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ABSTRACT 

 

A lot of advancement has taken place in computer generation in last five decades. And this 

advancement has led to the development of computers having processing speeds of teraflop 

range and memory of terabyte range. 

 

As the computing power available increased, attempt was made to solve more and more 

difficult problems. Some of the problems related to field such as artificial intelligence, 

numerical analysis, Quantum chromo dynamics, Climate modeling, Fluid turbulence, Vehicle 

dynamics, Ocean circulation etc, require such a high computational power and also memory 

requirement that present day’s computers may found slower to solve these problems. These 

limitations have led to develop some other solutions. High performance computing is result of 

such attempts.         

 

Various possible ways are available for high performance computing i.e. supercomputers, 

massive parallel machines, cluster computing etc. But as these options are costly from initial 

cost and maintenance point of view, an alternative option of Parallel Processing on network of 

computers, also known as distributed computing can been used. As distributed computing is 

carried out on network of computers, no special hardware is needed and also no special means 

of maintenance is needed. All these aspects make distributed computing a favorable option for 

high performance computing. In present study, distributed computing is carried out using 

WebDedip environment, developed using JAVA technology based on client server approach. 

 

As far as structural field is concerned, problems include difficult geometry, boundary 

conditions and loading conditions, which makes the problem complex. Also, as the size of 

problem goes on increasing, requirement of computational power and storage memory goes 

on increasing. So, present single computers may found slower to tackle such problems. Hence 

analysis of such problem becomes a tedious and time consuming task. In such cases some 

other alternative is needed which can serve better in such conditions. High performance 

computing is one of the solutions for such problems.                

 

In present study an attempt has been made to implement distributed computing in field of 

structural engineering. 
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Finite Element Analysis method has been used for analysis. Substructure analysis technique 

has been incorporated to implement analysis process on distributed computing. To observe the 

advantage of high performance computing, four problems have been solved using sequential 

and parallel processing. Of these problems, one is the plane stress problem, two are plate 

bending problems and one laminated plate problem. 

 

First chapter includes the introduction part. Topics such as need of high performance 

computing, efforts made in India as well as in world for high performance computing and 

object of study are included in this chapter.  

 

Second chapter includes the literature survey. Scope of work is also included in the same 

chapter.  

 

Third chapter includes the issues related to parallel processing. These issues are computer 

architecture, parallelism in sequential as well as in multiprocessor computers, dynamic load 

balancing, operating system characteristics, parallel processing models, performance 

measurement and software tools for parallel processing.        

 

Forth chapter deals with the aspects related to WebDedip environment. Details of various 

components to be installed on server as well as client machine, minimum software and 

hardware requirement for distributed computing and procedure of problem implementation on 

parallel computers are some of the topics, discussed in this chapter.        

 

Fifth chapter includes the distributed plane stress analysis problem. The problem is a square 

plate having hole in the center and subjected to uniform tensile force on both sides. For 

analysis of plate, CST element is used. Plate is divided into 27504 number of elements. So the 

problem is having total 13990 number of nodes (i.e. 27980 DOFs). To observe the effect of 

distributed computing, plate analysis is carried out using 3, 4, 5 and 6 computers.       

   

Sixth chapter deals with the distributed plate bending problem. This chapter includes two 

problems. For analysis of both problems, eight nodded isoparametric plate bending element is 

used. Of two problems, first problem is the annular plate subjected to uniform lateral loading. 

Plate is divided into 1800 elements. So problem is having total 5725 number of nodes (i.e. 

17175 DOFs). Plate analysis is carried out by diving it into 3, 4, and 6 number of 
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substructures. The second problem is the simply supported skew plate subjected to uniform 

pressure. Plate is divided into 3000 number of elements. So, total number of nodes are 9221 

and DOFs are 27663. To implement the problem on parallel computers, plate is divided into 

3, 4, 5 and 6 number of substructures.        

 

Seventh chapter covers the distributed laminated plate analysis. The problem is a square plate 

having four laminates of same thickness and subjected to sinusoidal loading. For analysis of 

laminated composite plate, eight nodded isoparametric element is used. The plate is divided 

into 1600 elements. So problem is having total 4961 number of nodes and 29766 DOFs. To 

observer the effect of distributed computing, the plate analysis is carried out using 3, 4 and 6 

number of computers.        

 

Chapter eight includes the summary, conclusion and further scope of work.       
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CHAPTER 1                                                                           INTRODUCTION 

 

1.1 GENERAL 

 

As the computing power available increases, the quest for more and more power also keeps 

increasing. There are always applications waiting for more powerful machines. Much of the 

effort in meeting this requirement has so far been focused on by making the existing computer 

architecture faster and faster. Memory access delays have been cut down using faster 

memories and cache architectures [21]. 

 

Analysis of large size complex structures such as multistoried buildings, long span bridges, 

tall towers and domes etc. involves formulation and solution of large number of equations. 

Either matrix stiffness method or finite element method can be used to solve such complex 

problems. The analysis of such large structures, involving thousands of unknowns, may be 

expedited by subdividing it into smaller parts known as substructures. In substructure 

technique, each substructure is analyzed separately and the results are combined to yield the 

displacements and stresses in actual structure. The use of substructure technique, depending 

upon the size of each substructure and number of substructures, may result in considerable 

saving of storage and computational time. The analysis time can further be reduced by 

application of distributed computing technique [27]. 

 

Finite Element Analysis now stands as the most acceptable numerical solution procedure for 

engineering problems in diverse areas such as solid mechanics, fluid mechanics, heat transfer, 

aerodynamics, manufacturing process, smart materials, and structures etc [19]. With 

fundamental limits existing for the performance of a processor, single processor system even 

with its present configuration and future prediction can never suffice to meet the computing 

demands of FEA. Hence high performance computing with low price tags, sustained 

performance, and cheap maintenance and upgradation costs is needed. Distributed computing 

is different but related approach to obtain faster machine [26]. 
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1.2 NEED FOR DISTRIBUTED COMPUTING 

 

The basic need for the distributed computing is the need of power. Computational 

requirements have always been on the increase. As the processor become more powerful, one 

is interested in getting the machine to tackle more complex problems.  

 

One method of increasing the speed of computers is to use faster semiconductor components 

to build units of a computer. For instance low speed personal computers use integrated circuit 

based on Silicon semiconductor while Gallium Arsenide semiconductor devices which are 

faster, are used in supercomputer. Higher speed components cost more and normally dissipate 

more heat. So the increase in speed of electronic components is limited by physical 

constraints. Another method to increase the speed of computation is to design the computer so 

that the different units of the computer work simultaneously [23]. Such requirements also give 

rise to the development of distributed computing techniques.           

 

Although the performance of single processor has been steadily increasing over the years, the 

only way to build the next generation Tflops architecture supercomputer seems to be through 

parallel processing technology. Even with today’s workstation class high performance 

processors exceeding 100 Mflops, thousand of processors are required to build a Tflop 

architecture machine.             

 

On the computational side, artificial intelligence, numerical analysis etc are some of the areas, 

which can consume any amount of computing power that is available. Some of the very 

complex problems require such a high-level computation power, which is beyond the 

computing power available today. One of such problem is Quantum Chromo Dynamics, the 

study of sub atomic structure. This experiment requires a Cray super computer running 24 

hours a day for 1500years, in order to get the required results. Some of such other problems, 

requiring very high level computing power, known as grand challenges and some of such 

challenges are Climate modeling, Fluid turbulence, Vehicle dynamics, Ocean circulation etc 

[29]. 

 

Analysis of complex structures such as multistoried buildings, long span roof or bridges, tall 

towers and offshore platform involves formulation and solution of large number of equations 
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since it has to take into account either one or a combination of the following features of the 

problem: 

1.) Irregular geometry 

2.) Real boundary conditions 

3.) Stress, temperature and time dependent linear/non linear behavior of constituent materials 

including composites 

4.) Space time dependent loads including random excitations 

5.) Different types of behavior-linear, nonlinear, dynamic response, stability etc. 

 

Inclusion of such conditions makes the analysis of structure more complex and time 

consuming. So to arrive at the accurate solution within short period of time, latest technique is 

needed, which along with the faster speed, should be less expensive and also having low up 

gradation and maintenance cost. Such requirements give rise to the need of distributed 

computing technique.  

 

In past few years a number of parallel processing machines have been developed with various 

processor configurations and architectures. Parallel implementation requires parallel machine 

consisting of multiple processors connected with each other and sharing the same memory.  

As parallel processing hardware designed exclusively for dedicated parallel computing 

applications are more expensive, an inexpensive alternative is to develop the application 

software, which can run on network of workstations, known as distributed processing. This 

arrangement employs a number of computers physically linked to permit online computer-to-

computer communication. Using this approach of distributed processing, independent 

workstations interconnected by network and message passing for communication of data 

between the computers can be transformed in to cost effective parallel computing resources. 

Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) provide libraries for 

such communication. But use of these libraries requires some concepts of parallel 

programming like data communication, process forking, process joining, data synchronization 

etc. Furthermore it requires special debugging techniques for testing the parallel application. 
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1.3 PARALLEL COMPUTING EFFORTS IN WORLD 

 

New computing systems cover a broad spectrum of machines ranging from high performance 

systems to the small portable, embedded computers and microprocessors. Description of some 

of such machines is discussed here.   

 

Supersystems are a class of general-purpose computers designed for extremely high 

performance throughput. Although there is no universally accepted definition or classification 

of supersystems, three classes of supersystems have been identified based on the performance, 

memory system used and cost, namely: large supersystems, near supers and superservers. The 

architectural characteristics of some of the U.S. and Japanese supersystems [10] are 

summarized below in Table 1.1 

 

 

System / 

model 

Architectural 

configuration 

Number of 

processors 

Maximum 

main memory 

Peak 

computational 

rate (Gflops) 

CRAY – T90 Vector SMP 32 1 GW 58 

CRAY J932  32 8 GB 6.4 

IBM ES/9000 

9021-9X2 

Multiprocessor 

with dedicated 

buffer and shared 

memory 

10 10.2GB 5.6 

Fujitsu  

VPP 500 

Highly parallel 

vector     

multiprocessor with 

distributed memory 

222 55GB 355 

VPP 700  256 32GB 500 

Hitachi  

S-3800/480 

water cooled 

Multiprocessor 4 2GB  32 

Hitachi          

S-3800/180 

Single processor 1 1GB 2 

Table1.1: US and JAPANESE super systems  
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Air cooled 

Hitachi  

S-820/80 

Single processor 

with multiple 

pipelines 

1 1GB 2 

SX-4/512 M16 Multiple node 

shared memory 

512 128 1024 

 

Massively parallel processor system comprises hundreds or thousands of VLSI processors 

integrated through high bandwidth networks. In the last few years there has been an explosion 

in the number of parallel processing machines developed. The architectural characteristics of 

some of parallel processing machines [10] are given below in Table 1.2 

 

 

Peak computational rate System  

/ Model 

Architecture Number of 

processors 

Maximum 

main 

memory 

Each 

processor 

node (Mflops) 

Total 

(Gflops) 

Thinking 

machine 

corp. CM-5 

GWS-100 

Cluster 

MIMD 

64 32 334 21 

GWS-200 Cluster 

MIMD 

129 64 400 51.2 

Intel paragon 

XP/S 

MIMD,  

2-D mesh 

1872  59.9  184 

XP/S MP MIMD,  

2-D mesh  

2000 256 75 300 

Maspar MP-

2 

SIMD,  

2-D mesh  

16384 4 0.146 2.4 

nCUBE 2 MIMD  8192 282 4.1 34 

nCUBE 3 Hypercube 512 32 80 46 

CRAY T3E MIMD 3D 

bidrectional 

2048 4000 600 1200 

Table1.2: Parallel processing machines 
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torus 

topology 

Meiko CS-2 MIMD 

multistage 

packet switch 

1024 572 250 256 

IBM 

9076/SP2 

Distributed 

memory 

128 256 308 39.4 

Convex 

Exemplar 

SPP-

1600/XA 

Numa shared 

memory 

system 

64 16 240 15.4 

 

1.4 PARALLEL COMPUTING EFFORTS IN INDIA 

 

India launched a major initiative in parallel computing in 1988. This was motivated by the 

need for advanced computing, a vision of developing its own technology, and difficulties 

(political and economic) in obtaining commercial products from outside the country. The 

creation of the Center for Development of Advanced Computing (C-DAC) and concurrently 

other efforts at National Aerospace Laboratory (NAL), Bangalore, Advanced Numerical 

Research & Analysis Group (ANURAG), Hyderabad, Bhabha Atomic Research Center 

(BARC), Bombay, Center for Development of Telematics (C-DOT), Bangalore, marked the 

beginning of high performance computing in India. Today, India has designed its own high 

performance computers. Details of some of such supercomputers [9] and theirs applications 

are tabulated below in Table 1.3  
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Developer Computer Year Specification Application 

C-DAC PARAM 

8000 

1988 � Theoretical Peak 

computing power 

1Gflops 

� Computing power in 

Actual application 

100 to 200 Mflops 

C-DAC PARAM 

8600 

1992 � Peak computing 

     power     100- 

     200 Mflops.  

� i860 as main 

processor with 4 

transputers acting as 

communication 

processors 

� Computation fluid   

dynamics 

� Finite element 

analysis 

� Seismic data 

processing 

� Image processing 

� Signal processing 

� Molecular 

modeling 

� Quantum 

molecular 

dynamics  

C-DAC PARAM 

10000 

1998 � Peak computing 

power 100Mflops 

C-DAC PARAM 

Padma 

2001 � Peak computing 

power  1 Tflops 

� POWER4 RISC 

processors 

� High performance 

system area network 

PARAMNet-II 

provides data rates 

of 2.5 GB/sec 

� Also accessible by 

users from remote 

area  

� Computational 

structural 

mechanics 

� Computational 

chemistry 

� Computational 

fluid dynamics 

� Evolutionary 

computing 

� Seismic data 

processing 

BARC ANUPAM 1992 � MIMD architecture 

� i860 processor 

� Peak computing 

� Parallel computing 

facility has been 

used extensively by 

Table1.3: Supercomputers developed in India 
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power 100 Mflops  BARC scientists 

and engineers as 

well as by other 

users from outside 

Institutions 

ANURAG PACE  � 4 node Loosely 

coupled message 

passing parallel 

processing system 

� UNIX operating 

system 

� Local memory 256 

MB 

� Aerodynamic 

computations 

� Neural network 

simulation 

� Computational 

fluid dynamics 

codes 

� Finite Element 

Method codes 

NAL FLOSOLVER 1986 � FLOSOLVER Mk1A 

- four processor 

system 

� FLOSOLVER Mk1B 

- eight processor 

system 

�  FLOSOLVER Mk2 

– based on Intel 

80386/ 80387 

processor 

� FLOSOLVER Mk3 

– based on RISC 

processor i860 from 

Intel 

� Computational 

Fluid dynamics 

� Aerodynamics 

� Weather forecasting 

 

C- DOTS CHIPPS 1989 � Single algorithm 

multiple data 

architecture 

� Available in 192 

node machine, 64 

node machine and 

� Weather forecasting 

� Radio astronomy 

applications 

� Other scientific and 

engineering 

applications  
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compact 16 node 

machine 

� Peak computing 

power 200 Mflops 

 

1.5 PARALLEL PROCESSING IN FINITE ELEMENT ANALYSIS  

 

In structural engineering applications, the Finite Element Analysis plays a prominent role. 

Several avenues for parallelizing this method have been proposed. They range from taking 

advantage of general-purpose hardware in the parallelization of the method to the design of 

special purpose hardware, such as the Finite Element Machine. In many finite element 

applications, the most costly phase of the computations is the repeated solution of large 

systems of linear algebraic equations. Several writers have been researching concurrent 

algorithms in order to optimize this operation. These methods include parallel equation 

solvers, as well as concurrent algorithms derived from domain decomposition methodologies, 

operator splitting techniques, or element-by-element strategies. Many of the above-mentioned 

techniques are based on the subdivision of the physical domain into a number of sub domains.  

 

The architecture of some machines has been designed to solve efficiently specific problems. 

These machines are called special purpose machines. For the finite element method two types 

of special purpose machines have been developed. The first one, developed at NASA, is 

called the Finite Element Machine. In this approach, the nodal structure of the finite element 

mesh is mapped onto the hardware. In another development, the architecture of the parallel 

finite element machine developed at the University of Calgary is related to the solution 

technique to solve problems with geometric and material non-linearties. Several techniques 

for the parallelization of the finite element method have been employed. These can be divided 

as follows [16]: 

 

1.5.1 Domain decomposition 

 

This concept is based in the ‘‘divide and conquer’’ technique. Here, the task to be performed 

is divided into independent or loosely coupled subtasks, and thus communication among 

processors is reduced. The idea is one of domain decomposition, i.e., the domain is divided 
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into regions. The problem is then decomposed into the solution of boundary value problems in 

the sub domains.  

 

1.5.2 Sub structuring 

 

This strategy is closely related to that of domain decomposition. It was originally introduced 

in the 1960s to reduce the dependency in the out-of-core memory in large-scale structural 

engineering applications. The basic idea is to subdivide a structure into a number of 

substructures. The degrees of freedom of a substructure are then classified as internal DOFs 

and interface DOFs. The process consists of applying condensation to reduce the number of 

degrees of freedom in each substructure.  

 

1.5.3 Operator splitting 

 

This technique is a generalization of sub structuring. Operator splitting strategies can be 

developed in a variety of ways. One example is the method of alternating directions, whereby 

a multidimensional problem is reduced into a series of one-dimensional problems.  

 

1.5.4 Element-by-element (EBE) strategies 

 

In these strategies, advantage is taken of the fact that the element calculations can be done 

independently and thus can be trivially parallelized. In order to improve the efficiency of EBE 

strategies, they should be coupled with parallel equation solvers.  

 

1.6 OBJECT OF STUDY 

 

Analysis of large size problems as well as for problems having geometry and other 

irregularities is very tedious, time-consuming process. So to overcome this shortcoming, 

innovative techniques are developed. Parallel processing is one of such innovative techniques. 

The main object of present study is to find the cost effective solution for high performance 

computing.  

 

In this analysis technique, whole structure is divided into number of substructures. Analysis of 

each sub structures is done concurrently on different processors, interconnected to 
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communicate with each other and to transfer the data. As the whole process is distributed 

among various processors, interconnected through LAN, it can be called as “Distributed 

Finite Element Analysis”. As the main object is to observe the reduction in processing time 

after implementation of parallel processing technique, first the whole structure is descretized 

and analyzed as a single structure (using sequential programming) and then the structure is 

divided into substructure and structure is analyzed with sub structure technique (using parallel 

programming). 

 

The total time elapsed in parallel processing is the time required for two activities namely, 

computation and communication. Out of these, time required for communication would not 

have significant effect on sequential as well as parallel timing. So the advantage in reduction 

of time can be observed only in large size problems. While for small problem the process time 

will be almost same for sequential and parallel implementation and so the advantage of 

implementation of parallel processing cannot be visualized. 

 

1.7 ORGANIZATION OF REPORT 

 

Whole dissertation is organized in the following manner. 

 

Chapter 1 includes the introduction part. Some of the topics related to parallel processing and 

its application are also covered. These topics include need of parallel processing, parallel 

processing efforts in world and in India, parallel processing application in FEA, and the object 

of the study.    

 

Literature survey part is included in chapter 2. It includes the literature regarding various 

applications of supercomputers and parallel machines in structural engineering fields such as 

analysis and optimization. Scope of the present study is also mentioned in the same chapter. 

 

Various parallel processing related issues are discussed in chapter 3. These topics include, 

types of parallel processing, various parallel processing architectures, parallelism in 

sequential and multiprocessor machine, dynamic load balancing, pipelining, operating system 

characteristics for parallel processing, various parallel processing models, performance 

measurement of parallel processing and parallel processing software.  
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Chapter 4 includes various aspects of the WebDedip tool. These aspects include, architecture 

of WebDedip, installation of WebDedip, hardware as well as software requirement of 

WebDedip, various components to be installed on server and slave machine, configuration of 

various components of WebDedip and also the process of implementing the application on 

WebDedip. 

 

Chapter 5 includes the first application of parallel processing. The first application is the plane 

stress analysis of a square plate with circular hole in middle and subjected to uniform edge 

force. Result and discussion about the same is also covered in the same chapter. Discussion 

regarding substructure analysis technique is also included in the same chapter. 

 

Chapter 6 includes the second application of plate-bending which is analysis of a fixed 

circular plate, having hole in the center. The plate is subjected to transverse uniformly 

distributed loading. Another problem in the same chapter is the analysis of skew plate. The 

plate is a simply supported plate and subjected to transverse uniformly distributed loading. 

 

Chapter 7 covers distributed finite element analysis of laminated plate analysis. The plate is a 

simply supported square laminated plate. Plate is subjected to sinusoidal transverse loading. 

Result and discussion about the same is also covered in the same chapter.    

 

Chapter 8 includes the final summary of work along with the further scope of the work that 

can be carried out on the same topic. 
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CHAPTER 2                                                               LITERATURE SURVEY 

 

2.1 LITERATURE SURVEY 

 

Literature survey is carried out to review various applications of parallel processing technique 

in the field of structural engineering. Such applications include analysis, optimization and 

arithmetical solvers to solve simultaneous equations resulting in finite element analysis. In 

literature survey, main emphasis is given on the published papers that describe the 

implementation of parallel processing fro various structural problems.       

 

Saxena M and Perucchio R [1] developed parallel FEM algorithms for automatic mesh 

generation based on recursive spatial decomposition (RSD) and for automatic analysis via sub 

structuring for solid models. They also described an automatic sub-structuring scheme based 

on RSD of the domain that can be closely integrated with the RSD based automatic meshing 

procedure. The hierarchical data structure used to represent RSD based automatically derived 

meshes also provide a one to one mapping between spatially decomposed sub domains and 

analytical sub structures. Such a hierarchical organization of the sub structures and the 

inherent parallelism of RSD are exploited to design the sub-structuring scheme suitable for 

parallel processing. 

 

Adeli H and Kamal O [2] have used the parallel processing concept for developing 

algorithms for concurrent analysis of large structures on shared memory multiprocessor 

computers. Algorithm was developed to parallelise each computational step of solution 

process. Also the algorithm was developed to maintain the workload balance through the 

solution process and to assure best concurrent performance and speed up.  

 

To check the performance of the algorithm, Adeli H and Kamal O [3] have implemented the 

algorithm for analysis of four different structures on an Encore Multimax shared memory 

multiprocessor computer. Of the four structures, first was the 266-element frame structure. 

The second was the Geodesic dome space truss. Third was the 200 bar plane truss and the 

forth structure was the 760 element frame structure. Performance was measured here in terms 

of Speed up, workload balance and efficiency. The results for the speed up indicated that the 

efficiency of the parallel processing algorithm increases with the size of the structure. Overall 

efficiency of about 90 to 100% was achieved for the case of a 1200 DOF. 
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Foley C M and Vinnakota S [4] have implemented sub structuring method and parallel 

processing technique for the analysis of high-rise structural frameworks. The performance 

was measured on a Cray Y-MP C90 supercomputer in a multi user environment. Performance 

of the program was checked by implementation of this technique on two steel frameworks. Of 

two, one was having 175 members and 312 DOF. The other frame was having 461 members 

and 780 DOF. 

 

Adeli H and Kumar S [6] developed algorithm for distributed finite element analysis on a 

loosely coupled multicomputers such as a cluster of inexpensive workstations. Solver based 

on the element-by-element approach is used to solve the resulting system of linear equations. 

To account for the slow communication speed of the ethernet network connecting 

workstations, techniques such as efficient data distribution were implemented.  Due to the 

general nature of the data distribution, the algorithms are versatile and can be applied to the 

analysis of FE domains consisting of combination of various types of elements. The algorithm 

is based on and can be implemented on any distributed memory architecture. 

 

Adeli H and Kumar S [7] implemented distributed algorithms for finite element analysis of 

structures, on network of workstations. The algorithms developed, was applied for analysis of 

large structure with complicated topology. A cluster of six IBM RS/6000 workstations was 

used for analysis of large structural models with few thousand elements. In spite of low 

bandwidth of the ethernet networks, an overall parallelization efficiency in the range of 75-

90% was obtained. This technique was used to solve three problems. Of which first was the 

plane stress L shape domain, solved with four different types of elements, the linear and 

isoparametric quadrilateral as well as triangle element. Second application was a 100 story 

high-rise building with 5890 elements and 1240 nodes. The structure was modeled both as an 

axial load structure and as a moment resisting frame structure. The results for six workstations 

have shown a maximum speed up of 3.75 for moment resisting frame structure. The third 

application was the Taj Mahal structure. The results for third application, have shown a 

maximum speed up 3.25 for six workstations.          

 

In another application Adeli H and Kumar S [8] implemented parallel processing technique 

for minimum weight design of large structures using genetic algorithm, on a network of 

workstations. Communication constructs from software library Parallel Virtual Machine 

(PVM) have been used for message passing between workstations. The performance was 
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noted for both dedicated and shared multi-user environment in a laboratory with 11 IBM 

RS/6000 workstations connected through the ethernet network. The cluster was 

heterogeneous. Six machines were of model 320H and the remaining five were of model 

220H. The performance was provided based on granularity and parallelization efficiency of 

distributed model. The algorithm was applied for the minimum weight design of two 

structures. Of two one was the Dome space truss and the other was a 35-story space tower 

frame. For first application (i.e. medium size structure), speed up of about 5 was achieved on 

11 workstations. Thus the parallel efficiency was about 50 to 60%. While for second 

application (i.e. large structure), speedup of 10 was achieved on 11 workstations. Thus the 

parallel efficiency was about 90%. Thus from results it was shown that the speed up of 

distributed algorithm increases with the size of structure.  

 

Noor A K [10] reviewed recent advances in technology that are likely to impact structural 

analysis and design. A brief summary of the advances in microelectronics and networking 

technologies was described. The major features of new and projected computing systems, 

including parallel processing, high performance computers, and small systems were also 

discussed. An advance in programming environment, numerical algorithms and computational 

strategies for new computing system was also reviewed. A scenario for future-computing 

paradigm was presented and the near term needs in the computational structures areas were 

outlined. New computing systems were also described that could give structural analysts and 

designers some insight into the potential of these systems for providing cost effective solution 

of complex structural problems and to stimulate research and development of the necessary 

algorithms, firmware and software to realize this potential. 

 

Wriggers and Boersma [12] implemented parallel solver for problems in solid mechanics 

discretized by finite elements. Performance of this solver was studied on two different MIMD 

computers. Of the two MIMD computers, one was the 64-node machine with T800 processor 

and the other was 32-node machine with a Power PC processor. The technique was 

implemented to two problems. First problem was solved for 64 X 64 elements on each 

processor for T800 system and 180 X 180 elements on each processor for Power Xplorer 

system. Second problem was solved for 128 X 128 elements on each processor for T800 

system and 256 X 256 elements on each processor for Power Xplorer system. To rate the 

performance of the parallel application, the well-known principle of speed-up and scale-up 

were used. The parallel algorithm gave a high parallel efficiency when used for large 
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problems. So from paper it can be concluded that, to increase the efficiency further, a high 

load on each processor is essential specially when the ratio of communication to computing is 

low. 

 

Soegiarso R and Adeli H [13] implemented the parallel-vector algorithm for optimization of 

large steel structures on a shared memory machine. The Cray YMP8/864 supercomputer with 

eight processors was used. The algorithm was used for minimum weight design of several 

high-rise buildings (20 story moment resisting space frame with 1920 members and 4536 

DOF, 40 story moment resisting space frame with 3840 members and 8856 DOF, 60 story 

moment resisting space frame with 5760 members and 13176 DOF) including an 81 story 

building structure with 9245 members. The parallel processing speed up was measured 

through software called ‘atexpert’. From the results for 81-story building, it can be seen that 

the performance of parallel processing improve with the increase in the size of structures. For 

81-story building speed-up of 6.58 was achieved for the parallel processing.  

 

Zucchini A [14] implemented parallel processing technique to develop solver for finite 

element problems with coarse mesh/fine mesh formulation. The algorithm was tested for two 

simple problems of plane stress in a linear elastic plate with boundary and loading conditions. 

Standard 8 node quadrilateral isoparametric element was used. To visualize the advantage of 

parallel processing, the method was implemented both, on a single processor IBM-RISC590 

and on a Quadrics-QH1, a massive parallel SIMD machine with 128 processors. 

 

Adeli H [15] reviewed various research papers published on parallel processing, 

supercomputing and distributed computing since 1994, in his paper titled “High Performance 

Computing For Large Scale Analysis, Optimization And Control”. The main focus of the 

paper was on review of the journal articles published in three areas: analysis, optimization and 

control. The review was divided into three main sections:  

 

1.) Parallel processing on dedicated shared memory and distributed memory parallel 

machines 

 

Gummadi and Palazotto (1997) described geometrically non-linear analysis of beams and 

arches with large displacements and rotations on a distributed memory Intel paragon parallel 

computers. Watkins (1997) described fine and coarse-grained parallel methods for the 
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computation of real Eigen values encountered in buckling and vibration analysis of structures 

on a distributed memory computer, a 32 processor nCUBE2. Parallel vector Cholesky and LU 

decomposition methods for solving set of linear simultaneous equations were developed by 

Agrawal (1994) utilizing parallel processing and vectorization capabilities of shared memory 

multiprocessors such as CRAY Y-MP machines. Saleh and Adeli (1994) investigated various 

multitasking approaches for optimization of large structures with maximum speedup 

performance. Adeli and Cheng (1994) presented parallel augmented Lagrangian genetic 

algorithm for optimization of large structures utilizing the multiprocessing capabilities of high 

performance computers such as the Cray YMP 8/864 supercomputer. Topping and Leite 

(1997) also presented parallel genetic models for structural optimization. Park and Adeli 

(1997) presented a data parallel neural dynamics model for discrete optimization of large 

structures such as super high-rise building structure consisting of thousands of members.  

 

2.) Distributed computing on a cluster of networked workstations 

 

Hudli and Pidaparti (1995) also discussed distributed finite element analysis of simple truss 

structure using the client-server model and remote procedure calls on a cluster of SUN 

workstations. Weinert and Eschenauer (1996) described a coarse-grained decomposition 

strategy for parallel solution of structural optimization problems on cluster of workstations.      

 

3.) Parallel computing and object oriented programming 

 

Yu and Adeli (1993) presented an object oriented finite element approach for analysis of 

complicated structural systems using an object oriented enhanced entity relationship model. 

Modak (1997) described the design and implementation of an object oriented parallel matrix 

class library in C++ for manipulation of matrices and solution of simultaneous linear 

equations encountered in finite element analysis. 

 

As per Sotelino E D’s [16] view, parallel processing is a rapidly evolving field and it is the 

focus of intensive research worldwide. In past two decades, the development of algorithms for 

structural engineering applications has received a boost due to the advent of parallel 

computers. Considerable research is being done in order to rewrite the algorithms originally 

designed to run on sequential machines as well as to develop new methods that take 

advantage of the parallelism offered by the multiprocessing computers.  Such algorithms 
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include parallel solvers (direct and iterative) for linear systems of algebraic equations, 

techniques for the parallelization of the finite element method, and concurrent time stepping 

algorithms for the solution of the equations of evolution. In structural engineering 

applications, a prominent role is played by finite element method. Several avenues for 

parallelizing this method have been proposed. They range from taking advantage of general-

purpose hardware in the perallelization of the method to the design of special purpose 

hardware such as the finite element machine. 

 

2.2 SCOPE OF STUDY 

 

As the Finite Element Analysis can handle very well the geometry and material irregularities, 

it is the most commonly used numerical analysis method for many of the engineering 

problems. Also the parallel processing technique can be easily implemented to it. So in 

present study, Finite Element Method is used for the analysis. 

 

In the present study three different problems all having different type of elements, are selected 

and analyzed using Finite Element Method. Of three problems, first is the Plane stress 

analysis, second one is the plate bending problem and the third problem is the laminated 

composite plate problem. These continuums are then discretized in to number of finite 

elements such as CST elements for plane stress analysis, into Quadrilateral isoparametric 

plate bending elements for plate bending problem and in Quadrilateral isoparametric 

laminated plate elements for problem of laminated plate analysis. Whole continuum is then 

divided into substructures in such a ways that number of elements in each sub structure 

remains same (to maintain the work load on each processor). This is necessary to keep the 

processing time of each process more or less equal. Each sub structure is then analyzed 

sequentially as well as on parallel computers in network of computers. Detail of four 

problems, selected in the present study, can be summarized as follows: 

 

1.) First application includes the distributed plane stress analysis of rectangular plate having 

circular hole in the center [25], as shown in Fig 2.1. Plate is subjected to uniform tensile 

force on both the edges. As the analysis is plane stress analysis, Constant Stress 

Triangular (CST) element is used to descritize the continuum. Due to the symmetry of the 

plate w.r.t both x and y-axis, only the quarter plate is analyzed here. Plate is a square plate 

having size 30 cm X 30cm and thickness of 2.5cm. Diameter of the hole is 2cm. Modulus 
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of elasticity of plate material is 2 X10
4
 kN/cm

2
 and Poisson’s ratio is 0.3. Intensity of 

uniform edge tension force is 10 kN/cm
2
. For problem under consideration, the quarter 

plate is divided into 27504 number of elements. So problem is having total 13990 number 

of nodes i.e. 27980 DOFs (2 DOF at each node). Further the plate is divided into number 

of substructures to implement on parallel processing. In present problem, the plate is 

divided into 3, 4, 5 and 6 substructures.      

 

 

 

 

 

 

 

 

 

    

2.) Second application includes the distributed analysis of circular plate, having hole in the 

center, as shown in the Fig 2.2. Plate is subjected to uniform lateral load and it is fixed at 

outer circumference and free at inner circumference. For descritizing the plate, eight 

nodded quadrilateral isoparametric plate element is used. Due to symmetry of plate w.r.t 

both x and y-axis, only quarter plate is analyzed. In present study, the ratio of outer 

diameter to inner diameter is kept 3. Inner diameter of plate is 2.5m and outer diameter is 

7.5m. For plate material, modulus of elasticity is 2 X 10
8
 kN/m

2
 and Poisson’s ratio is 0.3. 

Thickness of plate is 0.1m. Intensity of uniformly distributed transverse loading is 20 

kN/m
2
. For present problem, the quarter circular plate is descritized into 1800 elements. 

So problem is having total 5725 number of nodes and 17175 DOFs (3 DOF at each node). 

Further the plate is divided into 3, 4 and 6 substructures to implement on parallel 

computers. Analysis of each substructure is carried out on separate computer.           

 

 One more application using the same eight nodded quadrilateral isoparametric plate 

element is also included. That is distributed skew plate analysis. Geometry of the same is 

as shown in Fig 2.2. It is a simply supported plate supported on both inclined edges. 

Loading is the uniformly distributed transverse load over entire plate. Modulus of 

elasticity of plate material is 2 X 10
8
 kN/m

2
 and Poisson’s ratio is 0.3. Thickness of plate 

Fig 2.1: Plate having hole in the center and subjected to tension 

10 kN/cm2 

E = 20000 kN/cm
2
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is 0.2m. Here inclination angle is kept 60 degree. Inclined length of plate in x-direction is 

taken as 10m and length in y direction is also taken as 10m. in present problem the skew 

plate is divided into 3000 number of elements. So total number of node is 9221 and total 

DOFs is 27663 (each node is having 3 DOFs). For parallel processing, further the plate is 

divided into 3, 4 and 6 number of substructures.        

 

 

 

 

 

 

 

 

 

 

 

 

 

3.) Distributed analysis of laminated composite plate, as shown in Fig 2.3, is the third 

application. For analysis of composite plate 8 nodded quadrilateral isoparametric element 

is used. Plate is simply supported at all its edges and subjected to sinusoidal transverse 

lading. Due to symmetry of plate w.r.t both x and y-axis, only quarter plate is analyzed. 

Laminate plate that is selected for the analysis is a square plate having both dimensions as 

100 cm. Plate consists of four laminates, each of 6.5 cm thick, so the total thickness of 

plate is 25cm. Intensity of sinusoidal load is 10kN/cm
2
. Various material properties for 

laminated plate are as follows. 

 

 E1 / E2 = 25  E3 / E2 = 1 

 ν12 = ν23 = ν13 = 0.25 

 G1 / E2 = 0.2  G2 / E2 = 0.5  G3 / E3 = 0.2 

  

 For present work, laminated plate is descritized into 1600 number of elements. So total 

number of nodes is 4961 and total DOFs is 29766 (each node is having 6 DOFs). For 

Fig 2.2: Circular plate having hole in the center and skew plate 

W kN/m
2
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parallel implementation, the plate is further divided into 3, 4 and 6 number of 

substructures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.4: Laminated composite plate 
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CHAPTER 3                                           PARALLEL PROCESSING ISSUES 

 

3.1 GENERAL 

 

The art of parallel programming lies in decomposing a given problem, functionally and 

according to the data distribution, across processors. Over the years, work in parallel 

processing architectures have focused on a number of different issues and resulted in a range 

of different approaches for solving them. The resulting architectures have been fundamentally 

so disparate that the programming issues vary significantly across them. An algorithm that 

gives a very high speedup on one processors architecture can give a very poor performance on 

another. Even if only the MIMD class of parallel machines are considered, difference between 

the shared memory and distributed memory machines force developers to adopt different data 

function decomposition strategies for the same problem on these classes’ machines [24].     

 

The fundamental concept behind high performance computing is to use more number of 

resources to solve a given problem. But using more resources cannot speedup every task. 

There are restrictions and dependencies to be considered. Based on such issues, computations 

may be one of the following characteristics [28].     

 

1.) Embarrassingly parallel computations 

 

An ideal parallel computation that can be divided into a number of completely independent 

parts each of which can be executed by a separate processor is known as embarrassingly 

parallel computation or pleasantly parallel computation. Parallelizing these problems should 

be obvious and requires no special techniques to obtain working solution. A truly 

embarrassingly parallel computation suggests no communication between separate processes. 

Each process requires different data and produces results from its input without any need for 

results from other processors. This situation will give the maximum possible speedup if all the 

available processors can be assigned processes for the total duration of the computation. The 

only constructs required here are simply to distribute the data and to start the processes. The 

SIMD architecture is appropriate for such processes. Example of such process can be given as 

follows: 

a = b + c  d = e + f 
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Consider the above two processes, belonging to a single computation task. As the variables 

used in both the processes are altogether independent of each other, both the processes can be 

run parallely without having any effect on the final result. So such processes are called 

embarrassingly parallel computations.  

  

2.) Nearly embarrassingly parallel computations 

 

The computations that require results to be distributed and collected and combined in some 

way are known as nearly embarrassingly parallel computations. So in such computations, 

initially and finally a single process must be operating alone. If dynamic process creation is 

used, a common approach is the master-slave organization.  First, a master approach will be 

started that will initiate identical slave processes.     

 

3.) Inherently sequential computations 

 

The computations, in which the parallelism of processes is not at all possible, are known as 

inherent sequential computations. This can be better understood by the following example: 

a = b + c  d = a * a 

Consider the above two processes, belonging to a single computation task. In the first process, 

two variables (b and c) are added and that value is assigned to variable “a”. While in the 

second process, square of variable “a” is calculated and that value is assigned to variable “d”. 

As in the above processes the value of variable “d” is dependent on the value of variable ”a”, 

it is necessary to modify the value of “a” before using it to calculate the value of “d”. So these 

two processes cannot be run parallely and must be run sequentially. So this computation is the 

example of inherent parallel computing. 

 

3.2 COMPUTER ARCHITECTURES 

 

Various architectures have been proposed and recommended by the researchers in the area of 

parallel processing. Rather than having only a single instruction flow through the CPU 

processing a single stream of data, the generalized architecture is now aiming for 

multiprocessor executing possibly distinct streams of instructions and processing distinct data 

streams (MIMD). The architectures having the simplest programming interface support have 

become most popular [29].     
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Architecture for computers can be classified as follows: 

 

1.) SISD (Single instruction single data) 

2.) SIMD (Single instruction multiple data) 

3.) MIMD (multiple instruction multiple data) 

4.) MISD (multiple instruction single data)  

 

Further the SIMD and MIMD architecture have both, shared and distributed memory 

architectures. 

 

3.2.1 SISD 

 

This is the traditional sequential computer consisting of one processor, memory and one 

communication channel as shown in Fig 3.1   

           

 

                            

 

                              

As a parallel computer, this architecture has various shortcomings like memory, speed and 

communication channel. With the present technology providing almost unlimited memory and 

extremely fast processing units, the bottleneck is the communication channel. 

 

3.2.2 SIMD 

 

This can be viewed as the extension of the conventional sequential model. This architecture 

overcomes the bottleneck in the SISD architecture by implementing multiple processors and 

memory model working on single instruction set. However host communication may prove to 

be troublesome for this architecture since each processor has to share the same 

communication path through the pipeline. 

 

The SIMD architecture is available in two forms, the distributed memory model and shared 

memory model. 

 

 

  CPU 

 

Memory 

Fig 3.1: Sequential computer architecture (SISD) 

Data 
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SIMD with shared memory  

 

In this architecture there is more than one processor connected to single root processor and 

sharing the same memory. As all processors have to share the same memory, when a 

processor wants to access the memory, it will try to take over the bus and proceed as before. 

However, the bus may not be available when one wants it because someone else is already 

using it. So in this architecture, along with the host communication channel, the memory bus 

may become a bottleneck since all processors have to share a common bus for memory.                

 

SIMD architecture with shared memory is shown in Fig 3.2 

 

 

                         

 

 

 

 

 

 

                            

 

 

 

              

It can be seen from the fig that the time taken by any processor to access memory is 

independent of the processor. So this model is also called known as UMA (Uniform Memory 

Access) model. 

 

SIMD with distributed memory 

 

This architecture is the modified form of the above model and shown in Fig 3.3. In this model 

the bottleneck of memory bus is removed by assigning separate memory for each processor. 

So the data needed by a particular processor can be stored in the memory of that processor so 

that the processor does not have to go the common bus to access data. For example, processor 

DS-1             DS-2             DS-3             DS-4             DS-5 

Root 

Processor 

P1 P2 P3 P4 P5 

Shared Memory 

Instruction stream 

DS – Date stream                            P- Processor                                        M- Memory 

 

Fig 3.2: SIMD model with shared memory 
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P1 can access A1 memory much faster than the memory A2, A3 or any other memory. In this 

model as the time to access a memory location depends on whether it is attached to the 

invoking CPU or not, this model is also known as NUMA (Non Uniform Memory Access) 

model.     

 

                         

 

 

 

 

 

 

                            

 

 

 

3.2.3 MIMD  

 

This model is further the modified version of the SIMD model and overcome the host 

communication bottleneck of SIMD model by introducing separate instruction stream for each 

processor. Like SIMD the MIMD model is also available in two forms, shared memory and 

distributed memory model. 

 

MIMD with shared memory 

 

As shown in Fig 3.4, this model has separate instruction stream for each processor. However 

this system has one shortcoming, the common memory access bus. Thus the processor has to 

queue to access the same area of memory.      

 

MIMD with distributed memory 

 

This model overcomes the shortcoming of common memory access bus of MIMD shared 

memory model by assigning separate memory to each processor. In this model each processor 

DS-1             DS-2             DS-3             DS-4             DS-5 

Root 

Processor 

P1 P2 P3 P4 P5 

A1 A2 A3 A5 A4 

    Instruction stream 

DS – Date stream                       P - Processor                  A- Memory 

 

               Fig 3.3: SIMD model with distributed memory 
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is provided with separate memory and connected with each other through instruction channel 

to communicate with each other. 

 

MIMD model with distributed memory is shown in the following Fig 3.5 
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Fig 3.5: MIMD model with distributed memory 
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Fig 3.4: MIMD model with shared memory 
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3.2.4 MISD 

 

This architecture has yet to be implemented. 

 

3.3 PARALLELISM IN SEQUENTIAL MACHINES 

 

Incorporation of various ingenious schemes has made sequential machines faster. The main 

idea in all these schemes is to match the speeds of various components so as to utilize the 

resources to their peak performance. For example, speed of memory access should be 

matched with the speed of processor. When this is not achieved directly, use of techniques 

such as interleaving of successive memory locations across memory devices is resorted to. 

Matching of interfacing devices is needed so as to minimize the idle time of the faster device, 

thereby achieving higher throughput. Various aspects related with such parallelism are as 

follows [29]: 

 

3.3.1 Multiplicity of functional units 

 

The most primitive computer had only one arithmetic and logical unit in its processor. 

Besides, its ALU could perform only one function at a time. The practical machines in use 

today have multiple and specialized functional units that can operate in parallel. The CDC –

600 (designed in 1964) had 10 functional units built into its CPU. These 10 units were 

independent of each other and could operate simultaneously.  

 

3.3.2 Pipelining within the CPU 

 

Various phases of instruction execution are pipelined, including instruction fetch, decode, 

operand fetch, arithmetic/logical execution and storage of results. To facilitate overlapped 

instruction execution through pipe, instruction pre fetch and data buffering techniques have 

been developed. More than one instruction is in the process of execution in the processor. The 

execution of multiple instructions is overlapped in time- even before an instruction gets 

completely executed, another instruction may be in the process of being decoded, yet another 

instruction may be getting fetched, and so on. Pipelining of task gives us temporal parallelism. 
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3.3.3 Overlapped CPU and I/O Operations 

 

Input and output operations can be performed simultaneously with the computational task by 

using separate I/O controllers, channels or I/O processors. Direct Memory Access (DMA) is 

used to provide direct information transfer between I/O devices and the primary memory.  

The trickiest issue in the design of such system is that of bus contention. The advantage to be 

gained by overlapping devices interface and computational tasks can get undone if both these 

require the same bus to transfer the data. The potentially concurrent operations become 

serialized due to the hardware resource contention. To reduce this bus contention, some 

architectures employ redundant buses in system. 

 

3.3.4 Hierarchical Memory system 

 

Processors are generally orders of magnitude faster than the primary memory. The primary 

memory is capable of data transfer rates, which are many times faster than most secondary 

devices. A hierarchical memory system can be used to close up this speed gap. The topmost 

level is the register files directly addressable by ALU. The cache memory can be viewed as a 

buffer between processor and main memory. Parallelism in data transfer across the hierarchy 

is commonly exploited for an improved throughput. For example, while data is transferred 

from secondary memory to primary memory, some data may be simultaneously transferred 

from cache to the CPU. This is possible since the data paths for these transfers are 

independent of each other and hence there is no contention of access. 

 

3.3.5 Multiprogramming and Time-Sharing 

 

In a multiprogramming system, certain computationally intensive process can hog the CPU 

and not release it for the other processes till the job is completed. In such cases, the response 

time for the other process gets severely affected. To avoid this blocking of resources, the 

concept of time sharing operating system was introduced. The time-sharing scheduler assigns 

the CPU to process for fixed time slices in a round robin fashion. This way all processes that 

are ready to run are given a chance of computing for the CPU and other resources. Time-

sharing of CPU across multiple processes gives rise to the concept of virtual processors. That 

is, each processor is provided an environment as if it has a virtual processor exclusively for its 

use.        
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3.4 PARALLELISM IN MULTIPROCESSOR MACHINE 

 

While dealing with multiprocessor machine, two different terms should be clear in mind. 

Multiprocessor and Multicomputer. A multiprocessor can be characterized by two attributes: 

first, it is a single computer that includes multiple processors, second, process may 

communicate and cooperate at different levels in solving a given problem. The 

communication may occur by sending messages from one processor to other by sharing 

common memory. A single operating system governs activities in such computers. While a 

multicomputer is a collection of multiple interconnected computer system, each of which is an 

autonomous machine having private local memory, resources and an operating system 

controlling its operation, communication may take place across the computers by message 

passing. 

 

Depending on the cost incurred in communicating between processes running on the 

processors in multicomputers and multiprocessors, these machines are also known as tightly 

coupled parallel machines and loosely coupled parallel machines. In the former the cost of 

communication is much lower than that in later. The contention of memory is much higher in 

tightly coupled machines compared to loosely coupled machines because there is no shared 

memory across processors. 

 

3.5 CHARACTERISTICS OF MULTIPROCESSORS 

 

Following are some desirable characteristics of a multiprocessor machine to be used as a 

parallel machine [29]. 

 

3.5.1 Process recoverability 

 

If a processor fails, the process running on it should be recoverable. Another processor must 

be assigned to the task and the process must be continued from the state where the process 

failed. 
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3.5.2 Efficient context switching 

 

Sometimes, the parallel programs executing on the parallel machines have processes that are 

more in number compared to the number of processors in machine. In such a case, there is a 

need of swapping the processes in and out of context. The processor must have efficient 

mechanism to support operating system in switching the context efficiently. 

 

3.5.3 Large virtual and physical address space 

 

With the increase in the size of problem being solved on the parallel machines, there is a 

growing need for large memory space and addressing capabilities. Problems like whether 

forecasting, global illumination computation and computer vision require huge amount of 

memory for effective and efficient solution. 

 

3.5.4 Effective synchronization primitives 

 

Multiple processes that constitute a parallel program need to cooperate to compute the results. 

This is possible by sharing data and accessing shared data while maintaining its integrity. To 

maintain integrity of data structures, often the access needs to be allowed only in exclusive 

mode. This means all other processes must wait while a process is accessing the shared data 

structure. 

 

3.5.5 Inter process communication mechanism 

 

There should be proper mechanism for communication between processes constituting 

parallel program. The communication between cooperating processes takes place in the form 

of signals, messages and interrupts. For example, a process can notify another cooperating 

process of an event such as data_ ready. 

 

3.6 DYNAMIC LOAD BALANCING 

 

While executing a program to assign the unprocessed workload to available processors, 

uneven distribution of work among processors and result in poor utilization of computing 

resources. In this context, an effective dynamic load balancing and work scheduling scheme is 
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needed. To manage the load balancing problem, one seeks to apply an optimal work 

scheduling strategy to transfer workload automatically from heavily loaded processors to 

lightly loaded processors or processors approaching an idle state. The primary goal of 

dynamic load balancing algorithms is to schedule workload among processors during program 

execution, to prevent the appearance of idle processors, while minimizing interprocessor 

communication cost and thus maximizing the utilization of the computing resources. A 

common load balancing strategy is the “manager-worker” scheme in which a single 

“manager” processor centrally conducts a group of “worker” processors to perform a task 

concurrently. These parallel algorithms adopt a distributed strategy that allows each processor 

to locally make workload placement decisions.  

 

All distributed parallel algorithms of this type are basically composed of five phases: 

workload measurement, state information exchange, transfer initiation, workload placement, 

and global termination. Workload Measurement, as the first stage in a dynamic load balancing 

operation, involves evaluation of the current local workload using some “work index”. State 

Information Exchange makes the local information available to all other cooperating 

processors, through inter processor message passing, to construct a global work index vector. 

Transfer Initiation, after obtaining an overview of the workload state, first of all decides if a 

workload placement is necessary to maintain balance and prevent an idle state. This is done 

according to an initiation policy, which dictates under what conditions a workload transfer is 

initiated, and decides which processors will trigger the load balancing operation. Workload 

Placement is the next step of load balancing algorithm. Here the donor processor splits the 

local stack into two parts, sending one part to the requesting processor and retaining the other. 

Global Termination takes place when the globally optimal solution have been found, making 

all processors idle.  

 

3.7 OPERATING SYSTEM CHARACTERISTICS 

 

There is conceptually little difference between the goals of an operating system for a 

uniprocessor machine and that for a multiprocessor machine. In multiprocessor, there is an 

additional complexity of handling multiprocessor. The increased complexity in the 

relationships among the resources in a parallel machine results in difficulties in scheduling the 

resources across competing tasks in the machine. The additional requirements of a 

multiprocessor operating system are discussed below. An operating system that fails to 
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perform well in these respects tends to negate other advantages which are associated with 

multiprocessing. 

         

3.7.1 Load Balancing 

 

The operating system must utilize the resources efficiently. This is commonly expressed in 

terms of achieving a uniform balance of loads across the processors. The operating system 

should schedule the subtasks such that there are no idle resources including the processors. 

 

3.7.2 Scheduling cooperating processes 

 

Parallel programs, which consist of concurrently executing tasks, must be scheduled such that 

collectively they are able to use the resources in the machine, required to solve the given 

problem. Scheduling half the subtasks of one parallel program and half the subtasks of 

another parallel program, which cannot cooperate can be wasteful. If a parallel program needs 

all these subtasks to be running and cooperating, then this can be achieved by maintaining a 

hierarchy of processes in the sense of parent child relationship within the operating system’s 

data structure. Scheduling of processes can then be done such that the processes belonging a 

single parallel program are scheduled for execution together. 

 

3.7.3 Graceful degradation in case of failure of one of the resources 

 

A parallel machine having multiple resources of the same kind has high degree of fault 

tolerance. Operating system should be such that the failure of one of the resources should not 

result in a catastrophic system crash and able to reschedule the task that had been running on 

the failed resource and continue the parallel program.        

 

3.7.4 Communication scheme 

 

Parallel program need to share data and intermediate results across subtasks during the 

process for getting solution of the problem. To achieve effective cooperation among the 

subtasks of a parallel program, the operating system must provide adequate facilities for 

communication between tasks. These facilities vary depending upon whether the machine is 

of shared memory type or distributed memory type. 
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3.7.5 Synchronization mechanism 

 

To ensure integrity of the shared data across the subtasks of a parallel program, 

synchronization between tasks is required. The shared data must be accessed under mutual 

exclusion. The tasks may need to wait till some state is reached across all the tasks of the 

parallel program. To achieve such synchronization, operating system should provide signaling 

mechanisms.      

 

3.8 PARALLEL PROGRAMMING MODELS 

 

A programming model is a collection of program abstractions providing the programmer a 

simplified and transparent view of computer hardware and software. Parallel programming 

models are specifically designed for multiprocessors, multicomputers. Five such models are 

described here. Parallel program is collection of processes or tasks. The models described 

here differ in the way these processes share data, achieve synchronization and communicate. 

 

3.8.1 Shared Memory Model 

 

This model is generally easier to program. Multiprocessor programming is based on the use of 

shared variables in commonly accessible memory for communication and sharing data. 

Besides sharing variables in a common address space, communication also takes place 

through software signals. Since multiple processors may attempt to access the shared data, 

data memory management or locking is required to ensure the integrity of data and handle 

conflicts. 

 

 

                                                                                                         

                    

                                                                                                         

 

This model is also available in the form of multithreading libraries. Various techniques are 

available for scheduling of processes across the subtasks to be carried out to solve the given 

instance of a problem. In such models it is the programmer’s responsibility to decompose the 

Shared variables in a 

common memory 

(Process B) 

(Process C) 
(Process A) 

Fig 3.6: Shared memory model 
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problem effectively and employ either static or dynamic scheduling of processes for achieving 

maximum parallelism. 

 

3.8.2 Message Passing Model 

 

Multicomputers employ message passing as the mechanism for inter process communication. 

Two processes residing at different nodes communicate with each other by passing messages 

over communication channel. The message may be instruction, data, and synchronization or 

interrupt signals. The communication delay in message delivery is much longer than in case 

of a shared memory model. 

                                            

                            

                                        

                                                

 

 

Two types of message passing models have been implemented.          

 

Synchronous message passing requires both sender and the receiver to be synchronized in 

time for transfer of message. No buffering of message is done by the communication channel. 

The receiver is always blocked waiting for the message to arrive, the sender also remains 

blocked till the receiver receives and acknowledges the message. This mode of 

communication is suitable only for tightly coupled message passing multiprocessors, where 

communication delay overhead is sufficiently small. 

 

Asynchronous message passing does not impose blocking on the sender. The message gets 

buffered by the communication channel and is delivered to the target processes when they 

choose to look for the message. This mode of communication is suited for multicomputers 

made up of networked autonomous machines.             

 

Message passing model does not require mechanism for mutual exclusion for access to shared 

data because there is no way for processors to share each other’s address space for data 

exchange. All data sharing is done through message passing. 

 

(Process A) (Process B) 

(Communication channel) 

Message (send/receive) 

Fig 3.7: Message passing model 
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3.8.3 Data Parallel Model 

 

It is one of the simplest approaches to program and most appropriate for SIMD machines 

because the data is distributed to the processors and each executes the same set of 

instructions. The programming model for data parallel SIMD processors is an extension of the 

sequential programming. For example Fortran90 is specifically tailored for data parallelism. 

Data parallel programs require the use of pre-distributed data sets. Thus choice of parallel data 

structure plays a significant role in data parallel programming.      

    

3.8.4 Object oriented model 

 

Mapping of execution units to object is naturally achieved in this model. Objects are 

dynamically created and manipulated. Processing is performed by sending and receiving 

messages among the objects. Concurrent programming models are built up from low level 

objects such as processors, threads, queues into high level objects like monitors and program 

modules. 

 

3.8.5 Functional and Logic Model 

 

A functional programming language emphasizes the functionality of a program and should 

not produce any side effect during execution. There is no concept of storage, assignment and 

branching in functional programming. The lack of side effects opens up much more 

opportunity for parallelism. The evaluation of a function produces the same value regardless 

of the order in which its arguments are evaluated. Thus arguments in dynamically created 

structures of a functional program can be evaluated in parallel. 

Logical programming is based on predicate logic and is suitable for knowledge processing 

dealing with large database. This model adopts an implicit search strategy and supports 

parallelism in the logic interface process. A question is answered if matching facts are found 

in the database. Two facts match if their predicates and associated arguments are the same. 

The process of matching and unification can be parallelised under certain conditions. Both 

functional and logical programming models are used in artificial intelligence applications 

where parallel processing is very much in demand. 
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3.9 SOFTWARE TOOLS 

 

Many software tools have been developed and used. Newer machines are getting more and 

more powerful to support sophisticated tools for development of parallel programs for 

realistic applications. Some of such tools are discussed here. 

 

3.9.1 Parallelising Compilers 

 

Many years of research and development has been expended on investigation of theory for 

automatic parallelism of code. Techniques like dependency analysis are used to detect those 

segments of a code that can be executed in parallel, and then the code is generated to exploit 

parallelism in the architecture of the machine. The programmer is free of the responsibility of 

detecting and analyzing the parallelism in the solution to the given problem and then coding 

accordingly. 

 

3.9.2 UNIX IPC 

 

The inter process communication (IPC) facilities in UNIX operating system lets the 

programmer develop programs which, when executed run as a collection of cooperating 

processes. The IPC facility provides a set of machines to share data, control access to shared 

data, synchronize process and dynamically create and destroy processes. The process can 

share certain block of memory for sharing and exchanging data while cooperating. 

Synchronization is achieved by using signaling mechanism supported by operating system. 

       

3.9.3 Threads Model 

 

Conceptually, multithreading is similar to multiprocess programming using IPC. The 

difference is that a multithreaded program has a single process that manages multiple threads 

of control executing asynchronously. The thread library provides functional calls to create 

threads, control threads, terminate threads, control access to shared data through locking 

mechanism, generate events and wait for events.  

The practical advantage of using threads is that threads are lightweight process. In 

multiprocess model multiple memory images of the program exist in the core while in 
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multithreaded program this overhead is avoided by sharing the same core image of the 

process. Also context information for each thread is also maintained.  

 

3.9.4 PVM and MPI 

 

PVM and MPI are two competing and functionally equivalent tools for parallel programming 

using message passing. 

 

PVM 

 

PVM is a portable message passing programming system designed to link separate Unix host 

machines to create a virtual machine which is a single computing resource. The PVM system 

is composed of two parts. The first is a daemon program, which runs on all machines that are 

part of the virtual machine. This permits the user to run a PVM application at a Unix prompt 

from any of the machines. The second part of the system is a library of PVM interface 

routines. This library contains user callable routines for passing messages, spawning 

processes, coordinating tasks and modifying the virtual machine. Application programs can be 

written in a mixture of C, C++ and FORTRAN but must be linked with the PVM library. 

 

A virtual machine across a networked collection of computers is realized through a layer of 

PVM daemons, running on each host. These daemons provide certain functionality such as 

addressing hosts, addressing of tasks, mapping of tasks to hosts, routing of messages, 

scheduling tasks on hosts for execution etc. Fig 3.8 shows the architecture of a PVM. 

 

 

 

 

 

 

 

 

 

 

 

Applications 

Virtual Machine 

pvmd 

Host 1 

pvmd pvmd 

Host 2 Host 3 

Fig 3.8: Parallel Virtual machine architecture 
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MPI 

 

In past, as different hardware manufacturers developed their own distributed memory parallel 

computers, they also developed and implemented their own message passing libraries. So, the 

programmer was tied to particular computer architecture. This lack of portability lead to a 

number of public domain message passing libraries being developed, each with their own 

software implementation. The natural progression from this therefore was the definition of a 

standard message passing library. In 1992, an MPI forum was established, encompassing 

hardware and software vendors and researchers from academies, industry and U.S. 

government to address this issue. By 1994 an initial MPI standard was published and since 

that time many efficient implementations have been released for all types of parallel 

architectures.                 

 

MPI (Message Passing Interface) provides a standard set of definitions, which allow parallel 

programs to be written under distributed memory paradigm. These definitions describe a 

library of over 100 C and FORTRAN subprograms, which are now supported by almost all 

parallel computer manufacturers. In addition, numerous commercial and public domain 

implementations of MPI exist, which allow clusters of workstations to be used as a single 

parallel computing system. The main purpose behind writing such specifications is to develop 

some software, for the first time since the advent of parallel computers, which is truly portable 

between different parallel architectures. 

 

When working with a distributed memory computer, it is necessary to ensure that each 

processor has its own copy of each data item that is required for each computation, performed 

by that processor. Often, some or all of this data will depend upon the result of a previous 

computation, which may have been made on one of the other processors. Therefore, some 

mechanism is required for the transfer of copies of data between processors. This is achieved 

through the message passing whereby each processor is given the ability to send and receive 

copies of data to and from other processors. This requires the cooperation of each processor 

that is involved in communication, whether as a sender or receiver or both. This system 

provides an API (Application Programming Interface), which permits a standard to develop 

parallel programs with standard message passing. A carrier such as PVM is required for 

distinct implementations if the operating system does not support the message passing. 
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3.9.5 DCE–RPC, Threads  

 

Distributed computing environment (DCE) is a standard proposed by the open software 

foundation for design and implementation of distributed systems. The standard provides a 

specification of tools and services that implementor of DCE must provide for the development 

of distributed computing system. The major components of DCE are RPC (Remote Procedure 

Call). Time/directory/file services, access authorization features, threads package and 

interface definition facility. These components provide a formwork for organizing distributed 

resources into a client server oriented network. 

 

RPC provides a procedural programming abstraction for design and implementation of 

distributed programs. The services available on geographically distributed machines can be 

accessed by calling a remote procedure. To bring this interface, the DCE framework requires 

daemons running on the distributed machines for routing and forwarding data.  

      

3.9.6 CORBA 

 

CORBA (Common Object Request Broker Architecture) is a set of standard mechanism for 

naming, locating, and defining objects in a distributed computing environment. The formwork 

provides an object-oriented abstraction for the design and implementation of a distributed 

computing system. The entire system consists of client server objects, which communicate 

through the object request broker (ORB). ORB is a set of distributed processes running on 

different machines and coordinating the communication between the objects. 

 

3.10 PERFORMANCE MEASUREMENT OF PARALLEL PROCESSING 

 

The objective of parallel or distributed processing must be to execute a problem at greater 

speed and to solve large problems with greater or more dedicated idealization. The 

performance measurement of parallel processing and other factors affecting its performance 

are as follows:    
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3.10.1 Granularity  

 

To achieve improvement in speedup through the use of parallelism, it is necessary to divide 

the computation into tasks or processes that can be executed simultaneously. The size of a 

process can be described by its granularity. In coarse granularity, each process contains a 

large number of sequential instructions and takes a substantial time to execute. In fine 

granularity, a process might consist of a few or perhaps single instruction. The granularity 

must be increased to reduce the cost of process creation and inter process communication. For 

message passing, it is desirable to reduce the communication overhead because of the 

significant time taken by inter computer communication. This is especially true for the 

network of workstations.  

 

Granularity = Computation time / Communication time 

 

It is very important to maximize the computation / communication ratio while maintaining 

sufficient parallelism. 

 

3.10.2 Speedup 

 

A measure of relative performance between a multiprocessor system and a single processor 

system is the speed up and defined as: 

 

 S = Tneq / TN  

 

Where, Tneq is the time taken by the code to execute on a single processor and TN is the time 

taken for the same code to execute on a parallel system having N processors. 

   

Theoretically a problem should run N times faster on a network containing N processors than 

on a single processor. In reality, the speed up achieved are less than the theoretical values 

owing to the increase in the communication time with the increase in the number of 

processors. In addition any load imbalance in the problem will result in less than optimum 

performance.  
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3.10.3 Efficiency 

 

The efficiency of the parallel system for a given algorithm is defined as: 

 

 E = S / N 

 

Where, S is the speed up and N is the number of processors. 

 

Efficiency is given as percentage. Efficiency gives the fraction of the time that the processors 

are being used on the computation. If E = 50%, the processors are being used half the time on 

the actual computation, on average. The maximum efficiency of 100% occurs when all the 

processors are being used on the computation at all times and the speed up factor would be N. 

 

3.10.4 Overhead 

 

There are several factors that will appear as overhead in the parallel version and limit the 

speed up. These factors are: 

 

1.) Periods when not all the processors can be performing useful work and are simply idle 

(load imbalance). 

2.) Extra computations in the parallel version not appearing in the sequential version 

3.) Communication time for sending message 

 

3.11 SUMMARY 

 

In present chapter various aspects of parallel processing have been discussed. These aspects 

include the computer architecture and their suitability with respect to parallel processing, 

possible way of getting parallelism in sequential machine and parallelism in multiprocessor 

machine, characteristics of multiprocessor computer for parallel processing. Concept of load 

balancing has also been discussed in present chapter. Along with these issues, some other 

issues like operating system characteristics for parallel processing, parallel programming 

models and software tools for parallel programming have also been discussed. And the final 

part of chapter includes the method of performance measurement of parallel processing. 
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In parallel processing, it is necessary that each computer should have copy of required data. 

Also it is necessary to maintain load on each computer. So frequent data transfer is one of the 

most important aspect of parallel processing. In order to achieve this task of data transfer 

various software tools like PVM and MPI are needed. but use of these libraries require 

knowledge of some concepts of parallel programming like data communication, process 

forking, process joining, and data synchronization etc. Moreover it requires special debugging 

for testing the parallel application. Generally, engineers and mathematicians may not be 

expert in these concepts of parallel processing. In such condition, implementation and 

performance measurement of parallel processing becomes difficult. So it is the expectation to 

have some application software, which can provide easy way of implementing parallel 

processing over network of computers. WebDedip is one of such user friendly distributed 

processing environment, which helps the user to develop parallel application easily over a 

network of heterogeneous system. Various aspects of WebDedip environment are discussed in 

chapter 4.    
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CHAPTER 4                                                        WebDedip ENVIRONMENT 

 

4.1 INTRODUCTION 

 

As in the parallel processing, processes are executed simultaneously on different computers, 

connected through LAN, frequent data transfer is necessary for effective performance. These 

data transfer takes place through messages. Also for load balancing, process starting, and 

process termination, effective message passing system is necessary. Therefore to achieve 

estimated performance, suitable message passing tool is required. PVM and MPI are two of 

such tools. But use of these libraries requires some concepts of parallel programming like data 

communication, process forking, process joining, and data synchronization etc. moreover it 

requires special debugging technique for testing the parallel application. Generally, engineers 

may not be expert in these concepts of parallel processing. In such condition, implementation 

and performance measurement of parallel processing becomes difficult. So it is general 

expectation to have some application software, which can provide easy way of implementing 

parallel processing over network of computers. WebDedip is one of such user friendly 

distributed processing environment, which helps user to develop parallel application easily 

over network of heterogeneous system. 

 

4.2 WebDedip OVERVIEW 

 

The WebDedip has three tier architecture; GUI, DedipServer and Agents, as shown in Fig 4.1 

The GUI is the web enabled graphical user interface to make the entire user interaction truly 

system independent. It supports various Java Applets for application configuration, 

application building, application operation initiation, application progress monitoring, and 

session controlling. The user initiates the interaction by visiting a predefined site using a 

standard browser. The standard web server loads the required GUI on the web browser. It has 

a back-end DedipServer running on the web site. When the GUI submits the request to the 

DedipServer, it reads the application configuration information from the configuration file. 

The DedipServer initiates the execution of the first process in the interdependency chart. 

Normally, most of the applications have a single starting process. If any application has 

multiple starting processes, it initiates execution of all such independent processes. It informs 

the agents on the target node to start the execution of the process. The agent sends the status 

information back to the DedipServer when the process is completed. The DedipServer finds 
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out the dependent processes on the successful completion of a process and initiates the 

execution of each such process. The required files are transferred from one node to another. 

WebDedip has a callable library in Java to interface with the FTP server that helps in 

transferring files. The required process is automatically inserted in the configuration when IP 

designer inserts the IO dependency information between two processes. The DedipServer 

stores complete information about all the applications configured on the web site. The 

DedipServer exchanges information with the Dedip Backup Server making the model fault 

tolerant. 

 

The agent accepts requests from the DedipServer, executes them and provides the status 

information when completed. It has process building (compilation), execution, and monitoring 

capabilities. It can schedule multiple processes in parallel. It does not control the 

synchronization among the parallel processes; instead it depends on the DedipServer for this 

job. It treats each process as a single independent entity. The WebDedip not only caters to the 

requirements of the application designer, but also addresses all the requirements of the 

operation manager as well as operators. 
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Fig 4.1: Configuration of WebDedip 
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The application configuration and building is a privileged task, carried out either by the 

application designer or operation manager. During the regular operations, the operator can 

initiate any required application, monitor progress, do error handling, and terminate the 

application, if necessary. 

 

Object-oriented modeling (implemented in Java) is used for the design of the WebDedip. The 

application is modeled as an object while the process is modeled as an embedded object. The 

object inter linking capability is used to maintain interdependency information for an 

application. Java distributed object architecture is used along with the object serialization for 

network communication among GUI, DedipServer and agents. Hence, WebDedip can be used 

on a LAN or on Internet. Agents may run on any system over Internet. On start, an agent 

makes connection with DedipServer on a predefined port and volunteers for computation 

workload. The Windows-explorer is used as a metaphor in developing the navigation GUI due 

to its popularity and ease of use.  

 

4.3 INSTALLATION OF WebDedip  

 

The basic requirement for implementation of parallel application is the network of computers, 

which should contain sufficient computers to meet user’s requirement. One computer is made 

DedipServer. Depending upon the user’s wish one computer should be made 

DedipBackupServer. BackupServer is optional. In case of failure of DedipServer, all the 

activities allotted to DedipServer will be automatically transferred to the BackupServer and 

BackupServer will take care of it. Thus more safety can be assured by having 

DedipBackupServer. Other than DedipServer and BackupServer, Client machines are needed. 

Number of client machine depends upon the user’s need. Various aspects related to 

WebDedip environment such as hardware and software requirements for Server and Slave 

machine, components to be installed, and various configurations that has to be made and 

installation of DedipServer and DedipAgent are dealt in brief in coming topics. Also the steps 

to be followed to implement parallel application are discussed.  
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4.3.1 Requirements for WebDedip 

 

Server machine 

 

As far as the hardware requirement of server machine is concerned, minimum Pantium-1 

processor is must with minimum of 64 MB RAM. Dedip itself does not require any 

significant disk space however it requires disk space in the Dedip area as per the respective 

applications requirements. DedipServer can be installed on any operating system but 

Windows is preferred. Various software needed for server machine includes JRE-1.2 and later 

(Java Runtime Environment), JDK-1.2 and later (incase user want to compile the code), Web 

Server (IIS 4 is preferred), Jakarta Tomcat 4.0 or higher and FTP server.    

 

Slave machine 

 

Hardware requirement of Slave machine is same as the Server machine i.e. Pentium-1with 

minimum of 64 MB RAM. Like Server, any operating system can work on slave machine. 

Software requirement of slave machine include JRE-1.2 and later (Java Runtime 

Environment), JDK-1.2 and later (incase you want to compile the code) and FTP server. 

  

Components 

 

WebDedip needs the following components to be installed: 

Dedip server on server 

Dedip server on Backup server (optional) 

Dedip Agent on slave machine  

 

Configuration 

 

It has following configuration requirements at SERVER and Backup SERVER. 

Web Server configuration 

FTP server configuration 

TOMCAT server configuration 

 

It has following configuration requirements as Slave Machine.  
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FTP server configuration 

 

Web server configuration 

 

User has to set web root path. It is preferred on drive other than OS drive. So if drive D is 

used for web root path then wed root folder will be located at D:\inetpub\wwwroot\. 

 

FTP server configuration 

 

To configure FTP server first of all it has to be installed by running eftpserver.exe file. After 

completion of installation process, user has to create user account. Here user name is 

WebDedip and password is ‘haresh0’. To set home directory user has to select 

D:\inetpub\wwwroot\facility\dediparea folder. In main setting option user has to select various 

options to suit the requirements.  

 

DedipServer installation 

 

DedipServer is developed using Java. DedipServer has to be installed on SERVER. It has 

following components. 

 

1.) Dedip packages 

 Dedip 

 ftp 

 sharableObjects  

2.) Dedip configuration files 

3.) Dedip area 

4.) HTML files 

 

Dedip packages installation and configuration 

 

Various Dedip packages are installed from class files. Following steps can configure these 

packages: 

 

1.) Create “facility” folder under web root directory (D:\inetpub\wwwroot) 
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2.) Create “classes” folder under “facility”.  

 

3.) Extract DedipClasses.zip to D:\. Path information is saved in the zip file.  

Hence, following directory structure will be available. 

D:\inetpub\wwwroot\facility\classes 

SharableObjects – containing class files 

ftp – containing class files 

Dedip- containing class files 

Icon- contains imported image files 

 Config-contains two important configuration files.  

  -dedip.inf 

  -dediparea.inf 

 

4.) Create “DedipArea” folder in webroot directory\facility. So it will be at 

D:\inetpub\wwwroot\facility\DedipArea 

 

5.) Extract Sample test application from DedipArea.zip to D:\. Path information is saved in 

the zip file. Hence, it will copy the files under home directory.  If user doesn’t want to 

extract sample test applications, he/she has to extract at least following: 

 D:\inetpub\wwwroot\facility\DedipArea\SessionInformation 

 D:\inetpub\wwwroot\facility\DedipArea\lib\fileopen.c 

 

6.) Open dedip.inf, located at D:\inetpub\wwwroot\facility\classes\Dedip\config 

• The first entry defines the DedipArea path. The default value is set to 

d:\inetpub\wwwroot\facility\DedipArea 

• The second entry defines the Dedip Icon directory. The default value is set as 

facility/classes/Dedip/icon 

• The third entry is the server IP address. 

• The forth entry is the Backup Server IP address. 

 

7.) Open dediparea.inf, located at D:\inetpub\wwwroot\facility\ classes\ Dedip \config.  

Each row contains three fields 

• The first field is the machine IP address 

• The second field is the physical location of DEDIPAREA 
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• The third entry is the operating system of the machine.  

 

To configure HTML files, user has to extract DedipHTML.zip to D:\. It will creats following 

directory structure. 

D:\inetpub\wwwroot\facility\html 

D:\inetpub\wwwroot\facility\html\WebDedip 

 

DedipAgent installation 

 

DedipAgent is developed suing Java. Is has to be installed on slave machine. It has following 

components. 

 

1.) DedipAgent packages 

 Dedip 

 ftp 

SharableObjects 

2.) Dedip configuration files 

3.) DedipArea 

 

DedipAgent packages installation and configuration 

 

Various DedipAgent packages are installed from class files. Configure can be done in the 

same way as it is for DedipServer machine. Various steps to be followed to implement an 

application on WebDedip can be summarized as follows: 

 

1.) To start the WebDedip Session: 

To start the session, user needs to start DedipServer on server and DedipAgnet on all slave 

machines. If BackupServer is made then it also has to be start. 

 

2.) To start DedipServer 

The DedipServer has to be run on Server machine. It can be run from DOS prompt. In 

DOS prompt following command has to be given to run DedipServer. 

cd D:\inetpub\wwwroot\facility\classes     

 java –classpath . Dedip.DedipServer 
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3.) To start DedipAgent 

User needs to start DedipAgent on all slave machines. Same as DedipServer, DedipAgent 

can also be run from DOS prompt. Following command will start the DedipAgent. 

cd D:\inetpub\wwwroot\facility\classes 

Java –classpath . DedipAgent.DistScheduler 

 

4.) To start DedipBackup server 

If Backup Server is made then Backup server can be run from DOS prompt by following 

command. 

cd D:\inetpub\wwwroot\facility\classes 

java –classpath . Dedip.DedipServer –Backupof “SERVER_IP”  

 

5.) To configure new application 

New application can be configure by following steps:  

1.) To configure new application user has to open WebDedip home page 

(http://SERVER_IP/facility/html/WebDedip) 

2.) Click on the ClientApp. It will open the GUI in new window. 

3.) Click new application button. It will open a dialog box. In which user has to give 

application name and description. Select the SAMD option. After clicking OK, user 

can see the application folder on left hand panel of GUI window. 

4.) On clicking the application icon, it will appear in the right hand panel of GUI. 

5.) Right click on application icon will show a popup menu. From that menu user has to 

select config-> Create Config File. It will display a dialog frame with button matrix. 

The default size is 11X11. User can change the size of matrix by entering the values in 

matrix field. 

6.) When a first row button is clicked on the button matrix window, a dialog box will 

appear, showing option for Process Detail Form and File Transfer Form. First user has 

to select Process Detail Form. This will open the Process Detail Form. Various process 

details such as process name, node on which the process will run and expected time 

for process has to be filled in this form. After completing process detail form, for first 

row, another process form has to be filled in third row of matrix. One row should be 

left between two processes for file transfer process. After filling details for processes, 

user has to give file transfer information. This information includes, the source and 

destination process, file name, approximate file size and type of file (i.e. input, 
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intermediate or output). In this way the basic structure for the application will be 

ready. Now application is ready to built. 

 

6.) To build the application 

Right click on the application icon will be shown the popup menu, having option build. 

Selection of build option will show a new window. User can build the application either 

from source or from executables. In case of build from executables, the Dedip will 

transfer the executables on the target node in appropriate directory. In case of build form 

source code, the Dedip will transfer the complete source code directory on target node and 

ask remote DedipAgent to compile code using buil.bat file. Once application is built 

successfully, user has to click ready button in build dialog box. 

 

7.) To run configured application 

After building application successfully, the application icon will be disappeared from right 

hand panel. So on clicking the application icon on left hand panel of GUI, again it will 

appear in the right hand panel and right click on application icon will open a popup menu 

containing an option for run. Selection of run option will start execution of application as 

per configuration. 

   

8.) To monitor/control the progress of running application 

The status of the running application can be known by opening the WebDedip home page 

(http://SERVER_IP/facility/html/WebDedip). From home page user has to select Operator 

Console. It will open an operator GUI in new window. Session tab has to be clicked to get 

summary report of the session. Selection of application from the table and then application 

tab will give the details about application status.  

User can abort/ suspend/ resume/ restart an application. To do so user has to click on the 

session tab. Select the application and then click button of desired action. 

 

9.) User can terminate the DedipServer using manager console. It provides three level of 

termination. 

 

Immediate: It kills all processes running on different slave machines. 
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Process wide: It waits for all processes currently running on different slave machines. Then it 

terminates. It disables the DedipServer to take new application for processing during the 

period. 

 

Application wide: It waits for all processes currently running and pending for initiated 

application. Then it terminates. It disables the DedipServer to take new application for 

processing during the period. 

   

The DedipServer is capable of restarting the previous session from the point of termination so 

that loss of processing power is negligible. It can restore the session even in case of Server 

System crash. 

 

4.3.2 WebDedip Rules 

 

When one runs his/her application through terminal window, it is known that where are input 

files, intermediate files and output files. WebDedip has to handle the same. So WebDedip 

suggests to use input directory for input files and intermediate directory for intermediate and 

output files.  

 

Furthermore, user may wish to create multiple instances of application (i.e. run his/her 

application more than once simultaneously on different input data). This mode is called Single 

Application Multiple Data (SAMD). As intermediate files are created in intermediate 

directory, files will be overwritten by another instance of the application. It is very difficult 

for user to handle such case. 

 

WebDedip provides a simple solution for this problem. User has to follow the following steps: 

 

1.) Insert the following code just after the include statement 

 FILE *fileopen(); 

 

2.) Insert the following three lines in the beginning of main function 

Strcpy(DeipArea,argv[argc-3]); 

Strcpy(Application Name,argv[argc-2]); 

Counter = atoi(argv[argc-1]); 
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3.) Use “fileopen” function provided by WebDedip to open file instead of stdio.h routine. The 

fileopen.c is lying at DedipArea\lib on all slave machines. 

 

 For example, 

 f1=fileopen(“Testi.inp”,”r”,DedipArea,ApplicationName,counter,”input”); 

 f1=fileopen(“Test1.”,”w”,DedipArea,ApplicationName,counter,”intermediate”); 

 

The first two arguments are the same as that of “fopen”. The next arguments are that are 

supplied by WebDedip to user’s process as argument to main function. The last argument 

mentions whether the file resides in “input” or “intermediate” directory.  

The “fileopen” function does the following: 

 

1.) Prefix the “DedipArea/Application /input” to file, if last argument is “input”. 

 

2.) Prefix the “DedipArea/Application /intermediate” to file, if last argument is 

“intermediate”. It also concatenates ”_XX” as the end of file name. Where XX represents 

the number of execution of application. Means user can create 99 instances of his/her 

application simultaneously. 

 

4.4 PARALLEL IMPLEMENTATION 

 

Sequence of processes for parallel implementation of an application can be enumerated as 

follows: 

 

Load GUI 

 

As a very first step, user has to initiates by submitting the request for loading GUI. User can 

load GUI using web browser. Sequential steps for loading GUI are shown in Fig 4.2 
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After giving the address of 

Web server in web 

browser, as a first step user 

has to select this option 

(a) 

After selecting the Html 

option, this page will 

open from which user 

has to select WebDedip 

option 

(b) 

As a next step user has to 

select index.htm option  

(c) 

Fig 4.2: (a) (b) (c) Loading GUI for WebDedip 
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Creating new application 

 

Selecting the New App option from the client app window can create new application. Details 

to be filled in New App form are as shown in following fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After selecting index.htm 

option this page will be 

displayed from which user 

has to select ClientApp 

option  

(a) 

List of applications 

GUI 

Various applications, 

already created are listed. 

To create new application, 

following steps have to be 

followed.   

(b) 

To create new 

application, New App 

option has to be selected 

(c) 

Fig 4.3: (a) (b) (c) New application creation 



 57 

 

Application Configuration 

 

The application designer has to first decide the configuration of his/her application. It depends 

on the distributed resource requirement, parallel processing requirement, input/output of each 

process, etc. The WebDedip supports a nice GUI for the same as shown in figures. Figure 

shows the overview of the application. The detailed information about each process is shown 

in figure. The detailed information about file transfer process is also shown in figure. The 

typical interdependency chart, generated interactively, is shown in figure. The line joining two 

processes shows their interdependency in top-down model. The input output dependency, if 

any, is a part of this interdependency and it can be easily configured. User can modify his 

application configuration file any time by selecting the modify configuration option as shown 

in fig. The effect of the modification will be applied on next execution of the application. 

 

New application form 

Fig 4.4: New application form 

To configure a new 

application for the first 

time, user has to select 

create config file option 

from configure option.   

Fig 4.5: Configure new application 
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Typical process detail 

form 

Fig 4.6: Typical process form 

Typical file transfer 

from showing details to 

be filled in this form 

Fig 4.7: Typical file transfer form 

User can modify the 

configuration of 

application at any 

stage by selecting this 

option  

Fig 4.8: Modify configuration file 
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Application building 

 

An application consists of many processes. All these processes need to be compiled on the 

target node. The WebDedip has automated all these compilation. The configuration 

information has all the required details about each process. The DedipServer copies the source 

code & make-file, required to build a process, on the target node in a predefined temporary 

area. It then requests the agent on the node to build the process using the make-file. It carries 

out this task for each process given in the configuration. The agent creates designated 

directory and preserves the executable in it. The application designer can build the processes 

externally on all systems in case he is not willing to give the code. The GUI provides 

necessary support for such external readiness indicator. 

 

 

 

 

Application detail 

form showing 

complete 

configuration of 

application using 3 

substructures 

Fig 4.9: Application detail form 
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Application execution and monitoring 

 

The operator can start execution of any application from any machine on the net using the 

standard browser. GUI displays the configured applications to the operator for selection. 

Operator can start/abort/suspend/resume an application. Figures show the GUI for session and 

application progress information.  

 

 

 

 

 

 

Application can be 

built from executables 

by selecting this option. 

Same can also be built 

using source code   

(a) 

After building the 

application 

successfully, user has 

to select READY 

option. 

(b) 

Fig 4.10: (a) and (b) Build application 
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After building the 

application, it can be run 

by selecting run option. 

Fig 4.11: Run application 

After completion of 

process successfully, 

time required for 

individual processes 

can be noted by 

selecting Operator 

Console option from 

main window.   

Fig 4.12: Web browser page to open operator console window  

User has to select application 

option to get the complete 

information for latest run of 

application  

Fig 4.13: Operator console window  
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Error Handling 

 

In case of abnormal completion, the DEDIP Server displays the error message with error code 

to the operator. Application designer provides these error codes and error messages. 

WebDedip keeps this information in the configuration file. The operator can restart the 

process after taking the necessary actions. In addition, the operator has the options of either 

restarting the entire application or aborting it.  

 

Session management 

 

Each time an operator logs in, DEDIP scheduler starts/restarts a session for him. Each session 

has a unique session identification number. It keeps all the information about the session on 

the server. The operator has multiple options to log out. He can close the session, terminate 

Window showing complete details for individual 

processes. These details include process name, 

node number at which that process is running, 

starting time, expected time, completion time and 

status of the process.  

Fig 4.14: Operator console window showing complete process details 
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the session, suspend/resume the session, or submit the session for progress in background 

before logging out. He can close the session only after normal completion of all the requests 

he has submitted. He can terminate the session immediately in case of emergency. In case of 

termination, the WebDedip kills all the processes of all the requests submitted by the operator 

irrespective of the status. The background processing is very effective in the case of non-

interactive processes. The WebDedip gives the detailed status to the operator at the next 

logon. 

 

WebDedip system management 

 

The WebDedip system consists of a DedipServer and agents. The DedipServer can detect the 

agent termination. It displays the message on operators’ console as well as operation manager 

console. The DedipServer is the most important process in the entire system. Its failure, for 

example, due to system crashing, can cause a severe problem. Dedip Backup Server is 

designed to handle the failure of the DedipServer. The software package Dedip backup Server 

runs on the machine of the backup server and duplicates the required information from the 

DedipServer. An agent sends a trigger to Dedip Backup Server when it fails to communicate 

with the DedipServer. The Dedip Backup Server validates the DedipServer failure. It takes 

over the complete responsibility from that moment onwards and informs the operation 

manager. The servers are exchanging information only in case of external events like 

termination of process, start of new process, initiation of an application by the operator, the 

start of new session, etc. The frequency of such possible events is very low. Furthermore, the 

volume of the information is negligible. Hence, the communication overhead for maintaining 

the back-up server is very low. 

 

4.5 SUMMARY 

 

In present chapter various aspects of WebDedip environment have been discussed. These 

aspects are architecture of WebDedip, installation of various components on server and slave 

machine and minimum software and hardware requirement of computer for installation of 

WebDedip. In later part of chapter, stepwise procedure of application implementation on 

WebDedip is discussed with the help screen shots.   
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CHAPTER 5                                                        PLANE STRESS ANALYSIS   

 

5.1 GENERAL 

 

 There are many problems in the engineering, which can be treated as plane stress or plane 

strain cases [30]. Some of the examples of such problems are as shown in following figures. 

 

                   

 

 

 

 

 

The plane stress condition is characterized by very small dimensions in one of the normal 

directions. Fig 5.1 shows an example of plane stress conditions. In these cases, the stress 

components σz , τxz and τyz are zero and it is assumed that no stress component varies across 

the thickness. The state of stress is then specified by σx, σy and Τxy only and is called plane 

stress. 

      

 

 

 

 

 

 

 

Problems involving long bodies whose geometry and loading do not vary significantly in the 

longitudinal direction are referred to as plane strain problems. Fig 5.2 shows some example of 

plane strain condition. In these situations, a constant longitudinal displacement corresponding 

to a rigid body translation and displacements linear in z corresponding to a rigid body rotation 

do not result in strain. Hence, if we consider a cross section away from the ends, it can be 

assumed that w = 0 and displacements u and v are functions of x and y but independent of z. 

So, εx = γzx = γyz = 0 

 

Fig 5.1: Plane stress problems 

 

σz = 0  

τxz = 0 

τyz = 0 

σz = 0    τxz = 0   τyz = 0 

Fig 5.2: Plane strain problems 
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5.2 FINITE ELEMENT FORMULATION 

 

Finite Element formulation for CST element is discussed below. 

 

5.2.1 Shape functions 

 

For the descritization, CST elements (Fig 5.3) with linear displacement model having two 

degree of freedoms at each node are selected. Therefore total degree of freedom is six. The 

vector q = [u1, v1, u2, v2, u3, v3] represents the displacement vector and hence the degree of 

freedom at each node is enumerated as [22]: 

u1 = Displacement at node 1 in X direction 

v1 = Displacement at node 1 in Y direction 

Selecting displacement function for displacement in X and Y direction as follows: 

u = c1 + c2x + c3y 

v = c4 + c5x + c6y         (5.1) 

 

                  

               

 

 

 

 

  

                                                                                                                                                           

 

 

 

 

 

 

Shape functions for displacement in X direction are, 

N1 = (a1+b1x+c1y) / 2A 

N2 = (a2+b2x+c2y) / 2A 

N3 = (a3+b3x+c3y) /2A                   (5.3)  

    c1      

u =  1 x y c2 

    c3                       (5.2a) 

    c4      

v =  1 x y c5 

    c6                       (5.2b) 

       v3  

  3 u3 

       v2  

  1 u1 

 v2 

 2 

            u2 

Fig 5.3: CST element having two DOF at each node 
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For displacement in Y direction also the shape functions will remain same. 

  

5.2.2 Strain-Displacement relation matrix [B] 

 

The relation between strain and displacement is expressed as, 

 

[ε] = [B] [q]                   (5.4) 

 

Where, [ε] = strain matrix 

 [B] = strain displacement matrix 

 [q] = nodal displacement matrix  

 

 

 

 

 

 

 

 

 

Equating the above equation 5.6 with equation  

 

[ε] = [B] [q], we have 

 

  

 

 

 

 

Therefore, 

 

 

 

 

   εx          ∂u / ∂x                ∂ / ∂x 0     u 

   εy =         ∂v / ∂y  =        0 ∂ / ∂y   v 

   γxy                  ∂u / ∂y + ∂v / ∂x           ∂ / ∂y ∂ / ∂x     (5.5) 

   εx        ∂ / ∂x 0           N1   0    N2   0    N3   0         u1            

   εy =     0  ∂ / ∂y           0     N1   0    N2   0    N3        v1  

  γxy            ∂ / ∂y ∂ / ∂x                                   u2 

                            v2 

                            u3   

                            v3   (5.6) 

  ∂N1/∂x      0               ∂N2/∂x         0        ∂N3/∂x 0      

   

     [B] = 0      ∂N1/∂y      0     ∂N2/∂y    0             ∂N3/∂y 

 

  ∂N1/∂y      ∂N1/∂x      ∂N2/∂y       ∂N2/∂x    ∂N3/∂y     ∂N3/∂x   (5.7) 

  

      b1   0 b2 0 b3 0      

      1  

    [B] =     0   c1 0 c2 0 c3 

     2A 

      c1   b1 c2 b2 c3 b3                 (5.8)  
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Where,  

bi = yj – yk ci = xk - xj 

bj = yk - yi  cj = xi - xk  

bk = yi – yj ck= xj – xi  

 

5.2.3 Element stiffness matrix 

 

We know that the stiffness matrix, derived from Principle of virtual displacement and 

principle of stationary potential energy [18], can be given as 

 

[K] = ∫∫∫v [B]
T
[D][B] dv           (5.9) 

 

Where,  [K] = Stiffness matrix  [B] = Strain displacement matrix 

[D] = constitutive law matrix  

 

[B] Matrix has already been derived. 

 

For plane stress condition, Constitutive law matrix [D] can be given as follows: 

   

 

 

 

 

For plane strain condition, Constitutive law matrix [D] can be given as follows: 

 

 

 

 

Where, E = Modulus of Elasticity and ν = Poisson’s ratio 

 

[K] = ∫∫∫v [B]
T
[D][B] dv 

 

If the thickness of the element is constant value‘t’, the stiffness matrix is given by  

 

          E           1 ν    0  

     [D] =           ν  1    0  

       (1-ν2
)       0 0 (1-ν)/2      (5.10) 

 

           E     1- ν     ν     0  

   [D] =         ν   1- ν     0  

     (1+ν)(1-2 ν)       0     0 (1-2ν)/2             (5.11)
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[K] = t ∫∫ [B]
T
[D][B] dx dy 

 

It can be observed that the matrix [B] is constant and the matrix [D] depends on the plane 

stress or plane strain condition and on material property. Hence stiffness matrix of the element 

can be written as follows: 

 

[K] = t [B]
T
[D][B] ∫∫ dx dy 

 

[K] = [B]
T
[D][B] A t         (5.12) 

 

Where, A = area of element and can be calculated as follows 

 

 

 

 

5.2.4 Consistent Load vector 

 

The components of the consistent load vector are the equivalent load applied at the nodal 

points of the element due to the loads applied at the intermediate points of a finite element. 

The applied external forces may consist of independent or combination of the following load  

cases.  

            1 x1 y1        

       2A =   Det   1 x2 y2  

            1 x3 y3 

(a) Gravity loading 

 (b) Nodal loading 

 (c) Edge loading   

 

 

        Fig 5.4: Various lading conditions for CST element  
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1.) Gravity load 

 

Consider the CST element as shown in Fig 5.4 (a). The gravity loads, generally the self-

weight of the element, always acts in the gravitational direction e.g. in the negative Y 

direction. This load is equally distributed at all three nodes. So the load vector for gravity load 

can be written as follows: 

 

 

 

 

 

 

2.) Point load 

 

Consider the CST element as shown in Fig 5.4 (b). As we know that the load vector is given 

by equation, 

 P = ∫ [N]
T
 p dx  

Where,  

P = load vector  

p = nodal load acting at a point 

[N] = shape function at point of application of nodal load (xm, ym) 

 

Shape functions at point of application of nodal load (xm, ym) can be calculated as follows: 

 

 

 

Load vector can be calculated as, 

 

 

 

  

 

 

 

      0      Where,  

   ρAt /3      ρ = Density of material 

P      =       0            A = Area of element 

   ρAt /3      t = Thickness of element 

      0           

   ρAt /3                 (5.13) 

              1 x1 y1    
-1

          

                 [N]    =      1    xm   ym 1 x2 y2        

                1 x3 y3                

   N1 0 

0 N1     Px  Where,  

      P =  N2 0     Py  Px = Pcosθ  
0 N2   Py = Psinθ 
N3 0 

0 N3    (xm, ym)                (5.14)
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3.) Edge force 

 

The load vector is given by  

 

P = ∫ [N]
T
 p dx 

 

As the edge force is acting on a edge (Fig 5.4 (c)), it can be treated as a 2-noded bar element. 

Load vector for bar element is given by 

 

 

 

 

Therefore, final load vector due to load acting at angle θ can be given as, 

   

 

 

 

 

 

5.3 SUBSTRUCTURE TECHNIQUE FOR ANALYSIS 

 

As the problems became more and more complex, various new analysis techniques were 

developed for easy and fast solution of the problems. Earlier simple analytical methods were 

available but later as the need arise, various new analytical methods were developed which 

were faster and easier in programming as compared to earlier methods. Today, computers 

having very high computing power are available but there are various complex problems for 

which computational time is very high. Furthermore due to large size of problem, memory 

requirement for storage is also more then the storage available. In such cases it becomes 

difficult to carryout analysis of complex structures. So, some way should be there which can 

overcome such problems. Substructuring technique for analysis is one of such solution by 

using which above problems can be solved to large extent. 

 

For analysis of large structural systems, substructuring technique has been found useful. This 

technique is also cost effective to incorporate modification in certain parts of structures and 

      

    P   =       p     L / 2   where, 

   L / 2   L = Length of edge on which force is acting  

Pl/2 cosθ       

  Pl/2 sinθ       
         P =       0          

       0          

  Pl/2 cosθ      
  Pl/2 sinθ               (5.15) 
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also for nonlinear analysis situations. The method of substructuring for static structural 

analysis is based on subdividing the large structure into smaller parts, which are analyzed 

separately to obtain the relationship between forces and displacements at the common 

boundaries. These boundary variables are then determined and are used to obtain the 

unknown within each substructure. A particular structure can be modeled with different 

choice of substructures so some basic idea of substructuring is needed from user’s part to 

choose the best model amongst these.       

The method of sub structuring for static structural analysis is based on subdividing the large 

structure into smaller parts, known as substructures, to obtain the relationship between forces 

and displacements at common boundaries. These boundary variables are then determined and 

used to obtain the unknowns within each substructure.  

 

The basic equilibrium equation, which is used to find out the displacements in the structure, 

can be given by     

[K] [r] = [P]                 (5.16)           

Where, [K] is the stiffness matrix, [r] is the displacement matrix and [P] is the load vector. In 

substructure technique, above equilibrium equation is obtained by the assemblage of 

substructure equations. For each substructure, the stiffness matrix, the displacement matrix 

and the load vector are partitioned corresponding to internal and boundary degree of freedom 

{di} and {db} respectively as follows: 

 

 

 

 

In the above equation, a boundary node is defined as a node, which is part of more than one 

substructure and the degree of freedom at the boundary nodes are termed as boundary degrees 

of freedom. 

 

The analysis can be performed in two stages, 

 

1.) Considering degrees of freedom at boundaries as fixed, each substructure is analyzed on 

different computers in parallel. Denoting the solution obtained from this step by a 

superscript α. 

 Kij Kib  di  Qi 

     =              (5.17) 

 Kbi Kbb  db  Qb 
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2.) Combine the condensed stiffness of the substructures from different computers to get the 

global structure stiffness matrix and analyze the assemblage by releasing the boundary 

degree of freedom. Denoting the solution obtained in this step by a superscript β. 

 

The displacement and load vectors can be expressed as the sum of the above two cases as, 

 

 

 

And 

      

 

 

Where, subscript i and b denoted the terms corresponding to the internal and boundary degree 

of freedom respectively. Obviously, as {db
α
} is the displacement at the boundary degree of 

freedom, when boundaries are fixed it will be zero. Thus 

  {db
α
} = 0            (5.20) 

Also in the first stage of analysis, all the forces are applied at the internal nodes of the 

substructure and hence these forces do not appear at the second stage. Hence, 

  {Qi
β
} = {0}  and {Qi

α
} = {Qi}      (5.21) 

 

STAGE 1: Analysis with fixed boundaries  

 

Substituting the vale of {db
α
}={0} from equation 5.20 into the equilibrium equation 5.17, the 

set of equations for the first stage of analysis with boundaries of substructure fixed can be 

written as, 

 

 

    

 

Solving the first set of above equation, 

 {di
α
} = [Kii]

-1
 {Qi}                (5.23) 

Substituting the value of {di
α
} in the second equation 

 {Qb
α
} = [Kbi] [Kii]

-1
 {Qi}               (5.24) 

   

  di   di
α
           di

β
 

  =   +           (5.18) 

  db   db
α
           db

β
       

  Qi   Qi
α
           Qi

β
 

  =   +           (5.19) 

  Qb   Qb
α
           Qb

β
       

 Kii Kib     di
α
   Qi 

         =            (5.22) 

 Kbi Kbb     {0}   Qb
α
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Here, {Qb
α
} is the force required to be applied at the substructure boundaries to keep the 

boundary displacements equal to zero. The above analysis is performed in all the 

substructures in parallel on different computers. 

 

STAGE 2: Analysis with boundaries released 

Again substituting the value of {Qb
β
} in equation 5.17, the set of equations for the second 

stage of analysis with boundaries released can be written as, 

 

 

 

Solving the first set of equations, we have  

 {di
β
} = - [Kii]

-1
 [Kib] {db

β
}               (5.26) 

Solving the second set of equations, we get 

 [Kib] {di
β
} + [Kbb] {db

β
} = {Qb

β
}              (5.27) 

 

Substituting from equation 5.26 for {di
β
} into equation 5.27, we get 

 -[Kbi] [Kii]
-1

 [Kib] {db
β
} + [Kbb] {db

β
} = {Qb

β
}            (5.28) 

or,  [K
*
] {db

β
} = {Qb

β
}                (5.29) 

 

where, [K
*
] = [Kbb] – [Kbi] [Kii]

-1
 [Kib]              (5.30) 

 

The equation 5.29 is the equilibrium equation for the substructure in terms of its boundary 

degree of freedom and [K
*
] is the corresponding stiffness matrix called as condensed stiffness 

matrix. This analysis is carried out in parallel for all substructures on different computers and 

the condensed stiffness matrix for each substructure are assembled to form the global 

structure stiffness matrix. Thus, 

                     s=n  

                      [K] = Σ [K*
] s                            (5.31)                                 

                                                s=1
   

and 

    s=n 

 {P} = {Qb} -   Σ {Qb
α
}s                (5.32) 

   
s=1

 

 Kii Kib     di
β
   {0} 

         =               (5.25) 

 Kbi Kbb     db
β
  Qb

β
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In the above equations n stands for the number of substructures, which is equal to the number 

of computers. The assemblage of the substructures through equation 5.31 and 5.32 leads to 

equation 5.16 where all the degrees of freedom are along the common boundaries of the 

substructures. Solution of equation 5.16 gives the global displacements along the boundaries 

of the substructure. Now the vector {db
β
} can be obtained for each substructure, which will be 

communicated to different computers and from that {di
β
} can be determined using equation 

5.26. Thus all values of {d} required in equation 5.18 are known for each substructure and 

from that other quantities like element forces, stresses and strains can be calculated. 

 

5.3.1 Stepwise approach for substructure technique 

 

In present study, Finite Element Analysis method is used for the analysis and so 

substructuring technique is implemented for Finite Element Analysis of structures. Using 

basic approach of the substructuring technique analysis can be carried out in five phases. 

Various processes related with these phases can be summarized as follows: 

 

1.) Data generation for individual substructure. 

2.) Calculation of condensed stiffness matrix and condensed load vector, using concept of 

static condensation. 

3.) Calculation of boundary degree of freedoms for each substructure. 

4.) Calculation of internal degree of freedoms for each substructure using boundary degree of 

freedoms. 

5.) Collection of results for each substructure and giving final result.        

 

Out of above five processes, first process of data generation is a sequential process so carried 

out on single computer. After generating data for each substructure, stiffness matrices and 

load vectors for each substructure is calculated simultaneously on different computers. Each 

computer is having required data corresponding to the substructure allotted to that computer. 

Again the thirds process of assembly of matrices is a sequential process (i.e. carried out on 

single computer). So the completion of second process on all computers is necessary before 

beginning of third process. After calculation of DOF corresponding to boundary nodes, these 

DOFs are distributed again to corresponding computers. So the forth process is again the 

parallel process. And finally, after calculating internal DOFs, results are collected form each 

computer to have final results.   
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STEP: 1 

 

Following fig shows a plate, which is fixed as one end and subjected to tension force on the 

other end. It is required to carry out the finite element analysis. For analysis CST element is 

used. So the Fig 5.5 shows the descritization of plate into CST elements. For time being plate 

is descritized into 32 no of elements and there are total 25 no of nodes.          

 

In order to carryout the analysis using substructure technique, the plate is divided into 4 no of 

substructures. Fig 5.6 shows the plate divided into four substructures. In order to calculate it is 

necessary to differentiate internal and boundary nodes. Here, each substructure is having 1 

internal node and 8 boundary nodes. Node 7, 9, 17 and 19 are the internal nodes for 1
st
, 2

nd
, 

3
rd

 and 4
th 

substructures respectively. Along with the internal and boundary nodes, other data 

such as the restrained conditions and the load data are also supplied individually for each 

substructure.      

 

STEP: 2 

 

As discussed in the theory of the substructure technique, first the analysis is carried out by 

restraining the boundary of each substructure. So following fig shows all substructures with 

restrained boundaries. In this step of analysis, nodes are renumbered. As shown in Fig 5.7, 

first all the internal nodes are numbered and then boundary nodes are numbered.   

Fig 5.5: Structure descretized into CST elements  
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After renumbering of nodes, static condensation is carried out in which internal nodes are 

eliminated from each substructure. Calculation of condensed stiffness matrix and condensed 

load vector is carried out using equations 5.15 and 5.17 respectively, as discussed in previous 

section. So the whole substructure will be treated as a single element. Fig 5.8 shows DOF 

corresponding to boundary nodes for each substructure. Here actual restrained conditions are 

also implemented as all substructure stiffness matrices and load vectors are to be assembled to 

get global stiffness matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.6: Structure divided into four substructures  

Fig 5.7: Substructures with all boundaries fixed  
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STEP: 3 

 

After calculation of condensed stiffness matrices and load vectors for each substructure, these 

matrices are assembled according to the boundary nodes. Fig 5.9 shows the nodes and 

corresponding DOF, which are incorporated in the global stiffness matrix. Nodes 1, 6, 11, 16 

and 21 are eliminated, as retrained and also internal nodes are not considered. After assembly 

of stiffness matrix and load vector, DOF corresponding to boundary nodes (shown in fig) are 

calculated.        

 

 

 

 

 

 

 

 

 

 

Fig 5.8: Substructures after static condensation   

Fig 5.9: Substructures combined after static condensation  
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STEP: 4 

 

After calculating DOF corresponding to boundary nodes, these DOF are again distributed to 

corresponding substructure to calculate internal DOF. Fig 5.10 shows all substructures with 

internal and boundary DOF. Nodes shown by red colors are the internal nodes. In this stage of 

analysis, internal DOFs are calculated using equation 11, as discussed in previous section.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STEP: 5 

 

After calculating all DOFs corresponding to internal and boundary nodes, all results are 

assembled in order to have final results. After calculating primary unknowns, secondary 

unknowns such as stresses and strains are calculated. Fig 5.11 shows the whole structure with 

DOFs corresponding to all nodes.  

 

 

 

 

 

 

 

 

Fig   5.10: Substructures with known boundary DOF 
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5.3.2 Advantages of substructure technique 

 

Some of the advantages of the substructure technique can be summarized as follows:  

  

1) In substructure technique, the stiffness matrix of each substructure is statically condensed 

out so that effective stiffness matrix corresponds to only the boundary degree of freedoms. 

 

2) The number of nodes in the main structure is reduced because only the boundary nodes of 

the boundary nodes of substructure appear there. 

 

3) The size of individual substructure is less than that of the main structure being analyzed. 

Thus at any given instant the main memory required to process the data corresponding to 

any one substructure is reduced. 

 

4) Substructuring technique can be advantageous incase the structure is descritized into 

identical parts. In such cases, the stiffness matrix of a typical substructure can be formed 

and condensed only once and can be used as many times as the substructure appears in the 

main structure. 

 

5) Another advantage of substructuring is the reduction in data. But this will be so, only if 

substructures are identical and repeatedly used.  

 

Fig 5.11: Complete structure with all DOF known 
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6) The full advantage of substructure technique can be get in case of very large size problem 

for linear elastic analysis and in case of non linear analysis and structural optimization 

wherein a part of the structure only is modified before the subsequent analysis. 

 

5.4 SOLUTION PROCEDURE AND COMPUTER PROGRAM 

 

The finite element solution procedure is adopted for analysis. In this solution method, first of 

all the element stiffness matrix and consistent load vector is calculated and then theses 

stiffness matrices and load vectors are assembled as per the boundary conditions. From this 

assembled stiffness matrix and load vector, nodal displacements are calculated and finally 

from these nodal displacements, element stresses are calculated.  

 

In present study, substructure analysis technique is implemented for the finite element 

analysis. This divides the whole analysis process into five different tasks. So for each process, 

different computer programs are prepared in “c” programming language. The first program 

“plan1” prepares separate data file for individual substructure. This data file includes the 

details such as number of elements in a particular substructure, number of nodes for that 

substructure, material property, loading data, number of restrained nodes, joint restraints and 

also the boundary nodes (needed for static condensation) for that particular substructure. After 

execution of the first program, in second program “plan2”, element stiffness matrix and load 

vector is calculated and assembled as per corresponding degree of freedoms. Static 

condensation of stiffness matrix and load vector is also carried out in the same program. This 

condensed stiffness matrix and load vector is the input data for third program “plan3”, in 

which degree of freedoms corresponding to boundary nodes are calculated. In forth program 

“plan4”, internal degree of freedoms are calculated using boundary degree of freedoms. After 

calculating all degree of freedoms, element stresses are calculated in forth program. And in 

the fifth program “plan5”, all the results of individual substructures are collected to print in 

final result file.  

  

5.5 ANALYSIS PROBLEM AND RESULTS 

 

As a first application, Plane Stress problem is selected for distributed analysis. The geometry 

of the plate is shown in Fig 5.12. The plate is a square plate and having a hole in the center. 

This plate is subjected to uniform tension on both edges. Young’s modulus of elasticity of the 
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plate material is E = 20000 kN/cm
2
 and Poisson’s ratio is 0.3. Plate is having thickness of 

2.5cm. As the plate is symmetrical about both x and y-axis, only the quarter plate as shown in 

Fig 5.12 by hatched area, is descritized into number of elements. For descritization, CST 

element with linear displacement models is used. Descritization of plate is shown in Fig 5.13   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.13: Descritization of quarter plate using CST elements 

Fig 5.12: Rectangular plate with circular hole 

10 kN/cm
2
 

E = 20000 kN/cm
2
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Further, this quarter substructure is divided into number of substructures, having equal 

number of elements. Fig 5.14 shows division of plate into five substructures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In present work, the quarter plate is descritized into 27504 elements. So the strucuture is 

having 13990 nodes. Each nodes is having 2 DOF so the problem is having total 27980 DOFs. 

The configuration of the application, when divided into three substructures, and the time 

details for each processes is shown in Fig 5.15 and Fig 5.16 respectively. 

 

For the problem under consideration good agreement has been observed with the analytical 

solution for σθ given in reference [17]. Comparison of results of analysis with the reference 

results is tabulated in Table 5.1 

 

 

 

 

 

 

 

 

Fig 5.14: Division of quarter plate into five substructures 
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Sr. a b R S σσσσx σσσσy ττττxy σσσσθθθθ (N/mm
2
) 

No (mm) (mm) (mm) (N/mm
2
) (N/mm

2
) (N/mm

2
) (N/mm

2
) Reference Analysis 

1 110 221.8 23.44 -40.25 234.58 229.58 

2 150 152.9 32.32 4.34 147.05 147.78 

3 200 121.9 20.42 5.28 118.29 117.00 

4 250 111.7 14.49 4.78 108.59 107.13 

5 300 107.7 10.88 3.94 104.28 103.39 

6 375 104.3 7.07 2.88 101.25 100.33 

7 

100 500 

450 

100 

102.4 4.94 2.19 99.80 98.69 

 

Where, R is the radial distance of point of interest and S is the intensity of tensile force. 

 

 

 

 

 

 

 

Table5.1: Comparison of analysis and reference results 

Fig 5.15: Configuration for plane stress problem for three substructures  
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Average time required for various processes, when entire structure divided into different 

number of substructure, is tabulated in Table 5.2 Also time required in parallel 

implementation i.e. computation time and communication time is shown. Based on the time 

required for various processes in sequential and parallel implementation, speedup is 

calculated. The comparison of ideal speedup and observed speedup is shown in Fig 5.17. 

Comparison of communication and computation time for various substructures is shown in 

Fig.5.18. From calculated speedup and ideal speedup, efficiency is also calculated as a 

measure of performance.   

 

 

 

 

 

 

 

 

Fig 5.16: Time requirement for individual process for three substructures 
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file Sequential Parallel time speed up 
Process NB NEQ 

size 
time 

time Comp comm Ideal Calculated 
Efficiency 

      (kb) (sec) (sec) (sec) (sec)     (%) 

3 substructures                    

plan1    6 

DTHS   377 16 

Plan2 9080 9476  689 

DTHS   2874 35 

Plan3 632 1380  12 

DTHS   11 15 

Plan4 240 9476  12 

DTHS   1035 14 

Plan5    6 2127 725 80 3 2.64 88.07 

4 substructures                    

Plan1    6 

DTHS   288 20 

Plan2 6808 7162  400 

DTHS   2507 38 

Plan3 590 1612  15 

DTHS   10 19 

Plan4 240 7162  10 

DTHS   778 17 

Plan5    7 1668 438 94 4 3.14 78.38 

5 substructures                    

Plan1    6 

DTHS   232 23 

Plan2 5442 5774  215 

DTHS   2354 48 

Plan3 572 1852  16 

DTHS   10 23 

Plan4 240 5774  9 

DTHS   624 17 

Plan5    6 1327 252 111 5 3.78 75.59 

6 substructures                    

Plan1    7 

DTHS   194 25 

Plan2 4534 4848  185 

DTHS   2209 56 

Plan3 554 2082  20 

DTHS   9 25 

Plan4 240 4848  7 

DTHS   520 18 

Plan5    8 1187 227 124 6 3.38 56.36 

 

 

 

 

 

 

 

 

Table 5.2: Time required for sequential and parallel processing 
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5.6 SUMMARY 

 

In present chapter, plane stress problem has implemented on parallel computers. So the 

chapter includes the finite element formulation of plane stress element. Substructure 

technique for analysis has also been discussed. In the later part of the chapter one plane stress 

problem has been analyzed, which is having total 27504 elements, and 13990 nodes (i.e. 

27980 DOFs). The continuum has been divided into 3, 4, 5 and 6 numbers of substructures 

and implemented on parallel computers. From the work carried out and the results for 

sequential as well as parallel processing, following points can be observed: 

 

� For the selected problem for three substructures, ideal and calculated speed up is nearly 

equal and so giving around 88% efficiency.  

Fig 5.17: Comparison of ideal and observed Speedup 
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Fig 5.18: Computation and communication time  
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� As the number of computers goes on increasing the difference between ideal and 

calculated efficiency goes on increasing and so efficiency goes on reducing. 

 

� Figure 5.18 (computation and communication time) also shows the linear variation of 

computation and communication time. With the increasing in the number of computers, 

computation time goes on reducing and communication time goes on increasing.   



 88 

CHAPTER 6                                                    PLATE BENDING PROBLEM 

 

6.1 INTRODUCTION 

 

In many areas of structural design it is required to analyze plates subjected to lateral loads. As 

the classical solution of plate involves tedious calculations, especially when the plates are 

arbitrarily shaped and are anisotropic, as a numerical solution to the problem a number of 

finite element models have been developed. 

 

According to the nature of stress states, the plates are classified as follows [25]: 

1.) Thick plates: In thick plate tri-axial state of stress is developed. Plates for which the ratio 

of thickness to least dimension on plan exceeds 1/10 may be taken as belonging to this 

class. 

2.) Thin plates with small deflection: In thin plates with small deflection the membrane 

stresses are very small compared to flexural stresses under deformation due to transverse 

loading. This class may be takes to comprise plates for which the ratio of thickness to span 

does not exceed 1/10 and the maximum deflection w is less than h/10 to h/5. 

3.) Thin plates with large deflection: In thin plates with large deflections the flexural stresses 

are accompanied by relatively large tensile or compressive stresses in the middle plane. 

These membrane stresses significantly affect the bending moment. 

             

6.2 MINDLIN’S THEORY 

 

Mindlin’s approximation is that straight lines originally normal to the mid surface, before 

deformation, remain straight but not normal to the deformed mid surface, i.e the average 

rotation of the section may be takes as the rotation in which normal remain perpendicular to 

the mid surface plus an additional rotation due to transverse shear. The three assumptions 

made in Mindlin’s theory of plates are as follows: 

 

A.) The deflections of the plate w are small. 

 

B.) Normals to the plate mid surface before deformation remain straight but are not 

necessarily normal to it after deformation. 
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C.) Stresses normal to the mid surface are negligible. 

 

Referring to Fig 6.1 in which Φx denoted an average transverse shear strain for a section x = 

constant, the total rotation θy can be expressed as, 

 

                        

         

And similarly for section y = constant  

  

 

 

Hence, the average shear deformations, Φx and Φy are given by 

 

 

   

The basic relationships for the curvatures and stress resultants can be given as follows. 

 

 

 

 

 

   

 

                   ∂w 

  θy   =   -               +  Φx                                                                                           (6.1) 

                    ∂x 

 

                   ∂w 

 -θx   =   -               +  Φy                                                                                           (6.2) 

                    ∂y 

 

                            ∂w                                                      ∂w 

  Φx   =   θy   +                                  Φx   =   θy   +                                                                         (6.3)        

                            ∂y                                                        ∂y  

                 

{M}= [Cf] {kc}                  (6.4) 

 

Where, {kc}
T
  =  [ kx     ky kxy]    

   

And,  

          E  1 µ 0 

 [Cf]   =     µ 1 0  

      12(1-µ2
) 0 0 (1-µ)/2 

 
   ∂w        -θx     

    ∂y                Φy   

 

                

 
                θy        -  ∂w 

         Φx                 ∂x 

 

                

Fig 6.1: Rotation of the normal about x and y axes considering average shear deformation 
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The average shear deformation Φx and Φy are expressed in equation 6.3. The shear stresses τxz 

and τxz and the shear deformation are related as follows: 

 

 

 

For an isotropic material the above relation can be written as 

 

   

 

The stress resultants Qx and Qy can be computed as  

 

 

The curvature Kx, Ky and the twist Kxy can be expressed in terms of rotations θx and θy as 

 

 

    

 

The stress resultant {M} and {Q} given by Eq. (6.4) and Eq. (6.7) can be combined and for 

isotropic plates, the constitutive matrix, can be given as, 

 

 

 

 

 

 

The above relation can be compared with {σ} = [C] {ε} for the usual stress-strain relation. 

Thus in case of plate bending, the stress resultants and the corresponding curvatures and shear 

deformations can be considered analogous to stresses and strains. Hence, for uniformity and 

convenience, equation 6.9 can be expressed as 

 

 {σ} = [C]  {ε}   

 

Where,  {σ} = { Mx    My    Mxy    Qx    Qy}   

  

     τxz         =        C44     C45             Φx 

     τxz                    C54     C55             Φy                                                                       (6.5) 

 

     τxz                       E            1       0          Φx 

     τxz         =        2(1+ υ)       0      1          Φy                                                             (6.6) 

 

     Qx        =        E h ∝       1           0           Φx 

     Qy                 2(1+ υ)      0           1           Φy                                                          (6.7) 

 

             ∂θy                            ∂θx                               ∂θy           ∂θx   

 Kx  =                       Ky =  -                       Kxy =                   -                                   (6.8) 

             ∂x                               ∂y                                 ∂y             ∂x 

      Mx                      Eh
3
       1       µ        0                         0    0                    Kx 

      My                                          µ       1        0                         0    0                    Ky 

      Mxy    =   12(1-µ
2
)    0       0   (1-µ)/2                     0    0                    Kxy 

                         (6.9) 

      Qx                     0        0         0                   Eh        α      0                  φx 

      Qy                     0        0         0                 2(1+µ)   0      α                  φy 
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And                 {ε} = { Kx    Ky    Kxy    Φx    Φy} 

 

Moments and shear in the plate, with their positive directions are shown in Fig 6.2 

 

 

 

 

 

 

 

 

 

 

 

The curvature and shear deformation vector {ε} can be expressed in terms of the three 

displacements w, θx and θy as, 

 

    

 

        

 

 

6.3 FINITE ELEMENT FORMULATION 

 

Finite element formulation for eight nodded isoparametric element is given as follows. 

 

6.3.1 Shape functions 

 

Consider a rectangular element as shown in Fig 6.3. The rectangle in natural coordinate is 

transformed into an arbitrary element with straight boundary. The shape function used for 

representing the variation of displacement for eight nodded isoparametric element can be 

given as follows [31]: 

 

 

    ∂θy / ∂x  

           -  ∂θx / ∂y  

  {ε}  =              ∂θy / ∂y - ∂θx / ∂x                  (6.10) 

    θy + ∂w / ∂x  

-   θx + ∂w / ∂y  

 

Y 

Z 

X 

Mx 

Mx 
My 

My 

Mxy Mxy 

Mxy Mxy 

Qy 

Qy 
Qx 

Qx 

Fig 6.2 Positive moments and shear forces in plate 
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N1 = (1-r) (1-s) (-r-s-1) /4  N2 = (1+r) (1-s) (r-s-1) /4 

N3 = (1+r) (1+s) (r+s-1) /4  N4 = (1-r) (1+s) (-r+s-1) /4 

N5 = (1+r) (1-s) (1-r) /2  N6 = (1+r) (1-s) (1+s) /2 

N7 = (1+r) (1+s) (1-r) /2  N8 = (1-r) (1-s) (1+s) /2 

 

These shape functions can now be used to describe the geometry of the arbitrary rectangle in 

the cartesian system as follows: 

                   8      8 

 x = ∑ Ni xi         y = ∑ Ni yi               (6.11) 

                  i=1                 i=1    

 

The variation of displacement w, θx and θy within the element in terms of nodal values can be 

expressed as 

 

        8                8                8  

w = ∑ Ni wi  θx = ∑ Ni θxi  θy = ∑ Ni θyi            (6.12) 

              i=1               i=1               i=1 

 

Here the shape functions are expressed in terms of natural coordinates r and s, while to 

calculate the displacement calculation of derivatives of shape functions w.r.t natural 

coordinates is necessary. So the relationship between the two coordinate systems can be 

computed by using the chain rule of partial differentiation and is given as 

 

 

         

      ∂ / ∂r      =        ∂x / ∂r     ∂y / ∂r       ∂ / ∂x       =   [J]  ∂ / ∂x  

      ∂ / ∂s                ∂x / ∂s     ∂y / ∂s         ∂ / ∂y                     ∂ / ∂y 

        

                           s 

        4                    7                 3                  
           (-1,1)             (0,1)   (1,1)  
 

 

      8                                          6      r 
           (-1,0)                                (1,0)       
 

 

         

         1                 5                   2 

(-1,-1)            (0,-1)            (1,-1) 

3     

       4                 7       

                 

 

          8       6  

 

 

 

5 2  

   1 

           Rectangle in natural coordinate                 Isoparametric element 

   
Fig 6.3: Eight nodded Isoparametric element 
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 Jacobian matrix [J] for eight noded element can be given as  

 

 

  

 

 

Now the derivatives w.r.t global axis are found by inversing the Jacobian [J] and is given by 

 

 

 

 

6.3.2 Strain Displacement matrix [B] 

 

The element curvatures and shear deformation ε given in equation 6.10 and the nodal 

displacements {d} are related as 

  ε = [B] {d} 

Where,  

{d} = [w1, θx1, θy1, w2, θx2, θy2, w3, θx3, θy3 …………………. w8, θx8, θy8]                    (6.15) 

 

In order to compute the matrix [B], first the equation 6.12 is to be differentiated w.r.t x and y 

to get each of the terms of  ε. Thus, 

 

 

      

 

 

 

 

 

Where, ∂Ni/∂x and ∂Ni/∂y are to be calculated using equation 6.14. In equation 6.16, elements 

of vector {ε} for curvatures and shear deformations are expressed in terms of the nodal 

displacements w, θx and θy. Thus 

 

 

              x1    y1  

           [J] =    ∂N1/∂r   ∂N2/∂r   ∂N3/∂r…….∂N8/∂r          x2    y2 

           ∂N1/∂s   ∂N2/∂s   ∂N3/∂s…….∂N8/∂s          x3    y3 

                  .          .                        (6.13) 

                                     .          .   

                            x8    y8  

   

    ∂N1/∂x   ∂N2/∂x…….∂N8/∂x      =   [J]
-1

          ∂N1/∂r   ∂N2/∂r…….∂N8/∂r 
    ∂N1/∂y   ∂N2/∂y…….∂N8/∂y                  ∂N1/∂s   ∂N2/∂s…….∂N8/∂s        (6.14)

       

    8                                                            8 

      Kx = ∑ θyi ∂Ni/∂x                                           Ky = ∑ - θxi ∂Ni/∂y   
          i=1                                                           i=1 
                     8                                       8     

     Kxy   =    ∑ θyi ∂Ni/∂y   -   ∑ θxi ∂Ni/∂x 
                    i=1                                    i=1 

                       8                                      8  

      Φx =  ∑ wi ∂Ni/∂x  +  ∑ θyi Ni 
              i=1                                   i=1  
                    8                        8  

     Φy =       ∑ wi ∂Ni/∂y  -  ∑ θxi Ni               (6.16) 
                    i=1                                i=1   
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Equation 6.17 cam be expressed as   

               8 

     ε  =   ∑ [Bi] {di}                                                                          (6.18) 

              i=1  

 

And, 

 

    

 

 

And, 

  

 

 

Therefore [B] matrix can be given as, 

 

 

 

 

 

6.3.3 Element Stiffness Matrix 

 

As it is know that, 

[K] = ∫ [B]
T
 [D] [B] dv 

           1    1 

[K] =  ∫  ∫ [B]
T
 [D] [B] t det[J] dr ds 

          -1  -1   

       w1  

            Kx                θx1   

            Ky                θy1  

        {ε} =      Kxy      =  [B]       .                                     (6.17) 

                       Φx                        .  

                       Φy                        .  

       w8 

                                                                            θx8         

                  θy8 

 

  0  0  ∂Ni / ∂x      

  0           - ∂Ni / ∂y 0  

    [Bi]   =   0           - ∂Ni / ∂x ∂Ni / ∂y           (6.19)

  ∂Ni / ∂x 0  Ni 

  ∂Ni / ∂y         - Ni  0                 i=1,2,3…..8 

    wi 

   {di} =   θxi                                                 (6.20) 

   θyi 

                   0                0         ∂N1/∂x            0                0         ∂N8/∂x 

                              0          - ∂N1/∂y        0                  0          - ∂N8/∂y        0 

 [B] =                     0          - ∂N1/∂x   ∂N1/∂y             0          - ∂N8/∂x   ∂N8/∂y     (6.21)  

                            ∂N1/∂x       0            N1                   ∂N8/∂x       0            N8    

                            ∂N1/∂y     - N1                0 …………   ∂N8/∂y     - N8                0 
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To evaluate the integral, two point Gauss Quadrature method is used. As per Gauss method, 

 

1    1 

∫  ∫ f (r,s) dr ds  = ∑ ∑ Wi Wj f (ri,sj) 

-1  -1                                    i     j  

 

Where, ri and si are known as the sampling points and Wi and Wj are called the weights. 

 

Here, for two point Gauss method W1 = W2 = 1 and natural coordinates of the sampling points 

are as follows: 

1 +0.57735 +0.57735 

2 -0.57735 +0.57735 

3 -0.57735 -0.57735 

4 +0.57735 -0.57735    

  

So, 

           n    n  

[K] =  ∑ ∑ Wi Wj [B]i
T
 [D] [B]j t det[J] ,      n is the number of sampling points  

            i     j   

    

So, to calculate the stiffness matrix first of all Jacobian matrix [J] is calculated at sampling 

point. Using [J] matrix strain displacement matrix [B] is calculated and using matrix [J] and 

[B], stiffness matrix is calculated at all sampling points and finally all stiffness matrixes are 

added to get the final stiffness matrix. 

 

 6.3.4 Load vector 

 

The nodal load {Qi} at the node i for a uniformly distributed load q is given by 

 

 

 

 

Combining the nodal load vectors {Qi}, the element load vector {Q} can be numerically 

evaluated as, 

 

      Fz                        q 

  {Qi} =    Mx    =  ∫ ∫ Ni       0      det[J] dr ds  

                 My           A           0 
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Gauss Quadrature with 2 x 2 sampling points is used to evaluate above equation. 

 

6.4 SOLUTION PROCEDURE AND COMPUTER PROGRAM 

 

The finite element method is adopted for analysis. In this solution method, first of all the 

element stiffness matrix and consistent load vector is calculated and then theses stiffness 

matrices and load vectors are assembled as per the boundary conditions. From this assembled 

stiffness matrix and load vector, nodal displacements are calculated and finally from these 

nodal displacements, element stresses are calculated.  

 

In present study, substructure analysis technique is implemented for the finite element 

analysis. This divides the whole analysis process into five different tasks. So for each process, 

different computer programs are prepared in “c” programming language. The first program 

“plana1” prepares separate data file for individual substructure. This data file includes the 

details such as number of elements in a particular substructure, number of nodes for that 

substructure, material property, loading data, number of restrained nodes, joint restraints and 

also the boundary nodes (needed for static condensation) for that particular substructure. After 

execution of the first program, in second program “plana2”, element stiffness matrix and load 

vector for is calculated and assembled as per corresponding degree of freedoms. Static 

condensation of stiffness matrix and load vector is also carried out in the same program. This 

condensed stiffness matrix and load vector is the input data for third program “plana3”, in 

which degree of freedoms corresponding to boundary nodes are calculated. In forth program 

“plana4”, internal degree of freedoms are calculated using boundary degree of freedoms. 

After calculating all degree of freedoms, element stresses are calculated in forth program. And 

in the fifth program “plana5” all the results of individual substructures are collected to print 

in final result file.  

  

     Q1         N1 

      Q2         N2 

      Q3         N3  

        .      n         n        . 

  {Q} =     .                     =  q ∑   ∑ Wi Wj det[J]      .   

        .      i=1    j=1        . 

     Q22         N22 

     Q23         N23 

     Q24         N24 
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6.5 ANALYSIS PROBLEM AND RESULTS 

 

6.5.1 Problem 1 (Annular plate problem)  

 

As a first problem for plate bending analysis, a circular plate having hole in the center, as 

shown in Fig 6.4, is selected. Such analysis comes into picture in case of annular raft or when 

any circular slab is having hole in the center and subjected to uniformly distributed load. Plate 

is subjected to uniformly distributed pressure. Plate is fixed at the outer edge and free at the 

inner edge. Modulus of elasticity of plate is 2x10
8
 kN/m

2
, poisson’s ratio is 0.3, thickness of 

the plate is 0.1m and the intensity of pressure is 20kN/m
2
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the analysis 8 noded isoparametric plate element is selected. So the plate has been 

descritized into isoparametric elements. Two types of meshing is carried out. One is the 

uniform, in which length of each element is kept uniform and other is graded mesh in which 

area of each element is kept uniform. Both descritizations are shown in Fig 6.5 and Fig 6.6 

Further the plate is divided into number of substructures. Load on each computer is 

maintained by keeping number of element same in each substructure. Fig 6.7 shows the 

division of quarter plate into three substructures.  

Fig 6.4: Circular Plate having whole in the center and subjected to 

uniformly distributed pressure 

W kN/m
2
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Results for the deflections are tabulated for uniform as well as graded mesh in Table 6.1 

These results are compared with those obtained by analytical methods, given in reference 

[20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.5: Descritization of plate in 8 noded isoparametric elements in uniform mesh  

Fig 6.6: Descritization of plate in 8 noded isoparametric elements in graded mesh  
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k1  

Analysis 
Sr 

No 

ID 

=b 

ED 

 =a 
TNE TNN 

Uniform Graded 
Reference 

1 2 4 4 21 0.057 0.057 0.057 

2 2 6 4 21 0.129 0.129 0.130 

3 2 8 4 21 0.161 0.161 0.162 

4 2 10 4 21 0.174 0.174 0.175 

5 4 8 12 51 0.057 0.057 0.057 

6 5 15 12 51 0.129 0.129 0.130 

7 4 16 12 51 0.161 0.163 0.162 

8 4 20 12 51 0.175 0.178 0.175 

9 2 4 24 93 0.057 0.057 0.057 

10 2 6 24 93 0.129 0.129 0.130 

11 2 8 24 93 0.162 0.161 0.162 

12 2 10 24 93 0.174 0.177 0.175 

13 2 4 48 173 0.057 0.057 0.057 

14 2 6 48 173 0.129 0.129 0.130 

15 2 8 48 173 0.162 0.162 0.162 

16 2 10 48 173 0.175 0.174 0.175 

17 2 4 72 253 0.057 0.057 0.057 

18 2 6 72 253 0.129 0.129 0.130 

19 2 8 72 253 0.161 0.162 0.162 

20 2 10 72 253 0.173 0.175 0.175 

21 2 4 96 333 0.057 0.057 0.057 

22 2 6 96 333 0.129 0.130 0.130 

23 2 8 96 333 0.162 0.162 0.162 

24 2 10 96 333 0.174 0.173 0.175 

 

 

Table 6.1: Displacement coefficient for uniform and graded mesh 

 

Fig 6.7: Division of quarter plate into three substructures 
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Where, 

TNE = Total number of elements  

TNN = Total number of nodes  

k1     = Wmax E h
3
 / q a

4 

Wmax = maximum deflection of plate 

q       = Intensity of uniformly distributed load 

 

For time calculation, in present work the plate is descritized into 1800 elements. So plate is 

having 5725 nodes. Each node is having three DOFs. So the problem has total 17175 DOFs. 

The configuration of the problem on WebDedip, when divided into four substructures and the 

time requirement for each processes is shown in Fig 6.8 and Fig 6.9 respectively.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.8: Configuration of plate bending problem, for four substructures 
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The average time required for various processes, when entire structure divided into different 

number of substructure, is tabulated in Table 6.2 Also time required in parallel 

implementation i.e. computation time and communication time is shown. Based on the time 

required for various processes in sequential and parallel implementation, speedup is 

calculated. The comparison of ideal speedup and observed speedup is shown in Fig 6.10. 

From calculated speedup and ideal speedup, efficiency is also calculated as a measure of 

performance. Fig 6.11 shows the comparison of computation and communication time. 

 

 

Processes File Sequential Parallel time Speed up 

 
NB NEQ 

Size 
Time 

Time Comp Comm. Ideal Calculated 
Efficiency 

   (Kb) (Sec) (Sec) (Sec) (Sec)   (%) 

3 substructures                     

plana1    7 

DTHS   72 19 

plana2 5391 6327  556 

DTHS   11121 44 

plana3 1848 3738  122 

DTHS   21 19 

plana4 1365 6327  88 

DTHS   2822 18 

plana5    7 
2068 780 100 3 2.35 78.33 

Table 6.2: Time required for sequential and parallel processing 

 

Fig 6.9: Time requirement for individual process for four substructures 
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4 substructures           

plana1    7 

DTHS   56 26 

plana2 4047 4971  358 

DTHS   10278 48 

plana3 1836 4635  165 

DTHS   20 26 

plana4 1365 4971  67 

DTHS   2123 19 

plana5    7 
1879 604 119 4 2.60 64.97 

6 substructures           

plana1    7 

DTHS   50 35 

plana2 2703 3615  115 

DTHS   23621 80 

plana3 1824 6429  248 

DTHS   30 35 

plana4 1365 3615  44 

DTHS   150 23 

plana5    7 
1216 421 173 6 2.05 34.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.10: Comparison of ideal and observed Speedup 
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Fig 6.11: Computation and communication time 
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6.5.2 Problem 2 (Skew plate problem)  

 

For second example of plate bending problem, a skew plate, as shown in Fig 6.12, subjected 

to uniformly distributed pressure is selected. Such analysis comes into picture when any skew 

bridge is to be analyzed for different skew angles. Plate is simply supported at two edges and 

free at the remaining two edges. Modulus of elasticity of plate is 2x10
8
 kN/m

2
, Poisson’s ratio 

is 0.2, thickness of the plate is 0.1m and the intensity of pressure is 20kN/m
2
. For the analysis 

8 noded isoparametric plate element is selected. So the plate has been descritized into number 

of isoparametric elements as shown in Fig 6.12. Division of plate into four substructures in 

shown in Fig 6.13  

 

 

 

           
         

       

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig 6.12: Skew plate descritization in 8noded isoparametric elements  

Ly = 
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Results for the deflections and moments for various skew angles are compared with those 

obtained by analytical methods, given in reference [20]. Variation for maximum deflection for 

various skew angles and for various descritization of plate is tabulated below in Table 6.3   

 

 

α0 Sr 

No 

Angle Lx Ly Nex Ney TNE 
Calculated Anlytical 

1 0 5 10.00 6 12 72 0.212 0.214 

2 0 5 10.00 10 20 200 0.211 0.214 

3 0 10 20.00 30 40 1200 0.210 0.214 

4 0 10 20.00 26 52 1352 0.198 0.214 

5 30 5 8.31 6 12 72 0.115 0.118 

6 30 5 8.31 10 20 200 0.114 0.118 

7 30 10 16.63 30 40 1200 0.110 0.118 

8 30 10 16.63 26 52 1352 0.112 0.118 

9 45 5 7.07 6 12 72 0.070 0.070 

10 45 5 7.07 10 20 200 0.070 0.070 

11 45 10 14.14 30 40 1200 0.071 0.070 

12 45 10 14.14 26 52 1352 0.068 0.070 

13 60 5 5.00 6 12 72 0.018 0.018 

14 60 5 5.00 10 20 200 0.018 0.018 

15 60 10 10.00 30 40 1200 0.018 0.018 

16 60 10 10.00 26 52 1352 0.018 0.018 

 

 

Table 6.3: Deflection coefficient for maximum deflection for skew plate  

 

Fig 6.13: Division of plate into four substructures 
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Where,  

Lx / Ly = length of plate in x and y-direction respectively 

Nex / Ney = number of elements along x and y-direction respectively 

TNE = Total number of elements 

α0 = W D / q a
4
, W is maximum deflection and q is intensity of uniformly distributed load 

 

Variation for maximum moment (My) at the center of plate for various skew angles and for 

various descritization of plate is tabulated below in Table 6.4 

 

Bo 
Sr No Lx Ly Nex Ney TNE 

Analysis Reference 

1 5 10 5 11 55 0.497 0.495 

2 5 10 11 21 231 0.499 0.495 

3 5 10 15 25 375 0.500 0.495 

4 5 10 25 51 1275 0.500 0.495 

5 5 10 5 11 55 0.364 0.368 

6 5 10 11 21 231 0.365 0.368 

7 5 10 15 25 375 0.365 0.368 

8 5 10 25 51 1275 0.363 0.368 

9 5 10 5 11 55 0.285 0.291 

10 5 10 11 21 231 0.288 0.291 

11 5 10 15 25 375 0.285 0.291 

12 5 10 25 51 1275 0.283 0.291 

 

Variation for maximum moment (My) at the center of unsupported edge of plate for various 

skew angles and for various descritization is tabulated below in Table 6.5  

 

 

B1 Sr No 
Lx Ly Nex Ney TNE 

Analysis Reference 

1 5 10 5 11 55 0.509 0.508 

2 5 10 11 21 231 0.511 0.508 

3 5 10 15 25 375 0.511 0.508 

4 5 10 25 51 1275 0.512 0.508 

5 5 10 5 11 55 0.376 0.367 

6 5 10 11 21 231 0.373 0.367 

7 5 10 15 25 375 0.371 0.367 

8 5 10 25 51 1275 0.367 0.367 

9 5 10 5 11 55 0.298 0.296 

10 5 10 11 21 231 0.296 0.296 

11 5 10 15 25 375 0.293 0.296 

12 5 10 25 51 1275 0.294 0.296 

Table 6.4: Moment coefficient for maximum moment at center of plate  

 

Table 6.5: Moment coefficient for maximum moment at free edge of plate  
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For present work the plate is descritized into 3000 elements. So plate is having total 9221 

nodes. Each node is having three DOFs. So the problem has total 27663 DOFs. Average time 

required for various processes, when entire structure divided into different number of 

substructure, is tabulated in Table 6.6. Also time required in parallel implementation i.e. 

computation time and communication time is shown. Based on the time required for various 

processes in sequential and parallel implementation, speedup is calculated. The comparison of 

ideal speedup and observed speedup is shown in Fig6.14. Comparison of communication time 

and computation time for number of substructures is shown in Fig 6.15. From calculated 

speedup and ideal speedup, efficiency is also calculated as a measure of performance. 

 

 

size Sequential Parallel time speed up 
Process NB NEQ 

(kb) 
time 

time Comp comm Ideal Calculated 
Efficiency

        (sec) (sec) (sec) (sec)     (%) 

 3 Substructure                     

plana1    7 

DTHS   124 20 

plana2 8895 9423  707 

DTHS   5018 50 

plana3 840 1914  140 

DTHS   14 20 

plana4 465 9423  90 

DTHS   446 20 

plana5    7 2545 951 110 3 2.40 79.96 

 4 substructure           

plana1    7 

DTHS   95 26 

plana2 6675 7143  502 

DTHS   4329 52 

plana3 780 2211  170 

DTHS   13 27 

plana4 465 7143  82 

DTHS   336 22 

plana5    7 2520 768 127 4 2.82 70.39 

 5 substructure           

plana1    7 

DTHS   77 30 

plana2 5343 5775  315 

DTHS   3940 60 

plana3 744 2508  172 

DTHS   12 30 

plana4 465 5775  65 

DTHS   270 23 

plana5    7 2466 566 143 5 3.48 69.56 

Table 6.6: Time required for sequential and parallel processing 
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 6 substructure           

plana1    7 

DTHS   65 33 

plana2 4455 4863  180 

DTHS   3691 65 

plana3 720 2805  175 

DTHS   12 37 

plana4 465 4863  62 

DTHS   226 26 

plana5    8 1642 432 161 6 2.77 46.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.14: Comparison of ideal and observed Speedup 
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Fig 6.15: Comparison of ideal and observed Speedup 

0

200

400

600

800

1000

3 4 5 6

No of substructures

T
im

e

computation time Communication



 109 

6.6 SUMMARY 

 

Present chapter includes the plate bending problem. So the earlier part of chapter includes the 

finite element formulation of plate bending element. In later part two problems of plate 

bending have been analyzed on parallel computers. Of two problems, one is the annular plate 

subjected to uniformly distributed load. For analysis on parallel computer the plate is 

discritized into 1800 elements. So, plate has total 5725 nodes (i.e. 17175 DOFs). For 

implementation on parallel computers, problem is divided into 3, 4 and 6 substructures. The 

other problem is the skew plate problem subjected to uniformly distributed load. For the 

analysis, the plate is divided into 3000 elements and 9221nodes (i.e.27663 DOFs). The 

problem has analyzed using parallel computers that include 3, 4 and 6 computers. For first 

problem having 17175 DOFs, efficiency of 78.33% has observed. While for second problem, 

having 27663 DOFs efficiency of 79.96% has observed.  
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CHAPTER 7                                              LAMINATE PLATE ANALYSIS 

 

7.1 GENERAL 

 

The word composite means the material consisting by combination of more than one material. 

Though these materials are combined at microscopic level, individual material is easily 

distinguishable. The main advantage of composite material is that they exhibit the best 

qualities of their constituents and often some qualities that neither constituent possesses. So 

current developments are pointed towards combination of usually strong, fibers and organic, 

ceramic or metal matrices that promises to be far more efficient than any structural materials 

known previously. Plates made up of isotropic or orthotropic laminae are widely used in a 

variety of structures and machines. A multiphase or two material laminae consists of a stiff 

filament material embedded in a compatible matrix material. Examples of filaments are glass, 

boron, carbon, graphite, and steel whereas matrix materials have included polyesters, 

aluminum, and epoxies. 

 

7.2 LAMINATED COMPOSITES 

 

Laminated composites consist of layers of at least two different materials that are bonded 

together. Lamination is used to combine the best aspects of the constituent layers in order to 

achieve a more useful material. The properties that can be emphasized by lamination are 

strength, stiffness, low weight, and corrosion-resistance; wear resistance, beauty or 

attractiveness, thermal insulation, acoustical insulation etc. Examples of laminated 

composites are Bimetals, Clad metals, laminated glass, plastic-based laminates, and laminated 

fibrous composites. 

 

7.2.1 Lamina 

 

A lamina is a flat arrangement of unidirectional fibers as shown in Fig 7.1 in matrix. The 

fibers are the principal reinforcing or load-carrying agent. They are typically strong and stiff. 

The matrix can be organic, ceramic, or metallic. The function of matrix is to support and 

protect the fibers and to provide a means of distributing load among and transmitting load 

between the fibers.  
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7.2.2 Laminate 

 

A laminate is a stack of laminae with various orientations of principal material directions in 

the laminae as in Fig 7.2. The layers of a laminate are usually bound together by the same 

matrix material that is used in the laminae. Laminate can be composed of plates of different 

materials or of laminae of the same material. A laminated circular cylindrical shell can be 

constructed by winding resin-coated fibers on a mandrel first with one orientation to the shell 

axis, then another, and so on until the desired thickness is built up.  

 

 

 

 

 

 

 

 

 

 

 

A major purpose of lamination is to tailor the directional dependence of strength and stiffness 

of a material to match the loading environment of the structural element. Laminates are 

uniquely suited to this objective since the principal material directions of each layer can be 

oriented according to need. 

 

 

Fig 7.2: 3-ply laminate construction 

Fig 7.1: Lamina with unidirectional fibers. 
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7.2.3 Structural Application 

 

In recent years, continuous fiber reinforced laminated composite plates have been extensively 

used as structural elements because of their desirable properties such as higher strength-to-

weight ratio, higher stiffness-to-weight ratio etc. in addition, there exists the possibility of 

optimum structural design through the variation of fiber orientation, stacking sequence and 

choice of fiber and matrix materials.      

    

As far as environmental resistance is concerned, composite materials are more efficient than 

traditional civil engineering materials such as steel, concrete, masonry, and plaster. 

Degradation in strength and stiffness for steel structures due to the corrosion problem requires 

frequent inspection, maintenance, and repair. Similarly, stress cracking due to the warm/cold 

weathering limits the service life of concrete structures. Timber is susceptible to moisture-

swelling problems and paste attack. 

 

Currently, composite materials are being used to retrofit and/or reinforce existing 

infrastructures. Flat composite laminates have been bonded to the exterior surface of 

reinforced concrete deck to increase its bending stiffness. Several pedestrian bridges have 

been built successfully. Composite materials are suitable for construction of highway bridges, 

power transmission towers, office/residential buildings, retaining walls, etc. 

 

Some of the important structures constructed earlier using Glass-fiber reinforced Polyester 

(GFRP) are given below: 

 

1) Dome structure in Benghazi in 1968. 

2) Roof structures to the Dubai Airport built in 1972. 

3) Covert Garden Flower Market at Nine Elms, London. 

4) 37m high Chimney at Hendon, London. 

5) Prestigious American Express Building in Brighton, England 
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7.3 DISPLACEMENT MODEL 

 

The displacements in the x, y and z directions of the symmetrically laminated composite 

plates subjected to transverse loads may be taken as follows. The displacement along the x, y 

and z directions are expended in terms of higher order functions of thickness coordinates and 

mid plane variables. 

 

  U(x, y, z) = z θx(x, y, 0) + z
3
 θx

*
(x, y, 0) 

  V(x, y, z) = z θy(x, y, 0) + z
3
 θy

*
(x, y, 0) 

  W(x, y, z) = w(x, y, 0) + z
2
 w

*
(x, y, 0)  

 

 

 

 

 

 

 

 

 

 

This can be written as, 

  u = z θx + z
3
 θx

*
 

  v = z θy + z
3
 θy

*
 

  w = w0 + z
2
 w0 

*                        
(7.1) 

                                             

This model includes the effects of the transverse normal strain/stress also.  

 

7.4 STRESS-STRAIN RELATIONS FOR AN ORTHOTROPIC LAMINA 

 

For an orthotropic lamina in a 3-D state, the strain-stress relationship at a point in each of the 

three orthogonal planes will be given by, 

 

Fig 7.3: Geometry of a rectangular laminated composite plate 
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ε  =  s σ                 (7.2) 

 

The stress-strain constitutive relations can be obtained by inversion of strain-stress relations 

given by equation 7.2 and are written in following matrix form : 

In which, ∆ = (1-ν12 ν21- ν23ν 32- ν31 ν13-2 ν12ν 23 ν31) 

 σ = c ε                 (7.3) 

In the stress-strain relation equation 7.3, the subscript k is introduced to designate k
th

 layer of 

the laminate. The relations given by equation 7.3 are the stress-strain constitutive relations 

with reference to lamina axes for a homogeneous orthotropic layer in a general 3-D state of 

stress and these are adopted here to develop a theory based on the displacement model given 

by equation 7.1 

 

As noted earlier, the relation given by equation 7.3 is the stress-strain constitutive relations for 

the orthotropic lamina referred to the lamina’s principal axes (1,2,3). The principal material 

axes of a lamina may not coincide with the reference axes for the laminated plate. It is 

therefore necessary to transform the constitutive relation 7.3 from the lamina principal axes 

(1,2,3) to the reference axes of the laminate (x, y, z). 

 

σ’ = T σ and  ε’ = T ε                        (7.4) 

 

The transformation matrix T is given by,        

ε1                 1/E1      -ν21/E2      -ν31/E3     0         0         0               σ1 

ε2               -ν12/E1       1/E2      -ν32/E3      0         0         0               σ2 

ε3       =     -ν13/E1   -ν23/E2           1/E3        0         0         0               σ3 

γ12            0            0              0       1/G12      0         0               τ12 

γ23            0            0              0          0      1/G23      0               τ23 

γ13            0            0              0          0         0      1/G13            τ13 

 

             k                                 k                k 

      σ1           E1(1-ν23ν32)      E1(ν21+ν31ν23)    E1(ν31+ν21ν32)   0      0       0           ε1 

      σ2          E2(ν12+ν13ν32)   E2(1-ν13ν31)        E2(ν32+ν12ν31)  0       0      0            ε2 

      σ3     = 1   E3(ν13+ν12ν23)   E3(ν23+ν21ν13)    E3(1-ν12ν21)      0       0      0            ε3 

      τ12         ∆     0       0                    0               ∆G12   0      0           γ12 

      τ23   0       0                    0                0      ∆G23   0           γ23 

      τ13   0       0         0                0       0     ∆G13        γ13  
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Where, c = cos α and s = sin α. 

 

The relation between engineering and tensor strain vectors is given by, 

ε = R εts 

εts = R
-1

 ε                            (7.6) 

 

R matrix is defined as, 

 

 

 

 

 

 

The stress-strain constitutive relations with reference to laminate axes are obtained in the 

following form by making use of relations 7.3, 7.4 and 7.7 

σ = T
-1

 C R T R
-1

 ε                            (7.8) 

 

It can easily be proved that, 

R T R
-1

 = T
-1t

                             (7.9)  

 

Thus, the relation (7.8) can be rewritten as, 

σ = Q ε                             (7.10) 

 

Where, 

Q = T
-1

 C T
-1t 

 

 

 

 

c
2
  s

2
 0         2sc 0 0 

s
2
 c

2
  0        -2sc 0 0 

T  =  0 0 1 0 0 0            (7.5) 

          -sc sc 0      (c
2
 - s

2
) 0 0 

 0 0 0 0 c         -s 

 0 0 0 0 s c 

 

1     0     0      0      0      0 

 0     1     0      0      0      0 

       R =     0     0     1      0      0      0 

0     0     0      2      0      0 

0     0     0      0      2      0 

0     0     0      0      0      2               (7.7) 
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In matrix form, 

 

 

 

 

 

 

 

Q matrix coefficients are defined as, 

 

Q11 = C11c
4 

+ (2C12+4C44) s
2
c

2
 + C22 s

4
 

Q12 = (s
4 

+ c
4
) C12 + (C11+ C22 – 4 C44) s

2
 c

2 

Q13 = c
2
 C13 + s

2
 C23 

Q14 = (C11- C12 - 2C44) c
3
s +(C12 - C22 + 2C44) s

3
c 

Q22 = C11 s
4
 + C22 c

4
 + (2C12 + 4C44) s

2
 c

2 

Q23 = c
2
 C23 + s

2 
C13 

Q24 = (C11- C12 – 2C44) s
3
c + (C12 - C22+ 2C44) c

3
s 

Q33 = C33 

Q34 = (C13 – C23) sc 

Q44 = (C11 + C22 - 2C12 – 2C44) s
2
 c

2 
+ (c

4 
+

 
s

4
) C44 

Q55 = c
2
 C55 + s

2
 C66 

Q56 = (C66 -C55) sc 

Q66 = s
2
 C55 + c

2
 C66                 (7.12) 

 

And the coefficients of C matrix in equation 7.12 are defined by equation 7.3 

 

7.5 STRAIN-DISPLACEMENT RELATIONSHIPS 

 

Strain expressions corresponding to model (equation 7.1) are, 

 

εx =  ∂u / ∂x = z Kx + z
3
 Kx

*
 

εy =  ∂v/ ∂y  = z Ky + z
3
 Ky

*
 

εz =  ∂w/∂z  = z Kz  

γxy =  ∂u/∂y  +  ∂v/∂x  = z Kxy + z
3
 Kxy

*
 

         σx Q11 Q12 Q13 Q14 0 0 εx 

         σy Q12 Q22 Q23 Q24 0 0 εy 

         σz      = Q13 Q23 Q33 Q34 0 0 εz 

         τxy Q14 Q24 Q34 Q44 0 0 γxy 

         τyz  0  0  0  0 Q55 0 γyz 

         τxz  0  0  0  0  0        Q66 γxz                 (7.11) 
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γyz =  ∂v/∂z   +  ∂w/∂y  = φy + z
2
 φy

*
 

γxz =  ∂u/∂z   +  ∂w/∂x  = φx + z
2
 φx

*
             (7.13)  

 

Where the definitions of the various terms are as follows: 

 

Kx = ∂θx/∂x ,                        Ky = ∂θy /∂y , Kxy = ∂θx/∂y    +   ∂θy/∂x   , 

Kx
*
 = ∂θx

*
/∂x ,                        Ky

*
 = ∂θy

*
/∂y , Kxy

*
 = ∂θx

*
/∂y    +   ∂θy

*
/∂x   , 

φx = θx + ∂w0/∂x ,                    φy = θy + ∂w0/∂y , 

φx
*
 = 3θx

*
 + ∂w0

*
/∂x ,                          φy

*
 = 3θy

*
 + ∂w0

*
/∂y ,    

Kz = 2 w0
*                   

(7.14) 

 

The concise matrix form of equation 7.13 is, 

 

 

 

 

 

The above equations 7.15a and 7.15b are the expressions for the flexure and transverse shear 

strains respectively, at any point in the k
th

 layer of the laminate located at a distance z from 

the mid-plane. It should be noted that owing to the nature of equation 7.15b, the transverse 

shear strains vary parabolically through the plate thickness.  

 

7.6 FINITE ELEMENT FORMULATION 

 

The solution of the fundamental equations of the two displacement models based on higher 

order shear deformation theory for laminates anisotropic plates, can conveniently be obtained 

by using the finite element displacement formulation. Element properties are derived by 

assuming a displacement function, which ensures completeness within the element and 

compatibility across the element boundaries. The finite element theory is developed in this 

section for application to linear equilibrium problems of isotropic, orthotropic and multiplayer 

anisotropic plates with various loading and boundary conditions. In present work, 8-noded 

εx     Kx           Kx
* 

 εy     Ky           Ky
* 

εb
k
 =   εz    = z    Kz + z

3
    Kz

*  
    = z K + z

3
 K

*                               
(7.15a)

 
 

  γxy     Kxy           Kxy
*
 

 

εs
k
   =   γyz   = φy       + z

2      
φy

*
      = φ + z

2
 φ

*
                       (7.15b)  

  γxz φx        φy
*
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isoparametric quadrilateral element (Fig 7.4) is used. The finite element formulation starts 

with writing the shape functions, followed by the derivation of the strain-displacement matrix 

[B]. And in final, element stiffness matrix formulation is derived. 

 

 

 

 

 

 

 

 

 

 

 

 

The vector, 

q = [w01, θx1, θy1, w0
*
1, θx

*
1, θy

*
1, w02 , θx2, θy2, w0

*
2, θx

*
2, θy

*
2…………..,θy

*
 8]  denotes the 

element displacement vector and hence the degree of freedom at each node is enumerated as: 

 

w0          = Transverse displacement at the geometrical mid-plane. 

 

θx, θy        = Rotations of the ‘normal’ to the geometrical mid-plane in x-z and y-z plane                   

                  respectively. 

 

w0
*
        = Higher order term of transverse displacement w0 at the geometrical  

                 mid-plane. 

 

θx
*
 , θy

*
   = Higher order terms of rotations of the ‘normal’ to the geometrical mid- 

     plane in x-z and y-z plane i.e. θx  and  θy  respectively. 

 

Therefore, Nodal degree of freedom for the element  : 6 

                 Number of nodes in the element   : 8 

      Total degree of freedom for the element  : 6 x 8 = 48 

 

                           η 
        4                    7                 3                  

           (-1,1)          (0,1)   (1,1)  

 

 

      8                                          6      ζ 

           (-1,0)                              (1,0)       

 

 

         

         1                 5                   2 

(-1,-1)          (0,-1)          (1,-1) 

3     

       4                 7       

                 

 

          8       6  

 

 

 

5 2  

   1 

           Rectangle in natural coordinate                 Isoparametric element 

   
Fig 7.4: Eight nodded Isoparametric element 
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7.6.1 Shape Functions 

 

The shape functions for this element in terms of the non-dimensional coordinate system can 

be given as: 

 

 

 

 

 

 

 

 

 

 

 

Where, ξ and η are the non-dimensional coordinates (Fig7.4) of a given point on the element. 

 

Now the displacement field is expressed in terms of the nodal values. Thus, if d = [w0, θx, θy, 

w0
*
, θx

*
, θy

*
]

T
 represents the displacement components of a point located at (ξ,η), and q is the 

element displacement vector, then 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1 =  ξ (ξ - 1) η(η-1) / 4 

N2 = (1- ξ
2
) η (η-1) / 2 

N3 = ξ (ξ + 1) η(η-1) / 4 

N4 = ξ (ξ + 1) (1-η
2
) / 2 

N5 = ξ (ξ + 1) η(η+1) / 4 

N6 = (1- ξ
2
) η(η+1) / 2 

N7 = ξ (ξ - 1) η(η+1) / 4 

N8 = ξ (ξ - 1) (1-η
2
) / 2                                         (7.16) 

w0 = N1w01+ N2w02+…..+ N8w08 

θx = N1θx1+ N2θx2+………+ N8θx8 

θy = N1θy1+ N2θy2+………+ N8θy8               

w0
*
 = N1w01

*
+ N2w02

*
+…..+ N8w08

*
 

θx
*
 = N1θx1

*
+ N2θx2

*
+………+ N8θx8

*
 

θy
*
 = N1θy1

*
+ N2θy2

*
+………+ N8θy8

*                                                    
(7.17) 
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Where, 

 

 

 

 

 

 

 

 

7.6.2 Strain-Displacement relation Matrix [B]: 

 

The strain-displacement matrix relating strain components to element nodal variables can be 

formed as: 

 [ε] = [B] [δ]                               (7.19) 

 

Where, 

 [δ] : vector consisting of all the nodal displacements. 

 [δ]
T
= [ δ1 , δ2 , δ3 , δ4 , δ5 , δ6 , δ7 , δ8 ]

T
 

Where each; 

 [δ]i
T
 = [w0, θx, θy, w0

*
, θx

*
, θy

*
]i

T
   for i = 1 to 8. 

 [ε] : strain vector  

 [B]: strain-displacement matrix. 

 

Now, we are considering the flexure strain terms and shear strain terms separately and from 

equation 7.15, writing the strain-displacement relationship in terms of the bending curvature-

displacement relation [Bb] and shear rotation-displacement relation [Bs]. 

 

The shear rotation – displacement relations are, 

 

 

 

 

 

 

   Ni 0 0 0 0 0 

  NN  0 Ni 0 0 0 0 

N      =  Σ  0 0 Ni 0 0 0                          (7.18) 

 (6x48)
  

i =1
  0 0 0 Ni 0 0 

   0 0 0 0 Ni 0 

   0 0 0 0 0 Ni 

                  φx           θx + ∂w0 /∂x   

φ  =   φy      =    θy + ∂w0 /∂y                        (7.20)       

          φx
*
         3θx

*
 + ∂w0

*
/∂x   

          φy
*
         3θy

*
 + ∂w0

*
/∂y   
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And, 

The bending curvature-displacement relations are, 

 

So, B matrix for curvature and shear can be given as, 

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

7.6.3 Element Stiffness Matrix 

 

The virtual work principle has been used to derive the element stiffness matrix and the 

consistent load vector. If we apply the virtual work principle to a finite element we have,  

δU = δW,  

         0      ∂Ni/∂x    0             0       0            0 

           NN          0      0             ∂Ni/∂y    0       0             0 

        Bb  =      Σ         0      ∂Ni/∂y    ∂Ni/∂x    0       0            0    

            (7x48)       
 
 i =1 

       0      0         0                  0       ∂Ni/∂x     0 

                      0      0             0            0        0             ∂Ni/∂y  

           0      0             0            0        ∂Ni/∂y    ∂Ni/∂x 

           0      0             0            2Ni       0   0           (7.22) 

 

         ∂Ni/∂x    Ni     0       0         0          0 

           NN          ∂Ni/∂y    0       Ni     0            0          0 

Bs  =      Σ         0            0       0     ∂Ni/∂x     3Ni       0       
                      

(4x48)      
   

 i =1 
      0            0       0     ∂Ni/∂y    0          3Ni                    (7.23) 

 

                 Kx                ∂θx/∂x 

         Ky                     ∂θy/∂y                   

         Kxy               ∂θx/∂y + ∂θy/∂x 

K  = Kx
*      

=          ∂θx
*
/∂x                 (7.21)                

Ky
*
               ∂θy

*
/∂y 

   Kxy
*
         ∂θx

*
/∂y + ∂θy

*
/∂x 

      Kz                 2 w0
*
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Now, the change in internal virtual strain energy δU and the external virtual work δW can be 

written in terms of the nodal displacements as: 

 

 

 

 

 

 

 

Where, [pi
e
] is the nodal action due to the externally applied loads.  

 

Next, canceling δ[qi]
T
 from both sides of the equation δU = δW results in 

 [K
e
][qi] = [pi

e
] 

 

Where, [K
e
] is the element stiffness matrix, and Db and Ds vary across thickness z only. Thus, 

by carrying out the thickness integration through the N layers first, the element stiffness 

matrix can be written as: 

 

  

 

Note that the matrices [Bb] and [Bs] are evaluated based on the shape functions given above. 

Upon evaluating matrices [Db], [Ds], [Bb] and [Bs] the element stiffness matrix can be 

evaluated. However, since the shape functions and, thus, the matrices [Bb] and [Bs] are 

defined in terms of the non-dimensional coordinate system, the element stiffness matrix must 

be evaluated as follows: 

 

 

 

In this study the Gauss integration technique has been used to evaluate the integrals. In the 

Gauss integration technique, a polynomial of degree (2n-1) can be integrated exactly by n 

sampling points. In the present formulation a selective integration scheme has been used to 

evaluate element stiffness matrix. For the bending stiffness terms 3 x 3 integration scheme 

and for the shear stiffness terms 2 x 2 integration scheme has been adopted. Thus the stiffness 

matrix has been evaluated as follows: 

δU = ∫ {δ [εb]
T
 [σb] + δ [εs]

T
 [σs] }dv 

         
v 

      = ∫ {(δ[qi]
T
 [Bb(x,y)]

T
[Db] [Bb(x,y)] [qi])+ (δ[qi]

T
[Bs(x,y)]

T
[Ds][Bs(x,y)] [qi])}dv 

       
  v

                                                           (7.24) 

 

δW = δ[qi]
T
[pi

e
]                               (7.25) 

 

[K
e
] = ∫ {[Bb(x,y)]

T
[Db][Bb(x,y)] + [Bs(x,y)]

T
[Ds][Bs(x,y)]}dA                                 (7.26) 

          
A
  

 +1    +1 

[K
e
] = ∫    ∫    {[Bb(x,y)]

T
[Db][Bb(x,y)] + [Bs(x,y)]

T
[Ds][Bs(x,y)]} [J] dξ dη             (7.27) 

         
-1    -1
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Where Wa and Wb are the weighting factors corresponding to Gauss sampling points and NG is 

the number of Gauss points selected for the integration schemes. 

 

7.6.4 Load Vector 

 

The components of the consistent load vector are the equivalent load applied at the nodal 

points of the element due to the loads applied at the intermediate points of a finite element. In 

the evaluation of the load vector the entire laminate is considered as a single layer of 

thickness ti. The applied external forces may consist of independent or combination of the 

following load cases: 

i) Gravity loads. 

ii) Uniform normal surface pressure. 

iii) Sinusoidal normal surface pressure. 

iv) Point loads in the global z directions. 

 

1) Gravity Load 

 

The gravity loads, generally the self-weight of the element, always act in the global z-

direction. In other words, the gravity loads will have the components along w direction only. 

Let ‘ρ’ be the uniform mass density of the element material and ‘g’ be the acceleration due to 

gravity in z-direction. The element load vector at node i is given by, 

 

 

 

 

 

The above equation represents the element load vector for all the nodes. 

 

 

 

Pgi = ∫ ρ g t [Ni]
T
 dA                                                                                                 (7.29) 

      
  A

   

           NG   NG  

[Pg
e
] = Σ   Σ  ρ g t [Ni]

T
 JWa Wb                                                 (7.30) 

          
 a=1  b=1

   

    NG   NG  

[K
e
] =  Σ   Σ  {[Bb(x,y)]

T
[Db][Bb(x,y)] + [Bs(x,y)]

T
[Ds][Bs(x,y)]} [J]Wa Wb              (7.28) 

           
  a=1  b=1

                 



 124 

2) Uniform normal surface pressure 

 

To evaluate the nodal loads due to normal surface pressure Po, the displacement normal to the 

surface of the element is required. As here, there is only the transverse displacement, the 

transverse normal pressure acting either innermost or outermost surface is considered. The 

load vector at node i is given by, 

 

 

 

 

 

The above equation represents the element load vector for all the nodes. 

 

3) Sinusoidal normal surface pressure 

 

The load vector at node i due to sinusoidal distributed normal pressure is obtained from 

equation 7.32 by replacing P0 by, 

 

 

Where, P0 is amplitude of loading in the z-direction and the element load vector is given by 

equation 7.33 

 

4) Point load along the transverse direction 

 

When the point of application is not coincident with nodal point and Ppt be the point load 

normal to the surface of the element, the load vector at node i is given by, 

 

 

 

 

 

 

[Ppti]  =    Ppt [Ni]
T
                                                                                                      (7.34) 

             

[Ppi]  =  ∫  P0 [Ni]
T
 dA                                                                               (7.31) 

            
A
 

            NG   NG  

[Pp
e
] = Σ   Σ  P0 [Ni]

T
 JWa Wb                                                (7.32) 

           
 a=1  b=1

   

  P0   sin mπx    sin nπy                   (7.33) 

   a    b 

b 
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7.7 SOLUTION PROCEDURE AND COMPUTER PROGRAM 

 

The finite element method is adopted for analysis. In this solution method, first of all the 

element stiffness matrix and consistent load vector is calculated and then theses stiffness 

matrices and load vectors are assembled as per the boundary conditions. From this assembled 

stiffness matrix and load vector, nodal displacements are calculated and finally from these 

nodal displacements, element stresses are calculated.  

 

In present study, substructure analysis technique is implemented for the finite element 

analysis. This divides the whole analysis process into five different tasks. So for each process, 

different computer programs are prepared in “c” programming language. The first program 

“lamana1” prepares separate data file for individual substructure. This data file includes the 

details such as number of elements in a particular substructure, number of nodes for that 

substructure, material property, loading data, number of restrained nodes, joint restraints and 

also the boundary nodes (needed for static condensation) for that particular substructure. After 

execution of the first program, in second program “lamana2”, element stiffness matrix and 

load vector for is calculated and assembled as per corresponding degree of freedoms. Static 

condensation of stiffness matrix and load vector is also carried out in the same program. This 

condensed stiffness matrix and load vector is the input data for third program “lamana3”, in 

which degree of freedoms corresponding to boundary nodes are calculated. In forth program 

“lamana4”, internal degree of freedoms are calculated using these boundary degree of 

freedoms. After calculating all degree of freedoms, element stresses are calculated in forth 

program. And in the fifth program “lamana5”, all the results of individual substructures are 

collected to print in final result file.  

  

7.8 ANALYSIS PROBLEM AND RESULTS 

 

Laminated composite plate as shown in Fig 7.5, is selected for analysis. For analysis of 

composite plate 8 nodded quadrilateral isoparametric element is used. Plate is simply 

supported at all its edges and subjected to sinusoidal transverse lading. Due to symmetry of 

plate w.r.t both x and y-axis, only quarter plate is analyzed. Descritization of quarter plate in 

8-noddeed isoparametric elements is shown in Fig 7.6. Division of plate into four 

substructures is shown in Fig 7.7. Each substructure is having same number of elements I 

order to have same working load on each participating computer. 
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Laminate plate that is selected for the analysis is a square plate having both dimensions as 100 

x 100cm. Plate consists of four laminates, each of 6.5 cm thick, so the total thickness of plate 

is 25cm. Intensity of sinusoidal load is 10kN/cm
2
. Various material properties for laminated 

plate are as follows. 

 

E1 / E2 = 25  E3 / E2 = 1 

ν12 = ν23 = ν13 = 0.25 

G1 / E2 = 0.2  G2 / E2 = 0.5  G3 / E3 = 0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.6: Descritization of plate into 8-nodded isoparametric elements 

Fig 7.5: Laminated plate having four laminates 
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For the present work, the laminated plate is divided into 1600 elements. So total number of 

node are 4961. Each node is having six DOFs. So problem is having total 29766 DOFs. 

Configuration of problem, when divided into four substructures and time requirement for 

individual process is shown in Fig 7.8 and Fig 7.9 respectively.   

 

            

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.8: Configuration of laminate plate problem for four substructures 

Fig 7.7: Division of plate into four substructures 
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For the problem under consideration, good agreement has been observed with the analytical 

given in reference [5]. Comparison of calculated results with the reference results is tabulated 

in Table 7.1 

 

 

 

(Constant) w (Constant) σx (Constant) σy (Constant) σz Sr. No a/h 
(a/2, b/2, 0) (a/2, b/2, h/2) (a/2, b/2, h/4) (0, 0, h/2) 

4 1.217E-03 1.134E+02 1.005E+02 7.322E+00 

Calculated 1.90 0.71 0.63 0.05 1 

Reference 1.87 0.73 0.65 0.04 

10 7.196E-03 5.608E+02 3.898E+02 2.708E+00 

Calculated 0.72 0.56 0.39 0.03 2 

Reference 0.70 0.57 0.40 0.03 

20 4.057E-02 2.169E+03 1.217E+03 9.101E+01 

Calculated 0.51 0.54 0.30 0.02 3 

Reference 0.48 0.55 0.31 0.02 

100 4.337E+00 5.155E+04 2.592E+04 2.116E+03 

Calculated 0.43 0.52 0.26 0.02 4 

Reference 0.41 0.55 0.27 0.02 

 

 

Table 7.1: Comparison of calculated and reference results 

Fig 7.9: Time requirement for individual processes for four substructures 
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The average time required for various processes, when entire structure divided into different 

number of substructure, is tabulated in Table 7.2. Also time required in parallel 

implementation i.e. computation time and communication time is shown. Based on the time 

required for various processes in sequential and parallel implementation, speedup is 

calculated. The comparison of ideal speedup and observed speedup is shown in Fig 7.10. 

From calculated speedup and ideal speedup, efficiency is also calculated as a measure of 

performance. Comparison of communication and computation time for different substructures 

is shown in Fig 7.11    

 

 

 

Processes Sequential Parallel time speed up 

 
NB NEQ time 

time Comp comm Ideal Calculated 
Efficiency 

   (sec) (sec) (sec) (sec)   (%) 

3 substructures          

lamana1   6 

DTHS   23 

lamana2 9438 10206 1090 

DTHS   26 

lamana3 1248 2820 44 

DTHS   22 

lamana4 714 10209 48 

DTHS   19 

lamana5   7 
3471 1195 90 3 2.70 90.04 

4 substructures          

lamana1   6 

DTHS   26 

lamana2 7110 7806 611 

DTHS   25 

lamana3 1200 3342 51 

DTHS   26 

lamana4 750 7806 43 

DTHS   22 

lamana5   14 
2687 725 99 4 3.26 81.52 

6 substructures          

lamana1   8 

DTHS   23 

lamana2 4734 5334 181 

DTHS   67 

lamana3 1080 4170 50 

DTHS   25 

lamana4 714 5334 22 

DTHS   20 

lamana5   18 
1294 279 135 6 3.13 52.09 

Table 7.2: Time required for sequential and parallel processing 
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7.9 SUMMARY 

 

Present chapter includes the laminated plate analysis. So, earlier part of the chapter includes 

the finite element formulation for laminate plate. In later part, one laminated plate problem 

has been implemented on 3, 4 and 6 parallel computers for analysis using parallel processing 

technique. The problem is descritized into 1600 number of elements. So there are total 4961 

nodes (i.e. 29766 DOFs). For the problem under consideration having 29766 DOFs, 
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efficiency of 90% has observed for three computers. As number of computers goes on 

increasing, the communication time also goes on increasing, so speedup and hence efficiency 

goes on reducing.   
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CHAPTER 8                    SUMMARY AND FURTHER SCOPE OF WORK 

 

8.1 SUMMARY  

 

In present study, parallel processing has been implemented in structural applications to 

reduce the computational time. As the parallel programming needs deep knowledge of some 

of the aspects of parallel programming such as special debugging techniques, data hiding, 

data sharing, data synchronization etc, it makes parallel programming bit difficult for us. So, 

in present study WebDedip environment has been used to implement parallel processing on 

network of computers. WebDedip environment helps user to implement parallel processing 

on network of computers without using special debugging technique or message passing.   

         

For analysis Finite Element Analysis method has used and substructure technique has 

implemented in order to implement parallel processing. So in whole process of analysis, the 

structure is divided into number of substructures and analysis of each substructure is carried 

out concurrently on separate computer and finally these results are combined to have final 

results.  

 

Using the above approach, four different problems have analyzed by sequential as well as 

parallel processing and reduction in computational time has been observed. These four 

problems are as follows: 

 

� First problem is the plane stress analysis of rectangular plate having circular hole in the 

center. Plate is subjected to uniform tensile force on both the edges. Constant Stress 

Triangular (CST) element is used to descritize the continuum. The problem is having total 

27980 DOFs and a efficiency of 88.07% is achieved when implemented on three 

computers.  

 

� Second problem is the analysis of circular plate, having hole in the center. Plate is 

subjected to uniform lateral load. Plate is fixed at outer circumference and free at inner 

circumference. For descritization of the plate, eight nodded quadrilateral isoparametric 

plate element is used. Problem is having total 17175 DOFs and a efficiency of 78.33% 

has achieved when implemented on three computers. 
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� Third problem is the skew plate analysis. It is a simply supported plate supported on both 

inclined edges and subjected to uniformly distributed transverse load over entire plate. 

For descritization of plate, eight nodded quadrilateral isoparametric plate element is used. 

The problem is having total 27663 DOFs and efficiency of about 80% has achieved for 

three computers.    

 

� Analysis of laminated composite plate is the third problem. For analysis of composite 

plate eight nodded quadrilateral isoparametric element is used. Plate is simply supported 

at all its edges and subjected to sinusoidal transverse lading. The continuum is descritized 

to have 29766 DOFs and efficiency, when implemented on three computers of 90% has 

been achieved.   

 

8.2 CONCLUSION 

 

From the work carried out following conclusions can be drawn. 

 

� As the hardware, designed exclusively for high performance computing is expensive, the 

parallel processing technique, using network of computers can provide a cost effective 

solution for high performance computing. 

 

� WebDedip is a user-friendly environment by which user can implement parallel 

application without having difficulty of special debugging and message passing 

techniques. 

 

� For a problem, implemented on less number of computers, computation time is more and 

communication time is less and the same problem, when implemented on more number of 

computers, total processing time reduces but at the same time communication time 

becomes high so over all efficiency is reduced.   

 

� More number of computers does not always serve the purpose. For small size of problem, 

when implemented on more number of computers, computational time is less as compared 

to communication time and hence less efficiency is achieved. So number of computers 

should be decided on the basis of the size of problem.      
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� With the implementation of parallel processing technique on network of computers using 

WebDedip environment, about 90% efficiency is observed. Hence it can be said that, 

parallel processing on network of computers serves as one of the cost effective tool for 

high performance computing.      

 

8.3 FURTHER SCOPE OF WORK 

 

The field of high performance computing is an upcoming field. So there are many fields in 

which the further work can be carried out. Some of such fields are as follows. 

 

� In present study, various static applications have been solved using parallel processing 

technique. So in further work various dynamic and nonlinear problems such as dynamic 

analysis of laminated composite laminates can be analyzed using parallel processing. 

 

� In present study, WebDedip environment is used for parallel implementation of problem. 

So, as further work parallel processing can be carried out by parallel programming, using 

PVM and MPI. 

 

� In present work load balancing is achieved by keeping the size of each substructure same. 

In further work, dynamic load balancing can be implemented along with WebDedip using 

Message Passing Interfaces.            

 

� Cluster computing, Meta computing and Grid computing are also some of the upcoming 

fields for high performance computing. So further work can be carried out in these fields 

also.  
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