
Available online at www.interscience.in�

�

International Journal of Computer & Communication Technology
�������

�

�

Efficient Algorithm for Auto Correction
Using n-gram Indexing

Mahesh Lalwani, Nitesh Bagmar & Saurin Parikh
Nirma University, Ahmedabad, India

E-mail : mahesh21688@gmail.com, nitesh89bagmar@gmail.com, Saurin.parikh@nirmauni.ac.in

Abstract - Auto correction functionality is very popular in search portals. Its principal purpose is to correct common spelling or typing
errors, saving time for the user. However, when there are millions of strings in a dictionary, it takes considerable amount of time to
find the nearest matching string. Various approaches have been proposed for efficiently implementing auto correction functionality.
All of these approaches focus on using suitable data structure and few heuristics to solve the problems. Here, we propose a new idea
which eliminates the need for calculating edit distance with each string in the dictionary. It uses the concept of Ngram based indexing
and hashing to filter out irrelevant strings from dictionary. Experiments suggest that proposed algorithm provides both efficient and
accurate results.

Keywords - Edit distance; Ngram; trigram; String searching; Pattern matching.

.

I. INTRODUCTION

 Nowadays Auto correction feature is used at many
places which automatically corrects the string entered by
user. For example in Google search engine if user has
entered a wrong string, it automatically corrects the
string and shows the result of corrected string with the
message of showing result of corrected string instead of
showing result of string entered by user.

 This auto correction functionality is usually
implemented by finding the string that is most similar to
the given search string. The difference between two
strings or minimum operation required to transform one
string to another string is called edit distance between
two strings. So edit distance is calculated between each
string in database and given search string, the string
having minimum edit distance cost is selected for the
result.

 In many applications auto correction functionality is
being used. However calculating edit distance for each
pair of stings will require lot of time in case of having
large dictionary of words. It becomes more inefficient
and expensive in case of the application which is
deployed on cloud like Google because in google cloud
machine level API is not allowed hence all of the
functionality is done through higher level API only. So
calculating edit distance for each string in dictionary will
take lot of time which is inefficient for use as it should
be done in real time. Secondly as most of cloud
computing service provider uses pay per user policy, so
calculating edit distance for each string in dictionary will
take lot of processing time as well which results in

greater expenses because auto correction functionality is
frequently used by the user.

 Related to this problem jong yong kim and john
shawe-taylor[1] had proposed an algorithm for DNA
sequence. Another method proposed by Klaus U.
Schulz and Stoyan Mihov uses finite state automata with
Levenshtein Distance algorithm.[2] Victoria J. Hodge and
Jim Austin has proposed an hybrid methodology
integrating Hamming distance and n-gram algorithms
particularly for spell checking user queries in a search
engine.[3] But hamming distance algorithm requires equal
length strings to calculate the edit distance algorithms.
Zhao, Zuo-Peng, Yin, Zhi-Min, Wang, Qian-Pin, Xu,
Xin-Zheng, Jiang, Hai-Feng and Jisuanji Yingyong
suggest a method to improve the existing Levenshtein
Distance algorithm. [4]

 But instead of improving existing Levenshtein
Distance algorithm we tried to solve the problem with
different approach. We look for the solution such that
we calculate edit distance for certain strings only instead
of all the strings in dictionary. In this paper we proposed
an algorithm which provides such solution and filters the
string before calculating its edit distance. The new
proposed algorithm provides most striking performance
with reduced execution time.

II. EDIT DISTANCE

 Edit distance between two strings is the minimum
number of edit operations required to transform one
string into another. The edit operations can be insert,
delete, replace and transpose which depend on algorithm

Efficient Algorithm for Auto Correction Using n-gram Indexing

�

International Journal of Computer & Communication Technology
���

�

of edit distance used. There are various algorithms
available to find edit distance between two strings.
Algorithms related to the edit distance may be used in
spelling correctors. If a text contains a word, W, that is
not in the dictionary, a `close' word, i.e. one with a small
edit distance to W, may be suggested as a correction.
Below given are few algorithms used to find edit
distance between two strings.

Hamming Distance
Levenshtein Distance
Damerau Kevenshtein Distance
Jaro-Winkler Distance
Ukkonen’s algorithm

 From these available algorithms we start working on
Levenshtein Distance algorithm.

 Levenshtein Distance (LD) is a measure of the
similarity between two strings. The Levenshtein distance
between two strings is defined as the minimum number
of edits needed to transform one string into the other,
with the allowable edit operations being insertion,
deletion, or substitution of a single character. It is named
after the Russian scientist Vladimir Levenshtein, who
devised the algorithm in 1965.

III. PROBLEM IN LEVENSHTEIN DISTANCE
ALGORITHM

 The running time-complexity of the algorithm is
O(|S1|*|S2|), i.e. O(N2) if the lengths of both strings is
about ‘N’. The space-complexity is also O(N2)

 With such complexity we can not develop an
application with auto correction functionality having
large dictionary of strings. Because Levenshtein
Distance algorithm having time complexity of O(N2) will
be executed for each string in the dictionary. From all
these strings the string having minimum edit distance
will be a resultant string. So for M number of strings the
algorithm will be executed M times result in time
complexity of O(M*N2) that means for 1 million or 1
billion strings the algorithm will be executed 1 million or
1 billion times respectively. As the value of M increases
the solution becomes more and more impractical.

IV. N-GRAM INDEXING

 N-gram is a subsequence of n items from a
given sequence. The items in question can be phonemes,
syllables, letters, words or base pairs according to the
application. An n-gram of size 1 is referred to as a
"unigram"; size 2 is a "bigram" (or, less commonly, a
"digram"); size 3 is a "trigram"; and size 4 or more is
simply called an "n-gram". An n-gram model is a type of
probabilistic model for predicting the next item in such a
sequence. Ngram models are used in various areas of

statistical natural language processing and genetic
sequence analysis.

 N-gram Index stores sequences of length of data to
support other types of retrieval or text mining.

��� PROPOSED ALGORITHM

 As above mentioned problem of using Levenshtein
Distance algorithm that if we have large dictionary of
strings and finding minimum edit distance from all the
string in dictionary will take lot of time.

 Levenshtein Distance has running time complexity
O(N2) and executing Levenshtein Distance algorithm for
each string in the dictionary will result in O(M* N2) and
that will consume lot of time. So we look for the
approach such that we can execute Levenshtein Distance
algorithm for certain strings in the dictionary only,
instead of executing it for each string in dictionary such
that we can reduce the execution time.

 We then prepared an algorithm which allows
executing Levenshtein Distance algorithm for the strings
which is most related to the search string instead of
executing Levenshtein Distance algorithm for each string
in dictionary.

The algorithm prepared by us is shown below in Table 1

Step 1: [Creating Ascii list for search string]
 searchAscii=createList(searchTerm)
 j=0
Step 2: [Repeat through step 4 for each string in

database]
 for i=0 to number of string in database
Step 3: [Get the length difference between string in

database and search string]
 Diff=abs(len(lstAscii[i])-len(searchAscii))
Step 4: [if length difference less then 4 then only

process further for that string]
 If diff<threshold_min

merge[i]=mergeList(lstAscii[i],searchAscii)
 if len(merge[i])< len(searchAscii) +

threshold_max
 stringToPass[j]=i
 j++
 end if
 endif

 [End of loop]
Step 5: [Initialize min]
 min=0
Step 6: [Repeat through step 8]
 for i=0 to len(stringToPass)
Step 7: [Call the Levenshtein Distance algorithm]

 cost[i]=
LevenshteinDistance(words[stringToPass[i]],se
archTerm)

Efficient Algorithm for Auto Correction Using n-gram Indexing

�

International Journal of Computer & Communication Technology
���

�

Step 8: [Check for minimum cost]
 if cost[min]>cost[i]
 min=stringToPass[i]
 end if

 [End Loop]

A. Algorithm

 We have prepared an algorithm shown in Table 1. It
uses the concept of Ngram indexing. The main idea
behind the algorithm is to divide each string in the
dictionary in the form of trigrams and also to divide the
search string in the form of trigrams. Then it will find out
the unmatched trigrams between strings in dictionary and
search string.

 Depends on the number of unmatched trigrams the
selection of string for calculating Levenshtein distance is
done. Note that algorithm does not compare two trigrams
of string as it will again result in time complexity of
O(N2). Instead for each trigram of string sum of Asciii
value of each character is calculated. Then comparison is
done on sum of Ascii values of characters as it will have
time complexity O(N).

 The reason behind using trigrams instead of unigram
and bigram is in case of large string it will create many
subsequences which also increase the processing time.
And if we create subsequence of length more than three
then it will decrease the accuracy of resultant string.
Using trigram the results obtained are both efficient in
terms of processing time and accurate with the desired
result.

B. Algorithm Description

• Words[m][n] is variable contains list of strings

• searchTerm is search string that user has entered

• lstAscii[m][n-2] is ordered list contains Ascii
value of trigram for each string in database

• searchAscii[] is ordered list contains Ascii value
of trigram for search string

• merge[m][] is order list after merging two list

• stringToPass[] contains string that will be passed
to Levenshtein Distance algorithm

 The algorithm shown in Table1 uses database of
strings and ordered list having sum of ASCII value of
each trigram of each string in database as creating
trigram list for each string in database is one time cost
and it is then stored into database. Algorithm also has
string as search string entered by user. Algorithm
calculates the sum of ASCII value of trigrams of search
string and stores that in ordered list called searchAscii.

 Then it will compare the length difference of
ordered list of search string and ordered list of each

string in database. If difference is less then the
threshold_min then only for those strings it will perform
merge operation. In case study we used value of
threshold_min is four because there is least chance of the
string having length difference more then three to
become resultant string.

 After merging two lists again it will check the length
difference between merge list and searchAscii list and
for the strings having difference less then threshold_max
will pass to Levenshtein Distance algorithm. We have
used threshold_max value nine in case study because for
the mistake of single character will affect three trigram.
So if we allow three character mistakes then at max it
will affects nine trigrams

C. Complexity of Algorithm

 The algorithm we proposed is useful for the
application with Auto Correction feature and having
large database of strings. As mentioned above that time
and space complexity of Levenshtein Distance algorithm
is O(N2) which is not at all feasible for such application.

 So to solve this problem we are proposing algorithm
having running time complexity lesser then O(N2)
because in proposed algorithm Levenshtein Distance
algorithm is executed for certain number of strings in
database only.

 Running Time Complexity of proposed algorithm is
as follows.

 The function createList() will be executed only once
for search string and having complexity of O(N).

 Then the outer loop will be an executed m time
which is nothing but number of stings in database, hence
time to execute this loop may vary depends on value of
m.

 The statement in step-3 to get difference between
two lists will have complexity O(N) with respect to value
of M, where M is number of strings in database.

 Inside step-4 the if statement will take same
execution time always, so if statement have complexity
O(1) which is ignorable. Inside the if statement first
statement merges the two list which have complexity of
O(N). The second statement is again if statement hence,
it has also complexity O(1) and inside this if statement
again there is two statement having complexity of O(1)
each which is ignorable.

 Step-3 and step-4 will be executed M times where M
is number of strings in database. So complexity of step-2
to step-4 is (O(M*N) + O(M*N))

The step-7 will execute Levenshtein Distance
algorithm for certain K strings only having complexity of
O(N2).

Efficient Algorithm for Auto Correction Using n-gram Indexing

�

International Journal of Computer & Communication Technology
���

�

Step-5 and step-8 will be executed K times where K
is number of strings in database. So complexity of step-5
to step-8 is O(K*N2)

So Total Running time complexity is:

O(N)+O(M*N)+O(M*N)+O(K*N2)

 O(2*M*N)+ O(K*N2)

 O(M*N)+O(K*N2)

 Where K << M

D. Case study

 We have tested this algorithm for the application
mentioned earlier. We have used this algorithm for the
application deployed on Google cloud also we compared
it with the application using only Levenshtein Distance
algorithm.

 The result of case study is shown in fig-1. We get
most striking performance in results. In the case study
we measured the time taken by proposed algorithm and
also the time take by using only Levenshtein Distance
algorithm.

 As shown in fig-1 the new proposed algorithm
reduced the running time by almost 3 times comparing to
using only using existing Levenshtein Distance
algorithm.

 In fig-1 comparison is shown for three strings and
for each comparison it is shown that for how many
strings edit distance is calculated and time taken by each.

 Fig-1 also shows that the string entered by user and
the string that is corrected by algorithm.

 In existing algorithm the Levenshtein Distance
algorithm was executed 125414 times while in new
proposed algorithm Levenshtein Distance algorithm
were executed 48512,49186 and 51232 times only.

Figure 1: PERFORMANCE COMPARISON

VI. CONCLUSION AND FUTURE WORK

 Auto Correction is one of the features which will be
used in most of the today’s web applications. Auto
Correction feature can be implemented using existing
Levenshtein Distance algorithm as well but it will lake
into performance because the running time complexity
becomes O(M*N2) where M is the number of strings in
database.

 So proposed algorithm which uses n-gram indexing
will improve the performance of the web application as it
has running time complexity O(M*N)+O(K*N2) Where
K<<M.

 So we conclude that the proposed algorithm is more
suitable for the web applications to implement the Auto
Correction feature.

 We also plan to explore randomized algorithms and
approximation algorithms in future to make it more
efficient.

Efficient Algorithm for Auto Correction Using n-gram Indexing

�

International Journal of Computer & Communication Technology
�	�

�

REFERENCES

[1] Jong Yong Kim and John Shawe-Taylor. ``Fast
string matching using an n-gram
algorithm.'' Software-Practice and
Experience 24(1):79-88. January 1994.

[2] Klaus U. Schulz and Stoyan Mihov “Fast string
correction with Levenshtein automata”
INTERNATIONAL JOURNAL ON DOCUMENT
ANALYSIS AND RECOGNITION, Volume 5,
Number 1, 67-85, DOI: 10.1007/s10032-002-0082-
8,2003

[3] Ref: V. Hodge and J. Austin, “A Comparison of a
Novel Spell Checker and Standard Spell Checking
Algorithms Pattern Recognition”, vol. 15 no. 5,pp.
1073-1081, 2003.

[4] Zhao, Zuo-Peng, Yin, Zhi-Min, Wang, Qian-Pin,
Xu, Xin-Zheng, Jiang, Hai-Feng and Jisuanji
Yingyong “An improved algorithm of Levenshtein
Distance and its application in data processing”
Journal of Computer Applications. Vol. 29, no. 2,
pp. 424-426. Feb. 2009 indepandant.

���

