
INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD - 382 481, DECEMBER, 2010 1

Performance Optimization of Transformation
Technique - DCT using NVIDIA CUDA

1Daxa Vasoya , 2Prof. Samir B. Patel, 3Dr. S. N. Pradhan
Institute of Technology, Nirma University

Ahmedabad, Gujarat, India
1vasoyadaxa@gmail.com, 2samir.patel@nirmauni.ac.in,

3snpradhan@nirmauni.ac.in
1Post Graduate Student,2Senior Associate Professor, CSE Department,

3Professor, CSE Department

Abstract—GPU- graphics processing unit play a major role in
many computational environments, most notably those regarding
real-time graphics applications, such as image processing. CUDA
programmed GPUs are rapidly becoming a major choice in
high performance computing and there are a growing number
of applications which are being ported to the CUDA platform.
However much less research has been carried out to evaluate the
optimized performance, when CUDA is integrated with other
parallel programming paradigms. The goal of this project is to
explore the potential performance improvements that could be
gained through the use of GPU processing techniques within the
NVIDIA CUDA architecture. In this paper we have implemented
DCT Compression algorithm in CUDA. Most of CPU-based
implementations of DCT are firmly adjusted for operating using
fixed point arithmetic but still appear to be rather costly as soon
as blocks are processed in the sequential order by the single ALU.
Performing DCT computation on GPU using NVIDIA CUDA
technology gives significant performance boost even compared to
a modern CPU.

I. INTRODUCTION

A GPU provides platform to write application that can
run on hundreds of cores. NVIDIA’s CUDA - provides APIs
to develop parallel application using the C programming
language. CUDA is a software abstraction for the hardware
called blocks. Blocks are a group of threads that can share
memory. These blocks are then assigned to the many scalar
processors that are available with the hardware.

There are several factors that affect the processing speed
of the GPU. First one is the number of cores it has. The
GPU, unlike the CPU uses less number of registers to store
data temporally while they are processing. Therefore, GPU
can use more registers to data processing and that is one of
the major reason to have many execution cores inside the
GPU. Second is the GPU has a faster memory bandwidth
between device memory and the processing cores. However,
any given algorithm won’t gain the performance which is
showed in the GPU specification because only the algorithm
those are specially designed for the GPU environment will
only enjoy the performance of the GPU. So that if the
CUDA application has real parallel components, even a single

GPU card is capable of delivering significant performance [5].

The DCT is used in JPEG compression and used in
image and video encoding/decoding algorithms. In DCT
image is divided into blocks and each block is process
independently, so block wise transformation is performed in
parallel. CUDA provides a natural extension of C language
that allows a transparent implementation of GPU accelerated
algorithms. Also, DCT greatly benefits from CUDA-specific
features, such as shared memory and explicit synchronization
points.

This paper illustrates the concept of DCT implementation
using CUDA. Performing DCT computations on a GPU gives
the significant performance boost even compared to a modern
CPU. The given approach performs part of JPEG routines:
forward DCT, quantization of each block, inverse DCT. Last
section contains the comparison of execution speed performed
for CPU and GPU implementations. The performance testing
is done using Barbara image (Figure 1). The quality measure
is done by means of PSNR, an objective visual quality metric.

Fig. 1. Barbara - test image

II. DCT BASICS
Formally, the discrete cosine transform is an invertible

function F : <N → <N or equivalently an invertible square



2 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN TECHNOLOGY, ’NUiCONE - 2010’

N x N matrix [1]. The formal definition for the DCT of
two-dimensional sequence of length N is given by the
following formula [2]:

C(u, v) = α(u)α(v)

N−1∑
x=0

N−1∑
y=0

f(x, y) cos

[
π(2x + 1)u

2N

]
cos

[
π(2y + 1)v

2N

]
(1)

The inverse of two-dimensional DCT for a sample of size
N x N :

f(x, y) =

N−1∑
u=0

N−1∑
v=0

α(u)α(v)C(u, v) cos

[
π(2x + 1)u

2N

]
cos

[
π(2y + 1)v

2N

]
(2)

Separability is an important feature of 2D DCT, and allows
expressing equation (1) in the following form:

C(u, v) = α(u)α(v)

N−1∑
x=0

cos

[
π(2x + 1)u

2N

] 
N−1∑
y=0

f(x, y) cos

[
π(2x + 1)u

2N

]
(3)

To perform the 2D DCT of length N, the cosine values
are usually pre-computed offline. A 2D approach performs
DCT on input sample X by subsequently applying DCT to
rows and columns of the input signal, utilizing the Equation
(3). So the whole 2D DCT process can be represented in
matrix notation using the following formula:

C(u, v) = AT XA (4)

III. IMPLEMENTATION

Using NVIDIA CUDA technology it is possible to perform
high-level program parallelization. Generally, DCT is a
high-level parallelizable algorithm and thus can be easily
programmed with CUDA.

In this paper we presents two different approaches to
implement DCT using CUDA technology. The first approach
only demonstrates CUDA programming model benefits and
the second approach optimizes the outcome of the first one
using the CUDA optimization techniques, which allows
creation of fast optimized implementation. The second
approach includes 2 methods: one for the floating point data
and another for short integer data.

To perform DCT using equation (4) we need to first
divide image into block, here our block size is 8x8 pixels
as shown in fig 2a. To convert input block into transform
domain, two matrix multiplications need to be performed.
Each CUDA-block runs 64 threads that perform DCT for
a single block. Every thread in a CUDA-block computes
a single DCT coefficient. All waveforms are pre-computed
beforehand and stored in the array located in constant
memory. This array can be viewed as a two dimensional array
containing values of basic functions A(x,u) one per column.

2D DCT is performed in following four steps:

1) One pixel from texture memory to shared memory is
loaded by thread, then synchronization point to make
sure the whole block is loaded at the moment.

2) The thread computes a dot product between two vectors:
ThreadIdx.y column of cosine coefficients (which is
actually the row of AT with the same number) and
ThreadIdx.x column of the input block. To ensure all
coefficients of AT X are calculated, the synchronization
must be passed

3) The thread computes (AT X A ) in the same manner as
specifies in step 2

4) Each thread works on single pixel. Once step 3 is com-
pleted the whole block is copied from shared memory
to the global memory.

IV. IMPLEMENTATION RESULTS

Once DCT is applied on image we need to perform analysis
bases on output values. Also we apply quantization to reduce
the amount of information that cannot be perceived by the
human eye.

we have calculated the processing time for CPU and
GPU version of Implementation. Below Table 1 and Figure
3a, 3b, 3c shows the comparison of CPU and GPU version
of implementation in terms of processing time. Evolution is
perform on different size of barbara image of type .bmp and
.png.

TABLE I
EXECUTION TIME OF EACH METHOD (IN MILLISECOND)

Method implemented
on 128x128 512x512 1024x728

CPU and GPU
CPU1 0.382300 6.005800 18.158300
CPU2 0.117700 1.808600 6.093700
GPU1 0.205200 2.109900 8.454901
GPU2 0.081000 0.558000 1.412000
GPU3 0.079000 0.525000 1.461000

The evaluation can be done in many ways: the speedup
rate analysis and consistency checking of CPU and CUDA
implementations of the same approach. As for the first, each
implementation outputs the pure processing timing to the
console window as shown in Table 1 and graph in figure 3a,
3b, 3c. The speedup rate can be measured as the ratio of
timings of reference CPU (this method refers as CPU1 and
optimized method refers to as CPU2) implementation and of
CUDA implementation(this method refers as GPU1, optimized
method refers as GPU2 and otimization apply to short data
type on GPU is refer as GPU3). The consistency checking is
the assurance that both CPU and CUDA implementations of
the same approach produce the same output given the same



INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD - 382 481, DECEMBER, 2010 3

(a) image split into 8x8 blocks (1st im-
plematation - CPU2)

(b) image split into Macro blocks. (2nd
implementation - GPU2)

(c) image split into 16 blocks (3rd imple-
mentation - GPU3)(short data type)

Fig. 2. image split into block

input. The bitwise check of results may fail here because of
possible differences in floating point operations sequences
in both implementations or due to differences in floating
point units. Therefore the consistency checking is performed
using the objective image similarity metric PSNR. We have
chosen PSNR because it is commonly used to evaluate image
degradation or reconstruction quality. PSNR stands for Peak
Signal to Noise Ratio and is defined for two images I and K
of size M x N as:

(a) Barbara 128 x 128

(b) Barbara 512 x 512

(c) Barbara 1024 x 728

Fig. 3. Performance gain of GPU over CPU for different DCT implementa-
tion



4 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN TECHNOLOGY, ’NUiCONE - 2010’

PSNR(I, K) = 20log10
MAXI√

MSE(I, K)
(5)

Where I is the original image, K is a reconstructed or noisy
approximation, MAXI is the maximum pixel value in image
I and MSE is a mean square error between I and K :

MSE(I, K) =
1
M

1
N

M−1∑
i=0

N−1∑
j=0

‖ I(i, j)−K(i, j) ‖2 (6)

PSNR is expressed in decibel scale and takes on positive
infinity for identical images. In image reconstruction typical
values for PSNR vary within the range. PSNR of 50 and
higher calculated from two images that were processed on
diverse devices with the same algorithm says the results are
practically identical.

The consistency checking of CPU (this method refer as
CPU1, Optimized method refer as CPU2) and CUDA (this
method refers as GPU1, optimized method refers as GPU2
and otimization apply to short data type on GPU is refer
as GPU3) implementations of both approaches to DCT
implementation is performed in two steps:

1) Table 2 shows PSNR values between the original image
and the processed image. It is natural to expect that
these values should be similar for both implementations.

2) Table 3 shows PSNR between images processed by CPU
and CUDA(GPU) using the same algorithm. which is
near about same in our implementation, so our CUDA
implementation works properly.

TABLE II
PSNR BETWEEN ORIGINAL AND PROCESSED IMAGES

PSNR between
original and 128x128 512x512 1024x728

processed image
CPU1 31.272768 32.777073 39.375824
CPU2 31.273190 32.777050 39.375824
GPU1 31.273190 32.777027 39.375835
GPU2 31.272768 32.777061 39.375816
GPU3 31.246510 32.749447 39.372759

V. PERFORMANCE OPTIMIZATION

There are several optimization strategies which we have
used here while implementing 2D DCT in CUDA which are
as follows.[6]

• Avoid bank conflicts occur while accessing shared
memory. This issue was resolved by padding each row
of the macro block stored in shared memory with one
element. The resulting amount of shared memory used

TABLE III
PSNR BETWEEN IMAGES PROCESSED ON DIVERSE ARCHITECTURES WITH

THE SAME ALGORITHM.

PSNR between
image Processed on 128x128 512x512 1024x728

CPU & GPU
CPU1-GPU1 69.036484 58.073269 63.762222
CPU2-GPU2 69.036484 59.775074 64.196877
CPU2-GPU3 40.442123 42.258053 51.359547

per CUDA-block is (MACROBLOCK WIDTH + 1) x
MACROBLOCK HEIGHT. Such configuration allows
simultaneous accessing rows and columns without bank
conflicts. This method refers as GPU2 .

• coalesced global memory Access. In second imple-
mentation the copying from global to shared memory
is performed by the same threads that perform DCT.
However, this approach doesn’t work for short data type
(this method refers as GPU3). It causes 2-way bank
conflict and uncoalesced global memory access. This
issue can be resolved if only half of threads in each block
perform moving of 2 short elements as a single 4-byte
element.

VI. CONCLUSION

Here, we have implemented two new approaches to cal-
culate 2D discrete cosine transform using CUDA technology.
Both approaches were implemented for CPU and GPU. The
GPU implementations utilize DCT separability, which yields
the significant performance boost as compared to a modern
CPU. Our implementation resulted in 70% speed up when
implementing 2D DCT using CUDA specific performance
optimization strategies. The performance testing was held
for both approaches and they exhibited good speedup rates
while preserving the image quality.Our future work will in-
clude implementation of 3D DCT with video sequences[7]
and performance analysis of other transformation techniques
including DWT.

VII. ACKNOWLEDGEMENT

We would like to thank all the members of NIRMA UNI-
VERSITY for providing continuous support and inspiration.

REFERENCES

[1] Syed Ali Khayam. ”The Discrete Cosine Transform (DCT): Theory and

Application”. ECE 802 - 602: Information Theory and Coding, March

10th 2003



INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD - 382 481, DECEMBER, 2010 5

[2] Tze-Yun Sung, Yaw-Shih Shieh, Chun-Wang Yu, Hsi-Chin Hsin. ”High-

Efficiency and Low-Power Architectures for 2-D DCT and IDCT Based

on CORDIC Rotation”. Proceedings of the 7th ICPDC, pp. 191-196,

2006.

[3] R. Kresch and N. Merhav, ”Fast DCT domain filtering using the DCT

and the DST”. HPL Technical Report HPL-95-140, December 1995.

[4] N. P. Karunadasa & D. N. Ranasinghe, ”On the Comparative Perfor-

mance of Parallel Algorithms on Small GPU/CUDA Clusters” Univer-

sity of Colombo School of Computing, Sri Lanka,2008

[5] Uday Bondhugula, Chris J. P.Sadayappan,”Towards Effective Automatic

Parallelization for Multicore Systems” , Department of Computer Engi-

neering University of Toronto, 2008.

[6] Shane Ryoo, Christopher I. Rodrigue, Sara S. Baghsorkhi, ”Optimiza-

tion Principles and Application Performance Evaluation of a Multi-

threaded GPU Using CUDA”, University of Illinois at Urbana- Cham-

paign,NVIDIA Corporation, 2007

[7] Prof. Samir B. Patel, Mr. Jeet R. Patanji, Mr. Nisarg H. Patel ”An

Im- plementation of 3 Dimensional DCT for Compression of Video

Sequences” at 22 NUCONE-2009. A National conference on Current

Trends In Technology, held at Nirma University.

[8] http://forums.nvidia.com/index.php?showtopic=181472

[9] http://www.nivdia.co.in/page/cuda.html


