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Abstract—Synthesis and biological evaluation of some 5-ethoxycarbonyl-6-isopropylamino-4-(substitutedphenyl)aminopyrimidines
have been achieved by cyclization of N-[2-ethoxycarbonyl-2-cyano-1-(isopropylamino)vinyl] formamidine in presence of dry HCl in
dioxane followed by nucleophilic substitution of 4-chloro group with substituted aromatic amine or phenoxide. Target compounds
were evaluated for their analgesic and anti-inflammatory potential by known experimental models. Some of the compounds emerged
out as more potent than standard drugs. Very low ulcer index was observed for the potent compounds.
� 2006 Elsevier Ltd. All rights reserved.
Non-steroidal anti-inflammatory drugs (NSAIDs) are
widely used in the treatment of pain and inflammation.
Most currently used NSAIDs have limitations for ther-
apeutic use since they cause gastrointestinal and renal
side effects, which are inseparable from their pharmaco-
logical activities. These compounds non-selectively
inhibit the two isoforms of the cyclooxygenase (COX-1
and COX-2) and thus prevent the metabolism of cellular
arachidonic acid (AA) and the upregulation of prosta-
glandin formation, which otherwise lead to an increase
of vascular permeability, edema, hyperalgesia, pyrexia,
and inflammation. Therefore, the synthesis of new mol-
ecules devoid of these toxicities has been of prime inter-
est for medicinal chemists in recent years. In addition to
COX, the 5- lipoxygenase (5-LO) enzyme is another key
enzyme which is involved in the AA cascade. Leukotri-
enes, produced through the 5-LO enzyme pathway, may
also contribute to both inflammation and NSAID-in-
duced side effects. For these reasons, compounds that
are dual inhibitors of both COX and 5-LO are being
studied as potential analgesic and anti-inflammatory
agents with an improved safety profile in comparison
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to NSAIDs.1,2 Currently, various chemical families of
dual COX/5-LO inhibitors can be found in the scientific
literatures.3

In continuation of our work to get potent and safe
pyrimidine NSAID, some 5-ethoxycarbonyl-6-isopro-
pylamino-4-(substitutedphenyl)aminopyrimidines have
been designed. Earlier work from our laboratory sug-
gested that isopropylamino group at C-6 and ethoxy-
carbonyl group at C-5 position are essential for
potent analgesic and anti-inflammatory activity. As
most of the NSAIDs contain aryl ring, it was thought
of interest to incorporate aryl group at C-4 position
through imino (–NH) or ethereal(–O–) linkage. Starting
material was synthesized as per Scheme 1. Target
compounds were synthesized by cyclization of N-[2-eth-
oxycarbonyl-2-cyano-1-(isopropylamino)vinyl] form-
amidine4 in presence of dry HCl in dioxane to afford
5-ethoxycarbonyl-4-chloro-6-isopropylaminopyrimi-
dines5,6 (Table 1).

Nucleophilic substitution7 of 4-chloro group by aromat-
ic amine8 or phenoxide9 provided target compounds
(Scheme 2).

All compounds were tested for analgesic activity using
model—inhibition in acetic acid-induced writhings in
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Table 1. Physical data of 5-ethoxycarbonyl-6-isopropylamino-4-(substitutedphenyl)aminopyrimidines (IIIa–IIIe, IV)

Compound Ra Melting point (�C) % Yield Molecular formula

IIIa p-Cl–C6H4 112–114 72.9 C16H19ClN4O2

IIIb p-NO2–C6H4 135–138 78.0 C16H19N5O4

IIIc p-CH3–C6H4 145–148 62.2 C17H22N4O2

IIId p-OCH3–C6H4 75–78 55.5 C17H22N4O3

IIIe p-SO2NH2–C6H4 149–154 61.2 C16H21N5O4S

IV –OC6H5 60–64 87.5 C16H19N3O3

a Solvent for recrystallization: methanol.
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albino mice.10 Statistically significant results were
obtained with compound IIId, being more potent than
diclofenac sodium. Acute anti-inflammatory activity
was determined using known experimental models.11

Ulcerogenic potential of the potent compounds was also
evaluated.12 Significant anti-inflammatory activity with
very low ulcer index was observed with compounds IIIc
and IIIe (Table 2).

In summary, compounds with potent analgesic and anti-
inflammatory activities with very low ulcerogenic poten-
Table 2. Analgesic activity, anti-inflammatory activity and ulcerogenic

potential of 5-ethoxycarbonyl-6-isopropylamino-4-(substitutedphenyl)

aminopyrimidines

Compound % Inhibition

of writhinga

% Inhibition of

inflammation

± SEMa

Ulcer Index

± SEMa

IIIa 70.23 30.85 ± 3.58 —

IIIb 77.38 84.56 ± 0.61 —

IIIc 72.02 89.69 ± 0.03 0.290 ± 0.024

IIId 85.11 62.72 ± 4.57 —

IIIe 72.61 87.65 ± 3.26 0.241 ± 0.104

IV 70.23 55.50 ± 3.20 —

Diclofenac sodium 77.98 — 0.805 ± 0.120

Celecoxib — 82.09 ± 4.31 0.104 ± 0.005

a n = 5, dose = 50 mg/kg po.
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tial are reported in the present study. Compounds IIIb,
IIIc, and IIIe showed potent anti-inflammatory activity
with very low ulcerogenic potential when compared with
that of the standard drugs celecoxib and diclofenac sodi-
um, respectively. However, ulcerogenic potential was
remarkably more than celecoxib. Compound IIId exhib-
ited greater analgesic activity than the reference stan-
dard diclofenac sodium. This series opened new doors
for possible modifications of the pharmacophoric
requirements of NSAIDs and future exploitations.
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