
A
Report On

Effective Resource Management in
Clouds using Advance Reservation

PREPARED BY

Gayatri Sunilkumar
M.Tech(CSE)
08MCES54

GUIDED BY

Prof Madhuri Bhavsar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY
AHMEDABAD-382481

MAY - 2011

Effective Resource Management in Clouds using
Advance Reservation

Major Project Part-II

Submitted in total fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By
Gayatri. Sunilkumar

Roll No: 08MCES54

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
AHMEDABAD-382481

MAY, 2011

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Technology in
Computer Science and Engineering at Nirma University and has not been submitted
elsewhere for a degree or diploma.

2. Due acknowledgement has been made in the text to all other material used.

Gayatri Sunilkumar

3

CERTIFICATE

This is to certify that the Major Project Part-II entitled ”Effective Resource Management
in Clouds using Advance Reservation” submitted by Gayatri Sunilkumar (08MCES54),
towards the total fulfillment of the requirements for the degree of Master of Technology
in Computer Science and Engineering of Nirma University of Science and Technology,
Ahmedabad is the record of work carried out by her under my supervision and guidance.
In my opinion, the submitted work has reached a level required for being accepted for
the examination. The contents embodied in this Major Project Part-II, to the best of
my knowledge, haven’t been submitted to any other university or institution for award
of any degree or diploma.

Prof. Madhuri.Bhavsar Dr. S.N.Pradhan
Guide, Sr. Asso. Professor, Professor and PG-Co-ordinator,
Department of Computer Science Department of Computer Science
and Engineering, and Engineering,
Institute of Technology, Institute of Technology,
Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Prof.D.J.Patel Dr. K.Kotecha
Professor and Head, Director,
Department of Computer Science Institute of Technology,
and Engineering, Nirma University, Ahmedabad.
Institute of Technology,
Nirma University, Ahmedabad.

4

Effective Resource Management in Clouds using
Advance Reservation

Gayatri Sunilkumar

Abstract

A Cloud is a type of parallel and distributed system consisting of a collection of inter-
connected and virtualized computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-level agreements established
through negotiation between the service provider and consumers.Advance Reservation
(AR) for Clouds is now a significant research focus as it allows consumers to gain synchro-
nized access for their applications to be executed in parallel, and assures the availability
of resources at specified future times. Clouds could be leased by the faculties of the
college, who want to demonstrate the execution of the parallel programs on a distributed
system during the lab hours or if a firm wants to lease the web server for months or
years, a dedicated server in a data center may be from Amazon EC2 . The main objec-
tive of this work is to develop a Resource provisioning model for Eucalyptus Cloud. The
Resource provisioning model proposed in this tshesis provides a support for best-effort
provisioning and AR,suitable for the above specified scenarios. AR of Resources offers a
better Quality of Service (QoS) for time critical applications. An effort is also made to
discuss the possible states the Reservation made by a consumer may be in. This report
also depicts how the ARM (Advance Resource Management) module can be embedded
in the general architecture of the Eucalyptus Cloud. This thesis also confers a detailed
discussion on Data Structures used for AR named as Eucalyptus Cloud Advance Reser-
vation Queue (ECARQ) a terminology conied by me. Algorithms which would operate
on the ECARQ are also discussed. Ubuntu Enterprise Cloud (UEC) which is the only
Server with Eucalyptus cloud built in it, is used to test this Resource Provisioning Model.

5

Acknowledgements

It gives me immense pleasure in expressing my thanks and profound gratitude to Prof.
Madhuri Bhavsar, Sr. Asso.Professor, Department of Computer Science and Engi-
neering, Institute of Technology, Nirma University, Ahmedabad for her valuable guidance
and continual encouragement throughout the Project. I’m heartily thankful to her for
the timely suggestions and the clarity of the concepts of the topic that helped me a lot
during this study.
I would like to extend my gratitude to Dr.S.N.Pradhan, Professor and M.Tech Coordi-
nator, Department of Computer Science and Engineering, Institute of Technology, Nirma
University, Ahmedabad for fruitful discussions and valuable suggestions during reviews
and for the encouragement.
I would like to thank Dr.Ketan Kotecha, Hon’ble Director,Institute of Technology,
Nirma University, Ahmedabad for providing basic infrastructure and healthy research
environment.
Last, but not the least, no words are enough to acknowledge constant support and sac-
rifices of my family members Mr. Sunilkumar my betterhalf and Aryan my son,
My Mom Mrs. Kasturi Lengade and My Brother Mr. Rajendra Lengade and
his family because of whom I am able to complete my dissertation work successfully.

- Gayatri Sunilkumar
08MCES54

6

Contents

Declaration 3

Certificate 4

Abstract 5

Acknowledgements 6

List of Figures iv

List of Algorithms v

Abbreviation 1

1 Introduction 2
1.1 Cloud . 2

1.1.1 Popular available Clouds Platforms 2
1.2 Advance Reservation . 3
1.3 Goal . 3
1.4 Tools And Techniques . 3

1.4.1 Ubuntu . 3
1.4.2 Java . 4
1.4.3 JSP . 5
1.4.4 Tomcat . 5
1.4.5 Eucalyptus . 5
1.4.6 KVM . 6

2 Literature Survey 7
2.1 Related Work in Clouds . 7
2.2 Resource Leasing . 8
2.3 Resource Management in Heterogeneous Parallel Systems 9
2.4 Desktop Cloud . 10
2.5 Enterprise Cloud . 11
2.6 Cost-Effective Resource Leases . 12
2.7 Market Mechanism . 13
2.8 Market-Oriented Cloud Computing . 14
2.9 Cloud Comparison . 15
2.10 Various Cloud Platforms . 15
2.11 Summary . 15

i

3 Reservation States 16
3.1 States of a Reservation . 16

3.1.1 Request . 16
3.1.2 Reject . 16
3.1.3 Accept . 16
3.1.4 Commit . 16
3.1.5 Change Request . 16
3.1.6 Active . 17
3.1.7 Cancel . 17
3.1.8 Complete . 17
3.1.9 Terminate . 17
3.1.10 Bind Reservation . 18
3.1.11 Unbind Reservation . 18

3.2 Query Reservation Status . 18
3.2.1 Query Reservation Attributes . 18

3.3 Register Callback . 20
3.4 Summary . 20

4 Advance Reservation Data Structures and Operations 21
4.1 Introduction . 21
4.2 Basic Operations . 21
4.3 Proposed Advance Reservation Algorithms 25
4.4 Advantages of ECARQ . 27
4.5 Summary . 27

5 Eucalyptus 28
5.1 Introduction . 28
5.2 Eucalyptus Components . 28

5.2.1 Cloud Controller . 28
5.2.2 Cluster Controller . 28
5.2.3 Node Controller . 29
5.2.4 Storage Controller . 29
5.2.5 Walrus(put/get storage) . 29
5.2.6 Management Platform . 29
5.2.7 ARM . 29

5.3 Eucalyptus Configuration . 30
5.4 Advance Reservation Data Structure . 31
5.5 Cloud Configuration . 32
5.6 Summary . 34

6 Service Offered and InterFaces 37
6.1 Introduction . 37
6.2 Services Offered . 37

7 Performance Evaluation 45
7.1 Summary . 47

ii

8 Conclusion and Future Direction 50
8.1 Conclusion . 50
8.2 Future Direction . 51

8.2.1 Incorporating Resource Failure Model 51
8.2.2 Integrating Various Types of Resources 51

A List of Publications 53

Reference 54

Index 56

iii

List of Figures

3.1 A State Transition diagram depicting the states for Advance Reservation 17
3.2 A State Transition diagram depicting Bind and Unbind 18
3.3 A State Transition diagram depicting Bound and Rebound 19
3.4 Query a Reservation . 19

4.1 An example of Advance Reservations for reserving Computer Nodes. The
maximum available computer nodes is 3. A dotted box denotes a new
request. 22

4.2 A representation of storing reservations in ECARQ with Sorted Queue
and N = 1. A request from Consumer 5 is rejected because not enough
Computer Nodes for slot [11, 12] as shown by the shaded box. 24

5.1 Conceptual Representation of Eucalyptus Cloud 30
5.2 A State diagram to depict the initialization of Advance Reservation Data

Structure. 31
5.3 System configuration required for a machine with Eucalyptus Cloud to be

Configured. 32
5.4 Boot screen of Ubuntu Enterprise Cloud (UEC). 33
5.5 A Tree Structure showing the components of Cloud. 34
5.6 Screen to Input the IP Address of Cloud Controller. 35
5.7 Screen depicting the selection of Cloud Controller Component of Eucalyptus. 35
5.8 Screen to Input the Eucalyptus Cluster-name. 36
5.9 Screen to Input the IP Adress 192.168.1.1. 36

6.1 Services offered by the Cloud. 38
6.2 Login Screen. 39
6.3 Change Password Option. 40
6.4 An Interface showing different Consumers to the Administrator. 41
6.5 An Interface to add the types of Resources. 41
6.6 An Interface showing resource type as small instance. 42
6.7 An Interface to display the different types of Shell files for different types

of compilers to schedule the jobs . 42
6.8 Slot Interface. 43
6.9 Slot Interface. 43
6.10 Previous Job Submitted. 44

7.1 ECARQ Functional Structure. 46
7.2 Complexity of the Algorithms. 47
7.3 User and Parallel Job Submitted by the specified Users. 48
7.4 Job Accepted, Suggestion Given and Errors for Job Submitted 48
7.5 Suggestions. 49

iv

7.6 Jobs Canceled and Scheduled Later. 49

v

List of Algorithms

1 searchReservation((tstart,tend,numCN) in ECARQ 25
2 addReservation((tstart,tend,numCN) in ECARQ 26
3 suggestInterval((tstart,tend,numCN) in ECARQ 26

vi

Abbreviation

AR Advance Reservation

ARM Advance Reservation Module

AMI Amazon Machine Image

CaaS Compiler as a Service

CLC Cloud Controller

CC Cluster Controller

CNs Compute Nodes

CPU Central Processing Unit

DbDaemon Database Daemon

EBS Elastic Block Storage

ECARQ Eucalyptus Cloud Advance Reservation Queue

Eucalyptus Elastic Utility Computing Architecture for Linking Your Programs To Use-
ful Systems

IaaS Infrastructure as a Service

IP Internet Protocol

JSP Java Server Pages

LAN Local Area Network

NC Node Controller

QoS Quality of Service

PaaS Platform as a Service

RMS Resource Management System

RS Reservation System

SLA Service Level Agreement

SaaS Software as a Service

SC Storage Controller

SEs Storage Elements

UEC Ubuntu Enterprise Cloud

VM Virtual Machine

1

Chapter 1

Introduction

This chapter presents a high level overview of this thesis. Today, the lat-
est paradigm to emerge is that of Cloud computing which promises reliable
services delivered through next-generation data centers that are built on com-
pute and storage visualization technologies.Cloud computing is a new tech-
nology widely studied in recent years.

1.1 Cloud

A Cloud is a type of parallel and distributed system consisting of a collection
of interconnected and visualized computers that are dynamically provisioned
and presented as one or more unified computing resources based on Service-
Level Agreements(SLA) established through negotiation between the service
provider and consumers[1].

1.1.1 Popular available Clouds Platforms

• Abicloud
Abicloud is a cloud computing platform that can be used to build, in-
tegrate and manage public as well as private cloud in the homogeneous
environments . Using Abicloud, user can easily and automatically de-
ploy and manage the server, storage system, network, virtual devices
and applications [17].

• Eucalyptus
Eucalyptus (Elastic Utility Computing Architecture for Linking Your
Programs To Useful Systems) [18] is an open-source implementation of
Amazon EC2 and compatible with business interfaces. It also imple-
ments virtualization depending on Linux and Xen as EC2 does [17].

• Nimbus
Nimbus is an open tool set, and also a cloud computing solution provid-
ing Infrastructure as a Service (IaaS) has supported many nonscientific
research domain applications . It permit users lease remote resources
and build the required computing environment through the deployment
of virtual machines [17].

2

• OpenNebula
OpenNebula is also an open source cloud service framework [2]. It allows
user deploy and manage virtual machines on physical resources and it
can set users data centers or clusters to flexible virtual infrastructure
that can automatically adapt to the change of the service load [17].

1.2 Advance Reservation

Advance Reservation (AR) allows consumers to gain synchronized access for
their applications to be executed in parallel, and assures the availability of re-
sources at specified future times[7].AR is the process of requesting resources
for use at specific times in the future . Common resources that can be re-
served or requested are compute nodes (CNs), storage elements (SEs), net-
work bandwidth or a combination of any of these.

1.3 Goal

• In this thesis an Advance Reservation Management (ARM) Module has
been built for the Cloud Computing Platform especially Eucalyptus.

• AR in a Cloud allow Consumers to achieve synchronized access for their
applications to be executed in parallel, and assures the availability of
requested resources to the Consumers at specified future times. The AR
Module would be aiming at the following points:

– Balance the Load to obtain better Quality of Service (QoS).

– Better Resource Utilization.

– Reduce Fragmentation or idle time gaps.

– Fewer Negotiations between the Consumer and the cloud AR sys-
tem.

– Better impact on income revenue ,reduced number of rejections and
waiting time for local jobs.

• Develop a module useful to the Community of Cloud users.

1.4 Tools And Techniques

1.4.1 Ubuntu

Ubuntu 10.10 a.k.a Maverick Meerkat is the only server which comes with
Ubuntu Enterprise Cloud (UEC) with Eucalyptus Cloud in-built [21]. It has
many features discussed in the following section :

• Quality to the core : Ubuntu is part of the Debian family of Linux op-
erating systems, which has the largest pool of developer talent, with
every package built by experts. Canonical’s rigorous release manage-
ment, quality assurance, stress testing and product design enhances the
quality of Ubuntu Server.

3

• Modularity for large-scale deployment : Ubuntu’s modularity means that
the virtual appliances in the cloud are leaner, more efficient and more
secure. The Ubuntu installation process is designed for people running
thousands of similar, commodity servers, making it fast to deploy on a
large scale and easy to maintain once deployed.

• Diversity of pre-packaged software : Ubuntu includes the largest selec-
tion of pre-packaged open-source software. In the cloud, these packages
reduce the time to deploy new infrastructure and improve the reliability
of the deployments.

• A renowned security track record :Ubuntu is protected by proactive secu-
rity technology that defends the computer from typical threats. Canoni-
cal delivers updates for all supported software on Ubuntu, and publishes
those updates globally. Ubuntu-based technology is easy to monitor for
compliance with security policy. Ubuntu updates comply with industry-
leading stable release update policy, ensuring that updates only address
security and critical issues - avoiding unnecessary change.

• Certified on most of the hardware : Canonical certifies Ubuntu on a wide
range of current hardware from leading manufacturers. They guarantee
Ubuntu Enterprise Cloud on certified hardware that supports the new
hardware visualization features in modern x86 servers (any recent x86
CPU).

• Tight integration between operating system and cloud infrastructure :
Ubuntu leads the Linux field by integrating cloud capabilities directly
into the operating system. UEC builds on the Eucalyptus cloud API
standards. The relationship between Canonical and Eucalyptus Systems
ensures that there is one clear path to resolve any issues with the oper-
ating system or cloud service.

• Compatible technology :Use the same Ubuntu machine images and man-
agement tools across both private and public systems, minimizing costly
re-training or application change when moving from private to public
and vice versa.

1.4.2 Java

JDK version 1.6u20(jdk-6u20-linux-i586-rpm.bin) Geany is a light-weight IDE
for Java on Ubuntu. It’s in the Ubuntu repositories. As Eucalyptus is built
in Java, an Object Oriented Language which is very robust. The same would
be useful in building the new classes. Following are the features of Java :

• Automatic Memory Management.

• Security

• Compiler / Interpreter Combo.

• Platform Independence.

• Threading.

4

• Built-in Networking.

1.4.3 JSP

Java Server Pages (JSP) for short is Sun’s solution for developing dynamic
web sites. JSP provides excellent server side scripting support for creating
database driven web applications. JSP enable the developers to directly insert
java code into jsp file, this makes the development process very simple and
its maintenance also becomes very easy. JSP pages are efficient, it loads into
the web servers memory on receiving the request very first time and the
subsequent calls are served within a very short period of time.

In today’s environment most web sites servers dynamic pages based on
user request. Database is very convenient way to store the data of users
and other things. JDBC provide excellent database connectivity in heteroge-
neous database environment. Using JSP and JDBC its very easy to develop
database driven web application.

Java is known for its characteristic of ”write once, run anywhere”.JSP
pages are platform independent. One can port .jsp pages to any platform.

1.4.4 Tomcat

Apache Tomcat (or Jakarta Tomcat or simply Tomcat) is an open source
servlet container developed by the Apache Software Foundation (ASF). Tom-
cat implements the Java Servlet and the JavaServer Pages (JSP) specifica-
tions from Sun Microsystems, and provides a ”pure Java” HTTP web server
environment for Java code to run. Features of Tomcat 6:

• memory leak prevention and detection

• protection against session fixation attacks

• a simple filter to add cross-site request forgery protection to an applica-
tion

• simplified embedding

• alias support

• better security for the Manager and Host Manager applications

• and lots of internal code clean-up

1.4.5 Eucalyptus

Eucalyptus Tool Kit version 1.6.2 incorporates several new features and im-
provements as specified below:

• Deployment on multiple clusters

• Deployment of components (Cloud Controller,Walrus,Storage Controller,Cluster
Controller)on different machines.

5

• Enhanced maintenance support components are now ”crash consistent”,
maintaining state across process restart or machine crash.

• Enhanced concurrency management: cloud requests are serviced asyn-
chronously with minimal locking using eventual consistency for scale

• Support for open-source monitoring and health/status: Ganglia and Na-
gios interaction

• Re-engineered front-end Web-services stack to be faster and more robust

• Several fixes for S3 API compatibility

• Networking improvements, including multi-cluster support

• Improved hypervisor support

• Improved startup

• Web User Interface(UI) improvements including ability to select from
themes (at compile time).

• Building and installation improvements

1.4.6 KVM

KVM (for Kernel-based Virtual Machine) is a full virtualization solution
for Linux on x86 hardware containing virtualization extensions (Intel VT
or AMD-V). It consists of a loadable kernel module, kvm.ko, that provides
the core virtualization infrastructure and a processor specific module, kvm-
intel.ko or kvm-amd.ko. KVM also requires a modified QEMU although work
is underway to get the required changes upstream.

Using KVM, one can run multiple virtual machines running unmodified
Linux or Windows images. Each virtual machine has private virtualized hard-
ware: a network card, disk, graphics adapter, etc.The kernel component of
KVM is included in mainline Linux, as of 2.6.20. KVM is open source soft-
ware. Eucalyptus uses KVM for virtualization.

6

Chapter 2

Literature Survey

This Chapter surveys on different types of Clouds and the work related
done in Clouds. A good number of papers are referred and the Important
points,Lacunae(if any) are highlighted from each paper.

2.1 Related Work in Clouds

Quite a few Research Clusters have worked in the related areas like Cluster,
Grid and Cloud, addressing varied topics like Job Scheduling on virtual clusters [3, 4, 5,
6], but all of these focus on meeting the requirements of a single provisioning situation
(either best effort or immediate but no ARs) except for Walters et al [6] and Borja
Sotomayor et al [2, 8].

Resource management in Clouds is at a finer granularity and has many related lev-
els. Managing resources dynamically and agilely in terms of the varied requirements of
consumers is a challenge in Cloud Computing environments, and a Resource Allocation
Strategy based on Market Mechanism (RAS-M) is proposed to settle this problem. RAS-
M tries its best to achieve the equilibrium state through employing the present GA-based
price adjusted algorithm [10].

OpenNebula is an open source virtual infrastructure manager that can be used to
deploy virtualized services on both, a local pool of resources and external IaaS (Infras-
tructure as a Service) clouds. Haizea, a resource lease manager, can act as a Schedul-
ing backend for OpenNebula providing features not found in other cloud software or
virtualization-based datacenter management software, such as advance reservations and
resource preemption [8].

7

2.2 Resource Leasing

Sr.No 1
Title Resource Leasing and the Art of Suspending Virtual Machines

Author Borja Sotomayor University of Chicago borja@cs.uchicago.edu Ruben
Santiago Montero Ignacio Mart?n Llorente Universidad Complutense
de Madrid rubensm,llorente @dacya.ucm.es Ian Foster University of
Chicago Argonne National Laboratory foster@mcs.anl.gov

Source 2009 11th IEEE International Conference on High Performance Com-
puting and Communications

Strength Virtual Machines (VM) are the key technology to realize an Infrastruc-
ture as a Service (IaaS). It offers several benefits such as : Ability to
securely partition physical servers To provide users with customized
software environments.

Lacunae Virtual Machines pose the problem of efficiently scheduling virtual ma-
chines on multi-host environments

Points Model contributions are the following:

• A model for predicting the runtime overhead of suspending and
resuming VM-based leases (With potentially multiple VMs that
must be co -scheduled within the lease) under a variety of condi-
tions, removing many of the assumptions made in previous work.

• Experimental results showing the degree of accuracy of the model
in predicting the runtime overhead of suspending and resuming
leases on a physical test bed. To run these estimations to schedule
VM suspensions and resumptions. OpenNebula2 virtual infras-
tructure manager is used to run experiments on a physical test
bed.

• Simulation results showing the long-term effects of modifying pa-
rameters in the model, such as the amount of memory requested
by VMs or the amount of network bandwidth available.

8

2.3 Resource Management in Heterogeneous

Parallel Systems

Sr.No 2
Title Stochastically Robust Resource Management in Heterogeneous Parallel

Computing Systems
Author BHoward Jay Siegel Colorado State University Department of Electri-

cal and Computer Engineering Department of Computer Science Fort
Collins, CO 80523-1373 email: HJ@ColoState.edu

Source 2009 10th International Symposium on Pervasive Systems, Algorithms,
and Networks

Strength The stochastic robustness analysis approach can be applied to a variety
of computing and communication system environments, including par-
allel, distributed, cluster, grid, Internet, cloud, embedded, multicore,
content distribution networks, wireless networks, and sensor networks.

Lacunae

• Critical research problem is how to allocate resources to tasks to
optimize some performance objective.

• Systems frequently have degraded performance due to uncertain-
ties, such as unexpected machine failures, changes in system work-
load, or inaccurate estimates of system parameters.

9

2.4 Desktop Cloud

Sr.No 3
Title Volunteer Computing and Desktop Cloud: the Cloud@Home Paradigm

Author Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Puli-
afito and Marco Scarpa University of Messina, Contrada
di Dio, S. Agata, 98166 Messina, Italy. Email: vdcun-
solo,sdistefano,apuliafito,mscarpa@unime.it

Source 2009 Eighth IEEE International Symposium on Network Computing
and Applications

Strength

• Compatibility limitations of Volunteer computing can be solved
in Cloud Computing environments, allowing to share resources
and services.

• The Cloud@Home paradigm could be also applied to commer-
cial Clouds, establishing an open computing-utility market where
users can both buy and sell their services.

• Cloud@Home both the commercial and the volunteer viewpoints
coexist

• Cloud@Home can be considered as the enhancement of the Grid-
Utility vision of Cloud computing.

Lacunae

• The virtualization in Clouds implements the isolation of the ser-
vices, but does not provide any protection from local access.

• Interoperability is one of the most important goals of
Cloud@Home and is an open problem in Grid, Volunteer and
Cloud computing.

10

2.5 Enterprise Cloud

Sr.No 4
Title Resource Management of Enterprise Cloud Systems Using Layered

Queuing and Historical Performance Models
Author David A. Bacigalupo, Jano van Hemert, Asif Usmani, Donna N. Dil-

lenberger, Gary B. Wills and Stephen A. Jarvis School of Electronics
and Computer Science, University of Southampton, SO17 1BJ, UK
Data-Intensive Research Group, School of Informatics, University of
Edinburgh, EH8 9AB, UK BRE Centre for Fire Safety Engineering,
School of Engineering, University of Edinburgh, EH9 3JL, UK IBM
T.J. Watson Research Centre, Yorktown Heights, New York, 10598,
USA High Performance Systems Group, Department of Computer Sci-
ence, University of Warwick, CV4 7AL, UK

Source 2010 IEEE
Points Two common approaches used in the literature for making the response

time predictions are extrapolating from historical performance data and
solving queuing network models. Examples of the first approach in-
clude the use of both coarse and fine grained historical performance
data. The former involves recording workload information and operat-
ing system/database load metrics, and the latter involves recording the
historical usage of each machine’s CPU, memory and IO resources by
different classes of workload.

11

2.6 Cost-Effective Resource Leases

Sr.No 5
Title Enabling Cost-Effective Resource Leases with Virtual Machines Com-

puting
Author Borja Sotomayor, Kate Keahey, Ian Foster, Tim Freeman
Source Borja Sotomayor site

Lacunae Achieving stricter lease semantics (Advance reservation) is difficult be-
cause it often lead to utilization problems in the scheduler caused by
the need to ”drain” jobs off of a group of resources before the job reser-
vation starts.

Points

• Applications consisting of workflows of small tasks (such as Mon-
tage, GADU can be more efficiently scheduled by a workflow en-
gine (e.g Pegasus or Swift) when using leased resources than
when each request must pass via a traditional scheduler .

• making leasing more cost-effective, one can support a multi-level
scheduling model, by decoupling resource provisioning from exe-
cution management.

• VMs are used to make on-demand short-term leasing of resources
cost effective. This architecture allows resource providers to sat-
isfy short-term leasing requests while continuing to support ex-
isting workloads (i.e., batch processing).

• Virtualization can achieve improved performance, both from the
provider’s perspective (throughput) and the user’s perspective
(running time), even in the presence of overhead incurred by using
VMs.

• By using the suspend/resume capability of virtual machines,
batch computations and timer-driven leasing requests (such as
advance reservations) can be interleaved in such a way that re-
sources do not have to be backfilled and ”drained” before the
start of a lease resulting in improved resource utilization.

12

2.7 Market Mechanism

Sr.No 6
Title RAS-M:Resource Allocation Strategy based on Market Mechanism in

Cloud Computing
Author Xindong YOU, Xianghua XU, Jian Wan, Dongjin YU School of Com-

puter Science and Technology Hangzhou Dianzi University Hangzhou,
China

Source 2009 Fourth China Grid Annual Conference
Strength Demand and Supply is balanced nearly, which validates RAS-M is ef-

fective and practicable, and is capable of achieving its goal.
Points

• Cloud is a type of parallel and distributed system consisting of
a collection of interconnected and virtualized computers that are
dynamically provisioned and presented as one or more unified
computing resources based on service level agreements established
through negotiation between the service provider and consumers.

• Employing the virtualized technologies, such as VMWare PC,
VMWare ESX, Xen, and KVM etc, one or more VMs can run
on a physical machine simultaneously

• RAS-M tries it best to achieve the equilibrium state through em-
ploying the present GA(Genetic Algorithm)-based price adjusted
algorithm.

13

2.8 Market-Oriented Cloud Computing

Sr.No 7
Title Market-Oriented Cloud Computing: Vision, Hype, and Reality for De-

livering IT Services as Computing Utilities.
Author Rajkumar Buyya1,2, Chee Shin Yeo1, and Srikumar Venugopal1 1 Grid

Computing and Distributed Systems (GRIDS) Laboratory Department
of Computer Science and Software Engineering The University of Mel-
bourne, Australia Email: raj, csyeo, srikumar@csse.unimelb.edu.au
Manjrasoft Pty Ltd, Melbourne, Australia

Source The 10th IEEE International Conference on High Performance Com-
puting and Communications

Lacunae Issues are

• How the participants in a market can obtain restitution in case
an SLA is violated.

Points

• Cloud computing which promises reliable services delivered
through next-generation data centers that are built on compute
and storage virtualization technologies.

• The Cloud appears to be a single point of access for all the com-
puting needs of consumers.

• A Cloud is a type of parallel and distributed system consisting
of a collection of interconnected and virtualized computers that
are dynamically provisioned and presented as one or more uni-
fied computing resources based on service-level agreements es-
tablished through negotiation between the service provider and
consumers.

14

2.9 Cloud Comparison

Sr.No 8
Title Comparison of Several Cloud Computing Platforms

Author Junjie Peng School of computer science and High performance comput-
ing center Shanghai University Shanghai, 200072 P.R. China Xuejun
Zhang Qinghua machinery factory at Changzhi Changzhi, 046012 P.R
China Zhou Lei, Bofeng Zhang, Wu Zhang, Qing Li School of computer
science and High performance computing center Shanghai University
Shanghai, 200072 P.R. China

Source Second International Symposium on Information Science and Engineer-
ing

2.10 Various Cloud Platforms

Characteristic Abicloud Eucalyptus Nimbus OpenNebula
Cloud Character Public / Private Public Public Private
Scalability Scalable Scalable Scalable Dynamically Scal-

able
Cloud Form Iaas Iaas Iaas Iaas
Compatibility Does not sup-

port EC2
Does support
EC2, S3

Does support
EC2

Open,Multi-
Platform

Deployment Pack and rede-
ploy

Dynamical
Deployment

Dynamical
Deployment

Dynamical Deploy-
ment

Deployment
manner

Web Interface
Drag

Commandline Commandline Commandline

Transplant abil-
ity

Easy Common Common Common

VM Support VirutalBox,
Xen, VMware,
VM

Xen, VMware,
KVM

Xen Xen, VMware

Web Interface Libvirt Web Service EC2, WSDL,
WSRF

Libvirt,EC2,OCCI,
API

Structure Open Platform
encapsulate core

Module Lightweight
Components

Module

Reliability - - - Rollback host and
VM

OS Support Linux Linux Linux Linux
Development
Language

Ruby, C++
,Python

Java Java,Python Java

2.11 Summary

This chapter describes some recent works related to advance reservation in Networks
Grids and Clouds. This chapter also focuses on the significant points discussed in several
standard papers specified in the above section. A main focus on the different cloud
platforms with various characteristics is also present at the end of this chapter.

15

Chapter 3

Reservation States

Advance reservation (AR) is the process of requesting resources for use at specific times
in the future . Common resources that can be reserved or requested are compute nodes
(CNs), storage elements (SEs), network bandwidth or a combination of any of those, as
mentioned earlier.

3.1 States of a Reservation

An Advance Reservation request can be in one of several states during its lifetime as
shown in Figure 3.1 Transitions between the states are defined by the operations that a
consumer performs on the reservation. These states are defined as follows:

3.1.1 Request

When a request for a reservation of Resources is first made, it is in the Initial state.

3.1.2 Reject

The reservation is not fruitfully allocated; cause may be the existing reservation has
expired or the slots may be full.

3.1.3 Accept

A request for a new reservation has been agreed upon.

3.1.4 Commit

A reservation has been confirmed by a consumer before the expiry time and will be
privileged by the requested Resource.

3.1.5 Change Request

A consumer is trying to alter the requirements for the reservation prior to its starting.
If it is successful, the reservation is committed with the new requirements; otherwise,
the parameters remain the same. For instance, one can increase the bandwidth that has
already been requested. A modification that reduces its requirements normally succeeds,

16

Figure 3.1: A State Transition diagram depicting the states for Advance Reservation

although certain factors may cause reduction modifications to fail, such as local policy
that does not allow small reservations on some resources. In no case should the under-
lying system implement a modification such that if the modification fails, the original
reservation is lost. For example, a simple implementation may implement modification
by canceling a reservation and making a new reservation, but if the new reservation fails
and it cannot be rolled back to the original reservation, this would be undesirable.

3.1.6 Active

The system executes the reservation as the start time has been reached.

3.1.7 Cancel

A consumer may cancel the reservation as it may no longer be required.

3.1.8 Complete

The reservations end time has been reached.

3.1.9 Terminate

A consumer terminates an active reservation before the end time is reached.

17

Figure 3.2: A State Transition diagram depicting Bind and Unbind

3.1.10 Bind Reservation

When the application is ready to use a reservation, it may need to provide run-time
information that was not available at the time the reservation was made as shown in
Figure 3.2. This is known as binding a reservation [9]. For example, network reservations
require port numbers to be specified, but they are not usually known at reservation time.
Not all reservations require such run-time parameters.

3.1.11 Unbind Reservation

A reservation can be unbound. It then will no longer be usable by the person using
the reservation as shown in Figure 3.2. It can be rebound, however with new run-time
parameters as shown in Figure 3.2

3.2 Query Reservation Status

Consumer can query for the status of a reservation by polling it as shown in Figure
3.4. The status includes whether the start of the reservation has begun and whether the
reservation has been committed .

3.2.1 Query Reservation Attributes

Consumer can query for attributes associated with an existing reservation. These in-
clude begin and end time of the given reservation and whether it is a two-phase commit

18

Figure 3.3: A State Transition diagram depicting Bound and Rebound

Figure 3.4: Query a Reservation

19

reservation. The attributes also include specific information required to actually use a
reservation. For example, attributes are a Folder name where data was staged on or a
Queue name which has to be used for submitting a job as shown in Figure 3.1

3.3 Register Callback

One can provide a function that will be called when the status of a reservation changes
or when the reservation manager wishes to provide extra information to the application.
This information may include notification that the related reservation appears to be too
small.

3.4 Summary

This chapter discusses the various states a parallel job submitted by the Consumer can
be in. The parallel job is submitted by the Consumer in Advance. Finally, after the
reservation has been made and the Consumer can submit some parameters at run time
called as Bind a Reservation. The Consumer can query for the details later when required.
The details are stored in his/her directory.

20

Chapter 4

Advance Reservation Data
Structures and Operations

4.1 Introduction

In order to reserve available resources in a Cloud, a Consumer must first submit a request
by specifying a series of parameters such as number of compute nodes (CNs) needed,start
time and duration of his/her jobs. Then, the Advance Reservation system checks for the
feasibility of this request. If there are no available nodes for the requested time period,
the request is rejected. Consequently, the Consumer may resubmit a new request with
a different start time and/or duration until available nodes can be found. Given this
scenario, the choice of an efficient data structure can significantly minimize the time
complexity needed to search for available compute nodes, add new requests, and delete
existing reservations.

4.2 Basic Operations

An efficient data structure for managing reservations plays an important role in order to
minimize the time required for searching available resources, adding, and deleting reser-
vations.An efficient data structures for managing the Advance Reservation is proposed
in this section called Eucalyptus Cloud Advance Reservation Queue(ECARQ). The pro-
posed data structure has buckets with a fixed delta, which represents the smallest slot
duration or slot interval as shown in Figure 4.1. Each bucket contains mrv (the number
of already reserved CNs in this bucket) and a linked list (sorted or unsorted), containing
the reservations which start in this time bucket. For enabling a fast O(1) access to a
particular bucket, the following is used formula:

i = [t/delta]modM (4.1)

where i is the bucket index,delta the smallest slot interval or slot duration, t is the request
time, and M is the number of buckets in the data structure.

A common input for the operations is the tuple (tstart, tend, numCN)here :

• tstart is the Reservation start time

• tend the Reservation end time and

• numCN is the number of Computer Nodes required for a Consumer at the specified
interval.

21

In order to support Advance Reservation in Clouds, ECARQ data structure needs to
perform the following basic operations:

• Search : checking for availability of CNs in a given time interval. This operation is
defined as searchReserv(tstart, tend, numCN)

• Insert: inserting a new reservation request into the ECARQ data structure. This
operation is performed only when the previous search phase succeeded. For addi-
tion, the new reservation is represented as addReserv((tstart, tend, numCN; CNM)
where CNM is an Consumer object storing the Consumer’s jobs and other relevant
information.

• Delete: removing the existing reservation from the ECARQ data structure. This
operation is conducted only when the add phase succeeds and the reservation’s end
time passed. It is described as deleteReserv((tstart,tend,numCN)s shown in 4.1.

• Interval Search: the ECARQ data structure finds an alternative time for a rejected
request. This operation helps Consumer whose requests got rejected in negotiat-
ing a suitable reservation time. Therefore, the performance of this operation also
needs to be considered when choosing the appropriate data structure. It is defined
suggestInterval((tstart,tend,numCN)

Figure 4.1: An example of Advance Reservations for reserving Computer Nodes. The
maximum available computer nodes is 3. A dotted box denotes a new request.

22

Figure 4.1 shows an example of existing reservations represented in a time-space diagram.
When a new request from Consumer 5(CNM5) arrives, the resource scheduler checks
for any available Computer Nodes. In the above example, the request is defined as
reserv((tstart,tend,numCN) with numCN = 2. However, only one node is available, hence,
this request will be rejected. By performing suggestInterval(11; 16; 2) on this request,
the system manages to find the next available time, which is from time 13 to time 15.
Note that in this example, the ending time has been increased for a bigger search time
range.

23

Figure 4.2: A representation of storing reservations in ECARQ with Sorted Queue and
N = 1. A request from Consumer 5 is rejected because not enough Computer Nodes for
slot [11, 12] as shown by the shaded box.

24

4.3 Proposed Advance Reservation Algorithms

This section discusses the proposed algorithms for performing the different operations
like Insert, Delete, SearchInterval and SuggestInterval ,on the proposed Data Structures
ECARQ.

Algorithm 1 searchReservation((tstart,tend,numCN) in ECARQ

1: start bucket← get bucket index(tstart) {get the starting index.}
2: end bucket← get bucket index(tend) {get the ending index.}
3: finish← 0
{a case where it needs to wrap around the array.}

4: if end bucket <start bucket then
5: finish←M
6: else
7: finish← end bucket
8: end if
9: for i =start bucket to finish do
10: if i ==M then
11: i←0 {set to first index.}
12: finish← end bucket
13: end if
14: if (bucket[i].rv + numCN) ¿ maxCN then
15: return false
16: end if
17: end for
18: return true{slot is full.}

25

Algorithm 2 addReservation((tstart,tend,numCN) in ECARQ

1: start bucket← get bucket index(tstart) {get the starting index.}
2: end bucket← get bucket index(tend) {get the ending index.}
3: bucket[start bucket].addInfo(Client) {stores users job and other details.}
4: finish← 0 {a case where it needs to wrap around the array.}
5: if end bucket <start bucket then
6: finish←M
7: else
8: finish← end bucket
9: end if
10: for i =start bucket to finish do
11: if i ==M then
12: i←0 {set to first index.}
13: finish← end bucket
14: end if
15: bucket[i].rv ← bucket[i].rv + numCM
16: end for

Algorithm 3 suggestInterval((tstart,tend,numCN) in ECARQ

1: start bucket← get bucket index(tstart) {get the starting index.}
2: end bucket← get bucket index(tend) {get the ending index.}
3: tot req ← 1 + end bucket− start bucket {total slots required.}
4: new start← start bucket {the new starting index}
5: count← 0
6: last bucket← get bucketindex(t start + MAX LIMIT) {the last bucket to Search}
7: finish←M { a case where it needs to wrap around the array.}
8: if last bucket < start bucket then
9: finish←M
10: else
11: finish← last bucket
12: end if
13: for i =start bucket to finish do
14: if i ==M then
15: i←0 {set to first index.}
16: finish← last bucket
17: end if
18: if (bucket[i].rv + numCN) >maxCN then
19: new start← i + 1
20: count← 0
21: else
22: count← count + 1
23: end if
24: end for

26

Deleting an existing reservation applies to the same principle as adding a new one. It
can be done by removing the reservation from the starting bucket and decrementing mrv
through out the relevant bucket interval.

4.4 Advantages of ECARQ

A lot many advantages exists in ECARQ which is like an Array based Data Structure.
The advantages are explained as follows:

• potential to add new reservations directly into a particular bucket. Thus it has a
quick O(1) access to the bucket.

• potential to reuse these buckets for the next time period.

• built only once in the beginning.

• easy to search and compare by using iteration

• flexibility in handling resource availability.

• In Clouds, Computer Nodes(CN) can be added or removed periodically and dynam-
ically. Such issues can be levered by a reservation system or a resource scheduler by
setting the amount of available CNs on that resource appropriately. Furthermore,
existing reservations can be relocated to other CNs through the add and delete
operations.

4.5 Summary

This chapter discusses a proposed data structure called ECARQ for managing reserva-
tions. It is very efficient and plays an important role in order to minimize the time
required for searching available resources, adding, and deleting reservations. The Algo-
rithms which operate on this Data Structures are also discussed in this chapter.Also there
are highlights on Advantages of the proposed Data Structures.

27

Chapter 5

Eucalyptus

5.1 Introduction

Eucalyptus enables the creation of on-premise private clouds, with no requirements for
retooling the organization’s existing IT infrastructure or need to introduce specialized
hardware. Eucalyptus implements an IaaS (Infrastructure as a Service).Eucalyptus cloud
to be turned into a hybrid cloud, capable of drawing compute resources from public cloud.
And Eucalyptus is compatible with a wealth of tools and applications that also adhere
to the de facto EC2 and S3 standards.

5.2 Eucalyptus Components

Each Eucalyptus service component exposes a well-defined languageagnostic API in the
form of a WSDL document containing both the operations that the service can per-
form and the input/output data structures. Inter-service authentication is handled via
standard WS-Security mechanisms. There are five high-level components, each with its
own Web-Service interface, that comprise a Eucalyptus installation Figure 6.1. A brief
description of the components within the Eucalyptus system follows.

5.2.1 Cloud Controller

Cloud Controller (CLC) is the entry-point into the cloud for administrators, developers,
project managers, and end users. The CLC is responsible for querying the node managers
for information about resources, making high level scheduling decisions , and implement-
ing them by making requests to cluster controllers. The CLC, as shown in Figure 6.1,
is also the interface to the management platform. In essence, the CLC is responsible
for exposing and managing the underlying virtualized resources (servers, network, and
storage) via a well-defined industry standard API (Amazon EC2) and a Web-based user
interface.

5.2.2 Cluster Controller

Cluster Controller (CC) generally executes on a cluster front-end machine, or any machine
that has network connectivity to both the nodes running NCs and to the machine running
the CLC. CCs gather information about a set of VMs and schedules VM execution on
specific NCs. The CC also manages the virtual instance network and participates in the

28

enforcement of SLAs as directed by the CLC. All nodes served by a single CC must be
in the same broadcast domain (Ethernet).

5.2.3 Node Controller

Node Controller (NC) is executed on every node that is designated for hosting VM in-
stances. NCs control the execution, inspection, and termination of VM instances on the
host where it runs, fetches and cleans up local copies of instance images (the kernel, the
root file system, and the ramdisk image), and queries and controls the system software
on its node (host OS and the hypervisor) in response to queries and control requests from
the cluster controller. The Node controller is also responsible for the management of the
virtual network endpoint.

5.2.4 Storage Controller

Storage Controller (SC) implements block-accessed network storage (e.g. Amazon Elastic
Block Storage(EBS) and is capable of interfacing with various storage systems (NFS,
iSCSI, etc.). An elastic block store is a Linux block device that can be attached to a
virtual machine but sends disk traffic across the locally attached network to a remote
storage location. An EBS volume cannot be shared across instances but does allow
a snap-shot to be created and stored in a central storage system such as Walrus, the
Eucalyptus storage service.

5.2.5 Walrus(put/get storage)

Walrus (put/get storage) allows users to store persistent data, organized as eventually-
consistent buckets and objects. It allows users to create, delete, list buckets, put, get,
delete objects, and set access control policies. Walrus is interface compatible with Ama-
zons S3, and supports the Amazon Machine Image (AMI) image-management interface,
thus providing a mechanism for storing and accessing both the virtual machine images
and user data.

5.2.6 Management Platform

Management Platform provides an interface to various Eucalyptus services and modules.
These features can include VM management, storage management,user/group manage-
ment, accounting, monitoring , SLA definition and enforcement, cloud-bursting, provi-
sioning, etc.

5.2.7 ARM

Advance Resource Management (ARM), the Resource provisioning model, is the model
that is responsible for Advance Reservation. It interacts with CC,NC,SC and CLC before
confirming the reservation to the consumer. It also provides support for immediate and
best-effort provisioning.

29

5.3 Eucalyptus Configuration

With these components, Eucalyptus can be configured to support a wide variety of in-
frastructure features and topologies. For example, four different networking modes are
supported , each corresponding to a different level of security and infrastructure intru-
siveness allowing system administrators to tune each cloud configuration to meet local
policy and management needs. It is also possible to deploy Eucalyptus to include different
hypervisors and virtualization technologies within a unified cloud exporting a single API
. Thus, a Eucalyptus cloud can act as a platform for unifying a variety of technologies
(each at a potentially different point in its data center lifecycle) within a single cloud.

Figure 5.1: Conceptual Representation of Eucalyptus Cloud

30

5.4 Advance Reservation Data Structure

This section confers about the flow in which the AR Module would initiate and initialize
the Data Structures. The Figure 6.2 depicts that first ”Ubuntu Enterprise Cloud” (UEC)
starts,then the Eucalyptus and then the AR Data Structures are initialized which gets
its values from the configuration file eucalyptus.conf [22] which is used to configure and
customize Eucalyptus. The following options are read from the above specified file:

• VNET-MODE=”MANAGED-NOVLAN” There are four modes to choose from
(MANAGED, MANAGED-NOVLAN, SYSTEM, or STATIC) and each has its own
sub-options. The first modes (MANAGED, MANAGED-NOVLAN) configure eu-
calyptus to fully manage the VM networks, and enables the ability to use security
groups and dynamic public IP assignment (with and without vlan tagging of secu-
rity group networks, respectively).

• NODES=”” The list of Node Controllers the Cluster Controller will communicate
with.

• MAX-CORES=”” The maximum number of CPU/cores Eucalyptus is allowed to
use on the node (at the moment there is no difference between cores and CPU).
If this is commented out, Eucalyptus will use all available CPU/cores it can find.
Default value is 2.

Figure 5.2: A State diagram to depict the initialization of Advance Reservation Data
Structure.

31

5.5 Cloud Configuration

Steps to install Ubuntu Cloud:

• Prerequisites

Following the system configuration required for a machine on which Eucalyptus
cloud would be installed. The suggestions listed in the following table are as spec-
ified in the community URL of Ubuntu as shown in Figure 5.3[24].

• Install the Cloud/Cluster/Storage/Walrus Front End Server. When the CD is
booted, select ”Install Ubuntu Enterprise Cloud” (UEC) as shown below in Figure
5.4.

• The installer will detect if any other Eucalyptus components are present as shown
below in Figure 5.6 . One can then choose the following components as shown in
Figure5.7.

• Eucalyptus is made of 5 types of components that can live on the same or on
separate systems . The CLC (Cloud controller) is the entry point to the cloud,
which is made of one or more clusters as shown below in the Figure5.5.

• The Walrus is a unique component providing an S3-like service in the cloud.

• A CC (Cluster controller) controls a given cluster.

• A SC (Storage controller) handles storage in a given cluster.

• A NC (Node controller) handles VMs in a given cluster. There can (and should)
be multiple NCs in each cluster.

Parent components need to register child components before they can use them as
part of the cloud. CLC is the parent for CCs, SCs and Walrus child components, while
the CC is the parent for NC child components.

Figure 5.3: System configuration required for a machine with Eucalyptus Cloud to be
Configured.

32

Figure 5.4: Boot screen of Ubuntu Enterprise Cloud (UEC).

Name the Cluster that is to be installed on the machine as shown in Figure 6.7

A range of IP(Internet Protocol) addresses on LAN(Local Area Network) that the
cloud can be allocated to instances. e.g. 192.168.1.200 - 192.168.1.249. Once all the
components are installed the services could be started using the following commands:

• sudo service eucalyptus-cloud start.This command is used to start the eucalyptus
cloud controller.

• sudo service eucalyptus-cc start.This command is used to start the eucalyptus clus-
ter controller.

• sudo service eucalyptus-nc start. This command is used to start the eucalyptus
node controller.

• sudo service eucalyptus-walrus start. This command is used to start the eucalyptus
walrus service.

33

Figure 5.5: A Tree Structure showing the components of Cloud.

• sudo service eucalyptus-sc start. This command is used to start the eucalyptus
storage controller service.

If all these services are running its an indication that the cloud has been installed suc-
cessfully.

5.6 Summary

This chapter discuses about Eucalyptus cloud ,the Components and the Installations
steps.All the screens which come during the installations are discussed in this chapter.Also
discussions on commands to start the cloud Services on Ubuntu is done.

34

Figure 5.6: Screen to Input the IP Address of Cloud Controller.

Figure 5.7: Screen depicting the selection of Cloud Controller Component of Eucalyptus.

35

Figure 5.8: Screen to Input the Eucalyptus Cluster-name.

Figure 5.9: Screen to Input the IP Adress 192.168.1.1.

36

Chapter 6

Service Offered and InterFaces

6.1 Introduction

Cloud computing is complete new technique put forward from industry circle, it is the
development of parallel computing, distributed computing and grid computing, and is
the combination and evolution of virtualization, utility computing, Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS) Software-as-a-Service (SaaS) and a term
coined by us Compilers as a Service (CaaS).

Cloud computing can provide many kinds of service modes, including IaaS, PaaS
and SaaS. Where SaaS means the service provided to client is the applications running
on the cloud computing infrastructure provided by the service providers. It can access
by thin client interfaces such as bowser etc. PaaS refers to deploy the Applications
created by the development language and tool say Java, python, .Net etc. provided by
the service providers to the cloud infrastructure. IaaS refers to the services provided to
the users is to lease the processing power, storage, network and other basic computing
resources, with which users can deploy and run any software including operating systems
and applications. To all these services, there is no need for users to manage or control
the cloud infrastructure, including network, server, operating system, storage and even
the functions of Applications.CaaS means the service providers accept the parallel jobs
from the Consumers who send these parallel jobs at a pre-selected time by using the Web
based Interface.

6.2 Services Offered

The Services offered by the Cloud are CaaS on top of Infrastructure as a Service (IaaS)
as depicted in Figure 6.1.

37

Figure 6.1: Services offered by the Cloud.

A Login screen for different types of users is depicted in Figure 6.2.User Name and
password needs to be entered for authentication.Two specific types of users an Adminis-
trator and Consumers (Service Utilizers)are using the same screen. An Interface for new
Consumer is also provided where they can register themselves for utilizing the services.

A Change Password Screen as depicted above in Figure 6.2 is provided where a Con-
sumer can keep changing the password for security reasons.

38

Figure 6.2: Login Screen.

The Interface depicted in Figure 6.4 displays the different registered Consumers to
the Administrator.

The Resources can be added by the authorized users through the interface depicted
in Figure 6.5 and 6.6.

An Interface that depicts the different shell files to schedule the jobs of different types.
Jobs in C,C++,Java can be submitted well in advance .Jobs are the programs that are
submitted by the Consumers to be scheduled on the Eucalyptus Cloud.

An Interface to depict the entry for the Slot. The authorized user can only change
the slot as shown in Figure 6.8.

39

Figure 6.3: Change Password Option.

An Interface to select the start time and the end time for the Consumers for the job
submission for execution as depicted in Figure 6.9.

An Interface to display the previous job submitted by the Consumer as depicted in
Figure 6.10.

40

Figure 6.4: An Interface showing different Consumers to the Administrator.

Figure 6.5: An Interface to add the types of Resources.

41

Figure 6.6: An Interface showing resource type as small instance.

Figure 6.7: An Interface to display the different types of Shell files for different types of
compilers to schedule the jobs

42

Figure 6.8: Slot Interface.

Figure 6.9: Slot Interface.

43

Figure 6.10: Previous Job Submitted.

44

Chapter 7

Performance Evaluation

This chapter focuses on the Performance Module of the Advance Reservation System a.k.a
as Resource Management System. A functional structure of the Module is developed and
highlighted in Figure : 7.1.

Eucalyptus Advance Reservation Queue (ECARQ) implementation includes a front
end scheduling daemon a node scheduling daemon and a DbDaemon. Daemons are
implemented using JSP,MySQL and Unix Shell Scripts that perform Job scheduling and
execution. Web based GUI’s are provided for all the major operations.

• User Interfaces : ECARQ provides several User Interfaces for submitting a Job
Releasing a Job and querying about the job status and information. A User can
submit several parallel Jobs using these User Interfaces.

• Job Scheduling :The Scheduling is performed with the aid of several other mod-
ules.When the module is started the resources are loaded from the predefined scripts
which reads values from the eucalyp.conf which is a monolithic file used to control
the Eucalyptus Clouds.

• Job Execution : ECARQ supports both batch Jobs and Interactive Jobs. It is
guided by the scheduling Information and responsible for actual assigning /releasing
node access to the corresponding user when a job is started / finished. It also release
the resources for early completed jobs and terminates the uncompleted Jobs when
scheduled time arrives.

• Plugin Scripts : ECARQ has to adapt different parallel program execution environ-
ments. This is implemented by writing specific shell scripts to interface the ECARQ
job execution to different environments.

In order to evaluate the performance of our proposed data structure, i.e. ECARQ with
Sorted Queue two nodes have been setup. The slot time can be set from the Interface.Only
the Administrator or any authorized user has the right to set the various values for the
slots. Various screen shots are available and are specified in Chapter 6. The parallel
programs(jobs) which are submitted, compiled and executed are Matrix Multiplication
and Bubble Sort.

The Algorithm Complexity is specified in Fig7.2

45

Figure 7.1: ECARQ Functional Structure.

The Figure 7.3 specifies that the System is tested with 5 Users and their respective
Parallel Jobs.

The Figure 7.4 specifies the Accepted Jobs,Suggestions Given Errors and Other De-
tails.

The Figure 7.5 suggest the Free Slot Available for the User. These suggestions are
implicitly given when a Consumer selects a slot which is already booked by some other
Consumer. A Consumer can thus select the suggested Interval and thus confirm the
specified slot for himself/herself.

These suggestions are intelligent suggestions as it would display the Free slots to the
Consumers, thus utilizing the resources efficiently and thus Resources managed effec-
tively.As the free slot would otherwise go waste.

The Figure 7.6 focuses on the No of Jobs Rejected(canceled) by the system due
unavailability of Services of Cloud. These jobs are scheduled later when the slots are
Free.Now again the Free slots are utilized by the System very smartly.

46

Figure 7.2: Complexity of the Algorithms.

7.1 Summary

This chapter focuses on ARM or RMS. Major srceens related to Performance Evalua-
tion are highlighted here. The screens suggesting the user of suggestions if the slot is
not available here are also discussed.These suggestions are termed by us as intelligent
suggestions.

47

Figure 7.3: User and Parallel Job Submitted by the specified Users.

Figure 7.4: Job Accepted, Suggestion Given and Errors for Job Submitted .

48

Figure 7.5: Suggestions.

Figure 7.6: Jobs Canceled and Scheduled Later.

49

Chapter 8

Conclusion and Future Direction

Cloud technologies represent a significant achievement towards the aggregation of net-
worked resources for solving large-scale data-intensive or compute-intensive applications.This
thesis proposes the use of advance reservation to ensure the specified resources are avail-
able for applications when required. The studies here are carried out through the Euca-
lyptus Cloud . In this chapter, there are highlight on the thesis contributions and possible
future directions.

AR is useful in scenarios where lease would turn out cheaper than installation of
Resources. Common Resources which could be requested or leased are Nodes (VM),
network bandwidth, memory and disk space. AR in a Cloud thus allows consumers to
achieve synchronized access for their applications to be executed in parallel and assures
the availability of requested resources to the consumer at specified future times. With
AR thus resources could be managed effectively and would offer a better QoS.

8.1 Conclusion

This thesis describes the development of Advance Reservation Module for the Cloud
An Eucalyptus Cloud has been built successfully on Ubuntu 10.10 (Maverick Meerkut).
ARM Modules is built in JSP (Java Server Pages), Tomcat 6 and MySQL 5 on Ubuntu
10.10.

Free slots leads to Wastage of Resources.AR thus aids in better Utilization of Re-
sources as these free slots could be utilized else which would otherwise go waste. AR is
thus useful is scenarios where lease would turn out cheaper than installation of Resources.
Common resources which could be requested or leased are Nodes (VM), network band-
width, memory and disk space or a combination of these. AR in a Cloud thus allows
consumers to achieve synchronized access for their applications to be executed in parallel
and assures the availability of requested resources to the consumer at specified future
times. With AR thus resources could be managed effectively and would offer a better
QoS.

This thesis provides a case for an elastic reservation model, where users can self-
select or choose the best option in reserving their jobs, according to their QoS needs and
availability of resources.

In this model, the Cloud system has a Reservation System (RS) and a DbDaemon. The
RS is responsible for handling reservation queries and requests. When the RS receives
a reservation query or request, it searches for availability. More specifically, the RS
communicates with the DbDaemon, for this request. Therefore, the primary role of the

50

DbDaemon is to store and update information about resource availability as the time
progresses.

A well-designed data structure provides the flexibility and easiness in implementing
various algorithms. This thesis suggests a data structure for administering reservations
efficiently in the DbDaemon. The new data structure is called Eucalyptus Advanced
Reservation Queue (ECARQ).

ECARQ has the following advantages:

• a fast O(1) access to a particular slot.

• able to reuse these slots for the next time interval, assuming that the length of a
reservation is less than 30 days; and

• built only once in the beginning

The algorithms which are used here consider the duration and number of required com-
pute nodes as soft constraints for a given reservation query. Thus, it aims to find a
solution or alternative offers within the given time interval for clients to choose them-
selves. In addition, the algorithm aims to reduce fragmentation or idle time gaps caused
by having reservations in the system.

Having a degree of flexibility in the reservation requests allows an improvement in the
resource utilization.Advance Reservation thus aids in better Utilization of Resources as
Free slots leads to Wastage of Resources, Free slots could be utilized in a better manner.

8.2 Future Direction

This thesis suggests several future directions to further enhance AR for Clouds. The
future directions are related to the three key functionalities of Clouds, i.e. job scheduling,
resource management and data management.

8.2.1 Incorporating Resource Failure Model

The Resource Scheduler presented in this thesis assume that all the compute nodes are
available for execution. However, in reality, some of these nodes may not be available at
some point in the future due to maintenance or upgrade (e.g. software, hardware and
security). Thus, the Resource Scheduler needs to consider a case where several nodes fail
during execution. The addition of a resource failure model to the job scheduling problem
will present another challenge to the Resource Scheduler and DbDaemon. The Resource
Scheduler needs to interact with the RMS and the DbDaemon to find suitable solutions.
Such solutions can be migrating the affected jobs to other available nodes either located
internally or externally, postponing these jobs to later times, or providing them with
some compensation costs. However, these decisions needed to be chosen carefully as they
may reduce the overall resource revenue and disrupt other reservations and existing jobs
in the queues. As such, incorporating the resource failure model provides an interesting
and exciting research problem.

8.2.2 Integrating Various Types of Resources

As mentioned previously, common resources that can be reserved are compute nodes
(CNs),storage elements (SEs), network bandwidth or a combination of any of those.

51

However, this thesis is mainly focusing on reserving compute nodes. Therefore, allow-
ing users to reserve a combination of resource types is highly desirable, since various
applications, especially in the area of Cloud, can be modeled and studied.

52

Appendix A

List of Publications

My paper entitled ”Effective Resource Management in Clouds Using Advance Reserva-
tion” has been published in 2010 International Conference on Intelligent Network and
Computing (ICINC 2010)held at Kuala Lumpur Malaysia in November 26 - 28 2010,
with IEEE Catlog Number : CFP1076K-PRT and ISBN 978-1-4244-8270-2 with page
nos 380 to 383.

53

Bibliography

[1] Rajkumar Buyya1,2, Chee Shin Yeo1, and Srikumar Venugopal and Grid Comput-
ing and Distributed Systems (GRIDS) Laboratory Department of Computer Science
and Software Engineering. Market-Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing Utilities. In the Proceedings of the
10th IEEE International Conference on High Performance Computing and Commu-
nications: page 5 - 13

[2] Borja Sotomayor ,Ruben Santiago Montero Ignacio Mart?n Llorente, Ian Foster.
Resource Leasing and the Art of Suspending Virtual Machines, In the Proceedings
of 2009 11th IEEE International Conference on High Performance Computing and
Communications: page 59 - 68.

[3] N. Fallenbeck, H.-J. Picht, M. Smith, and B. Freisleben. Xen and the art of cluster
scheduling. In VTDC ’06: Proceedings of the 1st International Workshop on Virtu-
alization Technology in Distributed Computing. IEEE Computer Society, 2006.

[4] W. Emeneker and D. Stanzione. Efficient Virtual Machine Caching in Dynamic Vir-
tual Clusters. In SRMPDS Workshop, ICAPDS 2007 Conference, December 2007

[5] N. Kiyanclar, G. A. Koenig, and W. Yurcik. Maestro VC: A paravirtualized execution
environment for secure on-demand cluster computing. In CCGRID ’06: Proceedings
of the Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’ 06), page 28. IEEE Computer Society, 2006.

[6] J. P. Walters, B. Bantwal, and V. Chaudhary. Enabling interactive jobs in virtualized
data centers. In Cloud Computing and Applications 2008 (CCA08), 2008.

[7] Anthony Sulistio and Rajkumar Buyya : A GRID SIMULATION INFRASTRUC-
TURE SUPPORTING ADVANCE RESERVATION

[8] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian Foster: An
Open Source Solution for Virtual Infrastructure Management in Private and Hybrid
Clouds, IEEE INTERNET COMPUTING, SPECIAL ISSUE ON CLOUD COM-
PUTING July 2009

[9] Alain Roy Scheduling Working Group University of Wisconsin-
Madison,Forschungszentrum Jlich GmbH May 2002

[10] Xindong YOU, Xianghua XU, Jian Wan, Dongjin YU School of Com-
puter Science and Technology Hangzhou Dianzi University Hangzhou,
China,youxindong@hdu.edu.cn, wanjian@hdu.edu.cn: RAS-M:Resource Allo-
cation Strategy based on Market Mechanism in Cloud Computing 2009 IEEE page
256 - 253

54

[11] Scheduling with Advanced Reservations Warren Smithy Ian Foster Valerie Tay-
lory Mathematics and Computer Science Division Argonne National Laboratory,
Argonne, IL 60439 fwsmith,fosterg@mcs.anl.gov

[12] Lizhe Wang, Jie Tao, Marcel Kunze Institute for Scientific Computing, Re-
search Center Karlsruhe Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-
Leopoldshafen, Germany Alvaro Canales Castellanos, David Kramer, Wolfgang Karl
Department of Computer Science, University Karlsruhe (TH) 76128 Karlsruhe, Ger-
many : Scientific Cloud Computing: Early Definition and Experience ,In the pro-
ceedings of the 10th IEEE International Conference on High Performance Computing
and Communications, page 825 - 830

[13] Borja Sotomayor, Kate Keahey, Ian Foster : Combining Batch Execution and Leas-
ing Using Virtual Machines, HPDC’08, June 23-27, 2008, Boston, Massachusetts,
USA, ACM.

[14] Luqun Li An Optimistic Differentiated Service Job Scheduling System for Cloud
Computing Service Users and Providers: 2009 Third International Conference on
Multimedia and Ubiquitous Engineering. page 295 - 299

[15] Massimiliano Rak , Emilio P. Mancini,UmbertoVillano PerfCloud: GRID Services
for Performance-oriented Development of Cloud Computing Applications, In 2009
18th IEEE International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises ,page 201 - 206

[16] Eddy Caron, Frederic Desprez, David Loureiro , Adrian Muresan Cloud Computing
Resource Management through a Grid Middleware: A Case Study with DIET and
Eucalyptus ,In the proceedings of 2009 IEEE International Conference on Cloud
Computing, page 151 - 154

[17] Junjie Peng School of computer science and High performance computing center
Shanghai University Shanghai,China ,Xuejun Zhang Qinghua machinery factory at
Changzhi Changzhi, China,Zhou Lei, Bofeng Zhang, Wu Zhang, Qing Li School
of computer science and High performance computing center Shanghai University
Shanghai,China: Comparison of Several Cloud Computing Platforms, In the pro-
ceedings of the Second International Symposium on Information Science and Engi-
neering

[18] http://open.eucalytus.com/

[19] http://maven.apache.org/

[20] http://linuxers.org/article/kickass-features-that-will-make-ubuntu-1010-the-
perfect-10

[21] http://www.ubuntu.com/cloud/why-ubuntu

[22] http://manpages.ubuntu.com/manpages/maverick/man5/eucalyptus.conf.5.html

[23] https://help.ubuntu.com/community/UEC/CDInstall

[24] http://fnords.wordpress.com/2010/02/21/ubuntu-enterprise-cloud-
autoregistration-features/

55

[25] http://en.wikibooks.org/wiki/LaTeX/DocumentStructure

[26] http://en.wikibooks.org/wiki/LaTeX/AlgorithmsandPseudocode

56

Index

Abicloud, 2, 15
Accept, 16
Active, 17
Advance Reservation, 3, 21
Advance reservation, 16
Advance Reservation Management, 3
Advance Resource Management (ARM), 29
Apache Tomcat, 5

Bind Reservation, 18

Cancel, 17
Change Request, 16
Cloud, 2, 7, 14, 21, 39
Cloud Controller(CLC), 28
Cluster, 7
Cluster Controller (CC), 28
Commit, 16
Compiler, 4
Compilers as a Service (CaaS), 37
Complete, 17
compute nodes, 16, 21
Computer nodes, 3
Consumer, 18, 21, 40
consumer, 16

DbDaemon, 45
Delete, 22

EC2, 15
ECARQ, 21, 22, 25, 27, 45
Elastic Block Storage(EBS), 29
Eucalyptus, 2, 15, 21, 28, 32, 39

functional structure, 45

Grid, 7

Haizea, 7
hypervisors, 30

IaaS, 7, 8, 15, 28
Iaas, 2
Infrastructure-as-a-Service (IaaS), 37

Insert, 22
intelligent suggestions, 46
Interpreter, 4
Interval Search, 22
IP(Internet Protocol), 33

JDBC, 5
Job Execution, 45
Job Scheduling, 45
JSP, 5, 45

Kernel-based Virtual Machine, 6

LAN(Local Area Network), 33
Libvirt, 15

Management Platform, 29
Maverick Meerkat, 3
Memory Management, 4
MySQL, 45

network bandwidth, 3, 16
Nimbus, 2, 15
Node Controller (NC), 29

OpenNebula, 3, 7, 15

parallel job, 20
parallel jobs, 37
Platform-as-a-Service (PaaS), 37
Plugin Scripts, 45

QEMU, 6
Quality of Service (QoS), 3
query, 18
Query Reservation Attributes, 18
Query Reservation Status, 18

Register Callback, 20
Reject, 16
Request, 16
Resource Management System, 45
Resources, 39

S3, 15

57

Search, 22
Security, 4
Service-Level Agreements(SLA), 2
Software-as-a-Service (SaaS), 37
States of a Reservation, 16
Storage Controller (SC), 29
storage elements, 3, 16

Terminate, 17
Threading, 4
time-space diagram, 23

Ubuntu, 3, 4
Ubuntu Enterprise Cloud, 31
Ubuntu Enterprise Cloud , 3
Unbind Reservation, 18
User Interfaces, 45

virtualization, 2, 6, 30

Walrus, 29

58

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	List of Algorithms
	Abbreviation
	Introduction
	Cloud
	Popular available Clouds Platforms

	Advance Reservation
	Goal
	Tools And Techniques
	 Ubuntu
	Java
	JSP
	Tomcat
	Eucalyptus
	KVM

	Literature Survey
	Related Work in Clouds
	Resource Leasing
	Resource Management in Heterogeneous Parallel Systems
	Desktop Cloud
	Enterprise Cloud
	Cost-Effective Resource Leases
	Market Mechanism
	Market-Oriented Cloud Computing
	Cloud Comparison
	Various Cloud Platforms
	Summary

	Reservation States
	States of a Reservation
	Request
	Reject
	Accept
	Commit
	Change Request
	Active
	Cancel
	Complete
	Terminate
	Bind Reservation
	Unbind Reservation

	Query Reservation Status
	Query Reservation Attributes

	Register Callback
	Summary

	Advance Reservation Data Structures and Operations
	Introduction
	Basic Operations
	Proposed Advance Reservation Algorithms
	Advantages of ECARQ
	Summary

	Eucalyptus
	Introduction
	Eucalyptus Components
	Cloud Controller
	Cluster Controller
	Node Controller
	Storage Controller
	Walrus(put/get storage)
	Management Platform
	ARM

	Eucalyptus Configuration
	Advance Reservation Data Structure
	Cloud Configuration
	Summary

	Service Offered and InterFaces
	Introduction
	Services Offered

	Performance Evaluation
	Summary

	Conclusion and Future Direction
	Conclusion
	Future Direction
	Incorporating Resource Failure Model
	Integrating Various Types of Resources

	List of Publications
	Reference
	Index

