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SUMMARY

Optimal static output feedback (OSOF) control is used to obtain the control force desired from a
magnetorheological (MR) damper fitted between ground and first storey of a three-storey building model.
The modified Bouc–Wen model is considered for obtaining damper response. This exhibits a non-linear
relationship between damper force and input-voltage/states, and hence obtaining the input voltage to
realize a desired control force is a non-trivial task. Two voltage control laws are proposed, i.e. inverse
quadratic voltage law (IQVL) and inverse On–off voltage law (IOOVL), both based on the MR constraint
filter. These are implemented in addition to the existing clipped voltage law (CVL). Results for controlled
response of the building are obtained in terms of peak and RMS values of response quantities (Interstorey
Drift, Displacement, Acceleration). These are compared with existing results obtained via linear quadratic
Gaussian (LQG) control using CVL, and via passive-on control with constant (saturation) voltage applied.
A reduction in the maximum peak interstorey drift, maximum RMS interstorey drift, and performance
index is obtained when using OSOF-IOOVL/CVL control as compared with passive-on control. These
quantities as well as RMS storey displacements are attenuated when comparing OSOF-IOOVL/CVL
control with LQG-CVL control, with the exception of maximum peak interstorey drift for which the
attenuation occurs for IOOVL only. The peak and RMS values of accelerations are reduced via OSOF
compared with passive-on/LQG-CVL control, except when considering first-storey accelerations using
passive-on control. The peak value of the applied damper force is least when using OSOF control.
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1. INTRODUCTION

Semi-active systems are a class of active systems which have received much attention due to their
low power requirements. These consist of devices such as Variable Orifice Dampers,
Controllable Fluid (Electrorhelogical (ER)/MR) Dampers, Variable Stiffness Devices, etc.,
combined with optimal controller designs [1]. The magnetorheological (MR) damper is a semi-
active device that uses MR fluids exhibiting controllable yield characteristics. It produces
sizeable damping force for small input voltage as demonstrated by Spencer et al. [2].

Various nonparametric and parametric mathematical models have been developed to
describe the behavior of ER/MR dampers. Notable among the nonparametric models for semi-
active dampers are those of Ehrgott and Masri [3] and Song et al. [4]. In [3] a Tchebycheff
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polynomial fit for constant current and excitation frequency is used to predict the ER damper
force. Force–velocity predictions agree well with the experiment during pre-yield, but
oscillations occur during post-yield. A large number of polynomial terms are required to
maintain accuracy. In [4] an MR damper is modeled using shape functions, polynomial
function, and a first-order filter to capture the back bone, saturation behavior and hysteretic
behavior, respectively. Current-dependent experimental data were used to obtain model
parameters using constrained nonlinear optimization.

Parametric models are based on mechanical elements, i.e. friction, spring, damper, and
hysterisis elements. A Bingham model was proposed by Stanway et al. [5], yielding good
force–displacement behavior but poor force–velocity response due to the inability of the
piecewise linear model to capture hysteretic behavior. The hysteretic force was modeled via an
evolutionary variable and loop control parameters by Wen [6], giving rise to the class of
Bouc–Wen models for MR dampers. Wong et al. [7] studied the influence of loop control
parameters and obtained a wide variety of hysteresis loops, thus establishing the Bouc–Wen
models versatility in matching experimental data, except near small velocities. This shortcoming
was rectified by Spencer et al. [8] in their modified Bouc–Wen model. Therein, additional
damping and stiffness elements were used to model the behavior at low velocities and the
accumulator, respectively. The voltage-dependent model parameters were determined using test
data for periodic/random displacement input and constant/random voltage input. Dominguez
et al. [9] developed a current–frequency–amplitude dependent Bouc–Wen model along with a
model identification method. Wang and Kamath [10] developed a phase-transition model using
Lagrangian dynamics to obtain a second-order nonlinear differential equation for damper force
with damper velocity as input. Jiménez and Álvarez-Icaza [11] modified the LuGre friction-
based model [12] by replacing material dependency in the original model by voltage dependency,
and including voltage dependency for the hysteresis component. Model identification was done
for current-dependent parameters. Sakai et al. [13] included an additional hysteresis component
and altered the voltage dependency, in order to obtain the inverse dynamics (i.e. voltage for
given force).

Various methods for controller design have been used with MR dampers. Owing to the
complexity in solving the inverse dynamical problem, predicting the applied voltage that would
produce a desired damper force becomes a challenging task. Different voltage laws have been
proposed to address this issue [14]. Xu and Shen [15] used Bi-state and Intelligent bi-state
control strategies for seismic response reduction of a building, with a Bingham model for the
MR damper. The applied damper force was produced via an on–off current law. A neural
network-based prediction of response was done to reduce time delays. Dyke et al. [16]
implemented acceleration feedback LQG control for a three-storey building with modified
Bouc–Wen model for the MR damper. The desired damper force was obtained using measured
output (i.e. accelerations and displacement) and measured damper force, thereby replacing the
need for state estimation with an online numerical evaluation of a convolution integral. Control
voltage was obtained via an on–off voltage law based on the desired and measured damper
forces. Jansen and Dyke [17] compared various control strategies, i.e. Lyapunov control,
Decentralized bang–bang control, Modulated homogeneous friction control and LQG control
with acceleration feedback, using different voltage laws for each of these strategies.

Chang and Zhou [18] used LQR control for seismic response reduction in a building with the
MR damper modeled using the modified Bouc–Wen model. The inverse dynamics of the damper
were modeled with a recurrent neural network using a constraint filter, so as to obtain the
required voltage for given damper force. Yuen et al. [19] used the reliability-based robust linear
controller design with a modified Bouc–Wen model for the MR damper. Uncertainties in plant
dynamics and excitation were considered, and a robust method involving probability
distribution over a set of possible plant models was used to obtain the desired damper force.
The command voltage is determined via the modified clipped voltage proposed by Yoshida and
Dyke [20].

Most controller designs studied above are either based on full state feedback (which requires
state measurement or estimation) or result in complex compensator structures. Optimal static
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output feedback (OSOF) control avoids observer design, has a simple compensator structure,
and produces the control force desired based on few measurements of output. In this paper,
OSOF control strategy is implemented for seismic response attenuation of a three-storey
building with the MR damper modeled using the hysteresis-based modified Bouc–Wen model.
Two voltage control laws are proposed based on an MR constraint filter. These are
implemented along with the existing Clipped voltage law (CVL) so as to obtain the command
voltage for a desired damper force.

2. SYSTEM MODEL

2.1. MR damper

The modified Bouc–Wen model is considered in order to include damper characteristics in the
system model. This has been developed by Spencer et al. [8] for the prototype MR damper
developed by Lord Corporation, U.S.A. Dependency of damper parameters on applied voltage
v is included in this model. Figure 1 shows the schematic of the modified Bouc–Wen model.

The force f, as given by this model, is

f ¼ c1 _y1k1ðx� x0Þ ð1Þ

and

_y ¼
1

ðc01c1Þ
faz1c0 _x1k0ðx� yÞg ð2Þ

where the evolutionary variable z is governed by

_z ¼ �gj_x� _yjzjzjn�1 � bð_x� _yÞjzjn1Að_x� _yÞ ð3Þ

Here x, _x and f are the damper displacement, velocity and force, respectively, k1 is the
accumulator stiffness, x0 is the initial displacement of the spring k1 which produces the nominal
damper force due to the accumulator, c0 is the viscous damping observed at large velocity, c1 is
the viscous damping at low velocity to take care of nonlinear roll-off, and the stiffness k0 is used
to emulate the stiffness at large velocities. The evolutionary variable z in Equation (2) describes
the hysteretic behavior of the MR damper. Loop parameters g and b affect the shape and A
affects the slope of hysteresis loop, while n governs the smoothness of the transition from linear
to non-linear range [7].

The voltage dependency of model parameters is given as [8]

a ¼ aðuÞ ¼ aa1abu; c1 ¼ c1ðuÞ ¼ c1a1c1bu; c0 ¼ c0ðuÞ ¼ c0a1c0bu ð4Þ

where u is the output of a first-order filter that models the combined dynamics of the current
driver and the fluid reaching rheological equilibrium, i.e.

_u ¼ �Zðu� vÞ ð5Þ

Figure 1. Modified Bouc–Wen model of the MR damper.
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Here, v is the control input voltage to the current driver. The model parameter values as
obtained by Spencer et al. [8], by optimal fitting of their model to experimental data, are shown
in Table I.

2.2. MR constraint filter—proposed control law

The limits of the evolutionary variable z was obtained by Spencer [21] as:

zu ¼ �
A

g1b

� �1=n

ð6Þ

Following Chang and Zhou [18] it can be numerically shown that the contribution of stiffness
terms in Equations (1) and (2) is less than those of the damping terms, and hence they are
neglected in the following. Using Equations (2) and (1), the bounds of the MR damper force f
are approximated by:

f �
c1

c01c1
fazu1c0 _xg ð7Þ

For a constant applied voltage v, the steady-state solution of Equation (5) is u5 v.
Substituting this in Equation (4) and then in Equation (7), the approximate damper force is [18]

f �
ðc1a 1c1b vÞ

½ðc0a 1c1a Þ1ðc0b 1c1b Þv�
½ðaa1abvÞzu1ðc0a 1c0b vÞ_x� ð8Þ

Substituting the values of parameters from Table I into Equation (8), the minimum and
maximum force fmin and fmax produced by the damper is obtained for applied voltage v 5 0V
and v 5 2.25V, respectively. For any intermediate voltage the damper force varies linearly with
velocity. This is represented by a straight line lying within the realizable force region defined by
the two limiting straight lines (Figure 2). The realizable zone in the first and third quadrants is
obtained for positive and negative values, respectively, of zu. This is termed the MR constraint
filter [18].

The control laws proposed herein are based on Equation (8) from which an inverse relation is
obtained between the damper force and the applied voltage. Equation (8) yields

fc1babzu1c1b c0b _xgv
21fðc1aab1c1baaÞzu1ðc1a c0b 1c1b c0a Þ_x� ðc0b 1c1bÞf gv

1fc1aaazu1c1a c0a _x� ðc0a 1c1a Þf g ¼ 0
ð9Þ

The required voltage for a given desired control force fd and velocity _x can be obtained via
Equation (9). The voltage predicted using z in place of zu in Equation (9) would be more
accurate but not implementable, as z is unmeasurable. The following two voltage control laws
are proposed, based on the MR constraint filter, in order to obtain the control voltage to be
applied. These control laws are easily implementable with linear quadratic optimal control
algorithms that determine the desired optimal control force (i.e. the control input) fd that is
required to be supplied by the MR damper.

(1) Inverse quadratic voltage law (IQVL): If _xfd40 and fd obtained lies outside the realizable
region of the MR constraint filter, then the control voltage is set to the appropriate limiting
value, i.e. if |fd|4|fmax| then v 5 vmax 5 2.25V, else if |fd|o|fmin| then v 5 vmin 5 0V. If _xfd40
and fd obtained lies within the realizable region, i.e. |fmin|p|fd|p|fmax|, the control voltage is

Table I. Parameters for the generalized modified Bouc–Wen model [8].

Parameter Value Parameter Value

c0a 21.0 N s/cm aa 140N/cm
c0b 3.50N s/cmV ab 695N/cm �V
k0 46.9N/cm g 363 cm�2

c1a 283N s/cm b 363 cm�2

c1b 2.95N s/cmV A 301
k1 5.00N/cm n 2
x0 14.3 cm Z 190 s�1
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obtained from Equation (9) by substituting fd for f, and using positive zu if fd40, _x40 or
negative zu if fdo0, _xo0. If _xfdo0 then v 5 vmin 5 0V.

(2) Inverse on– off voltage law (IOOVL): This is same as IQVL except that v 5 vmax 5 2.25V
even when fd lies within the realizable zone. Thus, Equation (9) is not required in IOOVL.

The existing clipped voltage law (CVL) [16] is considered for the comparison with proposed
IQVL and IOOVL. It uses fd and f (applied damper force) in contrast to IQVL and IOOVL,
which use fd and _x. If fdfo0 then v 5 vmin 5 0V; else v 5 vmax 5 2.25V when |fd|4|f|, or
v 5 vmin 5 0V when |fd|o|f|, or v is held at its present value when |fd|5 |f|.

2.3. Structural model

One of the aims of the study is to compare OSOF control with LQG control applied by Dyke
et al. [16]. Hence the simplified model of the test structure developed in [16], where masses are
assumed to be lumped at floor levels, is chosen here. This is a three-storey building with a single
MR damper attached between ground and first storey, shown in Figure 3.

The equation of motion is given by

Ms €x1Cs _x1Ksx ¼ Gf �MsL €xg ð10Þ

where Ms, Cs, and Ks are mass, damping, and stiffness matrices, respectively, G is the location
matrix of the MR damper, f is the applied control force as defined by Equation (1), L is the
location matrix of earthquake excitation, €xg is the earthquake excitation, and x ¼ ½x1 x2 x3�T

is the displacement vector of the three storeys measured relative to ground. Here, x1 is damper
relative displacement, denoted x in Sections 2.1 and 2.2. For the building considered here, these
matrices are [16]

Ms ¼

98:3 0 0

0 98:3 0

0 0 98:3

2
64

3
75kg; Cs ¼

175 �50 0

�50 100 �50

0 �50 50

2
64

3
75Nsec

m

Ks ¼ 105
12:0 �6:84 0

�6:84 13:7 �6:84

0 �6:84 6:84

2
64

3
75N

m
; G ¼

�1

0

0

2
64

3
75; f ¼ ½f �; L ¼

1

1

1

2
64
3
75

ð11Þ

0 5 10

0

500

1000

1500

Velocity (cm/sec)

D
am

pe
r 

F
or

ce
, f

 (
N

)

997.58

83.918

c
1
αz

u
 / (c

0
 + c

1
)

f
min

 (v = 0 V) 

f
max

 (v = 2.25 V) 

f
max

 (v = 2.25 V) 

f
min

 (v = 0 V) 

v = 0 

v = V
max

 = 2.25 V 

v = V
max

 = 2.25 V 

REALIZABLE ZONE 

REALIZABLE ZONE 

v = V
min

 = 0 V 

26.26

c
0
 c

1
 / (c

0
 + c

1
)

v = 0 

19.55

v = V
min

 = 0 V 

Figure 2. Realizable MR damper force zone in first and third quadrant of f � _x plane.
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Defining the state as q ¼ ½x _x�T and the output vector chosen as [16]

y ¼ ½€x1 €x2 €x3 x1�T ¼ ½_q4 _q5 _q6 q1�T ð12Þ

the state equations representing building dynamics (Equation (10)) and the output equation are

_q ¼ Aq1Bf1E €xg ð13Þ

y ¼ Cq1Df ð14Þ

where

A ¼
0 I

�M�1s Ks �M�1s Cs

� �
; B ¼

0

M�1s G

� �
E ¼ �

0

L

� �

C ¼
�M�1s Ks �M�1s Cs

1 0 0 0 0 0

" #
; D ¼

M�1s G

0

" # ð15Þ

The MR damper dynamics is given by Equations (1)–(5). Damper parameters in Table I are
used for numerical simulations, except x0 which was set to zero, i.e. the initial offset due to the
accumulator is neglected [16]. The building is subjected to N-S component of the 1940 El Centro
ground acceleration motion measured at Imperial Valley as shown in Figure 4 [22]. Since the
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Figure 4. N-S component of El Centro ground acceleration data, Imperial Valley, 1940 [22].

Figure 3. Three-storey building model with MR damper [16].
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building is a scaled model, the time scale of ground motion data is scaled down by five times the
recorded rate.

3. STATIC OUTPUT FEEDBACK CONTROL

The state variables are often not measurable for feedback. One way to design the controller in
such situations is by designing an observer (i.e. state estimator) and then using an observer-
based feedback. The Luenberger observer uses the measured output and control input to
estimate the states which are then fed back, i.e. the control input is obtained from the estimated
states. Linear quadratic Gaussian (LQG) control algorithm [23] can be used when noise is
present in output measurement and structural system (i.e. plant) dynamics. This involves state
estimation via a Kalman filter which minimizes the error made in state estimation by the
Luenberger observer.

Alternatively, the controller design can be done without state estimation, i.e. by obtaining the
desired control input (MR damper force in this case) via measured output feedback instead of
state feedback. This is termed Linear quadratic regulator (LQR) with Output feedback or
OSOF control. This has the advantage of fewer on-line computations as compared with LQG
control.

Consider the structural system dynamics given by state equations

_q ¼ Aq1Bfd ð16Þ

and the measured output equation

y ¼ Cq ð17Þ

Here, fd is the desired damper force, i.e. the control input obtained by output feedback as

fd ¼ �Ky ð18Þ

where K is the matrix of constant feedback gains to be determined. In OSOF regulator design K

and hence fd are determined such that the quadratic performance index (PI) defined as

J� ¼
1

2

Z 1
0

½qTQq1fTd Rfd � dt ð19Þ

is minimized. Here, Q is the positive semi-definite state weighting matrix and R is the positive-
definite control input weighting matrix. In general, if the controller is effective for random initial
conditions it is also effective for random input excitations [24]. Following Lewis and
Syrmos [23], Equations (16)–(18) yield the closed-loop system equation,

_q ¼ ðA� BKCÞq ¼ Acq ð20Þ

The PI can be expressed in terms of K using Equations (17)–(19) as

J� ¼
1

2

Z 1
0

½qTðQ1CTKTRKCÞq�dt ð21Þ

If a constant, symmetric, positive semi-definite matrix P exists such that

d

dt
ðqTPqÞ ¼ �qTðQ1CTKTRKCÞq ð22Þ

then Equations (20) and (22) yield a Lyapunov equation for P (assuming K is known), i.e.

g � AT
c P1PAc1CTKTRKC1Q ¼ 0 ð23Þ

Using Equations (21) and (22), considering an asymptotically stable closed-loop system (q-
0 as t-N), and noting that the scalar PI equals its own trace and that the product in a trace is
commutable, the PI becomes

J � ¼ 1
2
qTð0ÞPqð0Þ ¼ 1

2
trðP~QÞ ð24Þ

where ~Q � qð0ÞqTð0Þ. The optimization problem is to determine the gain K that minimizes the PI
in Equation (24) subject to the constraint Equation (23). Thus, the Hamiltonian defined as
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H ¼ trðP ~QÞ1trðgSÞ is minimized with respect to P, S, and K, where S is the matrix of Lagrange
multipliers. This yields the design equations [23]:

AcS1SAT
c 1 ~Q ¼ 0 ð25Þ

R�1BT PSCT ðCSCTÞ�1 ¼ K ð26Þ

along with the constraint Equation (23) recovered. Equations (23) and (25) are Lyapunov
equations in unknowns P and S, respectively, and Equation (26) gives the optimal gain K.
Equations (23), (25), (26) represent a coupled nonlinear system of matrix equations in the
unknowns and depend on initial conditions. In order to eliminate the dependency on initial
conditions, the PI is replaced by its expected value [25]. This amounts to replacing ~Q by its
expected value (i.e. ~Q ¼ Efqð0ÞqTð0Þg—the initial autocorrelation of the state) in Equation (25).
Assuming that initial states are uniformly distributed on the unit sphere [25] implies that ~Q ¼ I

in Equation (25), where I is the identity matrix. The optimal cost thus becomes [23]

E½J �� ¼ J ¼ 1
2
tr½P� ð27Þ

Various iterative algorithms are available to solve Equations (23), (25), (26) to obtain the
optimal gain K [23]. The algorithm of Moerder and Calise [26], used here, is as follows:

Step (1): Initialization: Iteration counter k5 0, ~Q ¼ I. Select the initial output feedback gain
K0 so that Ac is asymptotically stable. If open-loop plant is stable, then K0 5 0 can be the choice.

Step (2): Ak  ðA� BKkCÞ, Ac  Ak, K Kk. Solve Equations (23) and (25) for P and S.
Pk  P, Sk  S, Jk ¼ 1

2
tr½Pk�. If k40 and jJk � Jk�1joe, where e is a small tolerance, algorithm

has converged, go to Step 4.
Step (3): Kk11  Kk1aDK, where DK ¼ R�1BTPkSkC

TðCSkC
TÞ�1 � Kk and a is chosen :

Ak11 is asymptotically stable where Ak11  ðA� BKk11CÞ. k  k11. Go to Step (2).
Step (4): K ¼ Kk

In the presence of a feed-through (i.e. direct transmission) term Dfd , as in the present case,
the measured output is

ŷ ¼ Cq1Dfd ð28Þ

Hence the control input, i.e. desired damper force, obtained via output feedback is

fd ¼ �Kŷ ð29Þ

From Equations (28) and (29) one obtains

fd ¼ �K̂y where K̂ ¼ ðI1KDÞ�1 K ð30Þ

Equation (30) is equivalent to Equation (18) with K replaced by K̂. The optimal feedback
gain K̂ can be obtained by the Moerder–Calise algorithm. Subsequently, the feedback gain K is
obtained as

K ¼ K̂ðI�DK̂Þ�1 ð31Þ

for use in actual implementation in the controller. Previous implementations of OSOF control do
not consider the feed-through term [24]. Hence they are restricted to measured outputs being
combinations of states alone, i.e. desired control force is obtained from displacement and velocity
feedback only. Since the feed-through term is considered herein, in a practical implementation
the desired control force can be obtained using acceleration feedback also, as done here.

Equations (1)–(5) show that the force f generated by the damper is nonlinearly dependent on
the state vector ðqTy z uÞT and input voltage. Thus the inverse problem, i.e. determining the
individual voltages to be applied to a set of MR dampers so as to produce the desired control
force vector fd for a given state vector, is difficult to solve by conventional methods. Since only
the voltage v applied to each MR damper can be commanded by the controller, the desired force
fd is difficult to achieve in practice. Thus, the applied voltage is decided by the voltage control
laws such as IQVL, IOOVL, proposed herein, and CVL [16]. The block diagram of the physical
implementation of OSOF control algorithm is shown in Figure 5. Here, the damper velocity is
equivalently denoted as _x � _x1 � q4. It is considered to be measured using a velocity sensor, for
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use in the control law. Although it is a measured output, it is not included in y as it is not used to
obtain fd herein (i.e. it is neither used in the estimator design in LQG control nor in the output
feedback part of OSOF control). However, this does not preclude it from being a part of y in
future applications. Note that the LQG control in [27] uses the same y as done herein, and hence
can be easily compared with the present OSOF results.

As noted earlier, LQG control is based on full state feedback, i.e. in controller design the
desired force is computed using the complete state vector (fd 5Kq). Since the complete state
vector is usually not measurable, its estimate is used in order to generate the fd to be supplied to
the control-law (Figure 5). The state estimator (observer) uses the measured output y as its
input, and becomes an additional part of the controller, which needs to be designed. In contrast,
in output feedback controller design, fd is computed directly (Equation 18) by using the
measured output y (Equation (12)), without using an estimator as a part of the controller
(Figure 5). The components of y are directly measured from the physical system (i.e. building
herein), are chosen as readily measurable quantities (i.e. accelerations of the three storeys and
displacement of the first storey herein), and are invariably fewer than the number of states.

4. RESULTS AND DISCUSSIONS

The three-storey building subjected to earthquake excitation (Section 2.3) has been studied using
MATLAB. The following cases are considered:

(1) Passive Control: For the passive-off case no voltage is applied to the damper,
i.e. v 5 0V. For the passive-on case the damper force saturation voltage v 5 2.25V is
applied.

(2) Semi-active Control: The desired control force fd (i.e. control input vector) is determined
using either LQG or OSOF control method. Then the voltage applied to the damper is
obtained, using fd , via either of the voltage laws (i.e. IQVL, IOOVL and CVL).

If the voltage law is not specified with the control method it is implied that the result pertains
to any of the three voltage laws used with the particular control method.

The first-order ODE’s (Equations (2), (3), (5)) pertaining to the MR damper and state
equations pertaining to the structural system dynamics (Equation (13)) were simultaneously

Figure 5. Implementation of optimal static output feedback control algorithm.
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solved using MATLAB module ODE45 (i.e. the 4th/5th-order Runge–Kutta method). Initial
conditions are q(0)5 0 (structure at rest), u(0)5 0 (no applied voltage), z(0)5 0 (no hysterisis
component), and y(0)5 0 (no relative motion of damper model components). Without loss of
generality, the accumulator spring is assumed initially undeformed (x0 5 0) [27]. Peak and RMS
values of response quantities like interstorey drift, displacement, and acceleration are obtained
to assess the controller performance. Results using passive control and LQG-CVL control are
compared with the similar ones available in Dyke et al. [27]. The peak response quantities
occurring during the earthquake are in good agreement as seen from Table II where percentage
difference indicated below respective quantities.

4.1. Peak response

The OSOF controllers are compared with the passive and LQG-CVL controllers in Table III for
storey-wise peak values of interstorey drift, displacement, and acceleration, as well as
performance index and peak damper force. The PI used contains only top floor acceleration
apart from control input. Hence, Q ¼ CTQ̂C where Q̂ is the null matrix with Q̂33 ¼ 1. For a
single damper, the control input (i.e. damper force vector) is a scalar and hence the
corresponding weighting matrix is R5 [R]. The value of R indicated in the tables for the semi-
active controllers (i.e. LQG and OSOF) corresponds to most effective control for the particular
combination of control method and voltage law. The PI reported for passive-on control is
shown alongside the corresponding semi-active PI since both PI’s are evaluated using the same
Q and R value for easy comparison.

Table III shows a substantial reduction of 61.43 and 71.30% in the maximum peak
interstorey drift using passive-off and passive-on control, respectively, as compared with
uncontrolled response obtained without the MR damper. The corresponding displacements and
accelerations also show a similar reduction, e.g. for the third floor, the reduction in peak
displacement is 53.14 and 68.65%, while the reduction in peak acceleration is 48.55 and 45.51%
when using passive-off and passive-on control, respectively. It is observed that passive-on
control increases the second- and third-storey accelerations as compared with passive-off
control. The peak MR damper force is 3.7 times larger for passive-on control vis-a-vis passive-
off control.

Table II. Comparison of results for uncontrolled, passive and LQG-CVL.

Control
Uncontrolled Passive off Passive on LQG-CVL

strategy Dyke et al. Present Dyke et al. Present Dyke et al. Present Dyke et al. Present

Displacement 0.538 0.547 0.211 0.211 0.076 0.079 0.114 0.1204
(cm) 1.67% 0% 3.95% 5.61%

0.82 0.835 0.357 0.357 0.196 0.1952 0.185 0.1876
1.83% 0% �0.41% 1.41%

0.962 0.971 0.455 0.455 0.306 0.3044 0.212 0.2177
0.94% 0% �0.53% 2.69%

Interstorey 0.538 0.547 0.211 0.211 0.076 0.079 0.114 0.1204
drift (cm) 1.67% 0% 3.95% 5.61%

0.319 0.318 0.153 0.154 0.158 0.157 0.09 0.098
�0.31% 0.65% �0.64% 8.89%

0.201 0.202 0.103 0.104 0.11 0.11 0.101 0.106
0.50% 0.97% 0% 4.95%

Acceleration 856 873.69 420 397.36 281 273.96 696 757.4
(cm/s2) 2.07% �5.70% �2.57% 8.82%

1030 1069.4 480 489.48 494 495.96 739 733.08
3.83% 1.98% 0.40% �0.81%

1400 1408 717 724.44 767 767.15 703 735.37
0.57% 1.04% 0.02% 4.60%

MRD force (N) — — 258 258.97 979 964.69 941 969.72
0.38% �1.48% 3.05%
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Table III shows that the maximum peak interstorey drift obtained by OSOF-IQVL control is
attenuated by 38.44 and 17.26% when compared with passive-off and passive-on control,
respectively. The corresponding attenuation for OSOF-CVL is 43 and 23.38%, respectively, and
for OSOF-IOOVL is 45.55 and 26.82%, respectively. Thus, OSOF control provides substantial
attenuation in the maximum peak interstorey drift vis-a-vis passive control.

Peak displacements and accelerations using OSOF control are substantially attenuated when
compared with passive control, except for the first storey where the damper is attached. For
example, the peak displacement of the top storey is reduced by 49.96 and 25.20% using OSOF-
IOOVL as compared with passive-off and passive-on control, respectively. The corresponding
reductions in peak accelerations are 23.45 and 27.71%, respectively.

The peak damper force applied as well as the PI are the lowest due to OSOF control as
compared with passive-on/LQG control.

It can be seen from Table III that OSOF-IOOVL control results in lower maximum peak
interstorey drift and lower peak displacements as compared with OSOF-IQVL/OSOF-CVL control.

When comparing the OSOF-IOOVL controller with the existing LQG-CVL controller, using
the former reduces the maximum peak interstorey drift by 4.57% and peak displacements of
first and second floor by 4.57 and 15.88%, respectively. However, it increases peak displacement
of third floor by 4.39%. The corresponding peak accelerations of the second and third storey are
substantially reduced by 40.24 and 24.58%, respectively, while that of the first storey increases
marginally by 3.27%. Thus, the OSOF-IOOVL controller reduces the maximum interstorey
drift when compared with the passive/LQG-CVL controller. Moreover, the LQG controller
with the proposed IQVL and IOOVL (based on MR constraint filter) achieves marginally lower
peak interstorey drift, peak displacement and peak acceleration for each storey as compared
with LQG-CVL control.

Figure 6 shows the comparison of peak interstorey drift for passive-on, LQG-CVL, and
OSOF-IOOVL control. Although the passive-on controller is effective in substantially reducing

Table III. Peak response, passive and semi-active control, El Centro ground motion.

Control strategy
Displacement

(cm)
Interstorey
drift (cm)

Acceleration
(cm/s2)

MRD force
(N)

PI semi-
active

PI passive
on

Uncontrolled 0.547 0.547 873.69
0.835 0.318 1069.4 — — —
0.971 0.202 1408

Passive off 0.211 0.211 397.36
0.357 0.154 489.48 258.97 — —
0.455 0.104 724.44

Passive on 0.079 0.079 273.96
0.1952 0.157 495.96 964.69 — —
0.3044 0.11 767.15

LQG–CVL R5 10�17 0.1204 0.1204 757.4
0.1876 0.098 733.08 969.72 7.007 8.521
0.2177 0.106 735.37

LQG–IQVL R5 10�17 0.1181 0.1181 752.07
0.1847 0.0962 708.83 982.74 7.096 8.521
0.2109 0.102 710.51

LQG–IOOVL R5 10�15 0.1139 0.1139 683.25
0.1808 0.096 708.83 982.74 7.327 8.521
0.2109 0.102 710.51

OSOF–CVL R5 10�17 0.1203 0.1203 711.19
0.1739 0.100 383.19 809.21 5.2378 8.521
0.2392 0.0796 553.86

OSOF–IQVL R5 10�06 0.1299 0.1299 693.92
0.1863 0.1112 457.36 768.43 5.498 8.729
0.2509 0.0788 548.28

OSOF–IOOVL R5 10�08 0.1149 0.1149 783.01
0.1578 0.1033 438.1 905.79 5.5149 8.523
0.2277 0.0797 554.58
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the peak interstorey drift at the first storey (where the MR damper is installed) vis-a-vis both
semi-active controllers, the corresponding reduction at the remaining storeys is not as good.
OSOF-IOOVL control clearly outperforms LQG-CVL control in this regard (as is seen by the
max-peak and third-storey values) and both semi-active controllers perform much better than
the passive-on controller as they tend to keep the interstorey drift uniformly low at all storeys.

Figures 7 and 8 show the comparison of peak displacements and accelerations for passive-on,
LQG-CVL, and OSOF-IOOVL control. The semi-active controllers provide a reduction in peak
displacement for the floors without the MR damper, the reduction being more prominent for
OSOF control. The passive-on case shows a substantial reduction in peak accelerations vis-a-vis
the uncontrolled system. As compared with passive-on control, the semi-active controllers yield
substantially higher accelerations for the first floor (where the damper is attached). This is a
result of the fact that the PI optimized by both the semi-active controllers contains the top
storey acceleration. However, for the storeys without the damper, OSOF-IOOVL control
appears very effective in controlling accelerations as compared with passive-on and LQG-CVL
control, with the latter being least effective in this regard.

4.2. RMS response

The OSOF controllers are compared with the passive and LQG-CVL controllers in Table IV for
storey-wise RMS values of interstorey drift, displacement, and acceleration, and the MR
damper force.
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

Peak Displacement Response (cm)

S
to

re
y

Passive On

Figure 7. Peak storey displacements.
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When compared with the uncontrolled response, the maximum RMS interstorey drift shows
a substantial reduction of 71.87 and 86.85% for passive-off and passive-on control, respectively.
Similar reductions occur in RMS values of displacements and accelerations of all storeys, e.g.
the top floor RMS displacement reduces by 70.98 and 86.74% and corresponding RMS
acceleration reduces by 68.65 and 75.19% for passive-off and passive-on control, respectively.

Comparisons of various OSOF controllers with passive-off and passive-on control, for
maximum RMS interstorey drift, show reductions of 54.98 and 3.67%, respectively, when using
OSOF-CVL, and 60.44 and 15.33%, respectively, when using OSOF-IOOVL. For OSOF-
IQVL, the maximum RMS interstorey drift reduces by 50.77% but increases by 5.33% vis-a-vis
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Figure 8. Peak storey acceleration.

Table IV. RMS response, passive and semi-active control, El Centro ground motion.

Control strategy
Displacement

(cm)
Interstorey
drift (cm)

Acceleration
(cm/s2)

MRD force
(N)

Uncontrolled 0.2282 0.2282 304.59
0.3614 0.134 428.84 —
0.4352 0.0756 526.26

Passive off 0.0642 0.0642 94.839
0.1038 0.0411 136.35 103.35
0.1263 0.0237 164.98

Passive on 0.0182 0.0182 56.919
0.0409 0.0300 99.101 203.82
0.0577 0.0188 130.54

LQG–CVL R5 10�17 0.0325 0.0325 90.655
0.0491 0.0225 124.15 156.33
0.0599 0.017 118.38

LQG–IQVL R5 10�17 0.0326 0.0326 91.99
0.0494 0.0227 124.52 156.64
0.0604 0.0171 119.13

LQG–IOOVL R5 10�15 0.0324 0.0324 87.57
0.0491 0.0227 133.03 156.35
0.0600 0.0174 121.06

OSOF–CVL R5 10�17 0.0289 0.0289 92.93
0.0458 0.0235 85.17 163.31
0.0578 0.0147 102.35

OSOF–IQVL R5 10�06 0.0316 0.0316 88.73
0.0499 0.0242 88.61 155.32
0.0622 0.0149 103.71

OSOF–IOOVL R5 10�08 0.0254 0.0254 87.266
0.0421 0.0242 86.1 174.86
0.0526 0.0151 105.01
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passive-off and passive-on control, respectively. This again shows that OSOF-IOOVL is the
most effective among the output feedback controllers Contrary to results for peak
displacements, semi-active control results in higher RMS displacements as compared with
passive-on control, with the exception of OSOF-IOOVL that provides an 8.83% reduction for
the third storey. The corresponding comparison with passive-off control shows OSOF to be
more effective for all storeys, e.g. the reduction is 58.35% for the top storey with OSOF-IOOVL
control. For the storeys without the damper, OSOF yields attenuation in RMS accelerations as
compared with passive control, e.g. for the third storey OSOF-IOOVL provides 36.35 and
19.56% attenuation when compared with passive-off and passive-on control, respectively.

Although the RMS damper force is lower via OSOF vis-a-vis passive-on control, it is higher
vis-a-vis LQG control. A reduction in the maximum RMS interstorey drift and storey-wise
RMS displacement is obtained via OSOF-IOOVL as compared with OSOF-IQVL/OSOF-CVL
control. A reduction in the maximum RMS interstorey drift as well as storey-wise RMS
displacement (except for IQVL) is obtained via OSOF as compared with LQG. For example, the
reduction is 21.85% for the maximum RMS interstorey drift and 12.19% for RMS displacement
of third storey when using OSOF-IOOVL vis-a-vis LQG-CVL control. The storey-wise RMS
accelerations also show a reduction when OSOF-IOOVL is used vis-a-vis LQG-CVL, e.g. the
reduction is 11.29% for the third storey.

Thus, the OSOF controller (in particular OSOF-IOOVL, and except OSOF-IQVL) is capable
of subtantially reducing—the maximum RMS interstorey drift vis-a-vis passive/LQG control,
the RMS displacements vis-a-vis LQG control, and the accelerations vis-a-vis passive/LQG
control (except for the storey with damper for passive-on control).

4.3. Time history

Figure 9 shows the comparison of interstorey drift at storeys exhibiting maximum peak
interstorey drift, i.e. at second storey using passive-on control and at first storey using LQG-
CVL and OSOF-IOOVL control. The peak interstorey drift occurs at 0.44 s for passive-on
control, 0.556 s for LQG-CVL, and 1.072 s for OSOF-IOOVL control. It is evident that OSOF-
IOOVL control yields the lowest peak and RMS interstorey drift.

Figure 10 shows the accelerations of the third storey. The peak acceleration occurs at 0.45 s
for all controllers. It can be seen that OSOF-IOOVL control yields the lowest peak and RMS
acceleration as compared with Passive-on and LQG-CVL control.

Figure 11(a) shows the time history of voltage applied to the damper. The applied voltage
switches between minimum (v 5 0V) and saturation (v 5 2.25V) levels when using OSOF-IOOVL
control. Desired and applied damper forces are compared in Figure 11(b) and (c) where they are
shown versus time and versus relative velocity (of damper), respectively. The differences between
applied and desired damper forces are apparent in these figures. Figure 11(c) clearly shows that
the applied damper force lies mostly in the first and third quadrant (a behavior that is inherent in
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Figure 9. Time histories of interstorey drift corresponding to storey with maximum peak value; passive-on,
LQG-CVL, OSOF-IOOVL control.
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the damper constitutive law), whereas the desired damper force (obtained from the optimal
controller) lies in all quadrants. This difference is due to two reasons; first the inverse dynamics of
the damper (i.e. prediction of applied voltage for given force) is difficult to obtain, due to which
the IOOVL has been considered in order to obtain the voltage approximately; second the damper
force saturates at v 5 2.25V, which limits the maximum force that the damper can produce. The
RMS difference between desired and applied damper forces is 259.02N, which justifies the
IOOVL as a reasonable alternative to exactly predicting the inverse dynamics.

Figure 12(a)–(c) shows time histories for interstorey drift at first storey, displacement at third
storey, and acceleration at third storey, respectively, for uncontrolled and OSOF-IOOVL
controlled response. These represent the storeys at which the interstorey drift, displacement, and
acceleration are maximum for the uncontrolled structure (Table III). The peak values of
interstorey drift, displacement, and acceleration occur at 1.072 s, 0.456 s, and 0.452 s,
respectively, for OSOF-IOOVL control, and at 1.66 s, 1.66 s, and 0.936 s, respectively, for the
uncontrolled case. The OSOF-IOOVL clearly yields a substantial reduction in peak and RMS
quantities.
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Figure 11. Time histories of (a) applied voltage; (b) desired, applied damper force; and (c) desired, applied
damper force versus velocity; OSOF-IOOVL.
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Figure 10. Time histories of third floor acceleration; passive-on, LQG-CVL, OSOF-IOOVL.
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It is known that the optimal LQR control with full state feedback provides lower overshoot
and settling time. Hence for pulse type ground motions, such as Northridge, which would be
more amenable to control, it is expected that the performance of both semi-active optimal
controllers vis-a-vis passive-on control will be further enhanced, as compared to when El-Centro
ground excitation is considered. However, the comparison between the two semi-active
controllers would need to be re-assessed.

5. CONCLUSIONS

An OSOF controller is used to determine the desired force (control input) required from an MR
damper attached between ground and first storey for seismic response reduction of a three-
storey building. A modified Bouc–Wen damper model is used. Since inverse dynamics of the
damper is difficult to obtain, two voltage laws (IQVL and IOOVL) relating state and desired
force to applied voltage are proposed using the MR constraint filter concept. Performance of the
OSOF controller using these voltage laws is compared with that of existing passive/LQG-CVL
controllers.

OSOF-IOOVL control yields lowest maximum peak interstorey drift when compared with
passive/ LQG-CVL control. The maximum RMS interstorey drift obtained via OSOF control
(except IQVL) is lowest when compared with passive/LQG control. OSOF control (except
IQVL) yields reduced storey-wise RMS displacement as compared with LQG control. However,
the opposite is mostly true when comparing with passive-on control. Peak and RMS values of
accelerations are reduced via OSOF control compared with Passive-on/LQG-CVL control,
except for first-storey accelerations when using passive-on control. Peak applied damper forces
are lowest via OSOF control compared with passive-on/LQG control. However, the
corresponding RMS value is higher when compared with LQG control. The lowest PI is
obtained via OSOF control.

It may be noted that the solution of Equations (23), (25), and (26) generally yields multiple
local minima of the performance index J. Convergence to a particular minima is greatly
influenced by the choice of initial stabilizing gain (K0). The present (Moerder and Calise)
algorithm used to solve the OSOF problem does not yield the global minimum J. Future work
would attempt to address this problem (e.g. using homotopy methods). However, as shown in
the results, the present algorithm for OSOF control is quite effective.
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Figure 12. Time histories of (a) interstorey drift; (b) displacement; and (c) acceleration; uncontrolled and
OSOF-IOOVL.
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