The

results embodied in this major project part-I, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Prof. Samir Patel Dr.S.N.Pradhan

Guide, Senior Associate Professor, Professor and PG-Coordinator,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Prof.D.J.Patel Dr.K.Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

vi

Abstract

The proliferation of digitized media due to the rapid growth of networked multimedia

systems, has created an urgent need for fast copyright enforcement technologies that can

protect copyright ownership of multimedia objects. Digital image watermarking is one

such technology that has been developed to protect digital images from illegal manipu-

lations. In particular, watermarking algorithms which are based on the discrete wavelet

transform have been widely recognized due to its excellent spatial localization, frequency

spread, and multi-resolution characteristics, which are similar to the theoretical models of

the human visual system. In this project,an imperceptible and a robust DWT based wa-

termarking algorithm have been develop using MATLAB and CUDA - Compute Unified

Device Architecture. MATLAB is a very powerful tool which deals with immensely large

image manipulations. There are several ways available to write code in MATLAB for large

calculations but they are very time consuming. As a solution, the algorithm is implemented

in MEX and CUDA MEX, which takes less time compared to M-files implementation. The

comparison results with respect to time in between the M-files, MEX-files, CUDA MEX

file has been measured. The parallel CUDA MEX code will run in many threads on an

NVIDIA graphical processing unit. By decreasing the completion time of the longest part

of the code, largest performance increase can be achieved.

vii

Acknowledgements

Theory and practical are essential and complimentary to each other. Success is possible

only when combined with hard work and dedication. I achieved great pleasure in complet-

ing this thesis work and I want to take the opportunity to say thanks to all of them, who

have, in some way or other helped me to achieve it.

I feel great pride in having done my research work under the efficient supervision of my

guide and mentor Prof. Samir Patel, Senior Associate Professor, Department of Computer

Science and Engineering, Institute of Technology, Nirma University, Ahmedabad. I would

like to thank him for his valuable guidance,suggestions and the pain he has taken to go

through the project work and make necessary amendments as and when needed.

I express my deep sense of gratitude to Dr. S.N.Pradhan, Professor and PG-Coordinator of

Department of Computer Engineering, Institute of Technology,Nirma University, Ahmed-

abad for his exceptional support and continual encouragement throughout the project work.

I would like take this opportunity to thank Dr. Ketan Kotecha, Director, Institute of

Technology, Nirma University, Ahmedabad for his unmentionable support, providing basic

infrastructure and healthy research environment. I also would like to thank my Institution,

all my faculty members in Department of Computer Science and my colleagues without

whom this project would have been a distant reality.

Words are not enough to express my deepest sense of affection towards my Mother, Mrs.

Susmita Das. It was her belief and motivation that I have been able to come so far success-

fully. All I can say that without her faith and care it was not possible for me to achieve my

goal.

Last but not the least; I would like to thank my Parents and Parents-in-law especially my

viii

Husband and all my family members for their great love, support and encouragement be-

cause of whom I am able to complete my dissertation work successfully.

Above all I want to thank GOD, for giving me this opportunity to achieve my goal.

- Ms.Aspriha Das

08MCES52

Contents

Dedication iii

Declaration iv

Certificate v

Abstract vi

Acknowledgements vii

List of Tables xii

List of Figures xiii

Abbreviations xv

1 Introduction 1

1.1 General . 1

1.2 Objective of Study . 2

1.3 Scope of Work . 3

1.4 Thesis Organization . 3

2 Literature Survey 5

2.1 Introduction To NVIDIA CUDA . 5

2.2 GPU Hardware Architecture . 6

ix

CONTENTS x

2.3 Technical Background of CUDA . 8

2.3.1 Hardware Implementation : Memory Architecture 9

2.3.2 Memory Hierarchy . 10

2.3.3 Heterogeneous Programming . 11

2.3.4 CUDA Programming Model . 12

2.3.5 Built-In Variables . 13

2.4 Research Papers . 14

3 Digital Image watermarking 17

3.1 Classification-by place of Application . 17

3.2 Types of Watermark . 18

3.3 Applications of Watermarking . 18

3.4 Uses of Digital Watermarking . 21

4 Wavelet Transform 24

4.1 Procedure of DWT . 24

4.2 The 2D-DWT transform . 25

4.3 Applications of Wavelet Transforms . 27

4.4 Watermarking in the Wavelet Domain . 27

5 MATLAB-CUDA Integration 29

5.1 How to compile CUDA code in MATLAB 30

5.2 Installation . 33

5.2.1 System Requirement . 33

5.2.2 CUDA Installation . 33

6 Algorithm For Watermarking Process 34

6.1 EMBEDDING PROCESS . 34

6.2 EXTRACTION PROCESS . 35

6.3 Implementation of the Algorithm in MATLAB 36

6.3.1 Extraction Process . 37

CONTENTS xi

6.3.2 Results . 38

7 MATLAB Executable 39

7.1 MEX-Files VS. M-Files . 39

7.1.1 The Gateway Function . 40

7.1.2 Data Types . 41

7.1.3 Addressing Matrices . 42

7.1.4 Managing Input and Output Parameters 42

7.1.5 Allocating and Freeing Memory 42

7.1.6 Displaying Messages to the User 43

7.2 Example: Writing a ”Hello World” MEX-file 43

7.3 MEX Implementation . 44

7.3.1 Results . 44

8 Strategy to implement the code in CUDA MEX 45

8.1 Cuda Mex Files . 46

8.2 CUDA-Enabled MEX Files . 47

8.2.1 Steps to Perform: . 47

8.2.2 The basic CUDA MEX files contain the following parts 48

8.3 Implementation of CUDA MEX . 48

8.3.1 Experimental Results . 51

9 Conclusion and Future Work 53

9.1 Conclusion . 53

9.2 Future Work . 54

Web References 56

References 59

Index 59

List of Tables

6.1 Results Of The M-File . 38

7.1 Results Of The MEX-File . 44

8.1 Results Of The CUDA MEX-file . 51

xii

List of Figures

2.1 processing power of NVIDIA GPU against Intel 6

2.2 The GPU Devotes More Transistors to Data Processing 7

2.3 A set of SIMD multiprocessor with on-chip shared memory 10

2.4 Memory Hierarchy . 11

2.5 CUDA Programming Model . 13

3.1 Official Documents . 19

4.1 Representation of a wave (a), and a wavelet (b) 24

4.2 Block diagram of filter analysis . 25

4.3 DWT function . 26

4.4 2-D DWT for Image . 27

5.1 Basic Architecture . 30

5.2 setup cuda mex . 32

6.1 Decomposed into 2 resolution levels . 35

6.2 Original Image . 36

6.3 Embedded Information . 36

6.4 watermarked Image . 37

6.5 Extracted Information . 37

7.1 mxArray memory layout. 42

xiii

LIST OF FIGURES xiv

8.1 Flow of CUDA MEX implementation . 46

8.2 Cuda Mex Flow . 49

8.3 Information Embedding . 50

8.4 Information Extraction . 50

8.5 Execution . 51

8.6 Result Analysis . 52

Abbreviations

ALU Arithmetic Logic Units

CUDA Compute unified Device Architechture

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

FWT Fast Wavelet Transform

GPU Graphics Processing Unit

MEX MATLAB executable

SIMD single instruction is performed over multiple data

xv

Chapter 1

Introduction

1.1 General

Digital image watermarking is one such technology that has been developed to protect dig-

ital images from illegal manipulations. Its expected that digital watermarking will have

a wide span of practical applications such as digital cameras, medical imaging, image

databases, and video-on-demand systems, among many others. In accordance to achieve

high speed for respective application with taking care of computing infrastructure , one

approach is CUDA (Compute Unified Device Architecture) which could be use as back

end and MATLAB as front end in watermarking application. MATLAB is a very power-

ful computer program used to solve complicated mathematical problems. We could use

MEX-files, which can be written in the C-like programming language and run through the

MATLAB command window just like the built-in functions of MATLAB. In order to speed

up MATLAB, the main code could be written in M- files and profiled to find the main bot-

tlenecks in the sequential code. Finally the MEX-file could be written including CUDA

code to decrease the compilation time of the algorithm from MATLAB. The algorithm in

Cuda Mex, takes less time compared to M-files and Mex-files implementation. In this re-

port, the comparison results with respect to time in between the M-files, MEX-files and

Cuda Mex files has been taken. This parallel code will run in many threads on an NVIDIA

1

CHAPTER 1. INTRODUCTION 2

graphical processing unit. By decreasing the completion time of the longest part of the

code the largest performance increase can be achieved in the watermarking Process.

In order to digital watermarking method to be effective it should be imperceptible,

and robust. Current digital image watermarking techniques can be grouped into two ma-

jor classes: spatial-domain and frequency-domain watermarking techniques. Compared to

spatial domain techniques, frequency-domain watermarking techniques proved to be more

effective with respect to achieving the imperceptibility and robustness requirements of dig-

ital watermarking algorithms. Commonly used frequency-domain transforms include the

Discrete Wavelet Transform (DWT), the Discrete Cosine Transform (DCT) and Discrete

Fourier Transform (DFT).,[6] However, DWT has been used in digital image watermarking

more frequently due to its excellent spatial localization and multi-resolution characteristics,

which are similar to the theoretical models of the human visual system.,[8]

1.2 Objective of Study

• MATLAB is a very powerful tool which deals with immensely large image manipu-

lations. There are several ways available to write code in MATLAB but they are very

time consuming. There is a way to exploit GPU capabilities in MATLAB, is through

the use of CUDA. We can use MEX files to perform computations on the GPU using

CUDA.

• Support heterogeneous type of computation where applications use both the CPU

and GPU. Serial portions of applications are run on the CPU, and parallel portions

are offloaded to the GPU.

• To compile this kind of application from MATLAB, we need a specific perl script.

Which uses the NVCC compiler to compile the parallel part of the code and the C

compiler to compile the serial portion of the code.

• Combination of MATLAB and CUDA enables high-productivity and high-performance

CHAPTER 1. INTRODUCTION 3

solutions.

• For growing demand of digital data processing, authentication is most important and

it should be fast enough to deal with the current demand. Thus,programmers can

have a higher performance during watermarking process.

• Enable heterogeneous systems (i.e. CPU + GPU) CPU and GPU are separate devices

with separate DRAMs.

1.3 Scope of Work

• Data conversion form double to single precision before sending the data to the GPU.

As MATLAB deals with double precision and GPU deals with single precision, con-

version is very important. The current generation of GPU from NVIDIA has support

for IEEE single precision. Double precision support will be available in the next

generation in the coming years.

• MATLAB is a column major and CUDA is row major, so to access a specific location

indexing is needed.

1.4 Thesis Organization

• The dissertation started with a general introduction about background, types of digital

watermarking technique and the concepts and basic features of watermarking.

• Literature survey on CUDA describes differences between CPU and GPU. It also

describes CUDA Programming Model ,Memory Architecture, Hardware implemen-

tation and various memory optimization techniques. Along with that it describes

about advantages of MATLAB and CUDA integration platform.

• In the second part of the report is a description that expounded the essential knowl-

edge about the wavelet transform that will be utilized to define an approach and

CHAPTER 1. INTRODUCTION 4

foundation to implementation.

• The third part describe about the development environment and the algorithm for the

watermarking.

• The fourth part is the most important one, where the implementation of the algorithm

has been done in M-Files,MEX-Files and CUDA MEX Files.

• The sixth part, where we have done the comparison of the result of all the implemen-

tation in terms of time.

• Conclusion and Future Work concluding remarks and scope for future work is pre-

sented.

Chapter 2

Literature Survey

2.1 Introduction To NVIDIA CUDA

Parallel Computing involves use of multiple cores at the same time for computation pur-

pose. Parallel computing has evolved because, there is a limit to the clock frequency at

which a core can work at(otherwise it gets over-heated). Thus, the solution given was to

use multiple cores at the same time. Supercomputers like PARAM use 4608 cores.[20]

GPUs (Graphics Processing Unit), have multiple cores within (around 128 or more).

But these are not used when graphics problems are not present and merely computation

is to be done. Thus, the power of a PC can be greatly increased by making use of these

GPUs. For utilization of a GPU, which is basically a co-processor, we have to program

accordingly as normal programs do not support parallel computation.

NVIDIA has come up with CUDA (compute unified device architecture) technology,

which is the only C language environment that unlocks the processing power of the GPU

to solve complex compute-intensive problems. Thus, using such tactics, utilization of re-

sources at our disposal increases.

The tremendous increase in power, in today’s GPUs has led to a need for ways to

utilize them for non-graphics applications. For example, the Nvidia 8800GTX is capable

5

CHAPTER 2. LITERATURE SURVEY 6

of a theoretical maximum of 350 GFLOPS at a cost of $570 (April 2007). Compared to

this a 3.0 GHz Intel Core2 Duo, which is capable of around 40 GFLOPS, at a cost of

about $266 (April 2007). This gives $.95/GFLOP for the 8800GTX and $6.65/GFLOP

for the Core 2 Duo. Memory bandwidth is also much higher on the GPU: 86.4 GB/sec

vs. 6GB/sec. Figure 2.1 is an indicator of the processing power of NVIDIA GPU against

Intel:[20],[15],[14]

Figure 2.1: processing power of NVIDIA GPU against Intel

2.2 GPU Hardware Architecture

GPUs are designed for parallel computing with an emphasis on arithmetic operations,

which originate from their main purpose - to compute graphic scene which is finally dis-

played. Current graphic accelerators consist of several multi- processors (up to 30). Each

multiprocessor contains several (e.g., 8, 12 or 16) Arithmetic Logic Units (ALUs). Up

to 480 processors is in total on the current high-end GPUs. On the other hand, multi-

core CPUs usually consist of 2-8 cores. These cores usually work asynchronously and

independently.[2] Thus, each core can execute different instructions over different data at

the same time. More specifically, the GPU is especially well-suited to address problems

that can be expressed as data-parallel computations. The GPU Devotes More Transistors to

Data Processing like in figure 2.2.[1]Data-parallel processing maps data elements to paral-

CHAPTER 2. LITERATURE SURVEY 7

Figure 2.2: The GPU Devotes More Transistors to Data Processing

lel processing threads. Many applications that process large data sets can use a data-parallel

programming model to speed up the computations.[4]

Following points make GPUs different from CPUs.

a. CPUs use SIMD (single instruction is performed over multiple data) vector units, and

GPUs use SIMT (single instruction, multiple threads) for scalar thread processing.

b. CPUs use caches to increase their performance owing to reduced memory access

latencies and GPUs use caches or shared memory to increase memory band- width.

c. CPU cores are designed to execute a single thread of sequential instructions with

maximum speed and GPUs are designed for fast execution of many parallel instruc-

tion threads.[4]

d. CPUs can execute 1-2 threads per core, while GPUs can maintain up to 1024 threads

per each multiprocessor. Switching from one thread to another costs hundreds of

cycles to CPUs, but GPUs switch several threads per cycle.

e. CPUs reduce memory access latencies using large caches as well as branch pre-

diction. GPUs solve the problem of memory access latencies using simultaneous

execution of thousands threads when one thread is waiting for data from mem- ory,

a GPU can execute another thread without latencies.[10]

CHAPTER 2. LITERATURE SURVEY 8

f. GPUs contain extensive support of Stream Processing paradigm. It is related to

SIMD (Single Instruction, Multiple Data) processing.

2.3 Technical Background of CUDA

CUDA technology gives computationally intensive applications access to the tremendous

processing power of the recent GPUs through a C like programming interface. The GPU

is especially well suited to address problems that can be expressed as data parallel com-

putations with high arithmetic intensity. Because the same program is executed for each

data element, there is a lower requirement for sophisticated control, and because it is exe-

cuted on many data elements and has high arithmetic intensity, the memory access latency

can be hidden with calculations instead of big data caches. Data parallel processing maps

data elements to parallel processing threads. Many applications that process large data sets

such as arrays can use a data parallel programming model to speed up the computations.

In fact, many algorithms are accelerated by data parallel processing, from general signal

processing to physics simulation or to computational biology. Up until now, however, ac-

cessing all that computational power packed into the GPU and efficiently leveraging it for

non-graphics applications remained tricky.[15] CUDA exposes several hardware features

that are not available via the graphics API. The most significant of these is shared memory,

which is a small (currently 16KB per multiprocessor) area of on-chip memory which can be

accessed in parallel by blocks of threads. This allows caching of frequently used data and

can provide large speedups over using textures to access data. Combined with a thread syn-

chronization primitive, this allows co-operative parallel processing of on-chip data, greatly

reducing the expensive off-chip bandwidth requirements of many parallel algorithms. This

benefits a number of common applications such as linear algebra, Fast Fourier Transforms,

and image processing application.

The advantages of CUDA architecture are the following:

a. Hardware abstraction: NVIDIA has hidden the architectures of its GPUs beneath an

CHAPTER 2. LITERATURE SURVEY 9

application programming interface (API). Programmers need not to know the com-

plex details of the GPU hardware.

b. Comfortable development environment: CUDA programming interface provides a

relatively simple path for users familiar with the C programming language to easily

write programs for execution by the device.

c. General DRAM memory addressing: CUDA provides general DRAM memory ad-

dressing for more programming flexibility. From a programming perspective, GPU

can gather data from any location in DRAM, and also scatter data to any location in

DRAM, just like on a CPU.

d. Parallel data cache: CUDA has on-chip shared memory with very fast general read

and write access, that threads use to share data with each other.

e. Thread synchronization: Synchronization within a thread block is entirely managed

in hardware. Synchronization among thread blocks is achieved by allowing a kernel

to complete and starting a new kernel.

2.3.1 Hardware Implementation : Memory Architecture

The local, global, constant, and texture spaces are regions of device memory mention in

figure 2.3. Each multiprocessor has:[20],[1]

• A set of 32-bit registers per processor.

• On-chip shared memory where the shared memory space resides.

• A read-only constant cache to speed up access to the constant memory space.

• A read-only texture cache to speed up access to the texture memory space [7].

All of the above points shows that CUDA implies a special approach to development,

slightly different from CPU programming. You must be mindful of different memory types,

CHAPTER 2. LITERATURE SURVEY 10

Figure 2.3: A set of SIMD multiprocessor with on-chip shared memory

of the fact that local and global memory is not cached and that their access latencies are

much higher than in register memory, as it’s physically located in separate chips.

2.3.2 Memory Hierarchy

Each thread has private local memory. Each thread block has shared memory visible to all

threads of the block and with the same lifetime as the block. All threads have access to the

same global memory.CUDA threads may access data from multiple memory spaces during

their execution as illustrated by Figure 2.4.[11],[6],[12]

CHAPTER 2. LITERATURE SURVEY 11

Figure 2.4: Memory Hierarchy

There are also two additional read-only memory spaces accessible by all threads: the

constant and texture memory spaces.The global, constant, and texture memory spaces are

persistent across kernel launches by the same application.[13]

2.3.3 Heterogeneous Programming

CUDA programming model assumes that the CUDA threads execute on a physically sep-

arate device that operates as a coprocessor to the host running the C program. This also

assumes that both the host and the device maintain their own separate memory spaces in

DRAM, referred to as host memory and device memory, respectively. Therefore, a program

manages the global, constant, and texture memory spaces visible to kernels through calls

to the CUDA runtime. This includes device memory allocation and deallocation as well as

CHAPTER 2. LITERATURE SURVEY 12

data transfer between host and device memory.

The programmer supplies a single source program encompassing both host (CPU) and

kernel (GPU) code. The host code transfers data to and from the GPUs global memory

and initiates the kernel code by calling a function. A kernel runs several blocks of threads

and each thread performs a single computation. These threads are organized into a hierar-

chy of grids of thread blocks.The maximum number of threads per block is 512. Kernels

are separated by an inter-kernel synchronization barrier. Threads may access data from

multiple memory spaces during their execution. Each thread has a private local memory.

Each thread block has a shared memory visible to all threads of the block that has the same

lifetime as the block. Finally, all threads have access to the same global memory.

2.3.4 CUDA Programming Model

The CUDA programming model is similar to the familiar SPMD (single-program multiple

data) model in their styles.

The advent of multicore CPUs and many core GPUs means that mainstream proces-

sor chips are now parallel systems. Furthermore, their parallelism continues to scale with

Moore.s law. The challenge is to develop application software that transparently scales

its parallelism to leverage the increasing number of processor cores.The CUDA paral-

lel programming model is designed to overcome this challenge while maintaining a low

learning curve for programmers familiar with standard programming languages such as

C.[11]Indeed, each block of threads can be scheduled on any of the available processor

cores, in any order, concurrently or sequentially, so that a compiled CUDA program can

execute on any number of processor cores as illustrated by the Figure 2.5, and only the

runtime system needs to know the physical processor count. This scalable programming

model allows the CUDA architecture to span a wide.[13]

These abstractions provide fine-grained data parallelism and thread parallelism, nested

within coarse-grained data parallelism and task parallelism. They guide the programmer to

CHAPTER 2. LITERATURE SURVEY 13

Figure 2.5: CUDA Programming Model

partition the problem into coarse sub-problems that can be solved independently in parallel

by blocks of threads, and each sub-problem into finer pieces that can be solved coopera-

tively in parallel by all threads within the block.

2.3.5 Built-In Variables

• gridDim - This variable is of type dim3 and contains the dimensions of the grid.

• blockIdx - This variable is of type uint3 and contains the block index within the grid.

• blockDim - This variable is of type dim3 and contains the dimensions of the block.

• threadIdx - This variable is of type uint3 and contains the thread index within the

block.

• WarpSize - This variable is of type int and contains the warp size in threads.

CHAPTER 2. LITERATURE SURVEY 14

• Restrictions - It is not allowed to take the address of any of the built-in variables and

to assign values to any of the built-in variables.

2.4 Research Papers

a. Shikha Tripathi and R.C. Jain has introduces two novel watermarking techniques

for digital images. The proposed scheme allows 5 levels of security with one optional

sixth level of security. Also the DWT method provides an additional level of security

as compared to the DCT based method as any of the three sub-bands can be selected

for embedding the watermark. A linear relation between the watermark in frequency

domain and a security matrix is proposed to embed the watermark. In case of the

additive approach there is a probability of (block size) (approximately zero) that the

intermediate user will be able to exactly guess the correct details. Hence, the water-

marks are not susceptible to being breached for most practical purposes. The mul-

tiplicative approach provides better compression as the coefficients with zero value

do not change as a result of embedding. The authorization procedure is simple and

fast. It allows for easy extraction of watermark and hence, easy verification of owner-

ship. The proposed techniques differ from other techniques, in the way watermark is

spread and extracted. As the polynomial degree increases, the probability of comput-

ing the right key approaches zero for the third person indicating effectiveness of the

proposed scheme. The experimental results have shown that the proposed technique

will not be threatened by image cropping and JPEG lossy compression.

b. Ali Al-Haj,the author of the paper ”Combined DWT-DCT Digital Image Water-

marking” explained the discrete wavelet transform (DWT) and the discrete cosine

transform (DCT) have been applied successfully in many in digital image watermark-

ing. In this paper, they described a combined DWT-DCT digital image watermarking

algorithm. Watermarking was done by embedding the watermark in the first and sec-

ond level DWT sub-bands of the host image, followed by the application of DCT on

CHAPTER 2. LITERATURE SURVEY 15

the selected DWT sub-bands. The combination of the two transforms improved the

watermarking performance considerably when compared to the DWT-Only water-

marking approach. In conclusion, in DWT-based digital watermarking applications,

combining appropriate transforms with the DWT may have a positive impact on per-

formance of the watermarking system.

c. Seung-Hun Yoo and Jin-Hyung Park,the author of the paper ”Accelerating Multi-

scale Image Fusion Algorithms using CUDA”,shows approaches to accelerate multi-

scale image fusion speed on GPU (Graphics Processing Unit) using CUDA (Com-

pute Unified Device Architecture). The GPU has evolved into a very powerful and

flexible streaming processor, which provides a good computational power and mem-

ory bandwidth. The enormous computational power and flexible programmability of

GPU are applied in many existing applications requiring fast speed. The main con-

tribution of this paper is accelerating fusion speed by applying strengths of GPU to

existing multi-scale image fusion algorithms. Multi-scale image fusion algorithms

were implemented using CUDA software platform of the latest version of GPU, re-

spectively.According to fusion method, GPU was 6-to-8 times faster than CPU.

d. Ram Rakesh and Vaclav Simek presents in their paper the details about the accel-

eration of 2D wavelet-based medical data (image) compression on MATLAB with

CUDA. MATLAB is a high-level language and interactive computation environment

that enables the user to perform computationally intensive tasks. This paper presents

the speed-up achieved and benefits of the CUDA accelerated version of 2D Image

Compression based on Wavelets.The Combination of MATLAB and CUDA together

with GeForce8 graphics card solves the day to day increasing demand for the mas-

sive parallel general purpose computing. As the number of processing elements is

increasing in the GeForce 8 series, there is a significant potential for the compression

speed-up of the high dimensional medical data images (3D, 4D etc) in the future. It

took about 524288 clock cycles to compute wavelet transform within MATLAB en-

vironment on the specified CPU. The accelerated version on GPU was astonishingly

CHAPTER 2. LITERATURE SURVEY 16

fast, because it took only 20480 clock cycles.

e. Erkan YAVUZ and Ziya TELATAR has proposed an improved watermarking method

against SVD based watermark ambiguity is proposed, tested and shown that the am-

biguity problem is resolved. DWT subbands are selected for embedding the water-

mark to have better robustness. The system is robust for some attacks especially for

10requires synchronization between the cover and watermarked image to get U ma-

trix correctly, we cannot make use of some features of SVD based methods such as

limited robustness to cropping and rotation. However, the similar SVD based meth-

ods being robust to cropping and rotation have watermark ambiguity problem. Then,

there is no degradation with this method .Gain factor for U matrix is optimized for

robustness and perceptual quality; the visual artifacts are generated if it is increased

further while robustness gets worse if it is decreased. Increasing the gain factors of

the SVs does not degrade image quality, but knowing the SVs are the luminance val-

ues, the image becomes brighter. They embedded the whole U matrix as a control

parameter, but some part of it may be enough due to the fact that SVD image layers

are arranged in descending importance, this may be a future directive.

Chapter 3

Digital Image watermarking

Digital watermarking is the process of embedding information into a digital signal in a

way that is difficult to remove. The signal may be audio, pictures or video. If the signal is

copied, then the information is also carried in the copy. A signal may carry several different

watermarks at the same time. In visible watermarking, the information is visible in the

picture or video. Typically, the information is text or a logo which identifies the owner of

the media. A television broadcaster adds its logo to the corner of transmitted video, this is

also a visible watermark.[17] In invisible watermarking, information is added as digital data

to audio, picture or video, but it cannot be perceived as such (although it may be possible

to detect that some amount of information is hidden). The watermark may be intended for

widespread use and is thus made easy to retrieve or it may be a form of steganography,

where a party communicates a secret message embedded in the digital signal. In either

case, as in visible watermarking, the objective is to attach ownership or other descriptive

information to the signal in a way that is difficult to remove. It is also possible to use hidden

embedded information as a means of covert communication between individuals.[18]

3.1 Classification-by place of Application

a. Spatial domain techniques: Watermarking schemes that directly perform some trans-

formation on the image pixels are called spatial domain watermarks or spatial water-

17

CHAPTER 3. DIGITAL IMAGE WATERMARKING 18

marks.

b. Transform domain techniques:Watermarking schemes that transform the image in the

frequency domain and then modify the transform coefficients are called transform

domain techniques or spectral watermarks.[17]

3.2 Types of Watermark

a. FRAGILE WATERMARK: Fragile watermarks do not survive lossy transforma-

tions to the original host signal and their purpose is tamper detection of the orig-

inal signal. Placing the watermark information into the perceptually insignificant

portions of the data guarantees imperceptibility and provides fragile marking capa-

bilities. [17]For instance, early watermark techniques for still image data propose

inserting watermark information into the least significant bits of the pixel values.

b. SEMI-FRAGILE WATERMARK: A semi-fragile watermark is a mark which is

(highly) sensitive to a modification of the stego medium. A fragile watermarking

scheme should be able to detect any change in the signal and identify where it has

taken place and possibly what the signal was before modification. [18]It serves at

proving the authenticity of a document.

c. ROBUST WATERMARK: A robust watermark should be stuck to the document it

has been embedded in, in such a way that any signal transform of reasonable strength

cannot remove the watermark. Hence a pirate willing to remove the watermark will

not succeed unless they debase the document too much to be of commercial interest.

3.3 Applications of Watermarking

a. Give your images the power of personalization and protection: Using this you

can add a layer of protection to your images by identifying copyright ownership

and delivering a tracking capability that monitors and reports where your images are

CHAPTER 3. DIGITAL IMAGE WATERMARKING 19

being used. You can protect your images by tracking them beyond your own domain.

[17]This will increase control over your assets by tracking and reporting on their

authorized and unauthorized use.

b. Limit unlicensed use: Using this you can limit unlicensed use and receive informa-

tion to help recover otherwise lost revenue.

c. For digital audio and video: Similar to the process in which artist artistically signed

their paintings with a brush to claim their copyrights; artists of today can watermark

their work and hide for example their name in the image. Hence, the embedded

watermark will allow identifying the owner of the work. It is clear that this concept

is also applicable to other media such as digital video and audio. [18]Especially the

distribution of digital audio over the Internet in the MP3 format is currently a big

problem. In this scenario digital watermarking may be useful to set up a controlled

audio distribution and provide efficient means for copyright protection.

d. Certification: For example, in the field of data security, watermarks may be used

for certification, authentication, and conditional access. Certification is an important

issue for official documents, such as identity cards or passports in figure 3.1.

Figure 3.1: Official Documents

e. To mutually linking information on the documents: That means that some infor-

mation is written twice on the document: for instance, the name of a passport owner

is normally printed in clear text and is also hidden as an invisible watermark in the

photo of the owner. If anyone would intend to counterfeit the passport by replacing

the photo, it would be possible to detect the change by scanning the passport and

CHAPTER 3. DIGITAL IMAGE WATERMARKING 20

verifying the name hidden in the photo does not match any more the name printed on

the passport.

f. The authentication of image content: The goal of this application is to detect alter-

ations and modifications in an image. The three pictures below illustrate an example

of this application. The picture on the left shows an original photo of a car that has

been protected with a watermarking technology. In the center, the same picture is

shown but with a small modification: the numbers on the license plate have been

changed. The picture on the right shows the photo after running the watermark de-

tection program on the tampered photo. [17]The tampered areas are indicated in

white and we can clearly see that the detected areas correspond to the modifications

applied to the original photo.

g. Conditional access and copy-control: For example conditional access to confiden-

tial data on CD-ROMs may be provided using digital watermarking technology. The

concept consists of inserting a watermark into the CD label. In order to read and

decrypt the data stored on the CD, the watermark has to be read since it contains

information needed for decryption. If someone copies the CD, he will not be able to

read the data in clear-text since he does not have the required watermark. The picture

below shows an example of a protected CD. To read the data on the CD, the user

starts a program on the CD. This program asks the user to put the CD on the scanner

and then reads the watermark. If the watermark is valid the program decrypts the

data on the CD and gives the user access the clear-text data. (Patent pending, contact

us for license.)

h. Copy-control: Several companies work on a watermarking system for copy con-

trol in the DVD environment. Fully functioning solutions exist already, however,

for the moment they have not been entirely approved by the content producers and

providers. Finally, this solution is also an efficient and simple way to prevent the use

of illegal copies of software. It has a similar functionally as the anti-piracy device

called ”dongle”, but is more compact and less expensive.

CHAPTER 3. DIGITAL IMAGE WATERMARKING 21

i. As invisible labels and content links: For example, photo development laboratories

may insert a watermark into the picture to link the print to its negative. This way is

very simple to find the negative for a given print. All one has to do is scan the print

and extracted the information about the negative. In a completely different scenario

digital watermarks may be used as a geometrical reference which may be useful

for programs such as optical character recognition (OCR) software. The embedded

calibration watermark may improve the detection reliability of the OCR software

since it allows the determination of translation, rotation, and scaling.

3.4 Uses of Digital Watermarking

The list given here is by no means complete and intends to give a perspective of the broad

range of possibilities that digital watermarking opens.

a. Image Watermarking: Many techniques have been developed for the watermarking

of still image data. For grey-level or color-image watermarking, watermark em-

bedding techniques are designed to insert the watermark directly into the original

image data, such as the luminance or color components or into some transformed

version of the original data to take advantage of perceptual properties or robustness

to particular signal manipulations. Requirements for image watermarking include

imperceptibility, robustness to common signal processing operations, and capacity.

[17],[18]Common signal processing operations which the watermark should survive

include compression (such as JPEG), filtering, re-scaling, cropping, A/D and D/A

conversion, geometric distortions, and additive noise. Capacity refers to the amount

of information (or payload) that can be hidden in the host image and detected reliably

under normal operating conditions. The watermark may be scaled appropriately to

minimize noticeable distortions to the host. Some examples of watermark informa-

tion include a binary sequence representing a serial number or credit card number, a

logo, a picture, or a signature.

CHAPTER 3. DIGITAL IMAGE WATERMARKING 22

For still image watermarking, watermark embedding is applied directly to the pixel

values in the spatial domain or to transform coefficients in a transform domain such

as the discrete cosine transform (DCT) or discrete wavelet transform (DWT). Wa-

termark detection usually consists of some preprocessing step (which may include

removal of the original host signal if it is available for detection) followed by a cor-

relation operator.

b. Video Watermarking: In this case most considerations made in previous sections

hold. However, now the temporal axis can be exploited to increase the redundancy

of the watermark. As in the still images case, watermarks can be created either in the

spatial or in the DCT domains. In the latter, the results can be directly extrapolated to

MPEG-2 sequences, although different actions must be taken for I, P and B frames.

Note that perhaps the set of attacks that can be performed intentionally is not smaller

but definitely more expensive than for still images.

c. Audio Watermarking: Again, previous considerations are valid. In this case, time

and frequency masking properties of the human ear are used to conceal the watermark

and make it inaudible. The greatest difficulty lies in synchronizing the watermark and

the watermarked audio file, but techniques that overcome this problem have been

proposed.

d. Hardware/Software Watermarking: This is a good paradigm that allows us to un-

derstand how almost every kind of data can be copyright protected. If one is able

to find two different ways of expressing the same information, then one bit of infor-

mation can be concealed, something that can be easily generalized to any number

of bits. This is why it is generally said that a perfect compression scheme does not

leave room for watermarking. In the hardware context, Boolean equivalences can be

exploited to yield instances that use different types of gates and that can be addressed

by the hidden information bits. Software can be also protected not only by finding

equivalences between instructions, variable names, or memory addresses, but also

by altering the order of non-critical instructions. All this can be accomplished at

CHAPTER 3. DIGITAL IMAGE WATERMARKING 23

compiler level.

e. Text Watermarking: This problem, which in fact was one of the first that was stud-

ied within the information hiding area, can be solved at two levels. At the printout

level, information can be encoded in the way the text lines or words are separated

(this facilitates the survival of the watermark even to photocopying). At the semantic

level (necessary when raw text files are provided), equivalences between words or

expressions can be used, although special care has to be taken not to destruct the

possible intention of the author.

f. Fingerprinting: This is similar to the previous application and allows acquisition

devices (such as video cameras, audio recorders, etc) to insert information about the

specific device (e.g., an ID number) and date of creation. This can also be done with

conventional digital signature techniques but with watermarking it becomes consid-

erably more difficult to excise or alter the signature. Some digital cameras already

include this feature.

g. Authentication: This is a variant of the previous application, in an area where cryp-

tographic techniques have already made their way. However, there are two significant

benefits that arise from using watermarking: first, as in the previous case, the signa-

ture becomes embedded in the message, second, it is possible to create soft authen-

tication algorithms that offer a multi-valued perceptual closeness measure that ac-

counts for different unintentional transformations that the data may have suffered (an

example is image compression with different levels), instead of the classical yes/no

answer given by cryptography-based authentication. Unfortunately, the major draw-

back of watermarking-based authentication is the lack of public key algorithms that

force either to put secret keys in risk or to resort to trusted parties.

Chapter 4

Wavelet Transform

A wavelet is a small wave which has its energy concentrated in time. It has an oscillating

wavelike characteristic but also has the ability to allow simultaneous time and frequency

analysis and it is a suitable tool for transient, non-stationary or time-varying phenomena.

[6]

Figure 4.1: Representation of a wave (a), and a wavelet (b)

A discrete wavelet transform (DWT) is any wavelet transform for which the wavelets

are discretely sampled. As with other wavelet transforms, a key advantage it has over

Fourier transforms is temporal resolution means it captures both frequency and location

information (location in time).

4.1 Procedure of DWT

The DWT of a signal x is calculated by passing it through a series of filters. First the

samples are passed through a low pass filter with impulse response resulting in a convolu-

24

CHAPTER 4. WAVELET TRANSFORM 25

tion. The signal is also decomposed simultaneously using a high-pass filter shows in figure

4.2. The outputs giving the detail coefficients (from the high-pass filter) and approximation

coefficients (from the low-pass).[6],[8]

Figure 4.2: Block diagram of filter analysis

It is important that the two filters are related to each other and they are known as a

quadrature mirror filter. Wavelet transform decomposes a signal into a set of basis func-

tions.These basis functions are called wavelets. It captures not only a notion of the fre-

quency content of the input, by examining it at different scales, but also temporal content,

i.e. the times at which these frequencies occur. Combined, these two properties make the

Fast wavelet transform (FWT) an alternative to the conventional Fast Fourier Transform

(FFT).

4.2 The 2D-DWT transform

Wavelets are special functions which, in a form analogous to sine’s and cosines in Fourier

analysis, are used as basal functions for representing signals. For 2-D images, applying

DWT corresponds to processing the image by 2-D filters in each dimension shows in figure

4.3. The filters divide the input image into four non-overlapping multi resolution sub-bands

LL1, LH1, HL1 and HH1. The sub-band LL1 represents the coarse-scale DWT coefficients

while the sub-bands LH1, HL1 and HH1 represent the fine-scale of DWT coefficients. To

obtain the next coarser scale of wavelet coefficients, the sub-band LL1 is further processed

until some final scale N is reached. When N is reached we will have 3N+1 sub-bands

consisting of the multi-resolution sub-bands LLN and LHx, HLx and HHx where x ranges

CHAPTER 4. WAVELET TRANSFORM 26

from 1 until N, which has explained in figure 4.4.[12] Due to its excellent spatio-frequency

localization properties, the DWT is very suitable to identify the areas in the host image

where a watermark can be embedded effectively. In particular, this property allows the

exploitation of the masking effect of the human visual system such that if a DWT coefficient

is modified, only the region corresponding to that coefficient will be modified.

Figure 4.3: DWT function

In general most of the image energy is concentrated at the lower frequency sub-bands

LLx and therefore embedding watermarks in these sub-bands may degrade the image sig-

nificantly. Embedding in the low frequency sub-bands, however, could increase robustness

significantly. On the other hand, the high frequency sub-bands HHx include the edges

and textures of the image and the human eye is not generally sensitive to changes in such

sub-bands. This allows the watermark to be embedded without being perceived by the hu-

man eye. The compromise adopted by many DWT-based watermarking algorithm, is to

embed the watermark in the middle frequency sub-bands LHx and HLx where acceptable

performance of imperceptibility and robustness could be achieved.

CHAPTER 4. WAVELET TRANSFORM 27

Figure 4.4: 2-D DWT for Image

4.3 Applications of Wavelet Transforms

Finally, applications of widely used standard DWT implementations, utilizing its Multi

scale and Multi resolution capabilities with fast filter bank algorithms are numerous to

describe. Depending upon the application, extensions of standard DWT namely WP and

SWT are also employed for improved performance at the cost of higher redundancy and

computational complexity.[17] A few of such applications in Data compression, De nois-

ing, Source and channel coding, Biomedical, Non-destructive evaluation, Numerical solu-

tions of PDE, Study of distant universe, Zero-crossings, Fractals, Turbulence, and Finance

etc. are comprehensively covered in. Wavelet applications in many diverse fields such as

Physics, Medicine and biology, Computer Graphics, Communications and multimedia etc.

can be found in various books on wavelets.

4.4 Watermarking in the Wavelet Domain

Presently, the most advanced choice among all the frequency domain methods is probably

the DWT. The DWT is a hierarchical transform (unlike the FFT and the DCT), which offers

CHAPTER 4. WAVELET TRANSFORM 28

the possibility of analyzing a signal at different resolutions or levels. Such multi resolution

analysis gives a frequency domain representation as a function of time; i.e., both time/space

and frequency localization exists. In order to achieve this, the analyzing functions must be

localized in time.

The multi resolution property makes the proposed watermarking scheme robust to im-

age/video down sampling operation by a power of two in either space or time.A major

advantage of the DWT lies in the fact that it performs an analysis similar to that of the

HVS. The HVS splits an image into several frequency bands and processes each band

independently.[18]

Chapter 5

MATLAB-CUDA Integration

In order to interface CUDA and MATLAB, we had to slightly modify the MEX infras-

tructure. CUDA files have a .cu suffix and needs to be compiled with a specific compiler

(nvcc). Once we had a working infrastructure under Windows and Linux, the coding of the

MEX functions is very simple. The MATLAB code is running in double precision and the

data is transformed to single precision before it is transferred to the GPU. The computation

on the GPU is performed in single precision and the result is transformed back to double

precision before it is returned to MATLAB.[16],[13]

The advantages of using MATLAB are as follows:

• Ease of Use

• Platform Independence

• Predefined Functions

• Device-Independent Plotting

• Graphical User Interface (GUI)

• MATLAB Compiler

To retain these benefit and moreover to improve the performance, MATLAB may be

integrated with CUDA, whereby a drastic improvement in the computing performance may

29

CHAPTER 5. MATLAB-CUDA INTEGRATION 30

obtained.

The basic architecture of the code is described in figure 5.1.

Figure 5.1: Basic Architecture

5.1 How to compile CUDA code in MATLAB

a. There are several ways to execute a CUDA code in MATLAB. The end goal of any

method is to convert your ”.cu” files into executable ”.mexw32” or ”.mexw64” files

that can be called in MATLAB in the same way you would use regular ”.m” files.

These are the following options.[7],[8]

• Using MEX file.

• Using GPUmat.

• Using Jacket Engine

Mex files are way to built the interface between Nvidia GPU and MATLAB. For this

system configuration part is the most important factor. Detail information of the setup

which is depends on the specific versions will be describe. Following are the specific

system configuration in which development environment is built and working nicely.

b. System configuration

CHAPTER 5. MATLAB-CUDA INTEGRATION 31

• Os-Windows-7(32 bit)

• CL compiler of Visual Studio 2005(specifically)

• Nvcc of NVIDIA CUDA(GEFORCE-310M)

• MEX compiler of MATLAB(C compiler)

• CUDA toolkit 3.1 win 32

c. MATLAB Setup for Building MEX

MATLAB supports the use of a variety of compilers for building MEX-files. An

option file is provided for each supported compiler. We can specify which compiler

we want to use. Once it is verified that supported C, C++ or FORTRAN compiler

being used, then the system is ready to configure MEX-files. In order to do this, have

to run the following command from the MATLAB command prompt:

mex -setup

A series of questions are asked regarding the location of the C, C++ or Fortran com-

piler you would like to use to compile your code. After specifying those a MEX

options file is created that gives MATLAB all of the information it needs to use your

compiler during compilation.[2]

d. Path Configuration

Path setup is one of the most important part of these process. For every MEX file that

we want to execute under MATLAB, we have to keep those in the current directory

of the MATLAB along with the MEX folder which will be in the path of MATLAB.

e. Compilation To compile the program, from the MATLAB command prompt we

need to use

Cuda mex filename.cu

CHAPTER 5. MATLAB-CUDA INTEGRATION 32

Cuda mex script which will be generated when we compile setup cuda mex file

shown in figure 5.2. In which MEX compiler is called, which is a perl script and

generate cuda mex script based on the system environment variables and path con-

figuration of that specific system. To make this working Nvidia groups has developed

a script nvcc which could be downloaded and place in the bin directory in the MAT-

LAB path. As the cuda mex code could not be compiled with simple MEX conpiler.

This file will create cudamexopts.bat based on mexopts.bat according the path is

specified in the system. It will Process mex.pl file for this purpose. In terns, which

will create cuda mex.pl based on mex.pl, along with that it will add current directory

to the MATLAB path.[13],[16]

Figure 5.2: setup cuda mex

If the computer set up is correct (with a Cuda GPU card installed etc) we should get see

”SUCCESS” on the last line of the output. After compilation, a ”.mexw32” or ”.mexw64”

file should have been created (32 bit or 64 bit respectively) which can now be executed

within MATLAB similar to an ”.m” file.

CHAPTER 5. MATLAB-CUDA INTEGRATION 33

5.2 Installation

5.2.1 System Requirement

To use CUDA and MATLAB on system,we will need the following configuration

a. CUDA-enabled GPU.

b. CUDA toolkit 3.1 win 32(available at free of cost from http://www.nvidia.com/cuda).

c. NVIDIA drivers

d. MATLAB 2009b and above.

e. Visual Studio 2005

5.2.2 CUDA Installation

CUDA Installation Requires:

a. The CUDA Toolkit contains the tools needed to compile and build a CUDA applica-

tion in conjunction with the compilation driver. It includes tools, li- braries, header

files, and other resources. The CUDA Toolkit is a C language development environ-

ment for CUDA-enabled GPUs.

b. CUDA SDK includes sample projects that provide source code and other resources

for constructing CUDA programs. CUDA includes C/C++ software development

tools, function libraries, and a hardware abstraction mechanism that hides the GPU

hardware from developers. Although CUDA requires programmers to write special

code for parallel processing, it doesn’t require them to explicitly manage threads in

the conventional sense, which greatly simplifies the programming model. CUDA

development tools work alongside a conventional C/C++ compiler, so programmers

can mix GPU code with general-purpose code for the host CPU.[9]

Chapter 6

Algorithm For Watermarking Process

6.1 EMBEDDING PROCESS

a. The original gray-scale image has to be taken as a host image and primary watermark

image,each will decomposed into 2 resolution levels shown in figure 6.1.

b. A Pseudo Random Noise (PN) Sequence W2(secondary watermark) has to be taken.

And added to the horizontal coefficients (LL2) of the decomposed primary water-

mark image according to the equation no. 6.1.

W1(i, j) = I2(i, j) +W2(i, j) (6.1)

With I2(i, j) and W1(i, j) representing the DWT coefficients of the primary water-

mark and the watermarked primary watermark respectively.

c. The resulting W1(i, j) coefficients are then added to the horizontal,DWT coefficients

of the original image according to the equation no 6.2.

I ′(i, j) = I1(i, j) + α.W1(i, j) (6.2)

34

CHAPTER 6. ALGORITHM FOR WATERMARKING PROCESS 35

Figure 6.1: Decomposed into 2 resolution levels

In which I1(i, j) is representing the DWT coefficients of the original image, I’(i,j) is

the watermarked DWT coefficients of the original image and α will be the scaling

factor that is usually used to adjust the invisibility of the watermark, here it is set to

0.0001.

d. Finally, applying the IDWT to W1(i, j) and I’(i.j) we can get the watermarked pri-

mary watermark image and the watermarked host image.

6.2 EXTRACTION PROCESS

To detect the PN Sequence, a 2 level DWT is applied to the watermarked host image to

obtain I’(i,j). Knowing the key α and the 2 level DWT transform of the original host image

I1(i, j), the watermark of the primary watermark image DWT coefficients can be extracted

using the equation no 6.3.

W1(i, j) =
I ′(i, j)− I1(i, j)

α
(6.3)

CHAPTER 6. ALGORITHM FOR WATERMARKING PROCESS 36

6.3 Implementation of the Algorithm in MATLAB

To judge the performance of the proposed technique in MATLAB it has been extensively

applied to various standard images. The technique has been tested using lena image as a

host in figure 6.2 and the 64*64 MCK image as the primary watermark in figure 6.3. In

this case a watermark, in form of a PN sequence (will be called the secondary watermark),

is embedded in the wavelet domain of a primary watermark before being embedded in the

host image. Figure 6.4 shows the watermarked lena image.

Figure 6.2: Original Image

The algorithm has been implemented in MATLAB first, to check the elapsed time taken

by the algorithm in CPU using MATLAB. Finally we can compare the results with the MEX

file and CUDA MEX file,to analysis the performance.

Figure 6.3: Embedded Information

CHAPTER 6. ALGORITHM FOR WATERMARKING PROCESS 37

Figure 6.4: watermarked Image

6.3.1 Extraction Process

After the extraction process has completed, a 2 level of IDWT is applied to the to the

extracted information to get the actual information which is embedded in to the original

host image. The figure 6.5 shows the extracted information. Where 1-level IDWT is applied

first and get the 32x32 image and there after 2-level of IDWT is applied to get the actual

information which is embedded to the original image of size 64x64.

Figure 6.5: Extracted Information

CHAPTER 6. ALGORITHM FOR WATERMARKING PROCESS 38

6.3.2 Results

Image Size Elapsed Time (Seconds)

512 × 512 1.474303

128 × 128 1.021206

256 × 256 1.042107

252 × 298 1.092400

Table 6.1: Results Of The M-File

Chapter 7

MATLAB Executable

We can call your own C, C++, or Fortran subroutines from the MATLAB command line

as if they were built-in functions. These programs are called binary MEX-files, which are

dynamically linked subroutines that the MATLAB interpreter loads and executes. MEX

stands for ”MATLAB executable.” We can say,

”Dynamically linked subroutines that the MATLAB interpreter can automatically load

and execute”.[5]

7.1 MEX-Files VS. M-Files

In MATLAB there are many ways to write code to perform simulations or large calcula-

tions. M-Files allow the user to write scripts containing sequences of MATLAB instruc-

tions. These scripts can be used in the same way as built-in commands, allowing the user to

create new MATLAB commands.[1] Since these scripts are written with MATLAB com-

mands they are optimized for array and matrix operations, making it easy for the user to

write a new script to perform complex calculations. MEX-Files are written using C code

and are then compiled using the NVIDIA MEX compiler, nvmex. The compilation of a

MEX-file leads to an advantage over M-files due to the fact that the MATLAB interpreter

is still needed to translate each line of the M-file while the interpreter is not used for a

MEX-file. The lack of a need for an interpreter gives a performance increase to MEX-files.

39

CHAPTER 7. MATLAB EXECUTABLE 40

This is one reason that MATLAB’s built-in functions are compiled source. MEX-files have

an extra overhead caused by the copying of data from MATLAB space to the MEX-file.

This overhead grows as the sizes of the matrices being copied grows. The main advan-

tages of using MEX-files over plain m-files are the fact that loops, and other operations that

MATLAB struggles with should be much faster when written in a compiled language than

in native MATLAB, and that existing programs can easily be ported to run from within

MATLAB.[2]

The best way of thinking about MEX-files, is to consider them as an interface, with

MATLAB on one side, and your program on the other. All you need to do is write a

gateway function, to pass data between the two, and you are done. By using the MEX-file

as a gateway, and keeping your MEX code and functional code separate, it will be much

easier to reuse your code later, or to build a normal program as a front end or for debugging.

7.1.1 The Gateway Function

As mentioned above, the gateway function controls the passage of data between MATLAB,

and your external program. In many ways, it’s like the main function of a C program, since

it is the first function to be called when invoking a MEX-file, and it always has the same

prototype, like so:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

As shown above, it returns void, meaning that all of the input and output variables

are passed as pointers, rather than as copies. Now, consider calling a MEX-file, called

exampleMex from within MATLAB:

[a, b] = exampleMex(c, d, e);

nlhs and plhs relate to the arguments on the left hand side of a call to the MEX-file from

within MATLAB. nlhs gives the number of arguments, and plhs is an array of pointers to the

CHAPTER 7. MATLAB EXECUTABLE 41

variables. Similarly, nrhs and prhs hold the number of arguments to the function call (the

right hand side of the MATLAB expression), and an array of pointers to those variables,

respectively. So, using the function call above as an example, nlhs would be two, nrhs

would be three, plhs would contain pointers to the (initially empty) variables a and b, and

prhs would point to the variables c, d and e, which shouldn not be empty.[2]

7.1.2 Data Types

There is only one data type in MATLAB - the mxArray. MxArrays in which all types of

MATLAB variable can be stored. In some ways, this makes life easier, as it reduces the

number of data types to you need to remember, but it does mean that you need to be careful,

and not make any assumptions about the format of the contents of the array. Along with

that there are various functions which can help to determine what is inside of an mxArray

and act accordingly. To access the data within an mxArray, you need to get a pointer to it.

The function mxGetPr does this, as shown below.

double *a; a = mxGetPr(phrs[0]);

To check if a given mxArray contains double precision floats, use:

if (!mxIsDouble(prhs[0])) mexErrMsgTxt(”Input image should be double.”);

Various other functions exist which operate on mxArrays, including mxGetN and mxGetN

which get matrix dimensions, and mxCreate functions for setting up mxArrays of each

MATLAB data type. Example- To create a 10-by-10 matrix of real doubles, use:

p = mxCreateDoubleMatrix(10, 10, mxREAL);

This command will initialise the memory to zero, which is unlike a call to malloc,

which just allocates a chunk of heap. As an aside, if we use malloc, then consider trying

calloc instead, which will zero memory for us.

CHAPTER 7. MATLAB EXECUTABLE 42

7.1.3 Addressing Matrices

Data within mxArrays is stored as one blob of memory, column wise. This means that

a matrix is addressed as shown in figure 7.1. This is probably contrary to most people’s

expectations, and so is something to watch out for. For example, to address the element in

figure 1 containing 3 (0, 1), you would need to look at the second element.[1]

Figure 7.1: mxArray memory layout.

To convert from x and y coordinates to linear column wise addressing, use: i = xr+y,

Where r is the number of rows in the matrix.

7.1.4 Managing Input and Output Parameters

MATLAB passes data to and from MEX-files in a highly regulated way. We can also

take care when using an input parameter to create output data or any data used locally

in your MEX-file. This is because of the way MATLAB handles MEX-file cleanup after

processing. If you want to copy an input array into your local myData array, we have to

call mxDuplicateArray to make of copy of the input array.

7.1.5 Allocating and Freeing Memory

MATLAB also performs cleanup of MEX-file variables. However, MathWorks recom-

mends that binary MEX-files destroy their own temporary arrays and free dynamically

CHAPTER 7. MATLAB EXECUTABLE 43

allocated memory. It is more efficient to perform this cleanup in the source MEX-file than

to rely on the automatic mechanism. MATLAB provides functions, such as mxMalloc

and mxFree, to manage memory. Use these functions instead of their standard C library

counterparts because they let MATLAB to manage memory and perform initialization and

cleanup.

7.1.6 Displaying Messages to the User

We have to use mexPrintf function, as like as a C/C++ printf function, to print a string in the

MATLAB Command Window. Along with that the mexErrMsgIdAndTxt and mexWarn-

MsgIdAndTxt functions to print error and warning information in the Command Window.

7.2 Example: Writing a ”Hello World” MEX-file

In this first example, we will create a MEX-file (hello.c) that prints ”hello world” to the

screen. We will then build and run the MEX-file from MATLAB.

a. MEX source should start like this: #include ”mex.h”

b. Every MEX-file has the mexFunction entry point. The souce now becomes#include

”mex.h” void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[])

c. Add an API function to make the MEX-file do something. The final version of the

souce becomes: #include ”mex.h” void mexFunction(int nlhs, mxArray *plhs[], int

nrhs, const mxArray *prhs[]) mexPrintf(”Hello, Aspriha......!”); Your first MEX-file

is complete. Save it as hello.c.

d. Now you are ready to compile and link the MEX-file. You can do this with the

following command: mex hello.cNotice that hello.mexw32 (the MATLAB callable

MEX-file for 32-bit Windows) is created in the current directory; MEX-file exten-

sions vary by platform.

CHAPTER 7. MATLAB EXECUTABLE 44

Program 1 The Hello World! program in MEX.
#include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int

nrhs, const mxArray *prhs[])

{

mexPrintf("Hello, Aspriha......!");

}

e. You can now call the MEX-file like any other MATLAB file by typing its name at

the MATLAB command prompt. hello

7.3 MEX Implementation

The algorithm has been implemented in MEX environment form MATLAB, for that, results

in terms of time has been measured. MATLAB is a very powerful tool which deals with

immensely large image manipulations. There are several ways available to write code in

order to perform simulations or large calculations from MATLAB,but they are very time

consuming. MEX implementation is one of the option, which takes less time compared to

M-files implementation. Comparison results with respect to time in between the M-files

and MEX-files has been measured.

7.3.1 Results

Image Size Elapsed Time (Seconds)in M-file Elapsed Time(Seconds)in Mex-file

512 × 512 1.474303 0.673000

128 × 128 1.021206 0.282000

256 × 256 1.042107 0.625000

252 × 298 1.092400 0.704000

Table 7.1: Results Of The MEX-File

Chapter 8

Strategy to implement the code in

CUDA MEX

CUDA is an architecture developed by NVIDIA that provides an application programming

interface that allows programmers to write code to run in multiple processes, or threads, on

a computer’s GPU. The programming model is broken down into a host and the device. The

CUDA API exposes functions that allow the programmer to copy data from host memory

to device memory. Once the data is in device memory and ready to be processed, kernel

functions are called which process the data. Two types of kernels that can be run on the

GPU are global and device kernels. Global kernels can only be called from the host while

device kernels can only be called from the device. When invoking a CUDA kernel, we must

specify the block dimensions which determines the number of threads that will be used to

execute the code.[3],[16],[19]

On top of being able to specify the size of thread blocks, grid sizes can be set which

allow multiple thread blocks to execute on the same data. Figure 8.1 shows the structure

of CUDA MEX implementation flow. In which two kernels are called and all are global

kernel. Each kernel will be discussed in more detail. For this project CUDA was used in

MEX-files in order to perform MATLAB calculations in numerous threads.[11]

45

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 46

Figure 8.1: Flow of CUDA MEX implementation

8.1 Cuda Mex Files

Another way to exploit GPU capabilities in MATLAB is through the use of CUDA. We

can use MEX files to perform computations on the GPU using CUDA. MATLAB provides

a script, called mex, to compile a MEX file to a shared object that can be loaded and

executed inside a MATLAB session. This script is able to parse C, C++ and FORTRAN

code. This script can also call CUDA code to create greater optimization on GPUs for

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 47

Matlab computation. Even though MATLAB is calling optimized libraries internally, there

is still room for further optimization. And a heterogenous type of programming is the

answer.[19],[11]

8.2 CUDA-Enabled MEX Files

For most general cases, the MEX file will contain CUDA code (kernel functions, configu-

ration) and in order to be processed by “nvcc”, the CUDA compiler, the file needs to have

a “.cu” suffix. This suffix .cu could not be parsed from the native MATLAB mex script.

To solve this problem, NVIDIA developed new scripts that are able to parse these kind of

files. The operation of the mex command is also different between Windows and Linux. In

Windows, it invokes a perl script, while in Linux it invokes a shell script.[16],[11]

8.2.1 Steps to Perform:

Typical MEX files perform the following steps:

a. Convert from double to single precision.

b. Rearrange the data layout for complex data.

c. Allocate memory on GPU.

d. Transfer the data from the host to the GPU

e. Perform computation on GPU(library custom coda)

f. Transfer the data from the GPU to host

g. Rearrange the data layout for complex data

h. Convert from single to double precision.

i. Cleanup memory and return result to MATLAB

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 48

8.2.2 The basic CUDA MEX files contain the following parts

a. Memory allocation on the GPU.

b. Data movement from the host memory to the GPU. It is important to remember that

the standard floating point format in MATLAB is double precision, while the current

CUDA release and the underlying GPU hardware support only single precision. Be-

fore transfer to the card, if the incoming data is in double precision, the data need to

be cast to single precision.

c. Currently, it is not possible to use “pinned” memory on the host, because the data on

the host side needs to be allocated with the special mxMalloc function.

d. Once the data is on the GPU, it is now ready to be processed by CUDA code(custom

kernel functions or CUBLAS/CUFFT functions).

e. Data movement from the GPU to host. Once again, data may need to be converted

back to double precision.

f. Clean-up of the memory allocated on the GPU. [16],[11]

8.3 Implementation of CUDA MEX

As previously mentioned, two CUDA kernels were used, and all are global kernels. A

description of each of the kernels including: grid size, block size, and purpose will be

presented here. The thread block size of all of these kernels is set at the maximum, 512,

this allows for the largest possible matrix to be processed. The order in which they are

presented is the same as the order in which they are invoked in the code. The first function

is random1, the prototype for this function is shown below.

void random1();

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 49

Figure 8.2: Cuda Mex Flow

This function will create random number which will going to be used to prepare the

final watermark image,which is to be embed in the original image. That is done in the next

kernel.

global void f water();

global void water();

The kernel, global void water(),will produce the final watermark image.

For extraction process the kernel is global void extract().Which will extract the em-

bedded information from the watermarked image. For DWT we have used the in-built

facility of MATLAB by using the function mexCallMATLAB() provided my mex inter-

face in MATLAB. The figure 8.3 shows the result of the embedding process. Where an

information of size 64x64 is embedded to the original image of size 512x512 and get the

watermarked image of size 512x512.

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 50

Figure 8.3: Information Embedding

Figure 8.4: Information Extraction

The figure 8.5 shows the execution process from the MATLAB command prompt. And

the figure 8.4 shows the 2-level of IDWT to get the extracted information.

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 51

Figure 8.5: Execution

8.3.1 Experimental Results

The algorithm has been implemented now in Cuda Mex. Experiment has been done with

number of images. All the images are of gray scale with different dimension. Speedup of

18x has increased as compare to M-file and Mex-files in terms of time.

Image Size M-file(Sec) Mex-file(Sec) Cuda Mex-file(Sec)

512 × 512 1.474303 0.673000 0.05620

128 × 128 1.021206 0.282000 0.02210

256 × 256 1.042107 0.625000 0.05030

252 × 298 1.092400 0.704000 0.04220

Table 8.1: Results Of The CUDA MEX-file

CHAPTER 8. STRATEGY TO IMPLEMENT THE CODE IN CUDA MEX 52

This graph shows the analysis of the results of the M-files, MEX-files and the cuda mex

files in terms of time.

Figure 8.6: Result Analysis

Chapter 9

Conclusion and Future Work

9.1 Conclusion

With the current development of multiprocessor systems the strive for computing data on

such processor have also increased exponentially. If the multi core processors are not fully

utilized, then even though we have the computing power, the speed is not available to the

end users for their respective applications. In accordance to this, the users or application

designers also have to design newer applications taking care of the computing infrastructure

available within. Our approach to this problem is CUDA MEX implementation.

With this experiment we can say that, combination of MATLAB and CUDA enables

high-productivity and high-performance solutions. With GeForce 8 series GPUs are now

available even in laptops, which will be a very effective tool for engineers and scientists.

This process could be used inside the MATLAB as a tool. For growing demand of digital

data processing, authentication is most important and it should be fast enough to deal with

the current need. Thus, programmers can have a higher performance during watermarking

process.

53

CHAPTER 9. CONCLUSION AND FUTURE WORK 54

9.2 Future Work

There is still place for further optimization with the help of shared memory concept of

CUDA. Similarly, such tools may also be created for audio and video watermarking, as

lot more data processing is involved, greater scope for data parallelization is possible by

reducing the time. Along with this, some other future enhancement are as follows:

• The watermark can be scrambled through a well-known PN-sequence. Scrambling

the logo image enhances the system security and provides a random distribution of

original data.

• Error correcting codes can be used for better results.

• A hybrid approach can be applied by embedding image watermark, which includes

both DWT and DCT.

Web References

[1] www.nvidia.com/cuda.

[2] NVIDIA_GPU_Computing_Webinars_CUDA_Introduction_

April-2009

[3] http://en.wikipedia.org/wiki/DWT

[4] http://www.nvidia.com/object/teslacomputingsolutions.

html

[5] http://gpgpu.org/oldsite/data/history.shtml

[6] http://people.maths.ox.ac.uk/˜gilesm/hpc/NVIDIA/NVIDIA_

CUDA_Tutorial_No_NDA_Apr08.pdf

[7] http://gp-you.org/.

[8] http://www.accelereyes.com/.

[9] http://developer.download.nvidia.com/compute/cuda/2_2/

toolkit/docs/CUDA_Getting_Started_2.2_windows.pdf

[10] http://forums.nvidia.com/index.php?showtopic=181472

[11] http://developer.download.nvidia.com/compute/cuda/3_1/

toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

55

www.nvidia.com/cuda.
NVIDIA_GPU_Computing_Webinars_CUDA_Introduction_April-2009
NVIDIA_GPU_Computing_Webinars_CUDA_Introduction_April-2009
http://en.wikipedia.org/wiki/DWT
http://www.nvidia.com/object/tesla computing solutions.html
http://www.nvidia.com/object/tesla computing solutions.html
http://gpgpu.org/oldsite/data/history.shtml
http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/NVIDIA_CUDA _Tutorial_No_NDA_Apr08.pdf
http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/NVIDIA_CUDA _Tutorial_No_NDA_Apr08.pdf
http://gp-you.org/.
http://www.accelereyes.com/.
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Getting_Started_2.2_windows.pdf
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Getting_Started_2.2_windows.pdf
http://forums.nvidia.com/index.php?showtopic=181472
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

WEB REFERENCES 56

[12] http://code.google.com/p/gpumcml/source/browse/trunk/

Fermi/NVIDIA_CUDA_BestPracticesGuide.pdf

[13] (2009) Thread block structure. [Online]. Available: http://www.cs.

utexas.edu/users/fussell/courses/cs384g/projects/final/

artifacts/mjeong/

http://code.google.com/p/gpumcml/source/browse/trunk/Fermi/NVIDIA_CUDA_BestPracticesGuide.pdf
http://code.google.com/p/gpumcml/source/browse/trunk/Fermi/NVIDIA_CUDA_BestPracticesGuide.pdf
http://www.cs.utexas.edu/users/fussell/courses/cs384g/projects/final/artifacts/mjeong/
http://www.cs.utexas.edu/users/fussell/courses/cs384g/projects/final/artifacts/mjeong/
http://www.cs.utexas.edu/users/fussell/courses/cs384g/projects/final/artifacts/mjeong/

References

[1] An introduction to MATLAB MEX-files, Maria Axelsson, Centre for Image Analysis,

2007-10-22

[2] By Mathworks,“Writing MATLAB C/MEX Code, Pascal Getreuer, April 2010”,

MATLAB intregration.

[3] Tze-Yun Sung, Yaw-Shih Shieh, Chun-Wang Yu, Hsi-Chin Hsin. “High-Efficiency

and Low-Power Architectures for 2-D DCT and IDCT Based on CORDIC Rotation”,

Proceedings of the 7th ICPDC, pp. 191-196, 2006.

[4] “Novel DCT and DWT based Watermarking Techniques for Digital Images”,The 18th

International Conference on Pattern Recognition-2006,IEEE.

[5] By Mathworks, “MATLAB External interfaces”, 2010

[6] Huang Daren,“A DWT-BASED IMAGE WATERMARKING ALGORITHM”,2001

IEEE International Conference on Multimedia.

[7] David Kirk/NVIDIA and Wen-mei Hwu,“CUDA Programming Model”, 2006-2008

[8] R. Kresch and N. Merhav, “Fast DCT domain filtering using the DCT and the DST”,

HPL Technical Report HPL-95-140, December 1995.

[9] Hyung Cook Kim and Edward J. Delp, “A Comparison of Fixed point 2D 9X7 Dis-

crete Wavelet Transform Implementations”, IEEE ICIP, vol 3,page 7803-7622, 2002

57

REFERENCES 58

[10] “Improved SVD-DWT Based Digital Image Watermarking Against Watermark Am-

biguity”,2007, Seoul, Korea.2007 ACM

[11] Seung-Hun Yoo, “Accelerating Multi-scale Image Fusion Algorithms using

CUDA”,Dept. Electronics Engineering. 2009 International Conference of Soft Com-

puting and Pattern Recognition.

[12] J. M. Shapiro. “Embedded Image Coding Using Zerotrees of Wavelets Coefficients”,

IEEE Transactions on Signal Processing, 41(12):34453462, December 1993.

[13] Ing. Vaclav Simek, “GPU Acceleration of 2D-DWT Image Compression in MATLAB

with CUDA”, Computer Architecture Group, Department of Electronics and Systems,

Second UKSIM European Symposium on Computer Modelling and Simulation, 978-

0-7695-3325-4/08,2008 IEEE-10.1109/EMS.2008.43

[14] M. J. Flynn, “Some Computer Organizations and Their Effectiveness”, IEEE Trans-

actions on Computers, C-21 (1972), pp. 948-960.

[15] D. L. N. Research, “nvidia gpu architecture & implications”, NVIDIA Corporation

2007.

[16] By Mathworks ,“Accelerating MATLAB with CUDA Using MEX Files”,September

11,2007 WP-03495-001 v01

[17] R. C. Gonzalez and R. E. Woods,“Digital Image Processing”, Prentice Hall, 2001.

ISBN 0-13-094650-8.

[18] Proakis and Manolakis.“Digital signal processing Principles, Algorithms, and appli-

cations”, 2nd edition Maxwell- Macmillan pub.

[19] Halfhill, T.R., 2008, “Parallel Processing With CUDA”, Microprocessor Report [On-

line] Available from: http://www.MPRonline.com

REFERENCES 59

[20] University of Iceland, Reykjavik,“The GPU on the 2D Wavelet Transform. Survey

and Contributions”, Para 2010 State of the Art in Scientific and Parallel Computing

extended abstract no. 26 , June 69 2010.

[21] “Accelerating Wavelet-Based Video Coding on Graphics Hardware using

CUDA”,Proceedings of the 6th International Symposium on Image and Signal

Processing and Analysis (2009)

Index

2D-DWT, 25

Abstract, vi

Acknowledgements, vii

Compilation, 31

CUDA MEX File Results, 51

Cuda Mex Files, 46

Digital Image Watermarking, 17

Embedding Process, 34

Extraction Process, 35

GPU Hardware Architechture, 6

M-File Results, 38

MATLAB Executable, 39

MATLAB-CUDA Integration, 29

MEX-file Results, 44

NVIDIA CUDA, 5

Objective of Study, 2

Scope of Work, 3

Setup for Building MEX, 31

Technical Background of CUDA, 8

Thesis Organization, 3

Wavelet, 24

60

	Dedication
	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	General
	Objective of Study
	Scope of Work
	Thesis Organization

	Literature Survey
	Introduction To NVIDIA CUDA
	GPU Hardware Architecture
	Technical Background of CUDA
	Hardware Implementation : Memory Architecture
	Memory Hierarchy
	Heterogeneous Programming
	CUDA Programming Model
	Built-In Variables

	Research Papers

	Digital Image watermarking
	Classification-by place of Application
	Types of Watermark
	Applications of Watermarking
	Uses of Digital Watermarking

	Wavelet Transform
	Procedure of DWT
	 The 2D-DWT transform
	Applications of Wavelet Transforms
	Watermarking in the Wavelet Domain

	MATLAB-CUDA Integration
	How to compile CUDA code in MATLAB
	Installation
	System Requirement
	CUDA Installation

	Algorithm For Watermarking Process
	EMBEDDING PROCESS
	EXTRACTION PROCESS
	Implementation of the Algorithm in MATLAB
	Extraction Process
	Results

	MATLAB Executable
	MEX-Files VS. M-Files
	The Gateway Function
	Data Types
	Addressing Matrices
	Managing Input and Output Parameters
	Allocating and Freeing Memory
	Displaying Messages to the User

	Example: Writing a "Hello World" MEX-file
	MEX Implementation
	Results

	Strategy to implement the code in CUDA_MEX
	Cuda_Mex Files
	CUDA-Enabled MEX Files
	Steps to Perform:
	The basic CUDA MEX files contain the following parts

	Implementation of CUDA_MEX
	Experimental Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Web References
	References
	Index

