DISTRIBUTED FINITE ELEMENT ANALYSIS

Dissertation

Submitted in partial fulfillment of the requirement
For the degree of
Master of Technology (CIVIL)
(Computer Aided Structural Analysis and Design)
NIRMA UNIVERSITY OF SCIENCE AND TECHNOLOGY

By
VIKAS P. SAXENA
(03MCL14)

Guide
PROF.P. V. PATEL

& NIRMA
& UNIVERSITY

INSTITUTE OF TECHNOLOGY

Civil Engineering Department
Ahmedabad - 382 481

May 2005

CERTIFICATE

This is to certify that the Major Project entitled “Distributed Finite Element Analysis”
submitted by Mr. Vikas P Saxena (03MCL14), towards the partial fulfillment of the
requirements for the award of degree of Master of Technology (CIVIL) in field of
Computer Aided Structural Analysis and Design (CASAD) of Nirma University of
Science and Technology is the record of work carried out by him under my supervision and
guidance. The work submitted has in my opinion reached a level required for being accepted
for examination. The results embodied in this dissertation, to the best of my knowledge have

not been submitted to any other university or institution for award of any degree or diploma.

Prof. P. V. Patel Prof G. N. Patel

Guide, Head,

Asst. Professor, Civil Engineering Department
Civil Engineering Department, Institute of Technology
Institute of Technology, Nirma University

Nirma University Ahmedabad

Ahmedabad

Dr. H. V. Trivedi

Director,

Institute of Technology
Nirma University
Ahmedabad

ACKNOWLEDGEMENT

It gives me great pleasure in expressing sincere thanks and profound gratitude to
Yogesh T. Vani, Senior Consulting Engineer (Visiting Faculty at CEPT) Ahmedabad
for his invaluable guidance and encouragement throughout this Major project. |
heartily thank him for his suggestions and for the clarity of the concepts of the

topic that helped me a lot during this study.

I extend my special thanks to Prof. G.N. Patel, Professor, Department of Civil
Engineering and Prof. P.H. Shah, Head, Department of Civil Engineering, Institute
of Technology, Nirma University, Ahmedabad for his continuous kind words of
encouragement and motivation throughout the Major Project. | am heartily
thankful to Prof. C. H. Shah, Structural consultant for his suggestions to improve
quality of work. 1 am also thankful to Dr. H. V. Trivedi, Director, Institute of

Technology for his kind support in all respect during my study.

I am thankful to Prof. P.V. Patel, Prof. U.V. Dave, Prof. S. P. Purohit, S.
Pandya and all faculty members of Institute of Technology, Nirma University,

Ahmedabad for their special attention and suggestions towards the project works.

I will be obliged to Mr. Rushikesh Trivedi, Structural engineer, VMS Consultants

for his time and the help he offered during project.

The blessings of God and my family members makes the way for completion of

major project-1. I am very much grateful to them.

I am also thankful to all my friends especially Mr. Anil Wadile for his suggestions

and help, he gave throughout my M Tech Course.

Sonar Priyadarshini V.
Roll No.04MCL018

ABSTRACT

A lot of advancement has taken place in computer generation in last five decades. And this
advancement has led to the development of computers having processing speeds of teraflop

range and memory of terabyte range.

As the computing power available increased, attempt was made to solve more and more
difficult problems. Some of the problems related to field such as artificial intelligence,
numerical analysis, Quantum chromo dynamics, Climate modeling, Fluid turbulence, Vehicle
dynamics, Ocean circulation etc, require such a high computational power and also memory
requirement that present day’s computers may found slower to solve these problems. These
limitations have led to develop some other solutions. High performance computing is result of

such attempts.

Various possible ways are available for high performance computing i.e. supercomputers,
massive parallel machines, cluster computing etc. But as these options are costly from initial
cost and maintenance point of view, an alternative option of Parallel Processing on network of
computers, also known as distributed computing can been used. As distributed computing is
carried out on network of computers, no special hardware is needed and also no special means
of maintenance is needed. All these aspects make distributed computing a favorable option for
high performance computing. In present study, distributed computing is carried out using

WebDedip environment, developed using JAVA technology based on client server approach.

As far as structural field is concerned, problems include difficult geometry, boundary
conditions and loading conditions, which makes the problem complex. Also, as the size of
problem goes on increasing, requirement of computational power and storage memory goes
on increasing. So, present single computers may found slower to tackle such problems. Hence
analysis of such problem becomes a tedious and time consuming task. In such cases some
other alternative is needed which can serve better in such conditions. High performance

computing is one of the solutions for such problems.

In present study an attempt has been made to implement distributed computing in field of

structural engineering.

il

Finite Element Analysis method has been used for analysis. Substructure analysis technique
has been incorporated to implement analysis process on distributed computing. To observe the
advantage of high performance computing, four problems have been solved using sequential
and parallel processing. Of these problems, one is the plane stress problem, two are plate

bending problems and one laminated plate problem.

First chapter includes the introduction part. Topics such as need of high performance
computing, efforts made in India as well as in world for high performance computing and

object of study are included in this chapter.

Second chapter includes the literature survey. Scope of work is also included in the same

chapter.

Third chapter includes the issues related to parallel processing. These issues are computer
architecture, parallelism in sequential as well as in multiprocessor computers, dynamic load
balancing, operating system characteristics, parallel processing models, performance

measurement and software tools for parallel processing.

Forth chapter deals with the aspects related to WebDedip environment. Details of various
components to be installed on server as well as client machine, minimum software and
hardware requirement for distributed computing and procedure of problem implementation on

parallel computers are some of the topics, discussed in this chapter.

Fifth chapter includes the distributed plane stress analysis problem. The problem is a square
plate having hole in the center and subjected to uniform tensile force on both sides. For
analysis of plate, CST element is used. Plate is divided into 27504 number of elements. So the
problem is having total 13990 number of nodes (i.e. 27980 DOFs). To observe the effect of

distributed computing, plate analysis is carried out using 3, 4, 5 and 6 computers.

Sixth chapter deals with the distributed plate bending problem. This chapter includes two
problems. For analysis of both problems, eight nodded isoparametric plate bending element is
used. Of two problems, first problem is the annular plate subjected to uniform lateral loading.
Plate is divided into 1800 elements. So problem is having total 5725 number of nodes (i.e.

17175 DOFs). Plate analysis is carried out by diving it into 3, 4, and 6 number of

Y

substructures. The second problem is the simply supported skew plate subjected to uniform
pressure. Plate is divided into 3000 number of elements. So, total number of nodes are 9221
and DOFs are 27663. To implement the problem on parallel computers, plate is divided into

3, 4, 5 and 6 number of substructures.

Seventh chapter covers the distributed laminated plate analysis. The problem is a square plate
having four laminates of same thickness and subjected to sinusoidal loading. For analysis of
laminated composite plate, eight nodded isoparametric element is used. The plate is divided
into 1600 elements. So problem is having total 4961 number of nodes and 29766 DOFs. To
observer the effect of distributed computing, the plate analysis is carried out using 3, 4 and 6

number of computers.

Chapter eight includes the summary, conclusion and further scope of work.

Certificate

Acknowledgement

Abstract
Index

List of figures
List of tables

INDEX

Chapter 1 Introduction

1.1
1.2
1.3
1.4
1.5

1.6
1.7

General

Need for distributed computing

Parallel computing efforts in world

Parallel computing efforts in India

Parallel processing in Finite Element Analysis
1.5.1 Domain decomposition

1.5.2 Sub structuring

1.5.3 Operator splitting

1.5.4 Element By Element strategies

Object of study

Organization of report

Chapter 2 Literature survey

2.1
2.2

Literature survey

Scope of work

Chapter 3 Parallel processing issues

3.1
3.2

General

Computer architectures
3.2.1 SISD

3.2.2 SIMD

i
iii

vi

Xiii

O O AN N = =

13
13
18

22
22
23
24
24

Vi

Chapter 4

Chapter 5

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.2.3 MIMD

3.2.4 MISD

Parallelism in sequential machines

Parallelism in multiprocessor machines
Characteristics of multiprocessors

Dynamic load balancing

Operating system characteristics

Parallel programming models

Software tools

Performance measurement of parallel processing

Summary

WebDedip Environment

4.1
4.2
4.3

4.4
4.5

Introduction

WebDedip overview

Installation of WebDedip

4.3.1 Requirement for WebDedip
4.3.2 WebDedip rules

Parallel implementation

Summary

Plane stress problem

5.1
5.2

5.3

General

Finite element formulation

5.2.1 Shape Functions

5.2.2 Strain-Displacement relation matrix [B]

5.2.3 Element stiffness matrix

5.2.4 Consistent load vector

Substructure technique for analysis

5.3.1 Stepwise approach for substructure technique

5.3.2 Advantages of substructure technique Solution

26
28
28
30
30
31
32
34
37
40
42

44
44
44
46
47
53
54
63

64
64
65
65
66
67
68
70
74
79

Vil

Chapter 6

Chapter 7

54 Solution procedure and computer program
5.5 Analysis problem and results
5.6 Summary
Plate bending problem
6.1 Introduction
6.2 Mindlin’s theory
6.3 Finite element formulation
6.3.1 Shape function
6.3.2 Strain-displacement matrix [B]
6.3.3 Element stiffness matrix
6.3.4 Load vector
6.4 Solution procedure and computer program
6.5 Analysis problem and results
6.5.1 Problem 1 (Annular plate problem)
6.5.2 Problem 2 (Skew plate problem)
6.6 Summary

Laminate plate analysis

7.1
7.2
7.3
7.4
1.5
7.6

7.7
7.8

General

Laminated composites

Displacement model

Strain-stress relations for an orthotropic lamina
Strain-displacement relationships

Finite element formulation

7.6.1 Shape functions

7.6.2 Strain-displacement relation matrix [B]
7.6.3 Element stiffness matrix

7.6.4 Load vector

Solution procedure and computer program

Analysis problem and results

80
80
86

88
88
88
91
91
93
94
95
96
97
97
104
109

110
110
110
113
113
116
117
119
120
121
123
125
125

viii

Chapter 8

7.9 Summary

Summary and further scope of work
8.1 Summary

8.2 Conclusion

8.3 Further scope of work

References

Paper presentation

130

132

132

133

134

135

138

X

Fig

2.1
22
23
3.1
32
33
34
3.5
3.6
3.7
3.8
4.1
4.2a
4.2b
4.2¢
4.3a
4.3b
4.3c
4.4
4.5
4.6
4.7
4.8
4.9
4.10a
4.10b
4.11
4.12
4.13
4.14

INDEX OF FIGURES

Title

Plate having hole in the center and subjected to tension
Circular plate having hole in the center and skew plate
Laminated composite plate

Sequential computer architecture (SISD)

SIMD model with shared memory

SIMD model with distributed memory

MIMD model with shared memory

MIMD model with distributed memory

Shared memory model

Message passing model

Parallel Virtual machine architecture

Configuration of WebDedip

Loading GUI for WebDedip

Loading GUI for WebDedip

Loading GUI for WebDedip

New application creation

New application creation

New application creation

New application form

Configure new application

Typical process form

Typical file transfer form

Modify configuration file

Application detail form

Build application

Build application

Run application

Web browser page to open operator console window
Operator console window

Operator console window showing complete process details

Page

19
20
21
24
25
26
27
27
34
35
38
45
55
55
55
56
56
56
57
57
58
58
58
59
60
60
61
61
61
62

5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
6.1

6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9
6.10
6.11
6.12

Plane stress problems

Plane strain problems

CST element having two DOF at each node

Various loading conditions for CST element

Structure descretized into CST elements

Structure divided into four substructures

Substructures with all boundaries fixed

Substructures after static condensation

Substructures combined after static condensation
Substructures with known boundary DOF

Complete structure with all DOF known

Rectangular plate with circular hole

Descritization of quarter plate using CST elements

Division of quarter plate into five substructures

Configuration for plane stress problem for three substructures
Time requirement for individual process for three substructures
Comparison of ideal and observed Speedup

Computation and communication time

Rotation of the normal about x and y axes considering average
shear deformation

Positive moments and shear forces in plate

Eight nodded Isoparametric element

Circular Plate having whole in the center and subjected to
uniformly distributed pressure

Descritization of plate in 8 noded isoparametric elements in
uniform mesh

Descritization of plate in 8 noded isoparametric elements in
graded mesh

Division of quarter plate into three substructures
Configuration of plate bending problem, for four substructures
Time requirement for individual process for four substructures
Comparison of ideal and observed Speedup

Computation and communication time

Skew plate descritization in 8noded isoparametric elements

64
64
65
68
75
76
76
77
77
78
79
81
81
82
83
84
86
86
89

91
92
97

98

98

99

100
101
102
103
104

X1

6.13
6.14
6.15
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Division of plate into four substructures

Comparison of ideal and observed Speedup

Computation and communication time

Lamina with unidirectional fibers

3-ply laminate

Geometry of a rectangular laminated composite plate

Eight noded Isoparametric element

Laminated plate having four laminates

Descritization of plate into 8-nodded isoparametric elements
Division of plate into four substructures

Configuration of laminate plate problem for four substructures
Time requirement for individual processes for four substructures
Comparison of ideal and observed Speedup

Computation and communication time

105
108
108
111
111
113
118
126
126
127
127
128
130
130

Xii

Table

1.1
1.2
1.3
5.1
5.2
6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2

INDEX OF TABLES

Title

US and JAPANESE super systems

Parallel processing machines

Supercomputers developed in India

Comparison of analysis and reference results

Time required for sequential and parallel processing
Displacement coefficient for uniform and graded mesh

Time required for sequential and parallel processing
Deflection coefficient for maximum deflection for skew plate
Moment coefficient for maximum moment at center of plate
Moment coefficient for maximum moment at free edge of plate
Time required for sequential and parallel processing
Comparison of calculated and reference results

Time required for sequential and parallel processing

Page

83

85

99

101
105
106
106
107
128
129

Xiii

CHAPTER 1 INTRODUCTION

1.1 GENERAL

As the computing power available increases, the quest for more and more power also keeps
increasing. There are always applications waiting for more powerful machines. Much of the
effort in meeting this requirement has so far been focused on by making the existing computer
architecture faster and faster. Memory access delays have been cut down using faster

memories and cache architectures [21].

Analysis of large size complex structures such as multistoried buildings, long span bridges,
tall towers and domes etc. involves formulation and solution of large number of equations.
Either matrix stiffness method or finite element method can be used to solve such complex
problems. The analysis of such large structures, involving thousands of unknowns, may be
expedited by subdividing it into smaller parts known as substructures. In substructure
technique, each substructure is analyzed separately and the results are combined to yield the
displacements and stresses in actual structure. The use of substructure technique, depending
upon the size of each substructure and number of substructures, may result in considerable
saving of storage and computational time. The analysis time can further be reduced by

application of distributed computing technique [27].

Finite Element Analysis now stands as the most acceptable numerical solution procedure for
engineering problems in diverse areas such as solid mechanics, fluid mechanics, heat transfer,
aerodynamics, manufacturing process, smart materials, and structures etc [19]. With
fundamental limits existing for the performance of a processor, single processor system even
with its present configuration and future prediction can never suffice to meet the computing
demands of FEA. Hence high performance computing with low price tags, sustained
performance, and cheap maintenance and upgradation costs is needed. Distributed computing

is different but related approach to obtain faster machine [26].

1.2 NEED FOR DISTRIBUTED COMPUTING

The basic need for the distributed computing is the need of power. Computational
requirements have always been on the increase. As the processor become more powerful, one

is interested in getting the machine to tackle more complex problems.

One method of increasing the speed of computers is to use faster semiconductor components
to build units of a computer. For instance low speed personal computers use integrated circuit
based on Silicon semiconductor while Gallium Arsenide semiconductor devices which are
faster, are used in supercomputer. Higher speed components cost more and normally dissipate
more heat. So the increase in speed of electronic components is limited by physical
constraints. Another method to increase the speed of computation is to design the computer so
that the different units of the computer work simultaneously [23]. Such requirements also give

rise to the development of distributed computing techniques.

Although the performance of single processor has been steadily increasing over the years, the
only way to build the next generation Tflops architecture supercomputer seems to be through
parallel processing technology. Even with today’s workstation class high performance
processors exceeding 100 Mflops, thousand of processors are required to build a Tflop

architecture machine.

On the computational side, artificial intelligence, numerical analysis etc are some of the areas,
which can consume any amount of computing power that is available. Some of the very
complex problems require such a high-level computation power, which is beyond the
computing power available today. One of such problem is Quantum Chromo Dynamics, the
study of sub atomic structure. This experiment requires a Cray super computer running 24
hours a day for 1500years, in order to get the required results. Some of such other problems,
requiring very high level computing power, known as grand challenges and some of such
challenges are Climate modeling, Fluid turbulence, Vehicle dynamics, Ocean circulation etc

[29].

Analysis of complex structures such as multistoried buildings, long span roof or bridges, tall

towers and offshore platform involves formulation and solution of large number of equations

since it has to take into account either one or a combination of the following features of the

problem:

1.) Irregular geometry

2.) Real boundary conditions

3.) Stress, temperature and time dependent linear/non linear behavior of constituent materials
including composites

4.) Space time dependent loads including random excitations

5.) Different types of behavior-linear, nonlinear, dynamic response, stability etc.

Inclusion of such conditions makes the analysis of structure more complex and time
consuming. So to arrive at the accurate solution within short period of time, latest technique is
needed, which along with the faster speed, should be less expensive and also having low up
gradation and maintenance cost. Such requirements give rise to the need of distributed

computing technique.

In past few years a number of parallel processing machines have been developed with various
processor configurations and architectures. Parallel implementation requires parallel machine
consisting of multiple processors connected with each other and sharing the same memory.
As parallel processing hardware designed exclusively for dedicated parallel computing
applications are more expensive, an inexpensive alternative is to develop the application
software, which can run on network of workstations, known as distributed processing. This
arrangement employs a number of computers physically linked to permit online computer-to-
computer communication. Using this approach of distributed processing, independent
workstations interconnected by network and message passing for communication of data
between the computers can be transformed in to cost effective parallel computing resources.
Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) provide libraries for
such communication. But use of these libraries requires some concepts of parallel
programming like data communication, process forking, process joining, data synchronization

etc. Furthermore it requires special debugging techniques for testing the parallel application.

1.3 PARALLEL COMPUTING EFFORTS IN WORLD

New computing systems cover a broad spectrum of machines ranging from high performance
systems to the small portable, embedded computers and microprocessors. Description of some

of such machines is discussed here.

Supersystems are a class of general-purpose computers designed for extremely high
performance throughput. Although there is no universally accepted definition or classification
of supersystems, three classes of supersystems have been identified based on the performance,
memory system used and cost, namely: large supersystems, near supers and superservers. The
architectural characteristics of some of the U.S. and Japanese supersystems [10] are

summarized below in Table 1.1

Tablel.1: US and JAPANESE super systems

System / Architectural Number of Maximum Peak
model configuration processors | main memory | computational
rate (Gflops)
CRAY -T90 Vector SMP 32 1 GW 58
CRAY J932 32 8 GB 6.4
IBM ES/9000 Multiprocessor 10 10.2GB 5.6
9021-9X2 with dedicated
buffer and shared
memory
Fujitsu Highly parallel 222 55GB 355
VPP 500 vector
multiprocessor with
distributed memory
VPP 700 256 32GB 500
Hitachi Multiprocessor 4 2GB 32
S-3800/480
water cooled
Hitachi Single processor 1 1GB 2
S-3800/180

Air cooled

Hitachi Single processor 1 1GB 2
S-820/80 with multiple
pipelines
SX-4/512 M16 Multiple node 512 128 1024

shared memory

Massively parallel processor system comprises hundreds or thousands of VLSI processors
integrated through high bandwidth networks. In the last few years there has been an explosion
in the number of parallel processing machines developed. The architectural characteristics of

some of parallel processing machines [10] are given below in Table 1.2

Tablel.2: Parallel processing machines

System Architecture | Number of | Maximum | Peak computational rate
/ Model processors main Each Total
memory processor (Gflops)
node (Mflops)
Thinking Cluster 64 32 334 21
machine MIMD
corp. CM-5
GWS-100
GWS-200 Cluster 129 64 400 51.2
MIMD
Intel paragon MIMD, 1872 59.9 184
XP/S 2-D mesh
XP/S MP MIMD, 2000 256 75 300
2-D mesh
Maspar MP- SIMD, 16384 4 0.146 24
2 2-D mesh
nCUBE 2 MIMD 8192 282 4.1 34
nCUBE 3 Hypercube 512 32 80 46
CRAY T3E MIMD 3D 2048 4000 600 1200
bidrectional

torus
topology
Meiko CS-2 MIMD 1024 572 250 256
multistage
packet switch
IBM Distributed 128 256 308 394
9076/SP2 memory
Convex Numa shared 64 16 240 154
Exemplar memory
SPP- system
1600/XA

1.4 PARALLEL COMPUTING EFFORTS IN INDIA

India launched a major initiative in parallel computing in 1988. This was motivated by the
need for advanced computing, a vision of developing its own technology, and difficulties
(political and economic) in obtaining commercial products from outside the country. The
creation of the Center for Development of Advanced Computing (C-DAC) and concurrently
other efforts at National Aerospace Laboratory (NAL), Bangalore, Advanced Numerical
Research & Analysis Group (ANURAG), Hyderabad, Bhabha Atomic Research Center
(BARC), Bombay, Center for Development of Telematics (C-DOT), Bangalore, marked the
beginning of high performance computing in India. Today, India has designed its own high
performance computers. Details of some of such supercomputers [9] and theirs applications

are tabulated below in Table 1.3

Tablel.3: Supercomputers developed in India

Developer | Computer Year | Specification Application
C-DAC PARAM 1988 | = Theoretical Peak = Computation fluid
8000 computing power dynamics
1Gflops = Finite element
= Computing power in analysis
Actual application = Seismic data
100 to 200 Mflops processing
C-DAC PARAM 1992 | = Peak computing * Image processing
8600 power 100- = Signal processing
200 Mflops. = Molecular
= i860 as main modeling
processor with 4 = Quantum
transputers acting as molecular
communication dynamics
processors
C-DAC PARAM 1998 | = Peak computing = Computational
10000 power 100Mflops structural
C-DAC PARAM 2001 | = Peak computing mechanics
Padma power 1 Tflops = Computational
= POWER4 RISC chemistry
processors = Computational
= High performance fluid dynamics
system area network | ® Evolutionary
PARAMNet-II computing
provides data rates = Seismic data
of 2.5 GB/sec processing
= Also accessible by
users from remote
area
BARC ANUPAM 1992 | = MIMD architecture | = Parallel computing

= {860 processor

= Peak computing

facility has been

used extensively by

power 100 Mflops

BARC scientists
and engineers as
well as by other

users from outside

Institutions

ANURAG PACE 4 node Loosely = Aerodynamic
coupled message computations
passing parallel = Neural network
processing system simulation
UNIX operating = Computational
system fluid dynamics
Local memory 256 codes
MB = Finite Element

Method codes
NAL FLOSOLVER | 1986 | = FLOSOLVER MkI1A | = Computational

- four processor Fluid dynamics
system = Aerodynamics
FLOSOLVER Mk1B | = Weather forecasting
- eight processor
system
FLOSOLVER Mk2
— based on Intel
80386/ 80387
processor
FLOSOLVER Mk3
— based on RISC
processor 1860 from
Intel

C- DOTS CHIPPS 1989 Single algorithm = Weather forecasting

multiple data
architecture
Available in 192
node machine, 64

node machine and

= Radio astronomy
applications

= Other scientific and
engineering

applications

compact 16 node
machine
= Peak computing

power 200 Mflops

1.5 PARALLEL PROCESSING IN FINITE ELEMENT ANALYSIS

In structural engineering applications, the Finite Element Analysis plays a prominent role.
Several avenues for parallelizing this method have been proposed. They range from taking
advantage of general-purpose hardware in the parallelization of the method to the design of
special purpose hardware, such as the Finite Element Machine. In many finite element
applications, the most costly phase of the computations is the repeated solution of large
systems of linear algebraic equations. Several writers have been researching concurrent
algorithms in order to optimize this operation. These methods include parallel equation
solvers, as well as concurrent algorithms derived from domain decomposition methodologies,
operator splitting techniques, or element-by-element strategies. Many of the above-mentioned

techniques are based on the subdivision of the physical domain into a number of sub domains.

The architecture of some machines has been designed to solve efficiently specific problems.
These machines are called special purpose machines. For the finite element method two types
of special purpose machines have been developed. The first one, developed at NASA, is
called the Finite Element Machine. In this approach, the nodal structure of the finite element
mesh is mapped onto the hardware. In another development, the architecture of the parallel
finite element machine developed at the University of Calgary is related to the solution
technique to solve problems with geometric and material non-linearties. Several techniques
for the parallelization of the finite element method have been employed. These can be divided

as follows [16]:
1.5.1 Domain decomposition
This concept is based in the ‘‘divide and conquer’’ technique. Here, the task to be performed

is divided into independent or loosely coupled subtasks, and thus communication among

processors is reduced. The idea is one of domain decomposition, i.e., the domain is divided

into regions. The problem is then decomposed into the solution of boundary value problems in

the sub domains.

1.5.2 Sub structuring

This strategy is closely related to that of domain decomposition. It was originally introduced
in the 1960s to reduce the dependency in the out-of-core memory in large-scale structural
engineering applications. The basic idea is to subdivide a structure into a number of
substructures. The degrees of freedom of a substructure are then classified as internal DOFs
and interface DOFs. The process consists of applying condensation to reduce the number of

degrees of freedom in each substructure.

1.5.3 Operator splitting

This technique is a generalization of sub structuring. Operator splitting strategies can be
developed in a variety of ways. One example is the method of alternating directions, whereby

a multidimensional problem is reduced into a series of one-dimensional problems.

1.5.4 Element-by-element (EBE) strategies

In these strategies, advantage is taken of the fact that the element calculations can be done
independently and thus can be trivially parallelized. In order to improve the efficiency of EBE

strategies, they should be coupled with parallel equation solvers.

1.6 OBJECT OF STUDY

Analysis of large size problems as well as for problems having geometry and other
irregularities is very tedious, time-consuming process. So to overcome this shortcoming,
innovative techniques are developed. Parallel processing is one of such innovative techniques.
The main object of present study is to find the cost effective solution for high performance

computing.

In this analysis technique, whole structure is divided into number of substructures. Analysis of

each sub structures is done concurrently on different processors, interconnected to

10

communicate with each other and to transfer the data. As the whole process is distributed
among various processors, interconnected through LAN, it can be called as “Distributed
Finite Element Analysis”. As the main object is to observe the reduction in processing time
after implementation of parallel processing technique, first the whole structure is descretized
and analyzed as a single structure (using sequential programming) and then the structure is
divided into substructure and structure is analyzed with sub structure technique (using parallel

programming).

The total time elapsed in parallel processing is the time required for two activities namely,
computation and communication. Out of these, time required for communication would not
have significant effect on sequential as well as parallel timing. So the advantage in reduction
of time can be observed only in large size problems. While for small problem the process time
will be almost same for sequential and parallel implementation and so the advantage of

implementation of parallel processing cannot be visualized.

1.7 ORGANIZATION OF REPORT

Whole dissertation is organized in the following manner.

Chapter 1 includes the introduction part. Some of the topics related to parallel processing and
its application are also covered. These topics include need of parallel processing, parallel
processing efforts in world and in India, parallel processing application in FEA, and the object

of the study.

Literature survey part is included in chapter 2. It includes the literature regarding various
applications of supercomputers and parallel machines in structural engineering fields such as

analysis and optimization. Scope of the present study is also mentioned in the same chapter.

Various parallel processing related issues are discussed in chapter 3. These topics include,
types of parallel processing, various parallel processing architectures, parallelism in
sequential and multiprocessor machine, dynamic load balancing, pipelining, operating system
characteristics for parallel processing, various parallel processing models, performance

measurement of parallel processing and parallel processing software.

11

Chapter 4 includes various aspects of the WebDedip tool. These aspects include, architecture
of WebDedip, installation of WebDedip, hardware as well as software requirement of
WebDedip, various components to be installed on server and slave machine, configuration of
various components of WebDedip and also the process of implementing the application on

WebDedip.

Chapter 5 includes the first application of parallel processing. The first application is the plane
stress analysis of a square plate with circular hole in middle and subjected to uniform edge
force. Result and discussion about the same is also covered in the same chapter. Discussion

regarding substructure analysis technique is also included in the same chapter.

Chapter 6 includes the second application of plate-bending which is analysis of a fixed
circular plate, having hole in the center. The plate is subjected to transverse uniformly
distributed loading. Another problem in the same chapter is the analysis of skew plate. The

plate is a simply supported plate and subjected to transverse uniformly distributed loading.
Chapter 7 covers distributed finite element analysis of laminated plate analysis. The plate is a
simply supported square laminated plate. Plate is subjected to sinusoidal transverse loading.

Result and discussion about the same is also covered in the same chapter.

Chapter 8 includes the final summary of work along with the further scope of the work that

can be carried out on the same topic.

12

CHAPTER 2 LITERATURE SURVEY

2.1 LITERATURE SURVEY

Literature survey is carried out to review various applications of parallel processing technique
in the field of structural engineering. Such applications include analysis, optimization and
arithmetical solvers to solve simultaneous equations resulting in finite element analysis. In
literature survey, main emphasis is given on the published papers that describe the

implementation of parallel processing fro various structural problems.

Saxena M and Perucchio R [1] developed parallel FEM algorithms for automatic mesh
generation based on recursive spatial decomposition (RSD) and for automatic analysis via sub
structuring for solid models. They also described an automatic sub-structuring scheme based
on RSD of the domain that can be closely integrated with the RSD based automatic meshing
procedure. The hierarchical data structure used to represent RSD based automatically derived
meshes also provide a one to one mapping between spatially decomposed sub domains and
analytical sub structures. Such a hierarchical organization of the sub structures and the
inherent parallelism of RSD are exploited to design the sub-structuring scheme suitable for

parallel processing.

Adeli H and Kamal O [2] have used the parallel processing concept for developing
algorithms for concurrent analysis of large structures on shared memory multiprocessor
computers. Algorithm was developed to parallelise each computational step of solution
process. Also the algorithm was developed to maintain the workload balance through the

solution process and to assure best concurrent performance and speed up.

To check the performance of the algorithm, Adeli H and Kamal O [3] have implemented the
algorithm for analysis of four different structures on an Encore Multimax shared memory
multiprocessor computer. Of the four structures, first was the 266-element frame structure.
The second was the Geodesic dome space truss. Third was the 200 bar plane truss and the
forth structure was the 760 element frame structure. Performance was measured here in terms
of Speed up, workload balance and efficiency. The results for the speed up indicated that the
efficiency of the parallel processing algorithm increases with the size of the structure. Overall

efficiency of about 90 to 100% was achieved for the case of a 1200 DOF.

13

Foley C M and Vinnakota S [4] have implemented sub structuring method and parallel
processing technique for the analysis of high-rise structural frameworks. The performance
was measured on a Cray Y-MP C90 supercomputer in a multi user environment. Performance
of the program was checked by implementation of this technique on two steel frameworks. Of
two, one was having 175 members and 312 DOF. The other frame was having 461 members

and 780 DOF.

Adeli H and Kumar S [6] developed algorithm for distributed finite element analysis on a
loosely coupled multicomputers such as a cluster of inexpensive workstations. Solver based
on the element-by-element approach is used to solve the resulting system of linear equations.
To account for the slow communication speed of the ethernet network connecting
workstations, techniques such as efficient data distribution were implemented. Due to the
general nature of the data distribution, the algorithms are versatile and can be applied to the
analysis of FE domains consisting of combination of various types of elements. The algorithm

is based on and can be implemented on any distributed memory architecture.

Adeli H and Kumar S [7] implemented distributed algorithms for finite element analysis of
structures, on network of workstations. The algorithms developed, was applied for analysis of
large structure with complicated topology. A cluster of six IBM RS/6000 workstations was
used for analysis of large structural models with few thousand elements. In spite of low
bandwidth of the ethernet networks, an overall parallelization efficiency in the range of 75-
90% was obtained. This technique was used to solve three problems. Of which first was the
plane stress L shape domain, solved with four different types of elements, the linear and
isoparametric quadrilateral as well as triangle element. Second application was a 100 story
high-rise building with 5890 elements and 1240 nodes. The structure was modeled both as an
axial load structure and as a moment resisting frame structure. The results for six workstations
have shown a maximum speed up of 3.75 for moment resisting frame structure. The third
application was the Taj Mahal structure. The results for third application, have shown a

maximum speed up 3.25 for six workstations.

In another application Adeli H and Kumar S [8] implemented parallel processing technique
for minimum weight design of large structures using genetic algorithm, on a network of
workstations. Communication constructs from software library Parallel Virtual Machine

(PVM) have been used for message passing between workstations. The performance was

14

noted for both dedicated and shared multi-user environment in a laboratory with 11 IBM
RS/6000 workstations connected through the ethernet network. The cluster was
heterogeneous. Six machines were of model 320H and the remaining five were of model
220H. The performance was provided based on granularity and parallelization efficiency of
distributed model. The algorithm was applied for the minimum weight design of two
structures. Of two one was the Dome space truss and the other was a 35-story space tower
frame. For first application (i.e. medium size structure), speed up of about 5 was achieved on
11 workstations. Thus the parallel efficiency was about 50 to 60%. While for second
application (i.e. large structure), speedup of 10 was achieved on 11 workstations. Thus the
parallel efficiency was about 90%. Thus from results it was shown that the speed up of

distributed algorithm increases with the size of structure.

Noor A K [10] reviewed recent advances in technology that are likely to impact structural
analysis and design. A brief summary of the advances in microelectronics and networking
technologies was described. The major features of new and projected computing systems,
including parallel processing, high performance computers, and small systems were also
discussed. An advance in programming environment, numerical algorithms and computational
strategies for new computing system was also reviewed. A scenario for future-computing
paradigm was presented and the near term needs in the computational structures areas were
outlined. New computing systems were also described that could give structural analysts and
designers some insight into the potential of these systems for providing cost effective solution
of complex structural problems and to stimulate research and development of the necessary

algorithms, firmware and software to realize this potential.

Wriggers and Boersma [12] implemented parallel solver for problems in solid mechanics
discretized by finite elements. Performance of this solver was studied on two different MIMD
computers. Of the two MIMD computers, one was the 64-node machine with T800 processor
and the other was 32-node machine with a Power PC processor. The technique was
implemented to two problems. First problem was solved for 64 X 64 elements on each
processor for T800 system and 180 X 180 elements on each processor for Power Xplorer
system. Second problem was solved for 128 X 128 elements on each processor for T800
system and 256 X 256 elements on each processor for Power Xplorer system. To rate the
performance of the parallel application, the well-known principle of speed-up and scale-up

were used. The parallel algorithm gave a high parallel efficiency when used for large

15

problems. So from paper it can be concluded that, to increase the efficiency further, a high
load on each processor is essential specially when the ratio of communication to computing is

low.

Soegiarso R and Adeli H [13] implemented the parallel-vector algorithm for optimization of
large steel structures on a shared memory machine. The Cray YMP8/864 supercomputer with
eight processors was used. The algorithm was used for minimum weight design of several
high-rise buildings (20 story moment resisting space frame with 1920 members and 4536
DOF, 40 story moment resisting space frame with 3840 members and 8856 DOF, 60 story
moment resisting space frame with 5760 members and 13176 DOF) including an 81 story
building structure with 9245 members. The parallel processing speed up was measured
through software called ‘atexpert’. From the results for 81-story building, it can be seen that
the performance of parallel processing improve with the increase in the size of structures. For

81-story building speed-up of 6.58 was achieved for the parallel processing.

Zucchini A [14] implemented parallel processing technique to develop solver for finite
element problems with coarse mesh/fine mesh formulation. The algorithm was tested for two
simple problems of plane stress in a linear elastic plate with boundary and loading conditions.
Standard 8 node quadrilateral isoparametric element was used. To visualize the advantage of
parallel processing, the method was implemented both, on a single processor IBM-RISC590

and on a Quadrics-QH1, a massive parallel SIMD machine with 128 processors.

Adeli H [15] reviewed various research papers published on parallel processing,
supercomputing and distributed computing since 1994, in his paper titled “High Performance
Computing For Large Scale Analysis, Optimization And Control”. The main focus of the
paper was on review of the journal articles published in three areas: analysis, optimization and

control. The review was divided into three main sections:

1.) Parallel processing on dedicated shared memory and distributed memory parallel

machines

Gummadi and Palazotto (1997) described geometrically non-linear analysis of beams and
arches with large displacements and rotations on a distributed memory Intel paragon parallel

computers. Watkins (1997) described fine and coarse-grained parallel methods for the

16

computation of real Eigen values encountered in buckling and vibration analysis of structures
on a distributed memory computer, a 32 processor nCUBE2. Parallel vector Cholesky and LU
decomposition methods for solving set of linear simultaneous equations were developed by
Agrawal (1994) utilizing parallel processing and vectorization capabilities of shared memory
multiprocessors such as CRAY Y-MP machines. Saleh and Adeli (1994) investigated various
multitasking approaches for optimization of large structures with maximum speedup
performance. Adeli and Cheng (1994) presented parallel augmented Lagrangian genetic
algorithm for optimization of large structures utilizing the multiprocessing capabilities of high
performance computers such as the Cray YMP 8/864 supercomputer. Topping and Leite
(1997) also presented parallel genetic models for structural optimization. Park and Adeli
(1997) presented a data parallel neural dynamics model for discrete optimization of large

structures such as super high-rise building structure consisting of thousands of members.

2.) Distributed computing on a cluster of networked workstations

Hudli and Pidaparti (1995) also discussed distributed finite element analysis of simple truss
structure using the client-server model and remote procedure calls on a cluster of SUN
workstations. Weinert and Eschenauer (1996) described a coarse-grained decomposition

strategy for parallel solution of structural optimization problems on cluster of workstations.

3.) Parallel computing and object oriented programming

Yu and Adeli (1993) presented an object oriented finite element approach for analysis of
complicated structural systems using an object oriented enhanced entity relationship model.
Modak (1997) described the design and implementation of an object oriented parallel matrix
class library in C++ for manipulation of matrices and solution of simultaneous linear

equations encountered in finite element analysis.

As per Sotelino E D’s [16] view, parallel processing is a rapidly evolving field and it is the
focus of intensive research worldwide. In past two decades, the development of algorithms for
structural engineering applications has received a boost due to the advent of parallel
computers. Considerable research is being done in order to rewrite the algorithms originally
designed to run on sequential machines as well as to develop new methods that take

advantage of the parallelism offered by the multiprocessing computers. Such algorithms

17

include parallel solvers (direct and iterative) for linear systems of algebraic equations,
techniques for the parallelization of the finite element method, and concurrent time stepping
algorithms for the solution of the equations of evolution. In structural engineering
applications, a prominent role is played by finite element method. Several avenues for
parallelizing this method have been proposed. They range from taking advantage of general-
purpose hardware in the perallelization of the method to the design of special purpose

hardware such as the finite element machine.

2.2 SCOPE OF STUDY

As the Finite Element Analysis can handle very well the geometry and material irregularities,
it is the most commonly used numerical analysis method for many of the engineering
problems. Also the parallel processing technique can be easily implemented to it. So in

present study, Finite Element Method is used for the analysis.

In the present study three different problems all having different type of elements, are selected
and analyzed using Finite Element Method. Of three problems, first is the Plane stress
analysis, second one is the plate bending problem and the third problem is the laminated
composite plate problem. These continuums are then discretized in to number of finite
elements such as CST elements for plane stress analysis, into Quadrilateral isoparametric
plate bending elements for plate bending problem and in Quadrilateral isoparametric
laminated plate elements for problem of laminated plate analysis. Whole continuum is then
divided into substructures in such a ways that number of elements in each sub structure
remains same (to maintain the work load on each processor). This is necessary to keep the
processing time of each process more or less equal. Each sub structure is then analyzed
sequentially as well as on parallel computers in network of computers. Detail of four

problems, selected in the present study, can be summarized as follows:

1.) First application includes the distributed plane stress analysis of rectangular plate having
circular hole in the center [25], as shown in Fig 2.1. Plate is subjected to uniform tensile
force on both the edges. As the analysis is plane stress analysis, Constant Stress
Triangular (CST) element is used to descritize the continuum. Due to the symmetry of the
plate w.r.t both x and y-axis, only the quarter plate is analyzed here. Plate is a square plate

having size 30 cm X 30cm and thickness of 2.5cm. Diameter of the hole is 2cm. Modulus

18

2.)

of elasticity of plate material is 2 X10* kN/cm® and Poisson’s ratio is 0.3. Intensity of
uniform edge tension force is 10 kN/cm?®. For problem under consideration, the quarter
plate is divided into 27504 number of elements. So problem is having total 13990 number
of nodes i.e. 27980 DOFs (2 DOF at each node). Further the plate is divided into number
of substructures to implement on parallel processing. In present problem, the plate is

divided into 3, 4, 5 and 6 substructures.

T~
—— 10 kN/em®
J— ——-—
J— ——-—
I e
I e
E - =
2 e | e E=20000 kN/cm>
The 2 CH - Polzon‘s Roatlo = 0.3
———] I Thlckhes=s = 2.3Cm
- -
— [——-—
i
K 20 CH o

Fig 2.1: Plate having hole in the center and subjected to tension

Second application includes the distributed analysis of circular plate, having hole in the
center, as shown in the Fig 2.2. Plate is subjected to uniform lateral load and it is fixed at
outer circumference and free at inner circumference. For descritizing the plate, eight
nodded quadrilateral isoparametric plate element is used. Due to symmetry of plate w.r.t
both x and y-axis, only quarter plate is analyzed. In present study, the ratio of outer
diameter to inner diameter is kept 3. Inner diameter of plate is 2.5m and outer diameter is
7.5m. For plate material, modulus of elasticity is 2 X 10® kN/m* and Poisson’s ratio is 0.3.
Thickness of plate is 0.Im. Intensity of uniformly distributed transverse loading is 20
kN/m?*. For present problem, the quarter circular plate is descritized into 1800 elements.
So problem is having total 5725 number of nodes and 17175 DOFs (3 DOF at each node).
Further the plate is divided into 3, 4 and 6 substructures to implement on parallel

computers. Analysis of each substructure is carried out on separate computer.

One more application using the same eight nodded quadrilateral isoparametric plate
element is also included. That is distributed skew plate analysis. Geometry of the same is
as shown in Fig 2.2. It is a simply supported plate supported on both inclined edges.
Loading is the uniformly distributed transverse load over entire plate. Modulus of

elasticity of plate material is 2 X 10® kN/m* and Poisson’s ratio is 0.3. Thickness of plate

19

is 0.2m. Here inclination angle is kept 60 degree. Inclined length of plate in x-direction is
taken as 10m and length in y direction is also taken as 10m. in present problem the skew
plate is divided into 3000 number of elements. So total number of node is 9221 and total
DOFs is 27663 (each node is having 3 DOFs). For parallel processing, further the plate is

divided into 3, 4 and 6 number of substructures.

m

Fig 2.2: Circular plate having hole in the center and skew plate

3.) Distributed analysis of laminated composite plate, as shown in Fig 2.3, is the third
application. For analysis of composite plate 8 nodded quadrilateral isoparametric element
is used. Plate is simply supported at all its edges and subjected to sinusoidal transverse
lading. Due to symmetry of plate w.r.t both x and y-axis, only quarter plate is analyzed.
Laminate plate that is selected for the analysis is a square plate having both dimensions as
100 cm. Plate consists of four laminates, each of 6.5 cm thick, so the total thickness of
plate is 25cm. Intensity of sinusoidal load is 10kN/cm®. Various material properties for

laminated plate are as follows.
Ei/E, =25 E;/Ey=1
Vi2=V3=Vi3= 0.25

Gl1/E2=0.2 G2/E2=05 G3/E3=0.2

For present work, laminated plate is descritized into 1600 number of elements. So total

number of nodes is 4961 and total DOFs is 29766 (each node is having 6 DOFs). For

20

parallel implementation, the plate is further divided into 3, 4 and 6 number of

substructures.

/ |
h/2

— — — — — A

S k4
S k2

-
=]

Fig 2.4: Laminated composite plate

21

CHAPTER 3 PARALLEL PROCESSING ISSUES

3.1 GENERAL

The art of parallel programming lies in decomposing a given problem, functionally and
according to the data distribution, across processors. Over the years, work in parallel
processing architectures have focused on a number of different issues and resulted in a range
of different approaches for solving them. The resulting architectures have been fundamentally
so disparate that the programming issues vary significantly across them. An algorithm that
gives a very high speedup on one processors architecture can give a very poor performance on
another. Even if only the MIMD class of parallel machines are considered, difference between
the shared memory and distributed memory machines force developers to adopt different data

function decomposition strategies for the same problem on these classes’ machines [24].

The fundamental concept behind high performance computing is to use more number of
resources to solve a given problem. But using more resources cannot speedup every task.
There are restrictions and dependencies to be considered. Based on such issues, computations

may be one of the following characteristics [28].

1.) Embarrassingly parallel computations

An ideal parallel computation that can be divided into a number of completely independent
parts each of which can be executed by a separate processor is known as embarrassingly
parallel computation or pleasantly parallel computation. Parallelizing these problems should
be obvious and requires no special techniques to obtain working solution. A truly
embarrassingly parallel computation suggests no communication between separate processes.
Each process requires different data and produces results from its input without any need for
results from other processors. This situation will give the maximum possible speedup if all the
available processors can be assigned processes for the total duration of the computation. The
only constructs required here are simply to distribute the data and to start the processes. The
SIMD architecture is appropriate for such processes. Example of such process can be given as
follows:

a:b+C d:e+f

22

Consider the above two processes, belonging to a single computation task. As the variables
used in both the processes are altogether independent of each other, both the processes can be
run parallely without having any effect on the final result. So such processes are called

embarrassingly parallel computations.

2.) Nearly embarrassingly parallel computations

The computations that require results to be distributed and collected and combined in some
way are known as nearly embarrassingly parallel computations. So in such computations,
initially and finally a single process must be operating alone. If dynamic process creation is
used, a common approach is the master-slave organization. First, a master approach will be

started that will initiate identical slave processes.

3.) Inherently sequential computations

The computations, in which the parallelism of processes is not at all possible, are known as
inherent sequential computations. This can be better understood by the following example:
a=b+c d=a*a

Consider the above two processes, belonging to a single computation task. In the first process,
two variables (b and c) are added and that value is assigned to variable “a”. While in the
second process, square of variable “a” is calculated and that value is assigned to variable “d”.
As in the above processes the value of variable “d” is dependent on the value of variable "a”,
it is necessary to modify the value of “a” before using it to calculate the value of “d”. So these

two processes cannot be run parallely and must be run sequentially. So this computation is the

example of inherent parallel computing.

3.2 COMPUTER ARCHITECTURES

Various architectures have been proposed and recommended by the researchers in the area of
parallel processing. Rather than having only a single instruction flow through the CPU
processing a single stream of data, the generalized architecture is now aiming for
multiprocessor executing possibly distinct streams of instructions and processing distinct data
streams (MIMD). The architectures having the simplest programming interface support have

become most popular [29].

23

Architecture for computers can be classified as follows:

1.) SISD (Single instruction single data)

2.) SIMD (Single instruction multiple data)
3.) MIMD (multiple instruction multiple data)
4.) MISD (multiple instruction single data)

Further the SIMD and MIMD architecture have both, shared and distributed memory

architectures.

3.2.1 SISD

This is the traditional sequential computer consisting of one processor, memory and one

communication channel as shown in Fig 3.1

—>

CpPU Data Memory

Fig 3.1: Sequential computer architecture (SISD)

As a parallel computer, this architecture has various shortcomings like memory, speed and
communication channel. With the present technology providing almost unlimited memory and

extremely fast processing units, the bottleneck is the communication channel.

3.2.2 SIMD

This can be viewed as the extension of the conventional sequential model. This architecture
overcomes the bottleneck in the SISD architecture by implementing multiple processors and
memory model working on single instruction set. However host communication may prove to
be troublesome for this architecture since each processor has to share the same

communication path through the pipeline.

The SIMD architecture is available in two forms, the distributed memory model and shared

memory model.

24

SIMD with shared memory

In this architecture there is more than one processor connected to single root processor and
sharing the same memory. As all processors have to share the same memory, when a
processor wants to access the memory, it will try to take over the bus and proceed as before.
However, the bus may not be available when one wants it because someone else is already
using it. So in this architecture, along with the host communication channel, the memory bus

may become a bottleneck since all processors have to share a common bus for memory.

SIMD architecture with shared memory is shown in Fig 3.2

Instruction stream Root

Processor

P2|_>|P3|_>|P4|_>|P5|
DS-1 ﬁ DS-2 ﬁ DS-3 ﬁ DS-4 ﬂ DS-5 II
0

Shared Memory

DS - Date stream P- Processor M- Memory

Fig 3.2: SIMD model with shared memory

It can be seen from the fig that the time taken by any processor to access memory is
independent of the processor. So this model is also called known as UMA (Uniform Memory

Access) model.

SIMD with distributed memory

This architecture is the modified form of the above model and shown in Fig 3.3. In this model
the bottleneck of memory bus is removed by assigning separate memory for each processor.

So the data needed by a particular processor can be stored in the memory of that processor so

that the processor does not have to go the common bus to access data. For example, processor

25

P1 can access A1 memory much faster than the memory A2, A3 or any other memory. In this
model as the time to access a memory location depends on whether it is attached to the

invoking CPU or not, this model is also known as NUMA (Non Uniform Memory Access)

model.
Instruction stream Root
Processor
—{ 1 e o e bl s |
DS—lﬁ DS—ZII DS—3II DS—4II DS—SII
(2] L] [ae] [
DS — Date stream P - Processor A- Memory
Fig 3.3: SIMD model with distributed memory
3.2.3 MIMD

This model is further the modified version of the SIMD model and overcome the host
communication bottleneck of SIMD model by introducing separate instruction stream for each
processor. Like SIMD the MIMD model is also available in two forms, shared memory and

distributed memory model.

MIMD with shared memory

As shown in Fig 3.4, this model has separate instruction stream for each processor. However
this system has one shortcoming, the common memory access bus. Thus the processor has to

queue to access the same area of memory.

MIMD with distributed memory

This model overcomes the shortcoming of common memory access bus of MIMD shared

memory model by assigning separate memory to each processor. In this model each processor

26

is provided with separate memory and connected with each other through instruction channel

to communicate with each other.

MIMD model with distributed memory is shown in the following Fig 3.5

IS-1 IS-2 IS-3 IS-4 IS-5

P1| P2| P3| P4| P5|

DS- lﬁ DS-ZII DS-3II DS-4H DS-SH

g

Shared Memory

IS — Instruction stream P- Processor DS — Data stream

Fig 3.4: MIMD model with shared memory

l l l

P P P
—> < > < > -«
A A A
A 4 A 4 A 4
P P P
—> < > < > -«
A A A
A 4 A 4 A 4
P P P
—> < > < > -«
M M M

Fig 3.5: MIMD model with distributed memory

27

3.2.4 MISD

This architecture has yet to be implemented.

3.3 PARALLELISM IN SEQUENTIAL MACHINES

Incorporation of various ingenious schemes has made sequential machines faster. The main
idea in all these schemes is to match the speeds of various components so as to utilize the
resources to their peak performance. For example, speed of memory access should be
matched with the speed of processor. When this is not achieved directly, use of techniques
such as interleaving of successive memory locations across memory devices is resorted to.
Matching of interfacing devices is needed so as to minimize the idle time of the faster device,
thereby achieving higher throughput. Various aspects related with such parallelism are as

follows [29]:

3.3.1 Multiplicity of functional units

The most primitive computer had only one arithmetic and logical unit in its processor.
Besides, its ALU could perform only one function at a time. The practical machines in use
today have multiple and specialized functional units that can operate in parallel. The CDC —
600 (designed in 1964) had 10 functional units built into its CPU. These 10 units were

independent of each other and could operate simultaneously.

3.3.2 Pipelining within the CPU

Various phases of instruction execution are pipelined, including instruction fetch, decode,
operand fetch, arithmetic/logical execution and storage of results. To facilitate overlapped
instruction execution through pipe, instruction pre fetch and data buffering techniques have
been developed. More than one instruction is in the process of execution in the processor. The
execution of multiple instructions is overlapped in time- even before an instruction gets
completely executed, another instruction may be in the process of being decoded, yet another

instruction may be getting fetched, and so on. Pipelining of task gives us temporal parallelism.

28

3.3.3 Overlapped CPU and 1I/0 Operations

Input and output operations can be performed simultaneously with the computational task by
using separate I/O controllers, channels or I/O processors. Direct Memory Access (DMA) is
used to provide direct information transfer between I/O devices and the primary memory.

The trickiest issue in the design of such system is that of bus contention. The advantage to be
gained by overlapping devices interface and computational tasks can get undone if both these
require the same bus to transfer the data. The potentially concurrent operations become
serialized due to the hardware resource contention. To reduce this bus contention, some

architectures employ redundant buses in system.

3.3.4 Hierarchical Memory system

Processors are generally orders of magnitude faster than the primary memory. The primary
memory is capable of data transfer rates, which are many times faster than most secondary
devices. A hierarchical memory system can be used to close up this speed gap. The topmost
level is the register files directly addressable by ALU. The cache memory can be viewed as a
buffer between processor and main memory. Parallelism in data transfer across the hierarchy
is commonly exploited for an improved throughput. For example, while data is transferred
from secondary memory to primary memory, some data may be simultaneously transferred
from cache to the CPU. This is possible since the data paths for these transfers are

independent of each other and hence there is no contention of access.

3.3.5 Multiprogramming and Time-Sharing

In a multiprogramming system, certain computationally intensive process can hog the CPU
and not release it for the other processes till the job is completed. In such cases, the response
time for the other process gets severely affected. To avoid this blocking of resources, the
concept of time sharing operating system was introduced. The time-sharing scheduler assigns
the CPU to process for fixed time slices in a round robin fashion. This way all processes that
are ready to run are given a chance of computing for the CPU and other resources. Time-
sharing of CPU across multiple processes gives rise to the concept of virtual processors. That
is, each processor is provided an environment as if it has a virtual processor exclusively for its

use.

29

3.4 PARALLELISM IN MULTIPROCESSOR MACHINE

While dealing with multiprocessor machine, two different terms should be clear in mind.
Multiprocessor and Multicomputer. A multiprocessor can be characterized by two attributes:
first, it is a single computer that includes multiple processors, second, process may
communicate and cooperate at different levels in solving a given problem. The
communication may occur by sending messages from one processor to other by sharing
common memory. A single operating system governs activities in such computers. While a
multicomputer is a collection of multiple interconnected computer system, each of which is an
autonomous machine having private local memory, resources and an operating system
controlling its operation, communication may take place across the computers by message

passing.

Depending on the cost incurred in communicating between processes running on the
processors in multicomputers and multiprocessors, these machines are also known as tightly
coupled parallel machines and loosely coupled parallel machines. In the former the cost of
communication is much lower than that in later. The contention of memory is much higher in
tightly coupled machines compared to loosely coupled machines because there is no shared

memory acrosS processors.

3.5 CHARACTERISTICS OF MULTIPROCESSORS

Following are some desirable characteristics of a multiprocessor machine to be used as a

parallel machine [29].

3.5.1 Process recoverability

If a processor fails, the process running on it should be recoverable. Another processor must
be assigned to the task and the process must be continued from the state where the process

failed.

30

3.5.2 Efficient context switching

Sometimes, the parallel programs executing on the parallel machines have processes that are
more in number compared to the number of processors in machine. In such a case, there is a
need of swapping the processes in and out of context. The processor must have efficient

mechanism to support operating system in switching the context efficiently.

3.5.3 Large virtual and physical address space

With the increase in the size of problem being solved on the parallel machines, there is a
growing need for large memory space and addressing capabilities. Problems like whether
forecasting, global illumination computation and computer vision require huge amount of

memory for effective and efficient solution.

3.5.4 Effective synchronization primitives

Multiple processes that constitute a parallel program need to cooperate to compute the results.
This is possible by sharing data and accessing shared data while maintaining its integrity. To
maintain integrity of data structures, often the access needs to be allowed only in exclusive
mode. This means all other processes must wait while a process is accessing the shared data

structure.

3.5.5 Inter process communication mechanism

There should be proper mechanism for communication between processes constituting
parallel program. The communication between cooperating processes takes place in the form
of signals, messages and interrupts. For example, a process can notify another cooperating

process of an event such as data_ ready.

3.6 DYNAMIC LOAD BALANCING

While executing a program to assign the unprocessed workload to available processors,
uneven distribution of work among processors and result in poor utilization of computing

resources. In this context, an effective dynamic load balancing and work scheduling scheme is

31

needed. To manage the load balancing problem, one seeks to apply an optimal work
scheduling strategy to transfer workload automatically from heavily loaded processors to
lightly loaded processors or processors approaching an idle state. The primary goal of
dynamic load balancing algorithms is to schedule workload among processors during program
execution, to prevent the appearance of idle processors, while minimizing interprocessor
communication cost and thus maximizing the utilization of the computing resources. A
common load balancing strategy is the “manager-worker” scheme in which a single
“manager” processor centrally conducts a group of “worker” processors to perform a task
concurrently. These parallel algorithms adopt a distributed strategy that allows each processor

to locally make workload placement decisions.

All distributed parallel algorithms of this type are basically composed of five phases:
workload measurement, state information exchange, transfer initiation, workload placement,
and global termination. Workload Measurement, as the first stage in a dynamic load balancing
operation, involves evaluation of the current local workload using some “work index”. State
Information Exchange makes the local information available to all other cooperating
processors, through inter processor message passing, to construct a global work index vector.
Transfer Initiation, after obtaining an overview of the workload state, first of all decides if a
workload placement is necessary to maintain balance and prevent an idle state. This is done
according to an initiation policy, which dictates under what conditions a workload transfer is
initiated, and decides which processors will trigger the load balancing operation. Workload
Placement is the next step of load balancing algorithm. Here the donor processor splits the
local stack into two parts, sending one part to the requesting processor and retaining the other.
Global Termination takes place when the globally optimal solution have been found, making

all processors idle.

3.7 OPERATING SYSTEM CHARACTERISTICS

There is conceptually little difference between the goals of an operating system for a
uniprocessor machine and that for a multiprocessor machine. In multiprocessor, there is an
additional complexity of handling multiprocessor. The increased complexity in the
relationships among the resources in a parallel machine results in difficulties in scheduling the
resources across competing tasks in the machine. The additional requirements of a

multiprocessor operating system are discussed below. An operating system that fails to

32

perform well in these respects tends to negate other advantages which are associated with

multiprocessing.

3.7.1 Load Balancing

The operating system must utilize the resources efficiently. This is commonly expressed in
terms of achieving a uniform balance of loads across the processors. The operating system

should schedule the subtasks such that there are no idle resources including the processors.

3.7.2 Scheduling cooperating processes

Parallel programs, which consist of concurrently executing tasks, must be scheduled such that
collectively they are able to use the resources in the machine, required to solve the given
problem. Scheduling half the subtasks of one parallel program and half the subtasks of
another parallel program, which cannot cooperate can be wasteful. If a parallel program needs
all these subtasks to be running and cooperating, then this can be achieved by maintaining a
hierarchy of processes in the sense of parent child relationship within the operating system’s
data structure. Scheduling of processes can then be done such that the processes belonging a

single parallel program are scheduled for execution together.

3.7.3 Graceful degradation in case of failure of one of the resources

A parallel machine having multiple resources of the same kind has high degree of fault
tolerance. Operating system should be such that the failure of one of the resources should not
result in a catastrophic system crash and able to reschedule the task that had been running on

the failed resource and continue the parallel program.

3.7.4 Communication scheme

Parallel program need to share data and intermediate results across subtasks during the
process for getting solution of the problem. To achieve effective cooperation among the
subtasks of a parallel program, the operating system must provide adequate facilities for
communication between tasks. These facilities vary depending upon whether the machine is

of shared memory type or distributed memory type.

33

3.7.5 Synchronization mechanism

To ensure integrity of the shared data across the subtasks of a parallel program,
synchronization between tasks is required. The shared data must be accessed under mutual
exclusion. The tasks may need to wait till some state is reached across all the tasks of the
parallel program. To achieve such synchronization, operating system should provide signaling

mechanisms.

3.8 PARALLEL PROGRAMMING MODELS

A programming model is a collection of program abstractions providing the programmer a
simplified and transparent view of computer hardware and software. Parallel programming
models are specifically designed for multiprocessors, multicomputers. Five such models are
described here. Parallel program is collection of processes or tasks. The models described

here differ in the way these processes share data, achieve synchronization and communicate.

3.8.1 Shared Memory Model

This model is generally easier to program. Multiprocessor programming is based on the use of
shared variables in commonly accessible memory for communication and sharing data.
Besides sharing variables in a common address space, communication also takes place
through software signals. Since multiple processors may attempt to access the shared data,
data memory management or locking is required to ensure the integrity of data and handle

conflicts.

Shared variables in a [¢«— (Process B)

(Process A) <+—» COMmMON memory
‘«— (Process C)

Fig 3.6: Shared memory model
This model is also available in the form of multithreading libraries. Various techniques are

available for scheduling of processes across the subtasks to be carried out to solve the given

instance of a problem. In such models it is the programmer’s responsibility to decompose the

34

problem effectively and employ either static or dynamic scheduling of processes for achieving

maximum parallelism.

3.8.2 Message Passing Model

Multicomputers employ message passing as the mechanism for inter process communication.
Two processes residing at different nodes communicate with each other by passing messages
over communication channel. The message may be instruction, data, and synchronization or
interrupt signals. The communication delay in message delivery is much longer than in case

of a shared memory model.

Message (send/receive)
(Process A) » (Process B)

(Communication channel)

Fig 3.7: Message passing model

Two types of message passing models have been implemented.

Synchronous message passing requires both sender and the receiver to be synchronized in
time for transfer of message. No buffering of message is done by the communication channel.
The receiver is always blocked waiting for the message to arrive, the sender also remains
blocked till the receiver receives and acknowledges the message. This mode of
communication is suitable only for tightly coupled message passing multiprocessors, where

communication delay overhead is sufficiently small.

Asynchronous message passing does not impose blocking on the sender. The message gets
buffered by the communication channel and is delivered to the target processes when they
choose to look for the message. This mode of communication is suited for multicomputers

made up of networked autonomous machines.
Message passing model does not require mechanism for mutual exclusion for access to shared

data because there is no way for processors to share each other’s address space for data

exchange. All data sharing is done through message passing.

35

3.8.3 Data Parallel Model

It is one of the simplest approaches to program and most appropriate for SIMD machines
because the data is distributed to the processors and each executes the same set of
instructions. The programming model for data parallel SIMD processors is an extension of the
sequential programming. For example Fortran90 is specifically tailored for data parallelism.
Data parallel programs require the use of pre-distributed data sets. Thus choice of parallel data

structure plays a significant role in data parallel programming.

3.8.4 Object oriented model

Mapping of execution units to object is naturally achieved in this model. Objects are
dynamically created and manipulated. Processing is performed by sending and receiving
messages among the objects. Concurrent programming models are built up from low level
objects such as processors, threads, queues into high level objects like monitors and program

modules.

3.8.5 Functional and Logic Model

A functional programming language emphasizes the functionality of a program and should
not produce any side effect during execution. There is no concept of storage, assignment and
branching in functional programming. The lack of side effects opens up much more
opportunity for parallelism. The evaluation of a function produces the same value regardless
of the order in which its arguments are evaluated. Thus arguments in dynamically created
structures of a functional program can be evaluated in parallel.

Logical programming is based on predicate logic and is suitable for knowledge processing
dealing with large database. This model adopts an implicit search strategy and supports
parallelism in the logic interface process. A question is answered if matching facts are found
in the database. Two facts match if their predicates and associated arguments are the same.
The process of matching and unification can be parallelised under certain conditions. Both
functional and logical programming models are used in artificial intelligence applications

where parallel processing is very much in demand.

36

3.9 SOFTWARE TOOLS

Many software tools have been developed and used. Newer machines are getting more and
more powerful to support sophisticated tools for development of parallel programs for

realistic applications. Some of such tools are discussed here.

3.9.1 Parallelising Compilers

Many years of research and development has been expended on investigation of theory for
automatic parallelism of code. Techniques like dependency analysis are used to detect those
segments of a code that can be executed in parallel, and then the code is generated to exploit
parallelism in the architecture of the machine. The programmer is free of the responsibility of
detecting and analyzing the parallelism in the solution to the given problem and then coding

accordingly.

3.9.2 UNIX IPC

The inter process communication (IPC) facilities in UNIX operating system lets the
programmer develop programs which, when executed run as a collection of cooperating
processes. The IPC facility provides a set of machines to share data, control access to shared
data, synchronize process and dynamically create and destroy processes. The process can
share certain block of memory for sharing and exchanging data while cooperating.

Synchronization is achieved by using signaling mechanism supported by operating system.

3.9.3 Threads Model

Conceptually, multithreading is similar to multiprocess programming using I[PC. The
difference is that a multithreaded program has a single process that manages multiple threads
of control executing asynchronously. The thread library provides functional calls to create
threads, control threads, terminate threads, control access to shared data through locking
mechanism, generate events and wait for events.

The practical advantage of using threads is that threads are lightweight process. In

multiprocess model multiple memory images of the program exist in the core while in

37

multithreaded program this overhead is avoided by sharing the same core image of the

process. Also context information for each thread is also maintained.

3.9.4 PVM and MPI

PVM and MPI are two competing and functionally equivalent tools for parallel programming

using message passing.

PVM

PVM is a portable message passing programming system designed to link separate Unix host
machines to create a virtual machine which is a single computing resource. The PVM system
is composed of two parts. The first is a daemon program, which runs on all machines that are
part of the virtual machine. This permits the user to run a PVM application at a Unix prompt
from any of the machines. The second part of the system is a library of PVM interface
routines. This library contains user callable routines for passing messages, spawning
processes, coordinating tasks and modifying the virtual machine. Application programs can be

written in a mixture of C, C++ and FORTRAN but must be linked with the PVM library.

A virtual machine across a networked collection of computers is realized through a layer of
PVM daemons, running on each host. These daemons provide certain functionality such as
addressing hosts, addressing of tasks, mapping of tasks to hosts, routing of messages,

scheduling tasks on hosts for execution etc. Fig 3.8 shows the architecture of a PVM.

Applications

Virtual Machine

pvmd pvimd

Fig 3.8: Parallel Virtual machine architecture

38

MPI

In past, as different hardware manufacturers developed their own distributed memory parallel
computers, they also developed and implemented their own message passing libraries. So, the
programmer was tied to particular computer architecture. This lack of portability lead to a
number of public domain message passing libraries being developed, each with their own
software implementation. The natural progression from this therefore was the definition of a
standard message passing library. In 1992, an MPI forum was established, encompassing
hardware and software vendors and researchers from academies, industry and U.S.
government to address this issue. By 1994 an initial MPI standard was published and since
that time many efficient implementations have been released for all types of parallel

architectures.

MPI (Message Passing Interface) provides a standard set of definitions, which allow parallel
programs to be written under distributed memory paradigm. These definitions describe a
library of over 100 C and FORTRAN subprograms, which are now supported by almost all
parallel computer manufacturers. In addition, numerous commercial and public domain
implementations of MPI exist, which allow clusters of workstations to be used as a single
parallel computing system. The main purpose behind writing such specifications is to develop
some software, for the first time since the advent of parallel computers, which is truly portable

between different parallel architectures.

When working with a distributed memory computer, it is necessary to ensure that each
processor has its own copy of each data item that is required for each computation, performed
by that processor. Often, some or all of this data will depend upon the result of a previous
computation, which may have been made on one of the other processors. Therefore, some
mechanism is required for the transfer of copies of data between processors. This is achieved
through the message passing whereby each processor is given the ability to send and receive
copies of data to and from other processors. This requires the cooperation of each processor
that is involved in communication, whether as a sender or receiver or both. This system
provides an API (Application Programming Interface), which permits a standard to develop
parallel programs with standard message passing. A carrier such as PVM is required for

distinct implementations if the operating system does not support the message passing.

39

3.9.5 DCE-RPC, Threads

Distributed computing environment (DCE) is a standard proposed by the open software
foundation for design and implementation of distributed systems. The standard provides a
specification of tools and services that implementor of DCE must provide for the development
of distributed computing system. The major components of DCE are RPC (Remote Procedure
Call). Time/directory/file services, access authorization features, threads package and
interface definition facility. These components provide a formwork for organizing distributed

resources into a client server oriented network.

RPC provides a procedural programming abstraction for design and implementation of
distributed programs. The services available on geographically distributed machines can be
accessed by calling a remote procedure. To bring this interface, the DCE framework requires

daemons running on the distributed machines for routing and forwarding data.

3.9.6 CORBA

CORBA (Common Object Request Broker Architecture) is a set of standard mechanism for
naming, locating, and defining objects in a distributed computing environment. The formwork
provides an object-oriented abstraction for the design and implementation of a distributed
computing system. The entire system consists of client server objects, which communicate
through the object request broker (ORB). ORB is a set of distributed processes running on

different machines and coordinating the communication between the objects.

3.10 PERFORMANCE MEASUREMENT OF PARALLEL PROCESSING

The objective of parallel or distributed processing must be to execute a problem at greater
speed and to solve large problems with greater or more dedicated idealization. The

performance measurement of parallel processing and other factors affecting its performance

are as follows:

40

3.10.1 Granularity

To achieve improvement in speedup through the use of parallelism, it is necessary to divide
the computation into tasks or processes that can be executed simultaneously. The size of a
process can be described by its granularity. In coarse granularity, each process contains a
large number of sequential instructions and takes a substantial time to execute. In fine
granularity, a process might consist of a few or perhaps single instruction. The granularity
must be increased to reduce the cost of process creation and inter process communication. For
message passing, it is desirable to reduce the communication overhead because of the
significant time taken by inter computer communication. This is especially true for the

network of workstations.

Granularity = Computation time / Communication time

It is very important to maximize the computation / communication ratio while maintaining

sufficient parallelism.

3.10.2 Speedup

A measure of relative performance between a multiprocessor system and a single processor

system is the speed up and defined as:

S = Toeq / Tn

Where, Tneq is the time taken by the code to execute on a single processor and Ty is the time

taken for the same code to execute on a parallel system having N processors.

Theoretically a problem should run N times faster on a network containing N processors than
on a single processor. In reality, the speed up achieved are less than the theoretical values
owing to the increase in the communication time with the increase in the number of
processors. In addition any load imbalance in the problem will result in less than optimum

performance.

41

3.10.3 Efficiency

The efficiency of the parallel system for a given algorithm is defined as:

E=S/N

Where, S is the speed up and N is the number of processors.

Efficiency is given as percentage. Efficiency gives the fraction of the time that the processors
are being used on the computation. If E = 50%, the processors are being used half the time on
the actual computation, on average. The maximum efficiency of 100% occurs when all the

processors are being used on the computation at all times and the speed up factor would be N.

3.10.4 Overhead

There are several factors that will appear as overhead in the parallel version and limit the

speed up. These factors are:

1.) Periods when not all the processors can be performing useful work and are simply idle
(load imbalance).
2.) Extra computations in the parallel version not appearing in the sequential version

3.) Communication time for sending message

3.11 SUMMARY

In present chapter various aspects of parallel processing have been discussed. These aspects
include the computer architecture and their suitability with respect to parallel processing,
possible way of getting parallelism in sequential machine and parallelism in multiprocessor
machine, characteristics of multiprocessor computer for parallel processing. Concept of load
balancing has also been discussed in present chapter. Along with these issues, some other
issues like operating system characteristics for parallel processing, parallel programming
models and software tools for parallel programming have also been discussed. And the final

part of chapter includes the method of performance measurement of parallel processing.

42

In parallel processing, it is necessary that each computer should have copy of required data.
Also it is necessary to maintain load on each computer. So frequent data transfer is one of the
most important aspect of parallel processing. In order to achieve this task of data transfer
various software tools like PVM and MPI are needed. but use of these libraries require
knowledge of some concepts of parallel programming like data communication, process
forking, process joining, and data synchronization etc. Moreover it requires special debugging
for testing the parallel application. Generally, engineers and mathematicians may not be
expert in these concepts of parallel processing. In such condition, implementation and
performance measurement of parallel processing becomes difficult. So it is the expectation to
have some application software, which can provide easy way of implementing parallel
processing over network of computers. WebDedip is one of such user friendly distributed
processing environment, which helps the user to develop parallel application easily over a
network of heterogeneous system. Various aspects of WebDedip environment are discussed in

chapter 4.

43

CHAPTER 4 WebDedip ENVIRONMENT

4.1 INTRODUCTION

As in the parallel processing, processes are executed simultaneously on different computers,
connected through LAN, frequent data transfer is necessary for effective performance. These
data transfer takes place through messages. Also for load balancing, process starting, and
process termination, effective message passing system is necessary. Therefore to achieve
estimated performance, suitable message passing tool is required. PVM and MPI are two of
such tools. But use of these libraries requires some concepts of parallel programming like data
communication, process forking, process joining, and data synchronization etc. moreover it
requires special debugging technique for testing the parallel application. Generally, engineers
may not be expert in these concepts of parallel processing. In such condition, implementation
and performance measurement of parallel processing becomes difficult. So it is general
expectation to have some application software, which can provide easy way of implementing
parallel processing over network of computers. WebDedip is one of such user friendly
distributed processing environment, which helps user to develop parallel application easily

over network of heterogeneous system.

4.2 WebDedip OVERVIEW

The WebDedip has three tier architecture; GUI, DedipServer and Agents, as shown in Fig 4.1
The GUI is the web enabled graphical user interface to make the entire user interaction truly
system independent. It supports various Java Applets for application configuration,
application building, application operation initiation, application progress monitoring, and
session controlling. The user initiates the interaction by visiting a predefined site using a
standard browser. The standard web server loads the required GUI on the web browser. It has
a back-end DedipServer running on the web site. When the GUI submits the request to the
DedipServer, it reads the application configuration information from the configuration file.
The DedipServer initiates the execution of the first process in the interdependency chart.
Normally, most of the applications have a single starting process. If any application has
multiple starting processes, it initiates execution of all such independent processes. It informs
the agents on the target node to start the execution of the process. The agent sends the status

information back to the DedipServer when the process is completed. The DedipServer finds

44

out the dependent processes on the successful completion of a process and initiates the
execution of each such process. The required files are transferred from one node to another.
WebDedip has a callable library in Java to interface with the FTP server that helps in
transferring files. The required process is automatically inserted in the configuration when IP
designer inserts the 10 dependency information between two processes. The DedipServer
stores complete information about all the applications configured on the web site. The
DedipServer exchanges information with the Dedip Backup Server making the model fault

tolerant.

The agent accepts requests from the DedipServer, executes them and provides the status
information when completed. It has process building (compilation), execution, and monitoring
capabilities. It can schedule multiple processes in parallel. It does not control the
synchronization among the parallel processes; instead it depends on the DedipServer for this
job. It treats each process as a single independent entity. The WebDedip not only caters to the
requirements of the application designer, but also addresses all the requirements of the

operation manager as well as operators.

Browser based GUI Dedip Server Backup Dedip Server

Initiates
| Loads GUI

v

v

Submit request

Responds

System - 1 System - 2 System - 3
— _/
.Y
Dedip agents

Fig 4.1: Configuration of WebDedip

45

The application configuration and building is a privileged task, carried out either by the
application designer or operation manager. During the regular operations, the operator can
initiate any required application, monitor progress, do error handling, and terminate the

application, if necessary.

Object-oriented modeling (implemented in Java) is used for the design of the WebDedip. The
application is modeled as an object while the process is modeled as an embedded object. The
object inter linking capability is used to maintain interdependency information for an
application. Java distributed object architecture is used along with the object serialization for
network communication among GUI, DedipServer and agents. Hence, WebDedip can be used
on a LAN or on Internet. Agents may run on any system over Internet. On start, an agent
makes connection with DedipServer on a predefined port and volunteers for computation
workload. The Windows-explorer is used as a metaphor in developing the navigation GUI due

to its popularity and ease of use.

4.3 INSTALLATION OF WebDedip

The basic requirement for implementation of parallel application is the network of computers,
which should contain sufficient computers to meet user’s requirement. One computer is made
DedipServer. Depending upon the user’s wish one computer should be made
DedipBackupServer. BackupServer is optional. In case of failure of DedipServer, all the
activities allotted to DedipServer will be automatically transferred to the BackupServer and
BackupServer will take care of it. Thus more safety can be assured by having
DedipBackupServer. Other than DedipServer and BackupServer, Client machines are needed.
Number of client machine depends upon the user’s need. Various aspects related to
WebDedip environment such as hardware and software requirements for Server and Slave
machine, components to be installed, and various configurations that has to be made and
installation of DedipServer and DedipAgent are dealt in brief in coming topics. Also the steps

to be followed to implement parallel application are discussed.

46

4.3.1 Requirements for WebDedip

Server machine

As far as the hardware requirement of server machine is concerned, minimum Pantium-1
processor is must with minimum of 64 MB RAM. Dedip itself does not require any
significant disk space however it requires disk space in the Dedip area as per the respective
applications requirements. DedipServer can be installed on any operating system but
Windows is preferred. Various software needed for server machine includes JRE-1.2 and later
(Java Runtime Environment), JDK-1.2 and later (incase user want to compile the code), Web

Server (IIS 4 is preferred), Jakarta Tomcat 4.0 or higher and FTP server.

Slave machine

Hardware requirement of Slave machine is same as the Server machine i.e. Pentium-1with
minimum of 64 MB RAM. Like Server, any operating system can work on slave machine.
Software requirement of slave machine include JRE-1.2 and later (Java Runtime

Environment), JDK-1.2 and later (incase you want to compile the code) and FTP server.

Components

WebDedip needs the following components to be installed:
Dedip server on server
Dedip server on Backup server (optional)

Dedip Agent on slave machine

Configuration

It has following configuration requirements at SERVER and Backup SERVER.
Web Server configuration
FTP server configuration

TOMCAT server configuration

It has following configuration requirements as Slave Machine.

47

FTP server configuration

Web server configuration

User has to set web root path. It is preferred on drive other than OS drive. So if drive D is

used for web root path then wed root folder will be located at D:\inetpub\wwwroot\.

FTP server configuration

To configure FTP server first of all it has to be installed by running eftpserver.exe file. After
completion of installation process, user has to create user account. Here user name is
WebDedip and password is ‘hareshQ’. To set home directory user has to select
D:\inetpub\wwwroot\facility\dediparea folder. In main setting option user has to select various

options to suit the requirements.

DedipServer installation

DedipServer is developed using Java. DedipServer has to be installed on SERVER. It has

following components.

1.) Dedip packages
Dedip
ftp
sharableObjects
2.) Dedip configuration files
3.) Dedip area
4.) HTML files

Dedip packages installation and configuration

Various Dedip packages are installed from class files. Following steps can configure these

packages:

1.) Create “facility” folder under web root directory (D:\inetpub\wwwroot)

48

2.) Create “classes” folder under “facility”.

3.) Extract DedipClasses.zip to D:\. Path information is saved in the zip file.
Hence, following directory structure will be available.
D:\inetpub\wwwroot\facility\classes
SharableObjects — containing class files
ftp — containing class files
Dedip- containing class files
Icon- contains imported image files
Config-contains two important configuration files.
-dedip.inf

-dediparea.inf

4.) Create “DedipArea” folder in webroot directory\facility. So it will

D:\inetpub\wwwroot\facility\DedipArea

be at

5.) Extract Sample test application from DedipArea.zip to D:\. Path information is saved in

the zip file. Hence, it will copy the files under home directory. If user doesn’t want to

extract sample test applications, he/she has to extract at least following:
D:\inetpub\wwwroot\facility\DedipArea\SessionInformation

D:\inetpub\wwwroot\facility\DedipArea\lib\fileopen.c

6.) Open dedip.inf, located at D:\inetpub\wwwroot\facility\classes\Dedip\config
o The first entry defines the DedipArea path. The default value is
d:\inetpub\wwwroot\facility\DedipArea
¢ The second entry defines the Dedip Icon directory. The default value is
facility/classes/Dedip/icon
e The third entry is the server IP address.

e The forth entry is the Backup Server IP address.

7.) Open dediparea.inf, located at D:\inetpub\wwwroot\facility\ classes\ Dedip \config.
Each row contains three fields
e The first field is the machine IP address
e The second field is the physical location of DEDIPAREA

set to

set as

49

e The third entry is the operating system of the machine.

To configure HTML files, user has to extract DedipHTML.zip to D:\. It will creats following
directory structure.

D:\inetpub\wwwroot\facility\html

D:\inetpub\wwwroot\facility\htmI\WebDedip

DedipAgent installation

DedipAgent is developed suing Java. Is has to be installed on slave machine. It has following

components.

1.) DedipAgent packages
Dedip
ftp
SharableObjects
2.) Dedip configuration files
3.) DedipArea

DedipAgent packages installation and configuration

Various DedipAgent packages are installed from class files. Configure can be done in the
same way as it is for DedipServer machine. Various steps to be followed to implement an

application on WebDedip can be summarized as follows:

1.) To start the WebDedip Session:
To start the session, user needs to start DedipServer on server and DedipAgnet on all slave

machines. If BackupServer is made then it also has to be start.

2.) To start DedipServer
The DedipServer has to be run on Server machine. It can be run from DOS prompt. In
DOS prompt following command has to be given to run DedipServer.
cd D:\inetpub\wwwroot\facility\classes

java —classpath . Dedip.DedipServer

50

3.) To start DedipAgent
User needs to start DedipAgent on all slave machines. Same as DedipServer, DedipAgent
can also be run from DOS prompt. Following command will start the DedipAgent.
cd D:\inetpub\wwwroot\facility\classes

Java —classpath . DedipAgent.DistScheduler

4.) To start DedipBackup server
If Backup Server is made then Backup server can be run from DOS prompt by following
command.
cd D:\inetpub\wwwroot\facility\classes

java —classpath . Dedip.DedipServer —Backupof “SERVER_IP”

5.) To configure new application
New application can be configure by following steps:
1.) To configure new application user has to open WebDedip home page
(http://SERVER _[P/facility/html/WebDedip)

2.) Click on the ClientApp. It will open the GUI in new window.

3.) Click new application button. It will open a dialog box. In which user has to give
application name and description. Select the SAMD option. After clicking OK, user
can see the application folder on left hand panel of GUI window.

4.) On clicking the application icon, it will appear in the right hand panel of GUI.

5.) Right click on application icon will show a popup menu. From that menu user has to
select config-> Create Config File. It will display a dialog frame with button matrix.
The default size is 11X11. User can change the size of matrix by entering the values in
matrix field.

6.) When a first row button is clicked on the button matrix window, a dialog box will
appear, showing option for Process Detail Form and File Transfer Form. First user has
to select Process Detail Form. This will open the Process Detail Form. Various process
details such as process name, node on which the process will run and expected time
for process has to be filled in this form. After completing process detail form, for first
row, another process form has to be filled in third row of matrix. One row should be
left between two processes for file transfer process. After filling details for processes,
user has to give file transfer information. This information includes, the source and

destination process, file name, approximate file size and type of file (i.e. input,

51

intermediate or output). In this way the basic structure for the application will be

ready. Now application is ready to built.

6.) To build the application
Right click on the application icon will be shown the popup menu, having option build.
Selection of build option will show a new window. User can build the application either
from source or from executables. In case of build from executables, the Dedip will
transfer the executables on the target node in appropriate directory. In case of build form
source code, the Dedip will transfer the complete source code directory on target node and
ask remote DedipAgent to compile code using buil.bat file. Once application is built

successfully, user has to click ready button in build dialog box.

7.) To run configured application
After building application successfully, the application icon will be disappeared from right
hand panel. So on clicking the application icon on left hand panel of GUI, again it will
appear in the right hand panel and right click on application icon will open a popup menu
containing an option for run. Selection of run option will start execution of application as

per configuration.

8.) To monitor/control the progress of running application
The status of the running application can be known by opening the WebDedip home page
(http://SERVER_IP/facility/html/WebDedip). From home page user has to select Operator

Console. It will open an operator GUI in new window. Session tab has to be clicked to get
summary report of the session. Selection of application from the table and then application
tab will give the details about application status.

User can abort/ suspend/ resume/ restart an application. To do so user has to click on the

session tab. Select the application and then click button of desired action.

9.) User can terminate the DedipServer using manager console. It provides three level of

termination.

Immediate: 1t kills all processes running on different slave machines.

52

Process wide: It waits for all processes currently running on different slave machines. Then it
terminates. It disables the DedipServer to take new application for processing during the

period.

Application wide: It waits for all processes currently running and pending for initiated
application. Then it terminates. It disables the DedipServer to take new application for

processing during the period.

The DedipServer is capable of restarting the previous session from the point of termination so
that loss of processing power is negligible. It can restore the session even in case of Server

System crash.

4.3.2 WebDedip Rules

When one runs his/her application through terminal window, it is known that where are input
files, intermediate files and output files. WebDedip has to handle the same. So WebDedip
suggests to use input directory for input files and intermediate directory for intermediate and

output files.

Furthermore, user may wish to create multiple instances of application (i.e. run his/her
application more than once simultaneously on different input data). This mode is called Single
Application Multiple Data (SAMD). As intermediate files are created in intermediate
directory, files will be overwritten by another instance of the application. It is very difficult

for user to handle such case.

WebDedip provides a simple solution for this problem. User has to follow the following steps:

1.) Insert the following code just after the include statement

FILE *fileopen();

2.) Insert the following three lines in the beginning of main function
Strepy(DeipArea,argv[argc-3]);
Strepy(Application Name,argv[argc-2]);

Counter = atoi(argv[argc-1]);

53

3.) Use “fileopen” function provided by WebDedip to open file instead of stdio.h routine. The

fileopen.c is lying at DedipArea\lib on all slave machines.

For example,
99 99_99

fl=fileopen(“Testi.inp”,’r”,DedipArea,ApplicationName,counter,”’input’”);

fl1=fileopen(“Testl.”,”w” ,DedipArea,ApplicationName,counter, ’intermediate”);

The first two arguments are the same as that of “fopen”. The next arguments are that are
supplied by WebDedip to user’s process as argument to main function. The last argument
mentions whether the file resides in “input” or “intermediate” directory.

The “fileopen” function does the following:

1.) Prefix the “DedipArea/Application /input” to file, if last argument is “input”.

2.) Prefix the “DedipArea/Application /intermediate” to file, if last argument is
“intermediate”. It also concatenates ”_XX" as the end of file name. Where XX represents
the number of execution of application. Means user can create 99 instances of his/her
application simultaneously.

4.4 PARALLEL IMPLEMENTATION

Sequence of processes for parallel implementation of an application can be enumerated as

follows:

Load GUI

As a very first step, user has to initiates by submitting the request for loading GUI. User can

load GUI using web browser. Sequential steps for loading GUI are shown in Fig 4.2

54

€1 bitr:/ 1222 2228 51 Macilty

222.222.8.51 - /facility/

[To Parent Directory

11/28/03 12:08 AN <dir> classes
11/28/03 12:07 AN il
11/28/03 12:03 AN =dirf
11/28/03 12:08 AN <dir>g

7/5/04 12:58 AN <dir> paresh

(a)

‘Html/ - Microsoft Internet Explorer

[To Parent Directory]

11/28/03 12:08 LM <dir> _wti cnf
1/2/03 5:37 PN 903 Clientipp
1/2/03 5:37 PM T5Z

1/2/03 E5:38 PN 895
11/28/03 12:08 AM <dir

@ hittp: A/ 222,222,851 facility/Html/

2/11/02 4:53 PN 29269 Imagezli.gif
2/11/02 4:53 PN 31427 Imagezd.gif
2/11/02 4:57 PN 29263 Imagez5.gif
2/8/0z2 Z:45 PN 32771 Imaged.gif
2/8/02 Z2:45 PN 259411 Imaged.gif
2/8/02 Z2:45 PN 35021 ImageS.gif
2/8/02 Z:46 PN 35084 Imaget.gif
2/8/02 Z:46 PN 32830 Image?.gif
z/8/02 Z:46 PM 26077 Imaged.gi
z/8/02 Z:46 PM 24502 e St
2/7/02 12:32 AM 550

(©)

After giving the address of
Web server in web
browser, as a first step user
has to select this option

After selecting the Html
option, this page will
open from which user
has to select WebDedip

As a next step user has to
select index.htm option

Fig 4.2: (a) (b) (c¢) Loading GUI for WebDedip

55

Creating new application

Selecting the New App option from the client app window can create new application. Details

to be filled in New App form are as shown in following fig.

WehDedip - Microsoft Internet Explorer

@ http: /4222 222 8 51 HacilityHirl Av'ebD edipindes. htm Aft.er sele.Ctlng lnd.ex'htm
option this page will be
Web Based Development Environment { displayed from which user
has to select ClientApp
= _ option

Horme Welcome to the WebDedip (Weh-Bas

Cenis Processing, Although it was developed

SIEAbE m nature. 1t 15 equally apphcable tor oth

CDETATor Console Engineening and "Web Based Client- et

Manager Consele

Installation Guide It has DedipServer running on the serve

GUI

Various applications,
already created are listed.
To create new application,
following steps have to be
followed.

@ hitp: /4222222 8.51 facilitgHtml/Clientdpp.html

NewFolder | Newhos |

All Folders J' Certert of Choogén Directory
D c:.l’lnetPub.i\nnwuroob‘facility.l’DedipAre Mame
Q dizplan
D dizplan3
Q dizpland
i |1
g paresh
Q partha\rJ

List of applications

Al Folders Ji CoEent of Choosen Directory

D c:.l’lnetF'ub.i\wwuroot"facility.l’DedipAre Mame
D displan
D displan2
D displand
-] ue
D paresh
D parthav

To create new
application, New App
option has to be selected

(©)
Fig 4.3: (a) (b) (c) New application creation

56

Mame displan3

Description distributed finite elem
lcanic Mame |:|
5

—| SAMD On

Path

New application form

-] paresh

Fig 4.4: New application form

Application Configuration

The application designer has to first decide the configuration of his/her application. It depends
on the distributed resource requirement, parallel processing requirement, input/output of each
process, etc. The WebDedip supports a nice GUI for the same as shown in figures. Figure
shows the overview of the application. The detailed information about each process is shown
in figure. The detailed information about file transfer process is also shown in figure. The
typical interdependency chart, generated interactively, is shown in figure. The line joining two
processes shows their interdependency in top-down model. The input output dependency, if
any, is a part of this interdependency and it can be easily configured. User can modify his
application configuration file any time by selecting the modify configuration option as shown

in fig. The effect of the modification will be applied on next execution of the application.

To configure a new
application for the first
time, user has to select
create config file option
from configure option.

}--D dizplan
]—-D displan3
.D input
D intermediate
'D output
]--D laminatad

Fig 4.5: Configure new application

57

E;a Process Detail Window

Kindly copy all your source code files to given path N N
ciinetPubiwrootifacilityDedipAre afdisplan 3fplanalisour Typlcal process detail

form

Frocess Mame |p|ana1
Use DedipArea path in build.bat:

Node |222.222.8.51

Exec. Time (hh:mmiss) |DD:DD:1D

Process Type : |Non-Interactive

IO Dependency

Terminal 1D : |Mone

Files :

Depends on | |

Dependent Processes |DTHS1,DTH82,DTH83

Execution Type : |Mormal-Executable

Source Process Name: Typical ﬁle tl'al‘leel‘

_— . from ShOWil’lg details to
Destination Process Name:
be filled in this form

Number of Files:

Size {in KB) Type

Intermediate

User can modify the
configuration of
application at any
stage by selecting this
option

Fig 4.8: Modify configuration file

58

I= Apphtanun Detail Window

Appllcatlon cinetPubdasesaeroatifaciityDedip A reaidizplans Grid Size (n*m) -

e e e
-r-r:—
=T==
TT==
w _l

Fig 4.9: Application detail form

Application building

Application detail
form showing
complete
configuration of
application using 3
substructures

An application consists of many processes. All these processes need to be compiled on the

target node. The WebDedip has automated all these compilation. The configuration

information has all the required details about each process. The DedipServer copies the source

code & make-file, required to build a process, on the target node in a predefined temporary

area. It then requests the agent on the node to build the process using the make-file. It carries

out this task for each process given in the configuration. The agent creates designated

directory and preserves the executable in it. The application designer can build the processes

externally on all systems in case he is not willing to give the code. The GUI provides

necessary support for such external readiness indicator.

59

Application can be
built from executables
‘ou Can Build Application either from Source Code ar from Executables by selecting this Opti()n.

Then Click The 'Ready' Button. Same can alSO be bUilt
using source code

! 5 Build Application

ook

il
=
[t

(a)

~ E Build Application

fou Can Build Application either from Source Code or from Executables
Then Click The 'Ready' Buttan.

After building the
application
successfully, user has
to select READY
option.

= I

(b)

Fig 4.10: (a) and (b) Build application

Application execution and monitoring

The operator can start execution of any application from any machine on the net using the
standard browser. GUI displays the configured applications to the operator for selection.
Operator can start/abort/suspend/resume an application. Figures show the GUI for session and

application progress information.

60

After building the
application, it can be run

folders

e
-g planaz24
-D planazs
-D plana3

-D planadi
ﬁ planagz
-D planad3
-D planads
-g planads

| Run ’

by selecting run option.

Fig 4.11: Run application

After completion of
process successfully,
time required for
individual processes
can be noted by

Welcome to the WebDedip (Weh-Based D eve
Processing, Although it was developed for imag
in nature. It is equally applicable for other fields t

selecting Operator
Console option from
main window.

Fig 4.12: Web browser page to open operator console window

T | —————
Session ld: o1 |
Abort Actions Restart
Resume
| View Output... | | View Error... |

Sessi

Sr. Applicar Total Running [Suspended Mormal | Abnormal | Pending | Required | Current Status | |
1 displan3...] 0 | 0 0 required current Mormal ... |~

|

User has to select application
option to get the complete
information for latest run of
application

Fig 4.13: Operator console window

61

Session ld: 01
Abort Actions Restart
Resume

| View Output... | | View Error... |
Application: displand Counter: 10

Sr. | Process Mame | Mode Mo, | Start Time | Expected Time | End Time | Status |
1 plana3 2222228451 233454 23:35:04 23:36:56 MormalComplet.. |«
2 DTHS12 222222851 23:38:47 23:38:47 23:39:05 MarmalCorplet... |52
3 DTHS11 222222851 233844 23:38:44 23:39:1 MarmalCaomplet..
4 DTHS10 222222851 233834 23:38:38 23:38:58 MormalComplet..
5 DTHSS 222222851 23:36:56 23:36:56 233718 MormalCormplet..
3 DTHSE 222222851 23:36:496 23:36:496 233716 MarmalComplet..
7 DTHSY 222222851 233656 23:36:56 233712 MormalComplet..
3 DTHSE 222222851 233413 233413 233446 MormalComplet...
g DTHSS 222222851 233400 23:34:00 2334:28 MormalComplet...
10 DTHS4 222222851 233413 233413 23:34:54 MormalComplet..
11 DTHS3 222222851 232434 23:24:34 23:24:56 MormalComplet..
12 DTHS2 222222851 232434 23:24:34 23:24:83 MormalComplet..
13 DTHS1 222222851 232434 23:24:34 23:24:459 MormalComplet..
14 nlanas 222322851 23:35:.05 233915 233912 MormalComplet..
15 planad3 222.232.8.69 23:37:18 23:37:29 23:38:47 MormalCaomplet...
16 planad2 222222868 233716 233726 233844 MarmalComplet...
17 planadi 222222867 233712 233722 23:38:39 MarmalComplet...
18 planaz3 222222869 232456 232506 233413 MarmalComplet...
18 planaz? 222222868 232453 23:25:03 23:34:00 MormalCamplet..
20 planazi 222212867 23:24:49 23:24:49 233413 MormalComplet..
Fal planat 222222851 23:24:27 23:24:37 23:24:34 MarmalCaomplet..

| &pplet started. & | l_ l_ l_ @ Internet zone
istare| @ECh. | #8Ch. |21k | €)' He.| @ EFT. | &) Expl. |[E70p... V& 308

Window showing complete details for individual
processes. These details include process name,
node number at which that process is running,
starting time, expected time, completion time and
status of the process.

Fig 4.14: Operator console window showing complete process details

Error Handling

In case of abnormal completion, the DEDIP Server displays the error message with error code
to the operator. Application designer provides these error codes and error messages.
WebDedip keeps this information in the configuration file. The operator can restart the
process after taking the necessary actions. In addition, the operator has the options of either

restarting the entire application or aborting it.

Session management

Each time an operator logs in, DEDIP scheduler starts/restarts a session for him. Each session
has a unique session identification number. It keeps all the information about the session on

the server. The operator has multiple options to log out. He can close the session, terminate

62

the session, suspend/resume the session, or submit the session for progress in background
before logging out. He can close the session only after normal completion of all the requests
he has submitted. He can terminate the session immediately in case of emergency. In case of
termination, the WebDedip kills all the processes of all the requests submitted by the operator
irrespective of the status. The background processing is very effective in the case of non-
interactive processes. The WebDedip gives the detailed status to the operator at the next

logon.

WebDedip system management

The WebDedip system consists of a DedipServer and agents. The DedipServer can detect the
agent termination. It displays the message on operators’ console as well as operation manager
console. The DedipServer is the most important process in the entire system. Its failure, for
example, due to system crashing, can cause a severe problem. Dedip Backup Server is
designed to handle the failure of the DedipServer. The software package Dedip backup Server
runs on the machine of the backup server and duplicates the required information from the
DedipServer. An agent sends a trigger to Dedip Backup Server when it fails to communicate
with the DedipServer. The Dedip Backup Server validates the DedipServer failure. It takes
over the complete responsibility from that moment onwards and informs the operation
manager. The servers are exchanging information only in case of external events like
termination of process, start of new process, initiation of an application by the operator, the
start of new session, etc. The frequency of such possible events is very low. Furthermore, the
volume of the information is negligible. Hence, the communication overhead for maintaining

the back-up server is very low.

4.5 SUMMARY

In present chapter various aspects of WebDedip environment have been discussed. These
aspects are architecture of WebDedip, installation of various components on server and slave
machine and minimum software and hardware requirement of computer for installation of
WebDedip. In later part of chapter, stepwise procedure of application implementation on

WebDedip is discussed with the help screen shots.

63

CHAPTER 5 PLANE STRESS ANALYSIS

5.1 GENERAL

There are many problems in the engineering, which can be treated as plane stress or plane

strain cases [30]. Some of the examples of such problems are as shown in following figures.

Fig 5.1: Plane stress problems
The plane stress condition is characterized by very small dimensions in one of the normal
directions. Fig 5.1 shows an example of plane stress conditions. In these cases, the stress
components 6 , Ty, and Ty, are zero and it is assumed that no stress component varies across
the thickness. The state of stress is then specified by oy, oy and Tyy only and is called plane

stress.

TTTTTTTTTTTTITTTT TTITTIT T TTITTTTITTITTTTT
P

/1 0

6,=0 1,=0 1,=0
Fig 5.2: Plane strain problems

Problems involving long bodies whose geometry and loading do not vary significantly in the
longitudinal direction are referred to as plane strain problems. Fig 5.2 shows some example of
plane strain condition. In these situations, a constant longitudinal displacement corresponding
to a rigid body translation and displacements linear in z corresponding to a rigid body rotation
do not result in strain. Hence, if we consider a cross section away from the ends, it can be
assumed that w = 0 and displacements u and v are functions of x and y but independent of z.

SO, E =YVYx = Vyz = 0

64

5.2 FINITE ELEMENT FORMULATION
Finite Element formulation for CST element is discussed below.
5.2.1 Shape functions

For the descritization, CST elements (Fig 5.3) with linear displacement model having two
degree of freedoms at each node are selected. Therefore total degree of freedom is six. The
vector q = [uy, vy, Up, Vo, U3, V3] represents the displacement vector and hence the degree of
freedom at each node is enumerated as [22]:

u; = Displacement at node 1 in X direction

v; = Displacement at node 1 in Y direction

Selecting displacement function for displacement in X and Y direction as follows:

u=cjy+CoX +c3y

V =2C4 + C5X + Cpy (51)

V2

1 T_»ul

V3

VzT_,Z 3 U3

%)

Fig 5.3: CST element having two DOF at each node

Ci h
. C3J (523)

e 3
Cq

V= [1 X y] Cs
\ Cg / (5.2b)

Shape functions for displacement in X direction are,

N, = (aj+b;x+c1y) / 2A

N; = (ap+byx+cyy) / 2A

N3 = (az+bsx+csy) 12A (5.3)

65

For displacement in Y direction also the shape functions will remain same.

5.2.2 Strain-Displacement relation matrix [B]

The relation between strain and displacement is expressed as,

[e] = [B] [q]

Where, [€] = strain matrix
[B] = strain displacement matrix

[q] = nodal displacement matrix

€x ou/ ox olox 0
gy = ov /oy = 0 0/ 0oy
Yxy ou/ oy +ov/ox 0/oy 0/0x
€x 0/0ox 0 N, 0 N, 0 N3 O
gy =10 0/ oy 0 Ny O N 0 N3
Yy 0/ 0y 0/ 0ox

Equating the above equation 5.6 with equation

[e] = [B] [ql], we have

-
aN 1/ aX 0 8N2/ 8x 0 8N3/ aX

[B] = 0 aNl/ 8y 0 aNz/ 8y 0

Therefore,
bl 0 b2 0 b3 0
1
[B] = — 0 C1 0 C 0 C3
2A

Ci b C2 b, C3 b3

-
uj
Vi
Uz

V2
u3

0

6N3/ ay

ON/0y ONj/Ox ON,/oy ONL/Ox ON3/0y ON3/0x

LV3

/

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

66

Where,

bi=yj—yk Ci=Xk-X
bi=yk-yi =X~ Xk
be=yi-yi a=X-X

5.2.3 Element stiffness matrix

We know that the stiffness matrix, derived from Principle of virtual displacement and

principle of stationary potential energy [18], can be given as
(K1 = [, [BT"ID1B] dv (5.9)

Where, [K] = Stiffness matrix [B] = Strain displacement matrix

[D] = constitutive law matrix
[B] Matrix has already been derived.

For plane stress condition, Constitutive law matrix [D] can be given as follows:

E 1 v 0
[D] = v 1 0
(1-v?) 0 0 (1-v)/2 (5.10)

For plane strain condition, Constitutive law matrix [D] can be given as follows:

E 1-v v 0
[D]= — | v 1-v 0
(1+v)(1-2v) | O 0 {1-2v)2 (5.11)

Where, E = Modulus of Elasticity and v = Poisson’s ratio
(K1 =[Il, (BI"[DI[B] dv

If the thickness of the element is constant value‘t’, the stiffness matrix is given by

67

[K] = ¢]I [BI"[D][B] dx dy

It can be observed that the matrix [B] is constant and the matrix [D] depends on the plane
stress or plane strain condition and on material property. Hence stiffness matrix of the element
can be written as follows:

[K] = ¢ (B]"[DI[B] J[dx dy

[K] = [B]'[D][B] A t (5.12)

Where, A = area of element and can be calculated as follows

l X1 Y1
2A = Det]| 1 X2 Y2
l X3 y3

5.2.4 Consistent Load vector

The components of the consistent load vector are the equivalent load applied at the nodal
points of the element due to the loads applied at the intermediate points of a finite element.

The applied external forces may consist of independent or combination of the following load

cases.
2 L' 1 2
1 1
L,
; P\
2 3 2 3 2 3/'
4 6 4 6 4 6
L» 3 Ly 5 L’ 3 LP 5 L 3 L’ 5
(a) (b) ()
(a) Gravity loading Co ordinates
(b) Nodal loading 1 (x1, y1)
(c) Edge loading 2 (x2,¥2)
3 (X3, ¥3)

Fig 5.4: Various lading conditions for CST element

68

1.) Gravity load

Consider the CST element as shown in Fig 5.4 (a). The gravity loads, generally the self-
weight of the element, always acts in the gravitational direction e.g. in the negative Y
direction. This load is equally distributed at all three nodes. So the load vector for gravity load

can be written as follows:

0) Where,
pAt/3 p = Density of material
P = 0 A = Area of element
pAt/3 t = Thickness of element
0
[PAL/3) (5.13)

2.) Point load

Consider the CST element as shown in Fig 5.4 (b). As we know that the load vector is given
by equation,
P=[[N]"pdx
Where,
P =load vector
p = nodal load acting at a point

[N] = shape function at point of application of nodal load (xm, ym)

Shape functions at point of application of nodal load (xm, ym) can be calculated as follows:

1 X1 Y1
N = (1 xwym]|[l %
1 X3 y3

Load vector can be calculated as,

N; 0
0 N; P, Where,
P= N, 0 Py P, = Pcos0
0 N, Py = Psinf
N; 0
0 N3 J Xm, Ym) (5.14)

69

3.) Edge force

The load vector is given by
P=][N]"pdx

As the edge force is acting on a edge (Fig 5.4 (¢)), it can be treated as a 2-noded bar element.

Load vector for bar element is given by

P = p [L/ 2] where,
L/2 L = Length of edge on which force is acting

Therefore, final load vector due to load acting at angle 6 can be given as,

P1/2 cosb
P1/2 sinb
P= 0
0
P1/2 cosb
P1/2 sin6 (5.15)

5.3 SUBSTRUCTURE TECHNIQUE FOR ANALYSIS

As the problems became more and more complex, various new analysis techniques were
developed for easy and fast solution of the problems. Earlier simple analytical methods were
available but later as the need arise, various new analytical methods were developed which
were faster and easier in programming as compared to earlier methods. Today, computers
having very high computing power are available but there are various complex problems for
which computational time is very high. Furthermore due to large size of problem, memory
requirement for storage is also more then the storage available. In such cases it becomes
difficult to carryout analysis of complex structures. So, some way should be there which can
overcome such problems. Substructuring technique for analysis is one of such solution by

using which above problems can be solved to large extent.

For analysis of large structural systems, substructuring technique has been found useful. This

technique is also cost effective to incorporate modification in certain parts of structures and

70

also for nonlinear analysis situations. The method of substructuring for static structural
analysis is based on subdividing the large structure into smaller parts, which are analyzed
separately to obtain the relationship between forces and displacements at the common
boundaries. These boundary variables are then determined and are used to obtain the
unknown within each substructure. A particular structure can be modeled with different
choice of substructures so some basic idea of substructuring is needed from user’s part to
choose the best model amongst these.

The method of sub structuring for static structural analysis is based on subdividing the large
structure into smaller parts, known as substructures, to obtain the relationship between forces
and displacements at common boundaries. These boundary variables are then determined and

used to obtain the unknowns within each substructure.

The basic equilibrium equation, which is used to find out the displacements in the structure,
can be given by

[K] [r] = [P] (5.16)
Where, [K] is the stiffness matrix, [r] is the displacement matrix and [P] is the load vector. In
substructure technique, above equilibrium equation is obtained by the assemblage of
substructure equations. For each substructure, the stiffness matrix, the displacement matrix
and the load vector are partitioned corresponding to internal and boundary degree of freedom
{d;} and {dp} respectively as follows:

Ki | Ki di Qi
= (5.17)
dp Qv

In the above equation, a boundary node is defined as a node, which is part of more than one
substructure and the degree of freedom at the boundary nodes are termed as boundary degrees

of freedom.

The analysis can be performed in two stages,

1.) Considering degrees of freedom at boundaries as fixed, each substructure is analyzed on

different computers in parallel. Denoting the solution obtained from this step by a

superscript o.

71

2.) Combine the condensed stiffness of the substructures from different computers to get the
global structure stiffness matrix and analyze the assemblage by releasing the boundary

degree of freedom. Denoting the solution obtained in this step by a superscript f3.

The displacement and load vectors can be expressed as the sum of the above two cases as,

d; d° di®
= + (5.18)
{db} {dba} {dbﬁ}
Qi Q° QPF
- + (5.19)
{Qb } {Qba} {Qbﬁ}

Where, subscript i and b denoted the terms corresponding to the internal and boundary degree

And

of freedom respectively. Obviously, as {dy"} is the displacement at the boundary degree of
freedom, when boundaries are fixed it will be zero. Thus

{d"} =0 (5.20)
Also in the first stage of analysis, all the forces are applied at the internal nodes of the

substructure and hence these forces do not appear at the second stage. Hence,

(Qf}=1{0) and {Q"} = {Qi} (5.21)
STAGE 1: Analysis with fixed boundaries

Substituting the vale of {dy"}={0} from equation 5.20 into the equilibrium equation 5.17, the

set of equations for the first stage of analysis with boundaries of substructure fixed can be

written as,
Ki | K d Qi
= (5.22)
Koi | Koo {0} Qv°
Solving the first set of above equation,
{d*} = [Kil " {Qi} (5.23)
Substituting the value of {d;*} in the second equation
{Qu"} = [Kuil [Kil" {Qi} (5.24)

72

Here, {Qy"} is the force required to be applied at the substructure boundaries to keep the
boundary displacements equal to zero. The above analysis is performed in all the

substructures in parallel on different computers.

STAGE 2: Analysis with boundaries released
Again substituting the value of {(Q} in equation 5.17, the set of equations for the second

stage of analysis with boundaries released can be written as,

Ki Kip dP {0}
ERCSTEaNES
Kvi | Kbp dy? Q°

Solving the first set of equations, we have

{dfy = [Kal " [Kin] {do'} (5.26)
Solving the second set of equations, we get
[Kin] {d"} + [Kup] {do"} = {Qu") (5.27)

Substituting from equation 5.26 for {diB } into equation 5.27, we get

~[Kpil [Kiil™ [Kib] {do”} + [Kon] {do’} = {Qb") (5.28)
or, [K1{d}=1{Q} (5.29)
where, [K'] = [Kob] — [Kni] [Kil™" [Kib] (5.30)

The equation 5.29 is the equilibrium equation for the substructure in terms of its boundary
degree of freedom and [K'] is the corresponding stiffness matrix called as condensed stiffness
matrix. This analysis is carried out in parallel for all substructures on different computers and
the condensed stiffness matrix for each substructure are assembled to form the global

structure stiffness matrix. Thus,

S=n

[K]=2 [K']s (5.31)

s=1

and

S=n

P} ={Qp} - 2 (Q)s (5.32)

s=1

73

In the above equations n stands for the number of substructures, which is equal to the number
of computers. The assemblage of the substructures through equation 5.31 and 5.32 leads to
equation 5.16 where all the degrees of freedom are along the common boundaries of the
substructures. Solution of equation 5.16 gives the global displacements along the boundaries
of the substructure. Now the vector {de} can be obtained for each substructure, which will be
communicated to different computers and from that {d} can be determined using equation
5.26. Thus all values of {d} required in equation 5.18 are known for each substructure and

from that other quantities like element forces, stresses and strains can be calculated.
5.3.1 Stepwise approach for substructure technique

In present study, Finite Element Analysis method is used for the analysis and so
substructuring technique is implemented for Finite Element Analysis of structures. Using
basic approach of the substructuring technique analysis can be carried out in five phases.

Various processes related with these phases can be summarized as follows:

1.) Data generation for individual substructure.

2.) Calculation of condensed stiffness matrix and condensed load vector, using concept of
static condensation.

3.) Calculation of boundary degree of freedoms for each substructure.

4.) Calculation of internal degree of freedoms for each substructure using boundary degree of
freedoms.

5.) Collection of results for each substructure and giving final result.

Out of above five processes, first process of data generation is a sequential process so carried
out on single computer. After generating data for each substructure, stiffness matrices and
load vectors for each substructure is calculated simultaneously on different computers. Each
computer is having required data corresponding to the substructure allotted to that computer.
Again the thirds process of assembly of matrices is a sequential process (i.e. carried out on
single computer). So the completion of second process on all computers is necessary before
beginning of third process. After calculation of DOF corresponding to boundary nodes, these
DOFs are distributed again to corresponding computers. So the forth process is again the
parallel process. And finally, after calculating internal DOFs, results are collected form each

computer to have final results.

74

STEP: 1

Following fig shows a plate, which is fixed as one end and subjected to tension force on the
other end. It is required to carry out the finite element analysis. For analysis CST element is
used. So the Fig 5.5 shows the descritization of plate into CST elements. For time being plate

1s descritized into 32 no of elements and there are total 25 no of nodes.

21 22 23 24 25
26 28 30 a2 L=

25 27 29 31 —

16 18 17 20 1g 22 19 24 2ol
17 19 21 23 —>

11 0 12 12 13 14 14 16 15|
3 1 13 15 ——

& g 7 4 8 & 9 Bl
1 3 5 7 T

1 2 3 4 5

Fig 5.5: Structure descretized into CST elements

In order to carryout the analysis using substructure technique, the plate is divided into 4 no of
substructures. Fig 5.6 shows the plate divided into four substructures. In order to calculate it is
necessary to differentiate internal and boundary nodes. Here, each substructure is having 1
internal node and 8 boundary nodes. Node 7, 9, 17 and 19 are the internal nodes for 1 2“d,
3" and 4™ substructures respectively. Along with the internal and boundary nodes, other data
such as the restrained conditions and the load data are also supplied individually for each

substructure.

STEP: 2

As discussed in the theory of the substructure technique, first the analysis is carried out by
restraining the boundary of each substructure. So following fig shows all substructures with

restrained boundaries. In this step of analysis, nodes are renumbered. As shown in Fig 5.7,

first all the internal nodes are numbered and then boundary nodes are numbered.

75

al 22 23 23 24 25
26 28 30 32 —>
16 25 17 27 18 =9 - -
18 20 L 22 24 20l
17 19 21 23 —
11 12 13 13 14 15
11 12 13 12 14 15
10 12 14 6 -
6 ° 7 U 8 s| 13 al 15 10—
c 4 & = |-
1 3 5 7 —
1 2 3 3 4 5

Fig 5.6: Structure divided into four substructures

After renumbering of nodes, static condensation is carried out in which internal nodes are
eliminated from each substructure. Calculation of condensed stiffness matrix and condensed
load vector is carried out using equations 5.15 and 5.17 respectively, as discussed in previous
section. So the whole substructure will be treated as a single element. Fig 5.8 shows DOF
corresponding to boundary nodes for each substructure. Here actual restrained conditions are
also implemented as all substructure stiffness matrices and load vectors are to be assembled to

get global stiffness matrix.

7 8 9 8
6 8 6 g =
5 2 17 6 5 2 17 .
2 4 2 4=
1 3 1 3 —
2 3 1 E 3 4
7 8 9 8
& 8 6 8
S I 6 s 2 1 7 g
2 4 Z 4
1 3 1 3 —
2 2 4 2 3 4

Fig 5.7: Substructures with all boundaries fixed

76

ia 12

i 12 L. 15 L- 17 L. 1 15 L- 17

oy —
[:8

7 B 9 7 =
10 12 10 1P
§>' ja T—» =) 15 g
9 i1 g 1
2 4] 4

ol
[ee] l—'a l—’mlrw
<
4]
Lenl 3 — oo
’U\ [
o

14 18 14 18
T—)lB 15 L‘ 17 T—rlﬁ 13 L’ 17
7 E 7 e
10 12 1n 12
s 6 135 &

l—pm L X%
o

w
=

2
Fi
=

R
o]
=

Fig 5.8: Substructures after static condensation

STEP: 3

After calculation of condensed stiffness matrices and load vectors for each substructure, these
matrices are assembled according to the boundary nodes. Fig 5.9 shows the nodes and
corresponding DOF, which are incorporated in the global stiffness matrix. Nodes 1, 6, 11, 16
and 21 are eliminated, as retrained and also internal nodes are not considered. After assembly

of stiffness matrix and load vector, DOF corresponding to boundary nodes (shown in fig) are

calculated.
44 46 438 S0
L33 45 L,47 T_. 49
21 2z EE o4 25

40
bnle’ IS.L,SS EUIJ—. 39

20

=24 f=4=]
l—h 23 T—-ES 1—' 27 T—~29
2 14

i1 1 13 15
16 20
@'6 g 'T_fs 10 "T_fc,u
1 2 3 4 5
4 & 2 10
A O N i

Fig 5.9: Substructures combined after static condensation

77

STEP: 4

After calculating DOF corresponding to boundary nodes, these DOF are again distributed to
corresponding substructure to calculate internal DOF. Fig 5.10 shows all substructures with
internal and boundary DOF. Nodes shown by red colors are the internal nodes. In this stage of

analysis, internal DOFs are calculated using equation 11, as discussed in previous section.

44 4

4E 48 50
‘[—’43 I—’ 45 T_, 43 T—)4}' T—; 49
21 Y 23 23 24 25
74 ﬁ. i a5 40
[31 17 s - 15 = - g p18 19, - 20 = -
11 12 12 13 Lj} 13
23 25 23 27 23

24 26

26

‘[._,23 L, 5 L,25 T-—ha? 3

11 12 13 13 14 15
15 15
14 18 0
- ’T_,) T_, »0 = 10 »

& 7 iz 8 15 15 17 13
1 2 3 3 4 5

Fig 5.10: Substructures with known boundary DOF

STEP: 5

After calculating all DOFs corresponding to internal and boundary nodes, all results are
assembled in order to have final results. After calculating primary unknowns, secondary
unknowns such as stresses and strains are calculated. Fig 5.11 shows the whole structure with

DOFs corresponding to all nodes.

78

21 22 i 23 24 s 25
36 40
L,aa L~35 L, a7 L-ae
& 17 18 19 20
24 26 2a 20
T_, 23 L, 25 T—'E? 29
11 12 14 13 14 8 15
L,La TilE L, 17 Ti)
=] 7 2 = 10 12
1 2 3 4 5)
4 3 2 10
U R A i

Fig 5.11: Complete structure with all DOF known

5.3.2 Advantages of substructure technique

Some of the advantages of the substructure technique can be summarized as follows:

1y

2)

3)

4)

S)

In substructure technique, the stiffness matrix of each substructure is statically condensed

out so that effective stiffness matrix corresponds to only the boundary degree of freedoms.

The number of nodes in the main structure is reduced because only the boundary nodes of

the boundary nodes of substructure appear there.

The size of individual substructure is less than that of the main structure being analyzed.
Thus at any given instant the main memory required to process the data corresponding to

any one substructure is reduced.

Substructuring technique can be advantageous incase the structure is descritized into
identical parts. In such cases, the stiffness matrix of a typical substructure can be formed
and condensed only once and can be used as many times as the substructure appears in the

main structure.

Another advantage of substructuring is the reduction in data. But this will be so, only if

substructures are identical and repeatedly used.

79

6) The full advantage of substructure technique can be get in case of very large size problem
for linear elastic analysis and in case of non linear analysis and structural optimization

wherein a part of the structure only is modified before the subsequent analysis.

5.4 SOLUTION PROCEDURE AND COMPUTER PROGRAM

The finite element solution procedure is adopted for analysis. In this solution method, first of
all the element stiffness matrix and consistent load vector is calculated and then theses
stiffness matrices and load vectors are assembled as per the boundary conditions. From this
assembled stiffness matrix and load vector, nodal displacements are calculated and finally

from these nodal displacements, element stresses are calculated.

In present study, substructure analysis technique is implemented for the finite element
analysis. This divides the whole analysis process into five different tasks. So for each process,
different computer programs are prepared in “c” programming language. The first program
“planl” prepares separate data file for individual substructure. This data file includes the
details such as number of elements in a particular substructure, number of nodes for that
substructure, material property, loading data, number of restrained nodes, joint restraints and
also the boundary nodes (needed for static condensation) for that particular substructure. After
execution of the first program, in second program “plan2”, element stiffness matrix and load
vector is calculated and assembled as per corresponding degree of freedoms. Static
condensation of stiffness matrix and load vector is also carried out in the same program. This
condensed stiffness matrix and load vector is the input data for third program “plan3”, in
which degree of freedoms corresponding to boundary nodes are calculated. In forth program
“plan4”, internal degree of freedoms are calculated using boundary degree of freedoms. After
calculating all degree of freedoms, element stresses are calculated in forth program. And in
the fifth program “planS”, all the results of individual substructures are collected to print in

final result file.

5.5 ANALYSIS PROBLEM AND RESULTS

As a first application, Plane Stress problem is selected for distributed analysis. The geometry
of the plate is shown in Fig 5.12. The plate is a square plate and having a hole in the center.

This plate is subjected to uniform tension on both edges. Young’s modulus of elasticity of the

80

plate material is E = 20000 kN/cm® and Poisson’s ratio is 0.3. Plate is having thickness of
2.5cm. As the plate is symmetrical about both x and y-axis, only the quarter plate as shown in
Fig 5.12 by hatched area, is descritized into number of elements. For descritization, CST

element with linear displacement models is used. Descritization of plate is shown in Fig 5.13

- - 2
10 kN/cm
——mf— =
] —— T -—
~l———| -
-y -
= 0 -
8 S L= E=20000 kN/cm®
Ole 2 CM - Polson’s Ratle = 0.3
I Thickness = 2.3Cm
——mg— el
-y -
I ™
K 30 CM =

Fig 5.12: Rectangular plate with circular hole

ES B0 [~ 168 | 16+
161 15

1007, 14 15 % 18 20
1 15 17 %, 12

L

b A

Fig 5.13: Descritization of quarter plate using CST elements

81

Further, this quarter substructure is divided into number of substructures, having equal

number of elements. Fig 5.14 shows division of plate into five substructures.

;_ SUEBESTRUCTURE 5 |
| J6 ELEMENTS |

}_______ ______ ez PLENENTE |
| SUESTRUCTURE 3 | |
L SZ2 ELEMENTS N N N #
B A e o T O e e —x\\
‘H\ SUESTRUCTURE 2 \I
\x 32 ELEMENTS
\T__________\
\ ™,
-, ™,

‘\ SUESTRUCTURE 1
\‘ JZ ELEMENTS

!

I Y . J

|
|
\ 4
i
|

Fig 5.14: Division of quarter plate into five substructures

In present work, the quarter plate is descritized into 27504 elements. So the strucuture is
having 13990 nodes. Each nodes is having 2 DOF so the problem is having total 27980 DOFs.
The configuration of the application, when divided into three substructures, and the time

details for each processes is shown in Fig 5.15 and Fig 5.16 respectively.
For the problem under consideration good agreement has been observed with the analytical

solution for Gy given in reference [17]. Comparison of results of analysis with the reference

results is tabulated in Table 5.1

82

k=3 &pphtaﬂun Dretail Window

Appllcatlon cinetPubaioenewerootfacilty Dedipdreahland Grid Size (n'm) ; -

e
e e

o e e
e e i

Fig 5.15: Configuration for plane stress problem for three substructures

Table5.1: Comparison of analysis and reference results

Sr.| a b R S Oy oy Ty Oy (N/mm?)

No | (mm) | (mm) | (mm) [(N/mm®)| (N/mm®) | (N/mm?) | (N/mm®) [Reference| Analysis
1 110 221.8 2344 | -40.25 | 234.58 | 229.58
2 150 152.9 32.32 4.34 147.05 | 147.78
3 200 121.9 20.42 5.28 118.29 | 117.00
4 1100|500 250 100 [111.7 | 1449 | 478 | 108.59 | 107.13
5 300 107.7 10.88 3.94 104.28 | 103.39
6 375 104.3 7.07 2.88 101.25 | 100.33
7 450 102.4 4.94 2.19 99.80 | 98.69

Where, R is the radial distance of point of interest and S is the intensity of tensile force.

| View Output... | | View Error...

ﬁ Application |

Application: plan3 Counter: 2

Sr. Process Mame Mode Mo, Start Time Expected Time End Time Status
1 plant 22222285 04:47:47 04:48:07 04:48:03 MormalCamnplet...
2 planz1 2232222864 04:58:149 04:58:249 05:12:47 MormalCamplet...
3 planzz 222.222.8.65 04:58:23 04:58:33 05:07:40 MaormalComnplet...
4 planz3 222222867 04:58:26 04:58:36 05:09:07 MormalComplet..
5 DTHE 222222851 04:58:03 04:58:03 04:58:19 NormalComplet..
5 OTHEZ2 222222851 04:58:04 04:58:04 04:58:23 NormalComplet..
7 DTHE3 222222851 04:58:04 04:58:04 04:58:26 MNarmalCarmplet...
] plan3 2222228451 05:13:049 045:13:149 05131 MormalCamplet...
9 DTHE4 222222851 05:12:47 05:12:47 05:13.09 MNarmalCamplet..
10 DTHES 222222841 05:07:40 05:07:40 05:08:07 MormalCamplet..
11 DTHSE 222222841 05:09:07 05:09:07 05:09:27 MormalCamplet..
12 DTHSTY 222222841 08131 08131 051337 MormalCamplet..
13 OTHEE 222222841 08131 08131 081341 MormalCamplet..
14 OTHES 222222841 05:13:22 05:13:22 051344 MarmalComplet...
15 plans 2222228451 05:14:14 05:14:24 05:14:23 MarmalComplet...
16 DTHE10 222222851 05:13:48 05:13:49 05:14:07 MNarmalCarmplet...
17 DTHS11 222222851 05:13:53 05:13:53 05:14:10 MNarmalCamplet..
18 DTHS12 222222841 05:13:56 05:13:56 05:14:14 MormalCamplet..
149 pland3 222221867 05:13:44 045:13:54 045:13:96 MormalCamnplet...
20 plandz 222222865 05:13:41 05:13:51 05:13:43 MormalCamplet..
21 plandt 222222864 05:13:37 05:13:47 05:13:49 MormalComplet..

Fig 5.16: Time requirement for individual process for three substructures

Average time required for various processes, when entire structure divided into different
number of substructure, is tabulated in Table 5.2 Also time required in parallel
implementation i.e. computation time and communication time is shown. Based on the time
required for various processes in sequential and parallel implementation, speedup is
calculated. The comparison of ideal speedup and observed speedup is shown in Fig 5.17.
Comparison of communication and computation time for various substructures is shown in
Fig.5.18. From calculated speedup and ideal speedup, efficiency is also calculated as a

measure of performance.

84

Table 5.2: Time required for sequential and parallel processing

Process NB |NEQ f‘ile time Seql.lential Parallel time speed up Efficiency
size time Comp | comm |Ideal| Calculated
(kb) | (sec) (sec) (sec) | (sec) (%)
3 substructures
planl 6
DTHS 377 | 16
Plan2 9080(9476 689
DTHS 2874| 35
Plan3 632 (1380 12
DTHS 11 15
Plan4 240 (9476 12
DTHS 1035| 14
Plan5 6 2127 725 80 3 2.64 88.07
4 substructures
Planl 6
DTHS 288 | 20
Plan2 6808|7162 400
DTHS 2507| 38
Plan3 590 (1612 15
DTHS 10 | 19
Plan4 240 7162 10
DTHS 778 | 17
Plan5 7 1668 438 94 4 3.14 78.38
S substructures
Planl 6
DTHS 232 | 23
Plan2 544215774 215
DTHS 2354| 48
Plan3 572 11852 16
DTHS 10 | 23
Plan4 240 [5774 9
DTHS 624 | 17
Plan5 6 1327 252 111 5 3.78 75.59
6 substructures
Planl 7
DTHS 194 | 25
Plan2 4534|4848 185
DTHS 2209| 56
Plan3 554 12082 20
DTHS 9 25
Plan4 240 14848 7
DTHS 520 | 18
Plan5 8 1187 227 124 6 3.38 56.36

85

Speed up
S N A~ O ®

No of substructure

---&--- ideal speed up —a— calculated speed up

Fig 5.17: Comparison of ideal and observed Speedup

800
600 -
-]
E 400]]
[
200 +—]]
o L1] h l
3 4 5 6
No of substructures
@ computation time B Communication
Fig 5.18: Computation and communication time
5.6 SUMMARY

In present chapter, plane stress problem has implemented on parallel computers. So the
chapter includes the finite element formulation of plane stress element. Substructure
technique for analysis has also been discussed. In the later part of the chapter one plane stress
problem has been analyzed, which is having total 27504 elements, and 13990 nodes (i.e.
27980 DOFs). The continuum has been divided into 3, 4, 5 and 6 numbers of substructures
and implemented on parallel computers. From the work carried out and the results for

sequential as well as parallel processing, following points can be observed:

» For the selected problem for three substructures, ideal and calculated speed up is nearly

equal and so giving around 88% efficiency.

86

» As the number of computers goes on increasing the difference between ideal and

calculated efficiency goes on increasing and so efficiency goes on reducing.
» Figure 5.18 (computation and communication time) also shows the linear variation of

computation and communication time. With the increasing in the number of computers,

computation time goes on reducing and communication time goes on increasing.

87

CHAPTER 6 PLATE BENDING PROBLEM

6.1 INTRODUCTION

In many areas of structural design it is required to analyze plates subjected to lateral loads. As
the classical solution of plate involves tedious calculations, especially when the plates are
arbitrarily shaped and are anisotropic, as a numerical solution to the problem a number of

finite element models have been developed.

According to the nature of stress states, the plates are classified as follows [25]:

1.) Thick plates: In thick plate tri-axial state of stress is developed. Plates for which the ratio
of thickness to least dimension on plan exceeds 1/10 may be taken as belonging to this
class.

2.) Thin plates with small deflection: In thin plates with small deflection the membrane
stresses are very small compared to flexural stresses under deformation due to transverse
loading. This class may be takes to comprise plates for which the ratio of thickness to span
does not exceed 1/10 and the maximum deflection w is less than h/10 to h/S.

3.) Thin plates with large deflection: In thin plates with large deflections the flexural stresses
are accompanied by relatively large tensile or compressive stresses in the middle plane.

These membrane stresses significantly affect the bending moment.

6.2 MINDLIN’S THEORY

Mindlin’s approximation is that straight lines originally normal to the mid surface, before
deformation, remain straight but not normal to the deformed mid surface, i.e the average
rotation of the section may be takes as the rotation in which normal remain perpendicular to
the mid surface plus an additional rotation due to transverse shear. The three assumptions

made in Mindlin’s theory of plates are as follows:

A.) The deflections of the plate w are small.

B.) Normals to the plate mid surface before deformation remain straight but are not

necessarily normal to it after deformation.

88

C.) Stresses normal to the mid surface are negligible.

vartlcal ke
7 ﬁ ﬂ z
ow -0,

y

0.
y ¢&
Inclined positlon B

of wertlcol

tengent to
the mid

surfoce

T X

Fig 6.1: Rotation of the normal about x and y axes considering average shear deformation

Referring to Fig 6.1 in which @, denoted an average transverse shear strain for a section x =
constant, the total rotation ey can be expressed as,
ow

0, = - + 0, (6.1)
Ox

And similarly for section y = constant
ow

0, = - + 0, (62)
oy

Hence, the average shear deformations, @, and ®y are given by

Oow Oow
D= 0, + —— (6.3)
oy oy

O, = 0y, +

The basic relationships for the curvatures and stress resultants can be given as follows.
{M}=[C] {ke} (6.4)

Where, (k.}" = [ke ky kg

And,

E 1 u 0
[C] = — [H 1 0 J
12(1-4%) L0 0 (1-p/2

89

The average shear deformation @ ,,q @y are expressed in equation 6.3. The shear stresses 1y,

and t,, and the shear deformation are related as follows:
{sz } = [Cu Cys] {(I)x }
Txz Css Css Oy (6.5)
For an isotropic material the above relation can be written as
Txz E 1 0 Dy
{TXZ } = 2(1+v) 0 1 D, (6.6)

The stress resultants Qy and Qy can be computed as

(o= =5l) &) ©

The curvature Ky, Ky and the twist Ky, can be expressed in terms of rotations 6, and 6, as

Kx = Ky = - ny =
ox ady

(6.8)

20, 00 { 08, 00 }

ady ox

The stress resultant {M} and {Q} given by Eq. (6.4) and Eq. (6.7) can be combined and for

isotropic plates, the constitutive matrix, can be given as,

(M,] (ER’ (1 u 0 0 0 1 (K)

M, w10 00 Ky

M,y |= [120-0%) [0 0 (1-p)y2 0 0 Ky

.................. (6.9)
Qx 0 0 0 Eh [a O s

Qy [o 0 0] 20+ |0 @ dy

The above relation can be compared with {c} = [C] {e} for the usual stress-strain relation.
Thus in case of plate bending, the stress resultants and the corresponding curvatures and shear
deformations can be considered analogous to stresses and strains. Hence, for uniformity and

convenience, equation 6.9 can be expressed as

{c} =I[C] {e}

Where, {o}={M: My M,, Q¢ Q}

90

And (e} ={Ky Ky Ky @ 0}

Moments and shear in the plate, with their positive directions are shown in Fig 6.2

Fig 6.2 Positive moments and shear forces in plate

The curvature and shear deformation vector {e} can be expressed in terms of the three

displacements w, 0y and 0, as,

00y / 0x
- 00/ Oy
{e} = 00y / Oy - 064 / Ox (6.10)
0y + Ow / Ox
- Ox+0w/ 0y

6.3 FINITE ELEMENT FORMULATION

Finite element formulation for eight nodded isoparametric element is given as follows.

6.3.1 Shape functions

Consider a rectangular element as shown in Fig 6.3. The rectangle in natural coordinate is
transformed into an arbitrary element with straight boundary. The shape function used for

representing the variation of displacement for eight nodded isoparametric element can be

given as follows [31]:

91

S
4 7 3
Q) Ton fa.n
8 6 T
fcro TTo
(-1,-1) (0,-1) (1,-1)
5 3
Rectangle in natural coordinate Isoparametric element
Fig 6.3: Eight nodded Isoparametric element
N;=(-r) (1-s) (-r-s-1) /4 N, = (1+4r1) (1-8) (r-s-1) /4
N3 = (141) (14s) (r+s-1) /4 Ny = (1-r) (14s) (-r+s-1) /4
N5 = (141) (1-s) (1-1) /2 Ne = (141) (1-3) (1+s) /12
N7 = (14r) (1+s) (1-1) /2 Ng = (1-r) (1-s) (14s) /2

These shape functions can now be used to describe the geometry of the arbitrary rectangle in

the cartesian system as follows:
8 8

x =Y Nix; y=2 Niyi (6.11)

i=1 i=1

The variation of displacement w, 8x and 8y within the element in terms of nodal values can be

expressed as

8 8 8
W=2Ni %A 9X=2Ni exi 9y=ZNi eyi (612)

i=1 i=1 i=1

Here the shape functions are expressed in terms of natural coordinates r and s, while to
calculate the displacement calculation of derivatives of shape functions w.r.t natural
coordinates is necessary. So the relationship between the two coordinate systems can be

computed by using the chain rule of partial differentiation and is given as

{8/8r}= [ax/ar 8y/8r] {8/8}(} = [J]{@/@x}
0/ 0s Ox/0s 0Oy/0s 0/ 0oy 0/ oy

92

Jacobian matrix [J] for eight noded element can be given as

X1 Y1

[J] = aNl/aI' aNz/al‘ 6N3/8r aNg/al‘ X2 Y2

aN1/aS 8N2/as 8N3/85 aNg/aS X3 Y3
(6.13)

X8 ys

Now the derivatives w.r.t global axis are found by inversing the Jacobian [J] and is given by

8N1/8X 8N2/8x aNg/aX = [J]>1 8N1/8I' 8N2/6r 6Ng/6r
ON/dy ON/dy.......ONg/dy ON/ds ONy/os....... ONg/os | (6.14)

6.3.2 Strain Displacement matrix [B]

The element curvatures and shear deformation € given in equation 6.10 and the nodal
displacements {d} are related as
e=[B] {d}
Where,
{d} = [wi, 0xy, Oy, wa, 2, Oy2, w3, Ox3,0y3 ... ws, Oxs, Oys] (6.15)

In order to compute the matrix [B], first the equation 6.12 is to be differentiated w.r.t x and y

to get each of the terms of €. Thus,

8 8

Kx = z Oyi aNi/aX Ky = Z - exi aNi/éy

i=1 g . i=1
ny = Z eyi 8Ni/8y - z Oxi aNi/aX

. i=1 . i=1
(DX = Z Wi 6Ni/6x + Z Oyi Ni

i=1 i=1

8 8

Dy= Y wiONJdy - Y 0, Ni (6.16)

i=1 i=1

Where, ON;/0x and ONi/0y are to be calculated using equation 6.14. In equation 6.16, elements

of vector {e} for curvatures and shear deformations are expressed in terms of the nodal

displacements w, 0, and 6,. Thus

93

. < - Wi N
Kx exl
K,y eyl
{e} = 1 ny r = [B]
(OM < e
\®y 7
Wg
exS
. eyg J

Equation 6.17 cam be expressed as
8

e =) [Bil {di}
i=1
And,
0 0
0 -0N;/ oy
[Bi] = 0 -ON; / ox
ON; / 0x 0
8Ni / ay - Ni
And,
Wi
{di} = Oxi
Oy
Therefore [B] matrix can be given as,
0 0 ON,/0x
0 - ON,/0y 0
[B] = 0 - 8N1/ax 8N1/ay
8N1/8x 0 Nl
8N1/8y - N1 0.....

6.3.3 Element Stiffness Matrix

As it is know that,

(K] =] [B]" [D] [B] dv
1 1
[K] = I ,[[B]T [D] [B] t det[J] dr ds

-1 -1

(6.17)
(6.18)
8Ni / aX
0
ON;/ oy (6.19)
N;
0 1=1,2,3.....8
(6.20)
0 0 ONg/Ox
0 - ONg/Oy 0
0 - ONg/ox dNgldy | (6.21)
aNg/aX 0 Ng
....... aNg/ay - Ng 0

94

To evaluate the integral, two point Gauss Quadrature method is used. As per Gauss method,

11

[Ttas)drds =33 Wi Wi f (rs)

-1 i

Where, 1; and s; are known as the sampling points and W; and W; are called the weights.

Here, for two point Gauss method W; = W, = 1 and natural coordinates of the sampling points
are as follows:

1 +0.57735 +0.57735

2 -0.57735 +0.57735

3 -0.57735 -0.57735

4 +0.57735 -0.57735

So,

[Kl= Y > W;W,[B]" [D] [B];tdet[J], nis the number of sampling points

i

So, to calculate the stiffness matrix first of all Jacobian matrix [J] is calculated at sampling
point. Using [J] matrix strain displacement matrix [B] is calculated and using matrix [J] and
[B], stiffness matrix is calculated at all sampling points and finally all stiffness matrixes are

added to get the final stiffness matrix.
6.3.4 Load vector

The nodal load {Q;} at the node i for a uniformly distributed load q is given by

F, q
{Q}=1Mi = iji 0 ¢ det[J] drds
M, A 0

Combining the nodal load vectors {Q;}, the element load vector {Q} can be numerically

evaluated as,

95

- Ql N er N
Q2 N,
Qs N3
{Q} = . L =q) 2 WiWidetJ] { . b
. =l j=1 .
Q2 N,
Q23 Na3
\Q24) \N24)

Gauss Quadrature with 2 x 2 sampling points is used to evaluate above equation.

6.4 SOLUTION PROCEDURE AND COMPUTER PROGRAM

The finite element method is adopted for analysis. In this solution method, first of all the
element stiffness matrix and consistent load vector is calculated and then theses stiffness
matrices and load vectors are assembled as per the boundary conditions. From this assembled
stiffness matrix and load vector, nodal displacements are calculated and finally from these

nodal displacements, element stresses are calculated.

In present study, substructure analysis technique is implemented for the finite element
analysis. This divides the whole analysis process into five different tasks. So for each process,
different computer programs are prepared in “c” programming language. The first program
“planal” prepares separate data file for individual substructure. This data file includes the
details such as number of elements in a particular substructure, number of nodes for that
substructure, material property, loading data, number of restrained nodes, joint restraints and
also the boundary nodes (needed for static condensation) for that particular substructure. After
execution of the first program, in second program “plana2”, element stiffness matrix and load
vector for is calculated and assembled as per corresponding degree of freedoms. Static
condensation of stiffness matrix and load vector is also carried out in the same program. This
condensed stiffness matrix and load vector is the input data for third program “plana3”, in
which degree of freedoms corresponding to boundary nodes are calculated. In forth program
“plana4”, internal degree of freedoms are calculated using boundary degree of freedoms.
After calculating all degree of freedoms, element stresses are calculated in forth program. And
in the fifth program “planaS” all the results of individual substructures are collected to print

in final result file.

96

6.5 ANALYSIS PROBLEM AND RESULTS
6.5.1 Problem 1 (Annular plate problem)

As a first problem for plate bending analysis, a circular plate having hole in the center, as
shown in Fig 6.4, is selected. Such analysis comes into picture in case of annular raft or when
any circular slab is having hole in the center and subjected to uniformly distributed load. Plate
is subjected to uniformly distributed pressure. Plate is fixed at the outer edge and free at the
inner edge. Modulus of elasticity of plate is 2x10® kN/m?, poisson’s ratio is 0.3, thickness of

the plate is 0.1m and the intensity of pressure is 20kN/m>.

-

| | WkNm’®
4 o
= >3 =
T R DN
A e e =
e) I 0

Fig 6.4: Circular Plate having whole in the center and subjected to
uniformly distributed pressure

For the analysis 8 noded isoparametric plate element is selected. So the plate has been
descritized into isoparametric elements. Two types of meshing is carried out. One is the
uniform, in which length of each element is kept uniform and other is graded mesh in which
area of each element is kept uniform. Both descritizations are shown in Fig 6.5 and Fig 6.6
Further the plate is divided into number of substructures. Load on each computer is
maintained by keeping number of element same in each substructure. Fig 6.7 shows the

division of quarter plate into three substructures.

97

Results for the deflections are tabulated for uniform as well as graded mesh in Table 6.1
These results are compared with those obtained by analytical methods, given in reference

[20].

1 2 2 4 5 eTF7ER

Fig 6.6: Descritization of plate in 8 noded isoparametric elements in graded mesh

98

M=
I -—
| —

—————T—
{
-

-

Fig 6.7: Division of quarter plate into three substructures

Table 6.1: Displacement coefficient for uniform and graded mesh

Sr

Z
o

ID | ED k1
TNE|TNN Analysis

Uniform | Graded

Reference

11
-3
1l
&0

21 | 0.057 | 0.057 0.057

21 | 0.161 | 0.161 0.162

4

4 |21] 0129 [0.129 | 0.130
4

4

21 | 0.174 | 0.174 0.175

8 | 12| 51 | 0.057 | 0.057 0.057

15 | 12| 51 | 0.129 | 0.129 0.130

16 | 12| 51 | 0.161 | 0.163 0.162

20 | 12| 51 | 0175 | 0.178 0.175

4 12493 | 0.057 | 0.057 0.057

6 24193 | 0.129 | 0.129 0.130

Zla|e|eNo| v v =

8 |24 |93 | 0162 | 0.161 0.162

Ju—
[\

93 | 0.174 | 0.177 0.175

[
w

4 |48 |173| 0.057 | 0.057 0.057

,_
N

6 [48 173 | 0.129 | 0.129 0.130

[
(9]

8 |48 | 173 | 0.162 | 0.162 0.162

—
@)}

10 | 48 | 173 | 0.175 | 0.174 0.175

—_
\]

4 | 721|253 | 0.057 | 0.057 0.057

Ju—
o]

6 |721253] 0.129 | 0.129 0.130

—_
o)

8 |72 1253 | 0.161 | 0.162 0.162

[\
[e]

10 | 72 1253 | 0.173 | 0.175 0.175

[\
[

4 196|333 | 0.057 | 0.057 0.057

N
\e]

6 |96 333 0.129 | 0.130 0.130

[\
W

8 |96 333 0162 | 0.162 0.162

.}
N

N[NNI AR N RN
—
[«]
[\]
~

10 | 96 | 333 | 0.174 | 0.173 0.175

99

Where,

TNE = Total number of elements
TNN = Total number of nodes

kIl =WmnwEh’/qa’

Whax = maximum deflection of plate

q = Intensity of uniformly distributed load

For time calculation, in present work the plate is descritized into 1800 elements. So plate is
having 5725 nodes. Each node is having three DOFs. So the problem has total 17175 DOFs.
The configuration of the problem on WebDedip, when divided into four substructures and the

time requirement for each processes is shown in Fig 6.8 and Fig 6.9 respectively.

[Application Detail Window

Appllcatlon culnetPubieensarootfacility Dedipdreaidizpland Grid Size (n*m) :

Fig 6.8: Configuration of plate bending problem, for four substructures

100

| Wiew Output... | | View Error...

Session | Application |

Application: displand Counter: 2

sr. [ProcessMame [ModeMo. | StatTime | ExpectsdTime | EndTime | Status
1 planal 2222228451 21:48:01 21:48:11 21:48:08 MormalCamplet.
2 planazi 222222 8645 21:48:25 21:48:35 21:53:09 MormalCamplet.
3 plana2z 222232867 21:48:27 21:48:37 21:5312 MarmalComplet.
4 planaz3 222222868 21:48:31 21:48:41 21:583:11 MormalCamplet.
i} planazd 2222228649 21:48:34 21:48:44 218317 MarmalComplet.
|4} DTHS1 222.222.8.51 21:48:08 21:48:08 21:48:24 MarmalComplet.
7 OTHS2 222222851 21:48:08 21:48:08 21:48:27 MNarmalComplet.
g DTHS3 222.222.8.51 21:48:08 21:48:08 21:48:3 MarmalComplet.
9 DTHS4 222.222.8.51 21:48:08 21:48:08 21:48:34 MarmalComplet.
10 DTHSS 222.222.8.51 21:53:09 21:53:09 21:53:38 MarmalComplet.
11 DTHSE 222.222.8.51 21:5312 215312 21:54:09 MarmalComplet.
12 OTHS? 222222841 218311 218311 21:54:01 MarmalComplet.
13 DTHSE 222.222.8.51 215318 215318 21:54:09 MarmalComplet.
14 planas 222222851 21:54:09 21:54:149 21:56:55 MormalComplet.
15 planadi 222222 8645 28712 2AT22 21:5818 MormalCamplet.
16 DTHS49 222.222.8.51 21:56:55 21:56:55 218711 MarmalComplet.
17 DTHS10 222.222.8.51 21:56:55 21:56:55 218714 MarmalComplet.
18 OTHS11 222222841 21:86:55 21:56:55 215718 MarmalComplet.
18 DTHS12 222.222.8.51 21:56:55 21:56:55 21:587:21 MarmalComplet.
20 planas 222222851 21:58:48 21:58:58 21:58:55 MarmalComplet.
21 planadz 222232 8BE6T 218714 218724 21:58:21 MormalCamplet.
22 planad3 222222868 218718 218728 21:58:24 MormalCamplet.
23 planad4 2222228649 218721 21:87:31 21:58:28 MormalCamplet.
24 DTHS13 222.222.8.51 215818 215818 21:58:34 MarmalComplet.
25 DTHS14 222222841 218821 218821 21:58:39 MarmalComplet,
26 DTHS15 222.222.8.51 21:58:24 21:58:24 21:58:44 MarmalComplet.
27 OTHS16 222222841 21:58:28 21:58:28 21:58:48 MarmalComplet.

Fig 6.9: Time requirement for individual process for four substructures

The average time required for various processes, when entire structure divided into different
number of substructure, is tabulated in Table 6.2 Also time required in parallel
implementation i.e. computation time and communication time is shown. Based on the time
required for various processes in sequential and parallel implementation, speedup is
calculated. The comparison of ideal speedup and observed speedup is shown in Fig 6.10.
From calculated speedup and ideal speedup, efficiency is also calculated as a measure of

performance. Fig 6.11 shows the comparison of computation and communication time.

Table 6.2: Time required for sequential and parallel processing

Processes NB |NEQ File Time Sequential| Parallel time Speed up Efficiency|
Size Time |Comp|Comm. IdeaI|CaIcuIated
(Kb) [(Sec)| (Sec) |(Sec)| (Sec) (%)
3 substructures

planai 7

DTHS 72 19

plana2 5391|6327 556

DTHS 11121| 44

plana3 1848|3738 122

DTHS 21 19

plana4 1365|6327 88

DTHS 2822 | 18

plana5 7 2068 780 | 100 3 2.35 78.33

101

4 substructures

planai 7
DTHS 56 26
plana2 4047 4971 358
DTHS 10278| 48
plana3 1836|4635 165
DTHS 20 26
plana4 1365 (4971 67
DTHS 2123 | 19
plana5 7 1879 604 119 4 2.60 64.97
6 substructures
planai 7
DTHS 50 35
plana2 27033615 115
DTHS 23621| 80
plana3 1824|6429 248
DTHS 30 35
plana4 1365|3615 44
DTHS 150 | 23
plana5 7 1216 421 173 6 2.05 34.12
8 _

%6* _0

-S‘?j 4 - N St

=Y o

N - 4

O I I I I !
2 3 4 5 6 7
No of substructure
---#--- ideal speed up —a— calculated speed up

Fig 6.10: Comparison of ideal and observed Speedup

102

3 4 6
No of substructures

B computation time B Communication

Fig 6.11: Computation and communication time

103

6.5.2 Problem 2 (Skew plate problem)

For second example of plate bending problem, a skew plate, as shown in Fig 6.12, subjected
to uniformly distributed pressure is selected. Such analysis comes into picture when any skew
bridge is to be analyzed for different skew angles. Plate is simply supported at two edges and
free at the remaining two edges. Modulus of elasticity of plate is 2x10° kN/m?, Poisson’s ratio
is 0.2, thickness of the plate is 0.1m and the intensity of pressure is 20kN/m?. For the analysis
8 noded isoparametric plate element is selected. So the plate has been descritized into number
of isoparametric elements as shown in Fig 6.12. Division of plate into four substructures in

shown in Fig 6.13

Ly =mn

Y

Fig 6.12: Skew plate descritization in 8noded isoparametric elements

104

Fig 6.13: Division of plate into four substructures

\

|
Z
h
o]
[N W N W SR . N N

L S T
Y
YA

Results for the deflections and moments for various skew angles are compared with those

obtained by analytical methods, given in reference [20]. Variation for maximum deflection for

various skew angles and for various descritization of plate is tabulated below in Table 6.3

Table 6.3: Deflection coefficient for maximum deflection for skew plate

Sr Angle | Lx | Ly | Nex | Ney | TNE %
No Calculated | Anlytical
1 0 5 |10.00| 6 12 72 0.212 0.214
2 0 5 | 10.00 | 10 20 | 200 0.211 0.214
3 0 10 | 20.00 | 30 | 40 | 1200 0.210 0.214
4 0 10 | 20.00 | 26 52 | 1352 0.198 0.214
5 30 5 | 8.31 6 12 72 0.115 0.118
6 30 5 8.31 10 20 | 200 0.114 0.118
7 30 10 | 16.63 | 30 | 40 | 1200 0.110 0.118
8 30 10 | 16.63 | 26 52 | 1352 0.112 0.118
9 45 5 | 7.07 6 12 72 0.070 0.070
10 45 5 | 7.07 10 | 20 | 200 0.070 0.070
11 45 10 | 14.14 | 30 | 40 | 1200 0.071 0.070
12 45 10 | 14.14 | 26 52 | 1352 0.068 0.070
13 60 5 | 5.00 6 12 72 0.018 0.018
14 60 5 | 5.00 10 | 20 | 200 0.018 0.018
15 60 10 | 10.00 | 30 | 40 | 1200 0.018 0.018
16 60 10 | 10.00 | 26 52 | 1352 0.018 0.018

105

Where,

Lx / Ly = length of plate in x and y-direction respectively

Nex / Ney = number of elements along x and y-direction respectively
TNE = Total number of elements

a=WD/q a’, W is maximum deflection and q is intensity of uniformly distributed load

Variation for maximum moment (My) at the center of plate for various skew angles and for

various descritization of plate is tabulated below in Table 6.4

Table 6.4: Moment coefficient for maximum moment at center of plate

SrNo|Lx | Ly | Nex | Ney | TNE Bo
Analysis|Reference
1 5110 5 11 | 55 | 0.497 0.495
2 5110 11 | 21 | 231 0.499 0.495
3 5110 15 | 25 | 375 | 0.500 0.495
4 5110 25 | 51 |1275] 0.500 0.495
5 5110 5 11 | 55 | 0.364 0.368
6 5110 11 | 21 | 231 0.365 0.368
7 5110 15 | 25 | 375 0.365 0.368
8 5110 25 | 51 |1275] 0.363 0.368
9 5110 5 11 | 55 | 0.285 0.291
10 | 5 110 | 11 | 21 |[231| 0.288 0.291
11 5110 15 | 25 | 375 0.285 0.291
12 | 5110 | 25 | 51 [1275| 0.283 0.291

Variation for maximum moment (My) at the center of unsupported edge of plate for various

skew angles and for various descritization is tabulated below in Table 6.5

Table 6.5: Moment coefficient for maximum moment at free edge of plate

SrNo|y ¢ |Ly| Nex | Ney | TNE Bl
Analysis | Reference
1 5110 5 11 | 55 | 0.509 0.508
2 5110 11 | 21 | 231 | 0.511 0.508
3 5110 15 | 25 |375| 0.511 0.508
4 5 110| 25 | 51 |1275] 0.512 0.508
5 5110 5 11 | 55 | 0.376 0.367
6 5 (10 11 | 21 | 231 | 0.373 0.367
7 5110 15 | 25 |375| 0.371 0.367
8 5110 25 | 51 |1275] 0.367 0.367
9 5110 5 11 | 55 | 0.298 0.296
10 | 5 (10| 11 | 21 | 231 | 0.296 0.296
11 5110 15 | 25 | 375 | 0.293 0.296
12 | 5 (10| 25 | 51 |1275| 0.294 0.296

106

For present work the plate is descritized into 3000 elements. So plate is having total 9221
nodes. Each node is having three DOFs. So the problem has total 27663 DOFs. Average time
required for various processes, when entire structure divided into different number of
substructure, is tabulated in Table 6.6. Also time required in parallel implementation i.e.
computation time and communication time is shown. Based on the time required for various
processes in sequential and parallel implementation, speedup is calculated. The comparison of
ideal speedup and observed speedup is shown in Fig6.14. Comparison of communication time
and computation time for number of substructures is shown in Fig 6.15. From calculated

speedup and ideal speedup, efficiency is also calculated as a measure of performance.

Table 6.6: Time required for sequential and parallel processing

size | . Sequential| Parallel time speed u pps
Process NB \NEQ (kb) time qtime Comp | comm |Ideal Calcu{)ated Efficiency
(sec) (sec) (sec) | (sec) (%)

3 Substructure

planal 7

DTHS 124 | 20

plana2 8895|9423 707

DTHS 5018 | 50

plana3 840 | 1914 140

DTHS 14 | 20

plana4 465 9423 90

DTHS 446 | 20

plana5 7 2545 951 | 110 | 3 2.40 79.96
4 substructure

planal 7

DTHS 95 | 26

plana2 6675|7143 502

DTHS 4329 52

plana3 780 | 2211 170

DTHS 13 | 27

plana4 465 |7143 82

DTHS 336 | 22

plana5 7 2520 768 | 127 | 4 2.82 70.39
5 substructure

planal 7

DTHS 77 | 30

plana2 5343|5775 315

DTHS 3940| 60

plana3 744 12508 172

DTHS 12 | 30

plana4 465 |5775 65

DTHS 270 | 23

plana5 7 2466 566 | 143 | 5 3.48 69.56

107

6 substructure

planal :
s 65 | 33
plana2 4455|4863 180
an 36911 65
planad | 720 | 2805 175
pnai 2 37
planat | 465 |4863 62
DTHS -
- 8 | 1642 | 432 | 161 | 6 | 277 | 4615
8 -
o e
§ | --.»—---—,..,—,-.
m -

No of substructure

---¢--- ideal speed up —a— calculated speed up

Fig 6.14: Comparison of ideal and observed Speedup

Time

1000 =
800 1 —
600 + —
400]
200 +
NEE BN N e b
3 4 5 6
No of substructures
@ computation time B Communication

Fig 6.15: Comparison of ideal and observed Speedup

108

6.6 SUMMARY

Present chapter includes the plate bending problem. So the earlier part of chapter includes the
finite element formulation of plate bending element. In later part two problems of plate
bending have been analyzed on parallel computers. Of two problems, one is the annular plate
subjected to uniformly distributed load. For analysis on parallel computer the plate is
discritized into 1800 elements. So, plate has total 5725 nodes (i.e. 17175 DOFs). For
implementation on parallel computers, problem is divided into 3, 4 and 6 substructures. The
other problem is the skew plate problem subjected to uniformly distributed load. For the
analysis, the plate is divided into 3000 elements and 9221nodes (i.e.27663 DOFs). The
problem has analyzed using parallel computers that include 3, 4 and 6 computers. For first
problem having 17175 DOFs, efficiency of 78.33% has observed. While for second problem,
having 27663 DOFs efficiency of 79.96% has observed.

109

CHAPTER 7 LAMINATE PLATE ANALYSIS

7.1 GENERAL

The word composite means the material consisting by combination of more than one material.
Though these materials are combined at microscopic level, individual material is easily
distinguishable. The main advantage of composite material is that they exhibit the best
qualities of their constituents and often some qualities that neither constituent possesses. So
current developments are pointed towards combination of usually strong, fibers and organic,
ceramic or metal matrices that promises to be far more efficient than any structural materials
known previously. Plates made up of isotropic or orthotropic laminae are widely used in a
variety of structures and machines. A multiphase or two material laminae consists of a stiff
filament material embedded in a compatible matrix material. Examples of filaments are glass,
boron, carbon, graphite, and steel whereas matrix materials have included polyesters,

aluminum, and epoxies.

7.2 LAMINATED COMPOSITES

Laminated composites consist of layers of at least two different materials that are bonded
together. Lamination is used to combine the best aspects of the constituent layers in order to
achieve a more useful material. The properties that can be emphasized by lamination are
strength, stiffness, low weight, and corrosion-resistance; wear resistance, beauty or
attractiveness, thermal insulation, acoustical insulation etc. Examples of laminated
composites are Bimetals, Clad metals, laminated glass, plastic-based laminates, and laminated

fibrous composites.

7.2.1 Lamina

A lamina is a flat arrangement of unidirectional fibers as shown in Fig 7.1 in matrix. The
fibers are the principal reinforcing or load-carrying agent. They are typically strong and stiff.
The matrix can be organic, ceramic, or metallic. The function of matrix is to support and
protect the fibers and to provide a means of distributing load among and transmitting load

between the fibers.

110

Fig 7.1: Lamina with unidirectional fibers.

7.2.2 Laminate

A laminate is a stack of laminae with various orientations of principal material directions in
the laminae as in Fig 7.2. The layers of a laminate are usually bound together by the same
matrix material that is used in the laminae. Laminate can be composed of plates of different
materials or of laminae of the same material. A laminated circular cylindrical shell can be
constructed by winding resin-coated fibers on a mandrel first with one orientation to the shell

axis, then another, and so on until the desired thickness is built up.

Fig 7.2: 3-ply laminate construction

A major purpose of lamination is to tailor the directional dependence of strength and stiffness
of a material to match the loading environment of the structural element. Laminates are
uniquely suited to this objective since the principal material directions of each layer can be

oriented according to need.

111

7.2.3 Structural Application

In recent years, continuous fiber reinforced laminated composite plates have been extensively
used as structural elements because of their desirable properties such as higher strength-to-
weight ratio, higher stiffness-to-weight ratio etc. in addition, there exists the possibility of
optimum structural design through the variation of fiber orientation, stacking sequence and

choice of fiber and matrix materials.

As far as environmental resistance is concerned, composite materials are more efficient than
traditional civil engineering materials such as steel, concrete, masonry, and plaster.
Degradation in strength and stiffness for steel structures due to the corrosion problem requires
frequent inspection, maintenance, and repair. Similarly, stress cracking due to the warm/cold
weathering limits the service life of concrete structures. Timber is susceptible to moisture-

swelling problems and paste attack.

Currently, composite materials are being used to retrofit and/or reinforce existing
infrastructures. Flat composite laminates have been bonded to the exterior surface of
reinforced concrete deck to increase its bending stiffness. Several pedestrian bridges have
been built successfully. Composite materials are suitable for construction of highway bridges,

power transmission towers, office/residential buildings, retaining walls, etc.

Some of the important structures constructed earlier using Glass-fiber reinforced Polyester

(GFRP) are given below:

1) Dome structure in Benghazi in 1968.

2) Roof structures to the Dubai Airport built in 1972.

3) Covert Garden Flower Market at Nine Elms, London.
4) 37m high Chimney at Hendon, London.

5) Prestigious American Express Building in Brighton, England

112

7.3 DISPLACEMENT MODEL

The displacements in the X, y and z directions of the symmetrically laminated composite
plates subjected to transverse loads may be taken as follows. The displacement along the x, y
and z directions are expended in terms of higher order functions of thickness coordinates and

mid plane variables.

U(x,y,7) =7 6x(x, y, 0) + 7’ 6, (x, y, 0)
V(X,y,2) =2 0y(Xx,y, 0) + 7 Gy*(x, y, 0)
WX, y,z)=w(x,y, 0)+ 72 W*(X, y, 0)

>
a 1

Fig 7.3: Geometry of a rectangular laminated composite plate

This can be written as,

u=1z0y+ 7 GX*

v=z0,+7 0,

w=wo+2 Wy (7.1)
This model includes the effects of the transverse normal strain/stress also.

7.4 STRESS-STRAIN RELATIONS FOR AN ORTHOTROPIC LAMINA

For an orthotropic lamina in a 3-D state, the strain-stress relationship at a point in each of the

three orthogonal planes will be given by,

113

€1 l/El -V21/E2 -V31/E3 0 0 0 (o3}
1) —V12/E1 l/Ez -V32/E3 0 0 0 0>
€ | =|-vis/E; -vu3/Es 1/E3 0 0 0 03
Y12 0 0 0 1/G2 0 0 T12
Y23 0 0 0 0 1/Go; 0 T3
Y13 0 0 0 0 0 1/Gi3 T13
£=56G (7.2)

The stress-strain constitutive relations can be obtained by inversion of strain-stress relations

given by equation 7.2 and are written in following matrix form :

k k k
(] Ei(1-v23v32) Ei(va1+v3ivas) Ei(vai+vaivaz) 0 0 0 €1

G2 Ex(Vi2+vi3v32) Ea(1-vi3var) Ex(V32+viavsr) O 0 0 &

03 |=1|Es(Viz+Vi2vas) Es(vas+vaivis) Es(l-vipvy)) 0 0 0 €3
Tiz| a 0 0 0 2Grp 0 0 Y12
T3 0 0 0 0 AGx; O Y23
T13 0 0 0 0 0 AGi3 Y13

In which, A = (1-V12V21- V23V 32- V31 V13-2 V12V 23 V31)

G=cCE€ (7.3)
In the stress-strain relation equation 7.3, the subscript k is introduced to designate K™ layer of
the laminate. The relations given by equation 7.3 are the stress-strain constitutive relations
with reference to lamina axes for a homogeneous orthotropic layer in a general 3-D state of
stress and these are adopted here to develop a theory based on the displacement model given

by equation 7.1
As noted earlier, the relation given by equation 7.3 is the stress-strain constitutive relations for
the orthotropic lamina referred to the lamina’s principal axes (1,2,3). The principal material
axes of a lamina may not coincide with the reference axes for the laminated plate. It is
therefore necessary to transform the constitutive relation 7.3 from the lamina principal axes
(1,2,3) to the reference axes of the laminate (x, y, z).

c=Toc and e€=Te (7.4)

The transformation matrix T is given by,

114

c? s 0 2sc 0 0
$? c? 0 2s¢ 0 0
T=]0 0 1 0 0 0 (7.5)
-SC sC 0 (c2 - sz) 0 0
0 0 0 0 c -S
0 0 0 0 S c
Where, ¢ = cos ot and s = sin Q.
The relation between engineering and tensor strain vectors is given by,
€=R &g
es=R'e (7.6)
R matrix is defined as,
1 0 0 0 0 O
O 1 0 0 0 O
R=]0 0 1 O 0 O
O 0 0 2 0 O
O 0 0o 0o 2 0
O 0 0 0o o0 2 7.7

The stress-strain constitutive relations with reference to laminate axes are obtained in the
following form by making use of relations 7.3, 7.4 and 7.7

c=T'CRTR'¢ (7.8)

It can easily be proved that,

RTR'=T" (7.9)

Thus, the relation (7.8) can be rewritten as,

c=Q¢ (7.10)

Where,
Q=T'CcT"

115

In matrix form,

Ox Qi Q2 Qs Qu O
Oy Qr Q2 Q23 Qs O
o, | =|Q Q23 Qs3 Qs4 0
Txy Qs Qu Qi Qu O
Tyz 0 0 0 0 Q55
Txz 0 0 0 0 0

Q matrix coefficients are defined as,

Qu= C1104 + (2C12+4Cu4) ¢’ + Cn st
Qi = (S4+ 04) Cio+ (Ci1+ C—4 Cuy) s ¢

2 2
Qui=c"Ciz+5s"Ca

S O O OO

Qs

Q14 = (Ci1- Ci2- 2Cug) €’ +(C12 - Cop + 2Cas) s°c

Qxn=Cyy '+ Cn ¢+ (2C12+4Cyy) s> ¢

2 2
Qu=c"Cxp+sCyz

Q24 = (Ci1- C2 = 2Cag) s°c + (Cy - Cont 2Cag) s

Q33=C33
Q34 =(Ci3—Cy3) scC

Qus=(C11 + Cx-2C12 - 2Cys) s ¢+ (C4+ 54) Cus

Qss = ¢’ Css+ 5~ Ces
Qs6 = (Cgs -Css) sc

2 2
Qs =" Css+ ¢ Cep

And the coefficients of C matrix in equation 7.12 are defined by equation 7.3

7.5 STRAIN-DISPLACEMENT RELATIONSHIPS

&

82

Txy
Yyz
Yxz

Strain expressions corresponding to model (equation 7.1) are,

e, = du/dx=zK,+72 K,
gy= ov/dy =zK,+7 K,
owloz =z K,

&

Yxy = 0U/dy + 0v/ox =z Ky + 7 ny*

(7.11)

(7.12)

116

Y= OVI0z + oWy =0y +7° ¢y
Yo = 000z + OW/OX =y + 72" Oy (7.13)

Where the definitions of the various terms are as follows:

Kx = 00,/0x . K, =06, /dy Ky =00:/dy + 00,/0x |

K, =00, /0x K, =00, /9y Ky =00, /0y + 00,70x

Ox = 05 + dw/0x , ¢y = 6y + Ow(/ay ,

(I)x* =30, + 0w /0x , (I)y* = 39y* + awo*/ay ,

K,=2wy (7.14)

The concise matrix form of equation 7.13 is,

*

8X KX KX
&y Ky Ky*

er=|¢ |=z |K, |[+2°| K, | =zK+Z K’ (7.15a)
Yxy Kyy ny*

& =W =0y +2° 10| =0+72° ¢ (7.15b)
YXZ q)x q)y*

The above equations 7.15a and 7.15b are the expressions for the flexure and transverse shear
strains respectively, at any point in the I layer of the laminate located at a distance z from
the mid-plane. It should be noted that owing to the nature of equation 7.15b, the transverse

shear strains vary parabolically through the plate thickness.

7.6 FINITE ELEMENT FORMULATION

The solution of the fundamental equations of the two displacement models based on higher
order shear deformation theory for laminates anisotropic plates, can conveniently be obtained
by using the finite element displacement formulation. Element properties are derived by
assuming a displacement function, which ensures completeness within the element and
compatibility across the element boundaries. The finite element theory is developed in this
section for application to linear equilibrium problems of isotropic, orthotropic and multiplayer

anisotropic plates with various loading and boundary conditions. In present work, 8-noded

117

isoparametric quadrilateral element (Fig 7.4) is used. The finite element formulation starts
with writing the shape functions, followed by the derivation of the strain-displacement matrix

[B]. And in final, element stiffness matrix formulation is derived.

n
4 7 3

LD 10D (1,1

8 O €
1(-1,0) (1,0)

(-1,-1) (0,-1) (1,-1)
2 & &

1 5 2
Rectangle in natural coordinate Isoparametric element

Fig 7.4: Eight nodded Isoparametric element

The vector,
q= [Wo1, Ox1, Byl, wo 1, O 1, By 1, Woa , 052, eyz, wo 2, Oy 2, Gy Dt ,By g] denotes the

element displacement vector and hence the degree of freedom at each node is enumerated as:

Wo = Transverse displacement at the geometrical mid-plane.

0,,0, =Rotations of the ‘normal’ to the geometrical mid-plane in x-z and y-z plane
respectively.

Wo = Higher order term of transverse displacement wy at the geometrical
mid-plane.

0, By* = Higher order terms of rotations of the ‘normal’ to the geometrical mid-

plane in x-z and y-z plane i.e. 6 and Oy respectively.

Therefore, Nodal degree of freedom for the element 16
Number of nodes in the element 08
Total degree of freedom for the element :6x8=48

118

7.6.1 Shape Functions

The shape functions for this element in terms of the non-dimensional coordinate system can

be given as:

Ni=&@E-D)nm-1)/4

Ny=(1-E)n (n-1)/2

N;=E @&+ 1)nn-1)/4

Ny=E@E+1)(1m*)/2

Ns=E(@E+ D)nn+1)/4

Ne=(1- E)n(n+1)/2

Ny =& @E&-1)nm+1)/4

Ng=&(E-1)(1n*/2 (7.16)

Where, & and 1 are the non-dimensional coordinates (Fig7.4) of a given point on the element.

Now the displacement field is expressed in terms of the nodal values. Thus, if d = [wy, 6, 6y,
Wo 5 Oy, Gy*]T represents the displacement components of a point located at (§,1)), and q is the

element displacement vector, then

wo = Niwo1+ Nowgo+. ...+ Ngwos

0x = N10x1+ NoByo+.......... + N3Oys

Oy = NiOy+ NoOyot......... + NgOy3

Wo* = N1W01*+ N2W02*+. ot NgWog*

0y = N6+ NoB +......... + Ngbys

0, =Ny, + NoByy +......... + Ngbyg (7.17)

119

Where,

e

NN

N =%X
(6x48) i=I

sy

(7.18)

© o o o o Z
© o o o 7z o

Z © © o o o

7.6.2 Strain-Displacement relation Matrix [B]:

The strain-displacement matrix relating strain components to element nodal variables can be
formed as:

[e] = [B] [3] (7.19)

Where,
[8] : vector consisting of all the nodal displacements.
[8]'=[81,8,,83,84,8s5,8,87,8 1"
Where each;
[81" = [wo, Bx, 8y, wo', 8, 0,"];" fori=1to8.
[€] : strain vector

[B]: strain-displacement matrix.

Now, we are considering the flexure strain terms and shear strain terms separately and from
equation 7.15, writing the strain-displacement relationship in terms of the bending curvature-

displacement relation [By] and shear rotation-displacement relation [Bg].

The shear rotation — displacement relations are,

Ox 0, + dwy /0x
¢ =0y | = | 6y+dwg/dy (7.20)

*

O | 30y + owo /9x

*

by 30, + ow /dy

120

And,

The bending curvature-displacement relations are,

K, 00,/0x
K, 00,/dy
Kyy 00,/dy + 06,/0x
K= |K|= 90, /0x (7.21)
K, 00, /dy
Ky | |06 /9y + 08, /0x
K, 2w

So, B matrix for curvature and shear can be given as,

0 ONy/ox 0 0 0 0
(0000 ONi/dy 0 0 0
Bp= X [0 ON/dy oN/ox 0 0 0
8=l g0 0 0 ON/ox 0
0 0 0 0 0 ONi/dy
0 0 0 0 ONi/dy ONy/ox
0 0 0 2N; 0 0 (7.22)
ONi/ox N; 0 0 0 0
NN |ONildy 0 Ni O 0 0
B,= X |0 0 0 ON/ox 3N; 0
Gas) 1=l 0 0 ON/dy 0 3N; (7.23)

7.6.3 Element Stiffness Matrix

The virtual work principle has been used to derive the element stiffness matrix and the

consistent load vector. If we apply the virtual work principle to a finite element we have,

oU = oW,

121

Now, the change in internal virtual strain energy dU and the external virtual work W can be

written in terms of the nodal displacements as:

SU = {3 [&v]" [ov] + S [&,]" [04] }dv

= [{(8[qi]" [Bo(x,y)]"[Ds] [Bo(x,y)] [qil)+ (8[qi] [Bs(x,y)1 [Ds][Bs(x,y)]1 [qi]) }dv
v (7.24)

W = 8[qil"[p:°] (7.25)

Where, [p;°] is the nodal action due to the externally applied loads.

Next, canceling 8[q;]" from both sides of the equation 8U = 8W results in
[K°][qi] = [p:]

Where, [K®] is the element stiffness matrix, and Dy and Dy vary across thickness z only. Thus,
by carrying out the thickness integration through the N layers first, the element stiffness

matrix can be written as:

[K°] = g {[Bu(x,y)]" [Dpl[Bo(x,y)] + [Bs(x,y)]" [Ds][Bs(x,y)] }dA (7.26)

Note that the matrices [By] and [B] are evaluated based on the shape functions given above.
Upon evaluating matrices [Dy], [Ds], [By] and [Bs] the element stiffness matrix can be
evaluated. However, since the shape functions and, thus, the matrices [By] and [Bg] are
defined in terms of the non-dimensional coordinate system, the element stiffness matrix must

be evaluated as follows:

+1 +1

(KT={ T {[BsCoy)l" DulBo(xy)] + [ByCoy)I'[Ds][By(xy)]} 3] dE dn (7.27)

In this study the Gauss integration technique has been used to evaluate the integrals. In the
Gauss integration technique, a polynomial of degree (2n-1) can be integrated exactly by n
sampling points. In the present formulation a selective integration scheme has been used to
evaluate element stiffness matrix. For the bending stiffness terms 3 x 3 integration scheme
and for the shear stiffness terms 2 x 2 integration scheme has been adopted. Thus the stiffness

matrix has been evaluated as follows:

122

NG NG
[K7=X T { [Bo(x,y)] [Dp][Bu(x,y)] + [By(x,y)I ' [D1[Bs(x,y)1} [NTW, Wy, (7.28)

Where W, and W,, are the weighting factors corresponding to Gauss sampling points and NG is

the number of Gauss points selected for the integration schemes.
7.6.4 Load Vector

The components of the consistent load vector are the equivalent load applied at the nodal
points of the element due to the loads applied at the intermediate points of a finite element. In
the evaluation of the load vector the entire laminate is considered as a single layer of
thickness t;. The applied external forces may consist of independent or combination of the
following load cases:

i) Gravity loads.

ii) Uniform normal surface pressure.

iii) Sinusoidal normal surface pressure.

iv) Point loads in the global z directions.
1) Gravity Load

The gravity loads, generally the self-weight of the element, always act in the global z-
direction. In other words, the gravity loads will have the components along w direction only.
Let ‘p’ be the uniform mass density of the element material and ‘g’ be the acceleration due to

gravity in z-direction. The element load vector at node i is given by,

Py = AI pgt[N]"dA (7.29)
NG NG
P1=2 L pgtNI" [1]W. W, (7.30)

The above equation represents the element load vector for all the nodes.

123

2) Uniform normal surface pressure

To evaluate the nodal loads due to normal surface pressure Po, the displacement normal to the
surface of the element is required. As here, there is only the transverse displacement, the
transverse normal pressure acting either innermost or outermost surface is considered. The

load vector at node i is given by,

[P,] = AI Py [Ni]" dA (7.31)
NG NG

[PS1=X £ Po[N]" [T W, W, (1.32)
a=1 b=1

The above equation represents the element load vector for all the nodes.

3) Sinusoidal normal surface pressure

The load vector at node i due to sinusoidal distributed normal pressure is obtained from

equation 7.32 by replacing Py by,

Py sin mmx sin nmy (7.33)
a b

Where, Py is amplitude of loading in the z-direction and the element load vector is given by

equation 7.33
4) Point load along the transverse direction

When the point of application is not coincident with nodal point and Py be the point load

normal to the surface of the element, the load vector at node i is given by,

[Ppi] = Py [Ni]' (7.34)

124

7.7 SOLUTION PROCEDURE AND COMPUTER PROGRAM

The finite element method is adopted for analysis. In this solution method, first of all the
element stiffness matrix and consistent load vector is calculated and then theses stiffness
matrices and load vectors are assembled as per the boundary conditions. From this assembled
stiffness matrix and load vector, nodal displacements are calculated and finally from these

nodal displacements, element stresses are calculated.

In present study, substructure analysis technique is implemented for the finite element
analysis. This divides the whole analysis process into five different tasks. So for each process,
different computer programs are prepared in “c” programming language. The first program
“lamanal” prepares separate data file for individual substructure. This data file includes the
details such as number of elements in a particular substructure, number of nodes for that
substructure, material property, loading data, number of restrained nodes, joint restraints and
also the boundary nodes (needed for static condensation) for that particular substructure. After
execution of the first program, in second program “lamana2”, element stiffness matrix and
load vector for is calculated and assembled as per corresponding degree of freedoms. Static
condensation of stiffness matrix and load vector is also carried out in the same program. This
condensed stiffness matrix and load vector is the input data for third program “lamana3”, in
which degree of freedoms corresponding to boundary nodes are calculated. In forth program
“lamana4”, internal degree of freedoms are calculated using these boundary degree of
freedoms. After calculating all degree of freedoms, element stresses are calculated in forth
program. And in the fifth program “lamana$”, all the results of individual substructures are

collected to print in final result file.

7.8 ANALYSIS PROBLEM AND RESULTS

Laminated composite plate as shown in Fig 7.5, is selected for analysis. For analysis of
composite plate 8 nodded quadrilateral isoparametric element is used. Plate is simply
supported at all its edges and subjected to sinusoidal transverse lading. Due to symmetry of
plate w.r.t both x and y-axis, only quarter plate is analyzed. Descritization of quarter plate in
8-noddeed isoparametric elements is shown in Fig 7.6. Division of plate into four
substructures is shown in Fig 7.7. Each substructure is having same number of elements I

order to have same working load on each participating computer.

125

TR N

|
A

Fig 7.5: Laminated plate having four laminates

o

hs2
hs4

—h 4
—hs2

Laminate plate that is selected for the analysis is a square plate having both dimensions as 100

x 100cm. Plate consists of four laminates, each of 6.5 cm thick, so the total thickness of plate

is 25cm. Intensity of sinusoidal load is 10kN/cm®. Various material properties for laminated

plate are as follows.

E\/E, =25 E;/E;=1
Vi2=Va3=V;3=0.25
G1/E2=0.2 G2/E2=0.5 G3/E3=0.2
220 281 22 223 224 225
ST+ 584 59y 501 51 02 $63 164 ¢
4 14+2¢3t41s54ei 718
1 2 % 4 5 6 7 B 9 WL I3 14 15 6 17

Fig 7.6: Descritization of plate into 8-nodded isoparametric elements

Tee

126

-
1
1
1
1
1
1
1
1

.|

SUBSTRUCTURE 4

SUBSTRUCTURE 3

SUBSTRUCTURE 2

SUBSTRUCTLRE 1

e i o £ 2 e i e e
[N T R S————

L o e . . e e . e e

Fig 7.7: Division of plate into four substructures

For the present work, the laminated plate is divided into 1600 elements. So total number of
node are 4961. Each node is having six DOFs. So problem is having total 29766 DOFs.
Configuration of problem, when divided into four substructures and time requirement for

individual process is shown in Fig 7.8 and Fig 7.9 respectively.

Eg;i Application Detail Window

Application: c:inetPubfeessorootifaciityDedipArealaminated Grid Size ()

Fig 7.8: Configuration of laminate plate problem for four substructures

127

Sr. | Process Name | Mode Mo. | Start Time | Expected Time | End Time | Status
1 lamanatl 222222851 23:11:08 231118 2311:14 MormalComplet...
2 lamana2i 222.222.8.61 2311:30 23:11:40 232211 MormalCamplet...
3 lamana22 222222867 2311:33 2311:43 23:21:48 HormalComplet...
4 lamana2d 222272864 2311:40 2311:50 23:21:43 MormalComplet...
5 lamana3l 222272851 232234 232244 23:23:25 MormalComplet...
B larmanadl 222222861 23234 23235 23:24:25 MormalCamplet...
T lamanad? 222222867 232344 2323584 232426 MormalCaomplet...
] lamanad3 222222868 232348 2323588 2324 MormalCaomplet...
2] lamanadd 233232869 232391 23:24:M 23:24:33 MormalCaomplet...
10 lamanas 222232891 232485 23248048 23:25:049 MormalCaomplet...
11 OTHS1 222222841 231114 231114 2311:30 MormalCamplet...
12 OTHS2 222222841 231114 231114 231133 MormalCamplet...
13 OTHE3 222222841 231114 231114 231137 MormalCamplet...
14 OTHE4 222222841 231114 231114 2311:40 MormalCamplet...
18 OTHES 222222841 23221 2322 23:22:34 MaormalComplet..
16 OTHEE 222222841 232148 232148 232213 MormalComplet..
17 lamana23 222222868 2311:37 2311:47 232121 HormalComplet...
18 OTHE? 222222841 2321 2321 23:21:45 MormalComplet...
19 OTHEE 222222841 232143 232143 23:22:06 MormalComplet..
20 DTHES 222222851 232325 232325 23234 MormalComplet...
i OTHE10 222222851 232325 232325 23:23:44 MormalComplet...
22 DTHS11 222222851 232325 232325 23:23:48 MormalComplet...
23 OTHE12 222222851 232325 232325 23:23:51 MormalComplet...
24 OTHE13 222222851 23:24:25 23:24:25 23:2441 MormalComplet...
25 DTHE14 2222228451 232426 232426 23:24:46 MarmalCamplet...
26 DTHE15 2222228451 2324 2324 232451 MarmalCamplet...
27 DTHE16 2222228451 2324:33 2324:33 23:24:85 MarmalCamplet...

Fig 7.9: Time requirement for individual processes for four substructures

For the problem under consideration, good agreement has been observed with the analytical

given in reference [5]. Comparison of calculated results with the reference results is tabulated

in Table 7.1
Table 7.1: Comparison of calculated and reference results
Sr. No a/h (Constant) w | (Constant) o, | (Constant) o, | (Constant) o,
(a/2,b/2,0) | (a/2,b/2,h/2) | (a/2, b/2, h/4) (0, 0, h/2)

4 1.217E-03 1.134E+02 1.005E+02 | 7.322E+00
1 | Calculated 1.90 0.71 0.63 0.05
Reference 1.87 0.73 0.65 0.04

10 7.196E-03 | 5.608E+02 | 3.898E+02 | 2.708E+00
2 | Calculated 0.72 0.56 0.39 0.03
Reference 0.70 0.57 0.40 0.03

20 4.057E-02 2.169E+03 1.217E+03 | 9.101E+01
3 | Calculated 0.51 0.54 0.30 0.02
Reference 0.48 0.55 0.31 0.02

100 4.337E+00 | 5.155E+04 | 2.592E+04 | 2.116E+03
4 | Calculated 0.43 0.52 0.26 0.02
Reference 0.41 0.55 0.27 0.02

128

The average time required for various processes, when entire structure divided into different
number of substructure, is tabulated in Table 7.2. Also time required in parallel
implementation i.e. computation time and communication time is shown. Based on the time
required for various processes in sequential and parallel implementation, speedup is
calculated. The comparison of ideal speedup and observed speedup is shown in Fig 7.10.
From calculated speedup and ideal speedup, efficiency is also calculated as a measure of
performance. Comparison of communication and computation time for different substructures

is shown in Fig 7.11

Table 7.2: Time required for sequential and parallel processing

Processes NB NEQ | time Sequential Parallel time speed up Efficiency
time Comp | comm Ideal| Calculated
(sec) (sec) (sec) (sec) (%)
3 substructures
lamanal 6
DTHS 23
lamana?2 9438 | 10206 | 1090
DTHS 26
lamana3 1248 | 2820 | 44
DTHS 22
lamana4 714 110209 | 48
DTHS O 3471 [195 | 90 | 3| 270 | 90.04
lamana5 7
4 substructures
lamanal 6
DTHS 26
lamana?2 7110 | 7806 | 611
DTHS 25
lamana3 1200 | 3342 | 51
DTHS 26
lamana4 750 | 7806 | 43
DTHS 22 | 687 | 725 | 99 | 4 | 326 | 8152
lamana5 14
6 substructures
lamanal 8
DTHS 23
lamana?2 4734 | 5334 | 181
DTHS 67
lamana3 1080 | 4170 | 50
DTHS 25
lamana4 714 | 5334 | 22
DTHS 20 1 1204 | 279 | 135 | 6 | 313 | 5200
lamana5 18

129

:u67 e
g U
T4 e
3 .-
2 .'/——/_.\l
@,
0 T T T T !
2 3 4 5 6 7

No of substructure

---¢---ideal Speed up —a— calculated Speed up

Fig 7.10: Comparison of ideal and observed Speedup

1200
1000
800
]
£ 600
[
400
200
. — — h
3 4 6
No of substructures
@ computation time B Communication
Fig 7.11: Computation and communication time
7.9 SUMMARY

Present chapter includes the laminated plate analysis. So, earlier part of the chapter includes
the finite element formulation for laminate plate. In later part, one laminated plate problem
has been implemented on 3, 4 and 6 parallel computers for analysis using parallel processing
technique. The problem is descritized into 1600 number of elements. So there are total 4961

nodes (i.e. 29766 DOFs). For the problem under consideration having 29766 DOFs,

130

efficiency of 90% has observed for three computers. As number of computers goes on
increasing, the communication time also goes on increasing, so speedup and hence efficiency

goes on reducing.

131

CHAPTER 8 SUMMARY AND FURTHER SCOPE OF WORK

8.1 SUMMARY

In present study, parallel processing has been implemented in structural applications to
reduce the computational time. As the parallel programming needs deep knowledge of some
of the aspects of parallel programming such as special debugging techniques, data hiding,
data sharing, data synchronization etc, it makes parallel programming bit difficult for us. So,
in present study WebDedip environment has been used to implement parallel processing on
network of computers. WebDedip environment helps user to implement parallel processing

on network of computers without using special debugging technique or message passing.

For analysis Finite Element Analysis method has used and substructure technique has
implemented in order to implement parallel processing. So in whole process of analysis, the
structure is divided into number of substructures and analysis of each substructure is carried
out concurrently on separate computer and finally these results are combined to have final

results.

Using the above approach, four different problems have analyzed by sequential as well as
parallel processing and reduction in computational time has been observed. These four

problems are as follows:

» First problem is the plane stress analysis of rectangular plate having circular hole in the
center. Plate is subjected to uniform tensile force on both the edges. Constant Stress
Triangular (CST) element is used to descritize the continuum. The problem is having total
27980 DOFs and a efficiency of 88.07% is achieved when implemented on three

computers.

» Second problem is the analysis of circular plate, having hole in the center. Plate is
subjected to uniform lateral load. Plate is fixed at outer circumference and free at inner
circumference. For descritization of the plate, eight nodded quadrilateral isoparametric
plate element is used. Problem is having total 17175 DOFs and a efficiency of 78.33%

has achieved when implemented on three computers.

132

» Third problem is the skew plate analysis. It is a simply supported plate supported on both
inclined edges and subjected to uniformly distributed transverse load over entire plate.
For descritization of plate, eight nodded quadrilateral isoparametric plate element is used.
The problem is having total 27663 DOFs and efficiency of about 80% has achieved for

three computers.

» Analysis of laminated composite plate is the third problem. For analysis of composite
plate eight nodded quadrilateral isoparametric element is used. Plate is simply supported
at all its edges and subjected to sinusoidal transverse lading. The continuum is descritized
to have 29766 DOFs and efficiency, when implemented on three computers of 90% has

been achieved.

8.2 CONCLUSION

From the work carried out following conclusions can be drawn.

» As the hardware, designed exclusively for high performance computing is expensive, the
parallel processing technique, using network of computers can provide a cost effective

solution for high performance computing.

» WebDedip is a user-friendly environment by which user can implement parallel
application without having difficulty of special debugging and message passing

techniques.

» For a problem, implemented on less number of computers, computation time is more and
communication time is less and the same problem, when implemented on more number of
computers, total processing time reduces but at the same time communication time

becomes high so over all efficiency is reduced.

» More number of computers does not always serve the purpose. For small size of problem,
when implemented on more number of computers, computational time is less as compared
to communication time and hence less efficiency is achieved. So number of computers

should be decided on the basis of the size of problem.

133

» With the implementation of parallel processing technique on network of computers using
WebDedip environment, about 90% efficiency is observed. Hence it can be said that,
parallel processing on network of computers serves as one of the cost effective tool for

high performance computing.

8.3 FURTHER SCOPE OF WORK

The field of high performance computing is an upcoming field. So there are many fields in

which the further work can be carried out. Some of such fields are as follows.

» In present study, various static applications have been solved using parallel processing
technique. So in further work various dynamic and nonlinear problems such as dynamic

analysis of laminated composite laminates can be analyzed using parallel processing.

» In present study, WebDedip environment is used for parallel implementation of problem.
So, as further work parallel processing can be carried out by parallel programming, using

PVM and MPIL.

» In present work load balancing is achieved by keeping the size of each substructure same.
In further work, dynamic load balancing can be implemented along with WebDedip using

Message Passing Interfaces.
» Cluster computing, Meta computing and Grid computing are also some of the upcoming

fields for high performance computing. So further work can be carried out in these fields

also.

134

REFERENCES

1y

2)

3)

4)

5)

6)

7

8)

9)

Saxena M, Perucchio R, ”Parallel FEM algorithms based on recursive spatial
decomposition —I. Automatic mesh generation”, Computers and structures, Vol - 45,

pg.817-831, 1992

Adeli H, Kamal O, ”Concurrent analysis of large structures —I, Algorithms”, Computers

and structures, Vol - 42, pg.413-424, 1992

Adeli H, Kamal O, ”Concurrent analysis of large structures —II, Applications”, Computers

and structures, Vol - 42, pg.425-432, 1992

Foley C M, Vinnakota S, ”Parallel processing in the elastic non linear analysis of high rise

frameworks”, Computers and structures, Vol - 52, pg.1169-1179, 1994

Sivakumaran K S, Chowdhury S H and Vajarasathira, *“ Some studies on finite elements

for laminated composite plates”, Computers & Structures, Vol — 52, pg. 729-741, 1994

Adeli H, Kumar S, ”Distributed finite element analysis on network of workstations -

algorithms”, Journal of structural engineering, Vol - 121, pg.1448-1455, 1995

Adeli H, Kumar S, "Distributed finite element analysis on network of workstations -
implementation and applications”, Journal of structural engineering, Vol - 121, pg.1456-

1462, 1995

Adeli H, Kumar S, "Minimum weight design of large structures on a network of

workstations”, Microcomputers in civil engineering, Vol - 10, pg. 423-432, 1995

Kahaner D K, “Parallel Processing Efforts in India”, Asian Technology Information

Program (ATIP), ATIP96.040, 1996

10) Noor A K, "New computing systems and future high performance computing environment

and their impact on structural analysis and design”, Computers and structures, Vol - 64,

pg.1-30, 1997

135

11) Wriggers P, Boersma A, ”A parallel algebraic multigrid solver for problems in solid
mechanics descritized by finite elements”, Computers and Structures, Vol - 69, pg. 129-

137, 1998

12) Soegiarso R, Adeli H, "Parallel vector algorithm for optimization of large steel structures
on a shared memory machine,” Computer aided civil and infrastructure engineering, Vol -

13, pg. 207-217, 1998

13) Zucchini A, ”A parallel preconditioned conjugate gradient solution method for finite
element problem with coarse-fine mesh formulation”, Computers and structures, Vol - 78,

pg. 781-787, 2000

14) Adeli H,” High performance computing for large scale analysis, optimization, and

control”, Journal of aerospace engineering, Vol - 13, pg. 1-10, 2000

15)S C Patodi, P V Patel and H S Bhatt, “Distributed Finite Element Analysis Using
WebDedip Environment, Recent Developments in Structure Analysis (SEC-2001),
pg.628-635, 2001

16) Sotelino E D, “Parallel processing techniques in structural engineering applications”,

Journal of structural engineering, Vol - 129, pg.1698-1703, 2003

17) Timoshenko S and J N Goodier, “Theory of Elasticity”’, McGraw Hill Publishing Co. Ltd.,
New York, 1970

18) Desai C S and Abel John F, “Introduction to finite element method”, CBS publishers &
distributors, New Delhi, 1987

19) Cook R D, Malkus D S and Plesha M E, “Concepts and application of finite element
analysis”, John Wiley & Sons, 1989

20) Timoshenko S. P. and Krieger S. W, “Theory of plates and shells”, McGraw-Hill book
company, 1989

136

21) Adeli H, “Parallel processing in computational mechanics”, Mareel Dekker Inc., New

York, 1992

22)Reddy J N, “Finite element method”, McGraw Hill Publishing Company, London, 1993

23) Rajaraman V, “Supercomputers”, Wiley Eastern limited, 1993

24)Topping B H V and Khan A I, “Parallel Finite element computations”, Saxe-Coburg
publications, 1996

25) Krishnamoorthy C S, “Finite Element Analysis - Theory and Programming”, Tata
McGraw Hill Publishing Co. Ltd., New Delhi, 1996

26) Adeli H, Roesdiman and Soegiarso, “High performance computing in structural

engineering”’, CRC Press, 1998

27) Adeli H and Kumar S, “Distributed computer aided engineering for analysis, design and

visualization”, CRC Press, 1999

28) Rajkumar B, “High performance cluster computing (Architecture and system)”, Prentice

Hall Inc., New York, 1999

29) Sasikumar M, Shikhare D and Ravi Prakash P, “Introduction to Parallel Processing”,
Prentice Hall of India Private Ltd., New Delhi, 2000

30) Chandruptla T R and Belegundu A D, “Introduction to finite elements in engineering”,

Pearson education Inc., 2002

31) Zienkiewicz O C, “The finite element method”, Tata McGraw Hill Publishing Company
Ltd., 2004

137

PAPER PUBLICATION

» Paper published

Vikas Saxena, Prof Paresh V Patel, “APPLICATION OF PARALLEL PROCESSING IN
STRUCTURAL ANALYSIS”, National Conference on Recent Developments in
Materials and Structures (REDEMET-2004) held at NIT, Calicut, December 2004, pg
263-271

> Paper Accepted
P V Patel, Vikas P Saxena, Dr. S C Patodi, “SUBSTRUCTURE BASED DISTRIBUTED
FINITE ELEMENT ANALYSIS OF PLATES”, International Conference on Recent

Advances in Concrete and Construction Technology (INCRAC & CT-2005) going to held
at SRM Institute of Science and Technology, Chennai, December 2005

138

	01 front page.pdf
	02 certificate.pdf
	03 Acknowledgement.pdf
	04 Abstract.pdf
	05 index.pdf
	05 list of figures.pdf
	06 list of tables.pdf
	CHAP 1 Introduction.pdf
	CHAP 2 Letrature survey.pdf
	CHAP 3 Parallel processing issues.pdf
	CHAP 4 WebDedip.pdf
	CHAP 5 Plane stress problem.pdf
	CHAP 6 plate bending problem.pdf
	CHAP 7 laminate plate problem.pdf
	CHAP 8 Summary and further scope of work.pdf
	refferences.pdf
	paper publication.pdf

