
SAR

Do

TE

INSTITU

RKHEJ-G

Test Da

fo

Time, Po

A

N

octo

ECHNO

U

UTE OF T

GANDHIN

ata Comp

or IP Cor

ower and

A THESIS S

NIRMA U
FOR THE

r of

OLOGY A

Usha San

TECHNOL

NAGAR H

GUJAR

Ma

pression T

re Based

d Area O

SUBMITTE

UNIVERS
E DEGREE

Phil

IN
AND ENG

BY
ndeep Me

LOGY, NI

HIGHWAY

RAT, INDI

ay 2011

Techniqu

SoC:

Optimizat

ED TO

SITY
OF

losop

GINEER

ehta

IRMA UN

Y, AHME

IA

ues

tion

phy

RING

NIVERSIT

DABAD-3

TY,

382 481

Test Data Compression Techniques

for IP Core Based SoC:

Time, Power and Area Optimization

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in

Technology and Engineering

By

Usha Sandeep Mehta

Under the guidance of

Dr. K. S. Dasgupta

Director, IIST, Thiruvananthapuram, Kerala

&

Dr. N. M. Devashrayee

PG-VLSI Coordinator, Nirma University, Ahmedabad

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

AHMEDABAD-382481

May 2011

CERTIFICATE

This is to certify that Ms. Usha Sandeep Mehta is registered as a

student under Registration No.07EXTPHDE17 for Doctoral

programme under the Faculty of Nirma University and have

fulfilled the requirement of R.PH.D 6.4 to attend the Department

for the work and coursework (for 90 days) as required.

Dr. N. M. Devashrayee

Name & Signature of Co-Guide

Dr. K. S. Dasgupta

Name & Signature of Guide

CERTIFICATE

This is to certify that I, Usha Sandeep Mehta, am registered as a

student under Registration No. 07EXTPHDE017 for Doctoral

programme under the Institute of Technology under the Nirma

University. I have completed the research work and also the pre-

synopsis seminar as prescribed under the regulation No. 3.5 for the

Ph.D. study.

It is further certified that the work embodied in this thesis is original

and contains the independent investigations carried out by me. The

research is leading to *the discovery of new facts / techniques /

correlation of scientific facts already known.

 * (Please tick whichever is applicable)

Date : Signature of the student

Forwarded by guide : Co-Guide Guide

__
Remarks of Head of the Department (if any) :

Date : Signature :_______________________

Remarks of Dean Faculty Concerned :

Date : Signature:_______________________
__
Remarks of Dean Faculty of Doctoral Studies & Research (if any) :

Date : Signature : ______________________
__

To,
The Executive Registrar
Nirma University

CERTIFICATE

This is to certify that the contents of this thesis entitled

“Test Data Compression Techniques for IP Core Based SoC:

Time, Power and Area Optimization” is the original research

work of Ms. Usha Sandeep Mehta carried out under my

supervision.

I further certify that the work has not been submitted either

partly or fully to any other university or body – in quest of a

degree, diploma or any other kind of academic award.

Date :
Place : Name of Co-Guide: Dr. N. M. Devashrayee
 Full Designation: Co-ordinator,

PG-VLSI Design
 Name of Institute: Institute of Technology,

Nirma University,
Ahmedabad,
Gujarat

Place : Name of Guide: Dr. K. S. Dasgupta
 Full Designation: Director,

 Name of Institute: Indian Institute of Space
 Science and Technology,
 Thiruvananthapuram,

Kerala

Candidate’s Statement

The work included in this thesis entitled “Test Data

Compression Techniques for IP Core Based SoC: Time, Power

and Area Optimization” is an independent investigation carried

out by me under the guidance and supervision of Dr. K. S.

Dasgupta and Dr. N. M. Devashrayee. In the thesis, references

of the work done by others which have been used are cited at

appropriate places.

I hereby declare that the work incorporated in the present thesis

is original and has not been submitted to any other university or

body – in quest of a degree, diploma or any other kind of

academic award.

Date :
Place :

 Name of Student: Usha Sandeep Mehta
 Reg. No.: 07EXTEPHDE017

 i

ACKNOWLEDGEMENTS

No work is ever the outcome of efforts or talent of single individual.

This work is no exception. Many teachers, friends, well-wishers have

contributed to this thesis work directly or indirectly and made it

possible for me to present it in its current shape. Although it is not

possible for me to name and thank them all individually, I must

specially mention some of the personalities and acknowledge my

sincere indebtedness to them and preserve gratitude to many others

in my heart.

First and foremost, I express my deep and sincere gratitude to my

guide Dr. K. S. Dasgupta for all his guidance, support, inspiration and

seemingly endless patience. I also direct a special gratitude to my co-

guide Dr. N. M. Devashrayee. Together with Dr. Dasgupta, he made a

great team of advisors and has provided excellent guidance in how to

obtain and present research results.

I am deeply indebted to Prof. Virendra Singh and Dr. D. J. Shah who

have taken a lots of pain for regularly evaluating my work and provide

very precise inputs which made the progress of this research work

very fast. My thanks are also due to Prof. Nur Touba for providing

technical help.

I am also thankful to Dr Ketan Kotecha, Prof. A. S. Ranade, my faculty

friends and project students at Nirma University for their inspiration,

support, help and contributions.

Any thanks or regards can not be enough for my mother who is the

first and foremost teacher of my life. I don't have enough words to

describe the sacrifices of my father who made me able in all adverse

conditions of his life. I dedicate this work to both of them. The credit

goes to my children Riddhi-Vandeet and in-laws for their patience,

support and encouragement. Last but not least, thank you Sandeep

for all the love and support you give to me. Thank you for being you.

- Usha Sandeep Mehta

April 2011

 ii

ABSTRACT
To handle design complexity and short time-to-market, it is increasingly

common to use modular design approach in SoC. Such IP cores with hidden

architecture have further exaggerated the two burning issues for fabrication

testing of SoC: the test cost and test power. The cost of test is strongly

related to the increasing test-data volumes which lead to longer test

application times and larger tester memory requirement. The solution to this

is test data compression.

The increasing test power leads to system reliability issues. The dynamic

power during scan operations plays a major role in overall test power. This

dynamic scan power is directly related to the number of transitions during

scan-in and scan-out. Here, the ‘test data compression’ and ‘switching

activity reduction’ issues in context of ‘hidden structure of IP cores’ are

addressed.

In this thesis, various test data compression techniques are surveyed

and it was observed that for ATPG generated binary data which

contains large number of don’t care bits, ‘run length code’ and

‘statistical code’ based methods are most suitable in context of IP

cores. Similarly, the switching activity reduction methods for external

testing are suitable to IP cores for power reduction.

It was inferred that if the ‘don’t care bit filling’ and ‘reordering’ techniques

are used in synergy to pre-process the test data, the compression can be

increased and test power can be reduced without much on-chip area

overhead.

In this thesis, mostly all existing run-length and statistical code methods are

implemented and analyzed for compression, power and area overhead.

Using the ‘don’t care bit filling’ and ‘reordering’ concepts, the test data

processing techniques are proposed to further increase compression and

reduce test power. The proposed ‘Run Based Don’t Care Bit Filling’, ‘HDR-

CBF-DV’, ‘2-D Reordering’ and ‘WTR-CBF-DV’ test data processing

techniques are used to improve the run length based test data compression

codes. The same way proposed ‘FDBAF’ test data processing technique

improves the results for statistical codes. To improve the overall test

application time, the ‘Modified Selective Huffman code’ is proposed. Its

effectiveness in increasing compression and reducing test application time

without any extra area overhead is proved mathematically and also

demonstrated with large amount of simulation results.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vii

LIST OF FIGURES ix

ABBREVIATIONS xi

1. INTRODUCTION 1

 1.1 Test Flow 2
 1.2 Test Cost 6
 1.2.1 Test Time 7
 1.2.2 Test Data Volume 7
 1.2.3 Test Data Compression 10
 1.3 Test Power 11
 1.4 Issues Related to IP Core SoC 12
 1.5 Objective 13
 1.6 Adopted Methodology 14
 1.7 Thesis Organization 15

2. LITERATURE SURVEY 18

 2.1 Test Data Compression 18
 2.2 Test Data Compression Methods 19
 2.3 Compression Methods for IP Cores 22
 2.4 Test Data Compression Environment 23
 2.5 Code Based Test Data Compression Methods 26
 2.5.1 Statistical Code Based Methods 26
 2.5.2 Run Length Code Based Methods 28
 2.5.3 Dictionary Code Based Methods 30
 2.5.4 Constructive Code Based Methods 31
 2.6 Code Based Methods for IP Cores 31
 2.7 Test Power 32
 2.8 Switching Activity Reduction Methods 37
 2.8.1 SAR Techniques for Built-In-Self-Test 37

 2.8.2 SAR Techniques for Design-For-Test 40
 2.8.3 SAR Techniques for External Testing 41
 2.9 SAR Techniques for IP Cores 41
 2.10 SAR Techniques for External Testing 42
 2.10.1 Low Power ATPG Algorithm 42
 2.10.2 Input Control 42
 2.10.3 Ordering Technique 43
 2.10.4 Don’t Care Bit Filling 44
 2.11 External Testing SAR Techniques for IP Cores 45
 2.12 Methodology for Experiments 46
 2.12.1 Results for Proposed Methods in This

Thesis 46
 2.12.2 Comparisons of Results with

Contemporary Profession Tool 48
 2.13 Inferences 49

3. Run Length Code Based Test Data Compression 50

 3.1 Existing Run Length Codes 50
 3.1.1 Overview of Existing Run Length Codes 50
 3.1.2 Analysis of Existing Run Length Codes 58
 3.2 The Proposed Run Based Bit Filling Method 59
 3.2.1 Problem Formulation 59
 3.2.2 Entropy Based Maximum Compression

Limit 62
 3.2.3 Experimental Results 64
 3.2.4 Observations and Analysis 66
 3.3 The Proposed HDR-CBF-DV Method 67
 3.3.1 Problem Formulation 68
 3.3.2 Hamming Distance Based Reordering 68
 3.3.3 Columnwise Bit Filling 73
 3.3.4 Difference vector 73
 3.3.5 On-Chip Decoder 74
 3.3.6 Experimental Results 75
 3.3.7 Observations and Analysis 77
 3.4 The Proposed 2-D Reordering Method 78
 3.4.1 Problem Formulation 78
 3.4.2 Rowwise First Reordering 78
 3.4.3 Columnwise Second Reordering 79
 3.4.4 Power Efficient Bit Filling 79

 3.4.5 On-Chip Decoder 80
 3.4.6 Experimental Results 81
 3.4.7 Observations and Analysis 85
 3.5 The Proposed WTR-CBF-DV Method 86
 3.5.1 Problem Formulation 86
 3.5.2 Weighted Transition Based Reordering 86
 3.5.3 Difference vector 88
 3.5.4 Run Length Code for Compression 88
 3.5.5 Algorithm for WTR-CBF-DV 88
 3.5.6 Motivational Example 89
 3.5.7 On-Chip Decoder 93
 3.5.8 Experimental Results 93
 3.5.9 Observations 95
 3.6 Inferences 95

4. Statistical Code Based Test Data Compression 97

 4.1 Existing Statistical Codes 97
 4.1.1 Overview of Existing Statistical Codes 97
 4.1.2 Analysis of Existing Statistical Codes 101
 4.1.3 Observations 108
 4.2 The Proposed MS-Huffman Code 109
 4.2.1 Problem Formulation 110
 4.2.2 The Modified Selective Huffman Code 111
 4.2.3 Mathematical Analysis 113
 4.2.4 On-Chip Decoder 116
 4.2.5 Test Application Time 118
 4.2.6 Experimental Results 121
 4.2.7 Observations 124
 4.3 The Existing Bit Filling Methods 124
 4.4 The Proposed FDBAF Method 126
 4.4.1 Problem Formulation 126
 4.4.2 The FDBAF Algorithm 127
 4.4.3 On-Chip Decoder 129
 4.4.4 Experimental Results 131
 4.4.5 Observations 131
 4.5 Inferences 131

5 Conclusion and Future Work 133

 5.1 Conclusion 133

 5.2 Future Work 137

References 139
List of Publications Related to Thesis 146
Annexure 149

vii

LIST OF TABLES

2.1 Details of MINTEST Generated Test Sets for ISCAS’89
Circuits…………………………………………………………………… 47

2.2 Details of TestKompress Generated Test Set for ISCAS’89
Circuits…………………………………………………………………… 48

3.1 Modified 3-Bit Run Length Code…………………………………… 51
3.2 Golomb Code for m=4………………………………………………… 52
3.3 Frequency Directed Run Length Code……………………………. 53
3.4 Extended Frequency Directed Run Length Code………………. 54
3.5 Shifted Alternating Frequency Directed Run Length

Code……………………………………………………………………….. 55
3.6 Modified Frequency Directed Run length Code………………… 57
3.7 Fixed Plus Variable Run Length Code……………………………. 58
3.8 Comparison of % Compression for Run Length Based Code… 59
3.9 Comparison of On-Chip Decoder Area for Run Length Codes. 59
3.10 % Compression for Proposed Bit Filling Method……………….. 64
3.11 Total # of Symbols for Proposed Bit Filling Method……………. 65
3.12 Total # of Distinct Symbols for Proposed Bit Filling Method… 65
3.13 Entropy for Proposed Bit Filling Method…………………………. 65
3.14 Scan-In Power for Proposed Bit Filling Method…………………. 65
3.15 Relative % Improvement in % Compression with Different

Run Based Bit Filling Methods……………………………………… 66
3.16 Compatibility of Bits………………………………………………….. 69
3.17 % Compression of FDR, Golomb, MFDR and Proposed HDR-

CBF-DV………………………………………………………………….. 75
3.18 % Compression of EFDR, SAFDR and Proposed HDR-CBF-

DV………………………………………………………………………….. 76
3.19 Relative % Improvement in % Compression with HDR-CBF-

DV Method………………………………………………………………..

77
3.20 % Compression of EFDR with Proposed 2-D Method………….. 81
3.21 % Compression of SAFDR with Proposed 2-D Method………… 81
3.22 Comparison of Peak Power…………………………………………… 83
3.23 Comparison of Average Power……………………………………..... 83
3.24 Relative % Improvement in % Comparison and Power in case

of the Proposed 2-D Reordering Method……………………. 85
3.25 Comparison of Test Data Processing Methods Applied with

FDR Coding………………………………………………………………

93
3.26 % Compression for WTR-CBF-DV Method with FDR Coding 94

viii

3.27 Average Power for WTR-CBF-DV Method…………………………. 94
3.28 Peak Power for WTR-CBF-DV Method…………………………….. 94
4.1 Selective and Optimal Selective Huffman Codes………………… 99
4.2 RL-Huffman Codes for Given Example……………………………. 100
4.3 % Compression for VIHC (Group Size= 4)………………………… 101
4.4 Split-VIHC for Test Set –I…………………………………………….. 102
4.5 Split-VIHC for Test Set –II……………………………………………. 102
4.6 % Compression for Various Huffman Code…….………………… 103
4.7 Modified Selective Huffman Code………………………………….. 112
4.8 % Compression for Selective, Optimal Selective and MS-

Huffman Code (N=8)………………………………………………….. 121
4.9 % Compression for Selective, Optimal Selective and MS-

Huffman Code (N=16)…………………..…………………………….. 121
4.10 Area Overhead for Selective, Optimal Selective and MS-

Huffman Code………..………………………………………………… 122
4.11 Test Application Time for Selective, Optimal Selective and

MS-Huffman Code……………………………………………………. 123
4.12 TAT for Selective, Optimal Selective and MS-Huffman Code

Block Size = 32……………………………………………………….. 123
4.13 TAT for Selective, Optimal Selective and MS-Huffman Code for

Size = 08……………………………………………………………………

123
4.14 Test Application Time for Various Compression Methods….. 123
4.15 Relation between % Compression and # Bits/Symbol for

FDBAF Method ………………………………………………………… 128
4.16 % Compression for Proposed FDBAF Method………………….. 131

ix

LIST OF FIGURES

1.1 Scan Chain………………………………………………………………. 4

1.2 Scan Test Application…………………………………………………. 5

1.3 Manufacturing Cost versus Test Cost…………………………….. 6

1.4 Test Data Volume…………………………………………………….... 8

1.5 Test Data Compression………………………………………………. 10

1.6 Power Density versus Channel Length……………………………. 11

1.7 Motivation of the Thesis………………………………………………. 14

1.8 Goal of the Thesis……………………………………………………… 14

2.1 Shift and Capture Power during Scan Tests…………………….. 34

2.2 Weighted Transitions during Scan In……………………………… 35

2.3 Weighted Transitions during Scan Out…………………………… 36

3.1 Example of Simple Run Length Coding…………………………… 51

3.2 Example of Golomb Coding………………………………………….. 52

3.3 Example of Frequency Directed Run Length Coding………….. 53

3.4 Example of Extended FDR Coding………………………………… 54

3.5 Example of Alternate FDR Coding………………………………… 55

3.6 Example of Shifted Alternate Coding …………………………… 56

3.7 On-Chip Decoder for Difference Vector…………………………… 74

3.8 Improvement in % Compression in FDR by Proposed HDR-

CBF-DV... 76

3.9 Improvement in % Compression in EFDR by Proposed HDR-

CBF-DV…………………………………………………………………… 76

3.10 On-Chip Decoder Architecture for 2-D Method…………………. 80

3.11 % Compression for EFDR, Max. Limit (C), HDR-CBF-DV

and 2-D…………………………………………………….................. 82

3.12 % Compression for SAFDR, Max. Limit (D), HDR-CBF-DV

and 2-D…………………... 82

3.13 Comparison of Average Power for 2-D Method……………........ 84

x

3.14 Comparison of Peak Power for 2-D Method……………………… 84

4.1 Example of RL-Huffman Code………………………………………. 100

4.2 FSM for Huffman Decoder…………………………………………... 104

4.3 FSM Decoder for Selective Huffman Code……………………… 104

4.4 FSM Decoder for Optimal Selective Huffman Code…………… 105

4.5 VIHC Decoder…………………………………………………………... 106

4.6 FSM for VIHC Decoder……………………………………………… 106

4.7 CGU for VIHC Decoder……………………………………………… 107

4.8 FSM for Split – VIHC Decoder……………………………………… 108

4.9 % Compression for various Statistical Codes……………………. 109

4.10 % Area Overhead for various Statistical Codes………………… 109

4.11 Architecture for On-Chip Decoder for MS-Huffman Code…… 116

4.12 FSM Decoder for MS-Huffman Code……………………………… 118

4.13 FSM Decoder for FDBAF Algorithm……………………………… 129

xi

ABBREVIATIONS

AFDR Alternate Frequency Directed Run Length Code

AI Artificial Intelligence

ASIC Application Specific Integrated Circuits

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

BIST Built In Self Test

CUT Circuit Under Test

DUT Design Under Test

EFDR Extended Frequency Directed Run Length Code

FDR Frequency Directed Run Length Code

FDBAF Frequency Directed Bit Appending and Filling

FPVL Fixed Plus Variable Length Run length code

GA Genetic Algorithm

HDR-CBF-DV Hamming Distance Based Reordering - Column wise

Bit Filling – Difference Vector

IC Integrated Circuit

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

MFDR Modified Frequency Directed Run Length Code

MS-Huffman Modified Selective Huffman Code

MT Fill Minimum Transition Fill

SA Simulated Annealing

SAFDR Sifted Alternate Frequency Directed Run length code

SAR Switching Activity Reduction

SoB System-on-Board

SoC System-On-Chip

TAT Test Application Time

TDCE Test Data Compression Environment

xii

THD Total Hamming Distance

TTM Time To Market

VIHC Variable Length Input Huffman Code

SVIHC Split Variable Length Input Huffman Code

VLSI Very Large Scale Integration

WSA Weighted Switching Activity

WT Weighted Transition

WTM Weighted Transition Matrix

Chapter 1

Introduction

From the day in 1947, when Bardeen, Shockley and Brattain at Bell Lab

completed their noble prize winning research on bipolar transistor, the

use of transistor in terms of integrated circuits (ICs) has been increased

at a very rapid rate. The first IC which contained only one transistor,

three resistors and one capacitor available commercially was produced

by Fairchild Semiconductor Corp. in 1961. From then, the everlasting

improvements in semiconductor fabrication technology have led to ICs

with billions of transistors. The VLSI industry annual survey shows that

total 1018 transistors were manufactured in 2003. It means that 100

million transistors in form of integrated circuits were manufactured for

each of the human on planet Earth during 2003. The ICs, informally

known as chips are embedded nowadays in a wide range of products and

systems, from consumer electronics and medical equipment to

automotive and aviation systems which usually require high reliability

and where the cost of failures can be immense.

The technology development in VLSI industry has made it possible to

pack millions of transistor on a single chip. The earlier day's System-On-

Board (SoB) which contained components like processors and peripheral

devices including data transformation engines, data ports, controllers

etc, can be now integrated on one single chip referred as System-On-

Chip (SoC) [1].

2

The VLSI design and fabrication flow is extremely complex and time

consuming. Addition to that, as described by Moore's law, the technology

window for VLSI changes every two years which forces reduction in time-

to-market (TTM). In order to meet short TTM requirements, the ready-

made modules are preferred at system level design rather to design each

block of system individually. Such ready-made i.e. pre-designed and pre-

verified blocks of logic, generally called Intellectual Property (IP) cores are

largely used in SoCs. The cores can be designed in-house or bought from

core vendors; however, it is the task of the system integrator to integrate

them into a system.

Even though the IC design is verified thoroughly and it is assured that

the design meets all its intended requirements, because of the possible

imperfection in fabrication process due to various physical reasons,

many defects such as shorts to power or ground, opens, misaligned

materials, extra materials, etc. may appear as faults and cause failures.

Therefore, each manufactured IC needs to be tested individually [2]. This

process is named as fabrication test. The same is applicable to SoC. The

aim of fabrication test is to ensure that each fabricated SoC moving to

customer is free from manufacturing defects. During the fabrication test,

in general, the test stimuli are applied to Device-Under-Test (DUT) and

the produced responses are compared against the expected (golden) ones.

1.1 Test Flow

The test process is divided into the two stages, the test generation and

the test application (fabrication test). The physical defects like extra or

missing material caused by dust particles on the mask, wafer surface or

processing chemicals, can be detected by its resultant electrical (circuit)

level failure modes, such as opens, shorts, and parameter degradations.

Fault models are used to represent the effect of a failure. The effect of a

failure will, at the logical level, appear as incorrect signal values. One of

3

the earliest and most popular fault models today, is the stuck-at fault

model. According to the stuck-at fault model, a defect will cause the line

in the design to permanently be stuck at logic value 0 (stuck-at 0) or 1

(stuck-at 1). A stuck-at 0 fault, present at a given fault location, is

detected when the stimulus data applied is a 1. The produced response

will be a 0 (since the fault location is stuck at 0), which will be different

from the expected response which is a 1, hence the fault is detected.

During test generation, an automatic test pattern generator (ATPG) is

usually used to generate test-data for the design, including test stimuli

and expected responses. The netlist (layout) of the design is given as an

input to the ATPG tool which uses sophisticated algorithms to analyze

the design and generate test patterns for it. Examples of such test

pattern generation algorithms are the D-algorithm and PODEM.

During test application (fabrication test), it is required that the test

stimuli can be applied to any given location from the inputs and that the

produced responses can be propagated from any given location to the

outputs. Hence, two of the most important properties of test are the

observability and the controllability. The controllability is the ability of

controlling the logic value at a specific location in the IC design. The

observability is the ability to observe a logical value at any part of the IC.

The controllability is high for the locations close to the inputs while it is

low for the locations close to the outputs.

To test an IC is a complex task, even for small ICs. In order to reduce

this complexity, the controllability and observability of an IC can be

increased during the design stages by adding testability features. This

process is called DFT and is, usually, automatically performed using

specialized design tools. During the test pattern generation stage, the

test-data used to test the fabricated IC is developed. A fault simulator is

used to verify the test patterns and to measure the fault coverage. If the

fault coverage is low, DFT is repeated until acceptable fault coverage has

been achieved. The general aim of DFT is to increase the testability of an

4

IC. Usually, DFT introduces a certain area and performance overhead.

For example, it is possible to increase the observability and the

controllability by inserting a direct connection, a so-called test point,

between the hard-to-test fault location and an I/O pin. The test point

DFT approach is straightforward, however, it does not scale as the

number of hard-to-test fault locations is increased. A more scalable DFT-

technique is to use scan chain insertion, which is a widely adopted DFT-

technique. To make a design scanable, the FFs in the design are modified

with one additional scan input, one additional scan output, and one scan

enable input. The scan-modified FFs are then connected in shift registers

which is known as scan chains.

Figure 1.1: Scan Chain

In Figure 1.1, the 5 FFs in the design have been scan-modified and

connected into one scan chain. (The scan enable is not illustrated for

reasons of readability.) Two additional I/O pins, sc-in1 and sc-out1, are

added for the test stimuli shift-in and the produced responses shift-out,

respectively. Scan chain testing implies that the design has two modes:

functional mode and test mode. The flow of a scan cycle is as follows:

1. Assert test mode, shift in test stimuli (scan-in phase) and set up

the desired inputs.

5

2. Assert functional mode and apply one clock cycle. The produced

responses are now captured in the FFs and at the outputs.

3. Assert test mode and shift out the produced responses (scan-out

phase).

The test-data corresponding to the bits required for a full test stimuli

shift-in, apply and capture, and shift-out of the produced responses is

called a test pattern. For efficient test application, the test stimuli of the

following test pattern are shifted in while the produced responses from

the current test pattern are shifted out, that is, a concurrent scan-in and

scan-out phase is performed. The scan test application is applied in

Figure 1.2 using two test patterns, tp1 and tp2, which are applied to the

IC design. The test application time for the two test patterns is 17 clock

cycles. The test application time TATsc (number of clock cycles) for a test

T used to test an IC with sc scan chains is as follows:

ܣܶ ௦ܶ௖ ൌ ሺ1 ൅ ݂݂ሻ כ ݈ ൅ ݂݂

………………………….(1.1)

where l is the number of test patterns that are applied and ff is the

length of the longest scan chain among the SC scan chains. The rate at

which the test-data is shifted is given by the scan frequency, fscan.

Figure 1.2: Scan Test Application

6

Fabrication test is usually performed using automatic test equipment

(ATE). The test stimuli and expected responses are stored in the ATE

memory. Testing is performed by applying test stimuli to the device

under test, and by comparing the produced responses to the expected

ones. A difference between the expected response and the produced ones

indicates that a fault is present and that the device under test should be

discarded. The rate at which the test-data is applied is given by the

operating frequency of the ATE, fATE.

1.2 Test Cost

Figure 1.3: Manufacturing Cost versus Test Cost [Courtesy: ITRS]

The importance of reducing the cost of test is motivated by comparing

the test cost with the fabrication cost. With the advances in fabrication

process for IC, the fabrication cost has reduced drastically and now the

testing cost is becoming a dominating part of the overall manufacturing

7

cost of an IC. Figure 1.3 adapted from International Technology

Roadmap for Semiconductors (ITRS) 1999 [3] and ITRS 2001 [4] shows

how the relative cost of test per transistor grows compared to the

fabrication cost per transistor. It shows that the actual cost of test is

almost constant while the cost of fabrication has been dramatically

reduced over the years. Today, the overall manufacturing cost includes

the cost of design, fabrication and test all together and the cost of test is

a significant part of this overall manufacturing cost.

1.2.1 Test Time

As each IC is tested individually, the test cost per IC is directly

proportional to the test application time per IC. Conventional external

testing involves storing all test vectors and test response on an external

tester-that is, Automatic Test Equipment (ATE). The overall test

application time, in such case, involves time for transferring the test

stimuli from tester, response generation time, time for transferring the

generated response to tester and time for comparison of generated

response with expected response. As per the ITRS 2009, the test

application time per SoC will be increased 209.34 times in 2024

compared to it is today in 2009 [5].

1.2.2 Test Data Volume

As a result of the emergence of new fabrication technologies and design

complexities, the number of tests and corresponding data volume and

test time increase with each new fabrication process technology. As per

the ITRS 2009, the test data volume which is 19Gb today, will be 488

times larger in 2024 [5]. The Figure 1.4 [6] shows the volume of test data

with corresponding technology.

8

Just to maintain test quality requirements, new tests require: greater

than 2X the test time to handle devices that double in gate count while

maintaining the same number of scan channels, 3X to 5X the number of

patterns to support at-speed scan testing for the growing population of

timing defects at 130-nm and smaller fabrication processes, and 5X the

number of patterns to handle multiple-detect and new DFM-based fault

models.

Figure 1.4: Test Data Volume [Courtesy: www.tmworld.com]

The ATEs have limited speed, memory, and I/O channels. The test data

bandwidth between the tester and the chip is relatively small; in fact, it is

often the bottleneck determining how fast you can test the chip.

൒ ݁݉݅ݐ ݐݏ݁ݐ
 ݎ݁ݐݏ݁ݐ ݊݋ ܽݐܽ݀ ݐݏ݁ݐ ݂݋ ݐ݊ݑ݋݉ܽ

 ݁ݐܽݎ ݇ܿ݋݈ܿ ݎ݁ݐݏ݁ݐ ܺ ݏ݈݄݁݊݊ܽܿ ݎ݁ݐݏ݁ݐ ݂݋ ݎܾ݁݉ݑ݊

…………….(1.2)

9

Testing cannot proceed any faster than the amount of time required to

transfer the test data So it can be said that the test time is directly

proportional to test data volume (in bits). The test data volume contains

test stimuli and expected response. In addition to that, larger test data

demands large tester memory.

Three general approaches help to reduce the test time required by ATE

per chip [7] are as following:

A. Stand-alone Built-In-Self-Test
Traditional stand-alone BIST involves using on-chip hardware to perform

all test pattern generation and output response analysis. Stand-alone

BIST eliminates the need for tester storage. This is very useful for

performing self-test in the field when there is no access to a tester.

However, achieving high fault coverage with stand-alone BIST generally

requires considerable overhead because of random-pattern-resistant

(RPR) faults, which have low detection probabilities. Detecting such

faults requires either test points or deterministic-pattern-embedding

logic. Other issues with BIST include the need for a BIST-ready design, a

way to handle false and multicycle paths, and the need to keep non-

deterministic values from corrupting the final signature.

B. Hybrid Built-In-Self-Test
If a particular chip design uses BIST only for manufacturing test, then

hybrid BIST can be more cost-effective than stand-alone BIST. Hybrid

BIST involves storing some data on the tester to help detect RPR faults.

The simplest approach is to perform ATPG for RPR faults not detected by

pseudorandom BIST to obtain a set of deterministic test patterns that

"top up" the fault coverage to the desired level, and then store those

patterns directly on the tester. More efficient hybrid BIST schemes store

the deterministic top-up patterns on the tester in a compressed form,

10

then use the existing BIST hardware to decompress these patterns. Some

schemes embed deterministic patterns by using compressed weight sets

or by perturbing the pseudorandom sequence in some manner.

C. Test Data Compression
Test data compression Test data compression involves adding some

additional on-chip hardware before and after the scan chains. This

additional hardware decompresses the test stimulus coming from the

tester; and also compacts the response after the scan chains and before

it goes to the tester. This permits storing the test data in a compressed

form on the tester. With test data compression, the tester still applies a

precise deterministic (ATPG-generated) test set to the circuit under test

(CUT).

1.2.3 Test Data Compression

Figure 1.5: Test Data Compression

Considering above three methods, the stand alone BIST and hybrid BIST

can be incorporated by the IP core designer however these schemes are

not in the scope of system integrator as he cannot look into or modify the

internal architecture of any IP core. The remaining method, test data

c

b

A

b

d

s

c

S

G

a

v

p

2

c

1

ompressio

based SoC

As shown i

bits to be

data transf

torage req

ompressio

SmartBIST

Graphics [9

assumed t

olume com

predicted t

2024 [5]. S

ompressio

1.3 Tes

Figure

on, is furth

 in this the

in Figure 1

transferre

fer time. A

quirement

on has al

T tools from

9]. Even if

o increase

mpression

that the re

So it is i

on techniq

st Pow

e 1.6: Power

her explor

esis.

1.5, test-d

ed from AT

Another a

t on ATE.

so led to

m IBM [8

f, it is assu

e as fast a

 ratio requ

equiremen

nferred th

ques shoul

wer

 Density ver

11

ed for test

data compr

TE to DUT

advantage

. The resu

 new com

] and the

umed that

as DRAM

uired for t

nt of this r

hat for te

ld be furth

rsus Channe

t time redu

ression wi

T which in

is that it

urgence o

mmercial t

 TestKom

t the size o

 bit size i

oday's SoC

ratio will b

st cost re

her explore

el Length [Co

uction in c

ll allow les

n turn wi

 offers is

of interest

tools like

press tool

of ATE vec

increases,

C is 80 an

be as high

eduction,

ed.

ourtesy: INT

case of IP

ss number

ll require

less test d

t in test d

OPMISR

l from Me

ctor memo

 the test d

nd it is fur

 as 10400

the test d

TEL Corp.]

core

rs of

less

data

data

and

entor

ry is

data

rther

00 in

data

12

From last two decades, approach of VLSI industry has been to lower

voltage and smaller geometry with each generation of IC process. As the

result of lower voltage and shrunk geometry, the leakage current and

energy increases contributing to higher power. As shown in Figure 1.6,

the power density doubles every four year. The problem of power

dissipation extends to power delivery, distribution and reliability issues

[10]. Hence, low power VLSI design techniques are the major concern for

current VLSI industry. Generally, a circuit in test mode may consume

the power as high as twice the power consumed in the normal mode. The

reasons are as follows. The switching activity of all nodes is often several

times higher than the activity during normal operations. Parallel testing

strategy adds to power consumption. While testing, the DFT circuits in

addition to normal circuit will also consume power. These all reasons can

cause significantly larger switching activity in the circuit during test than

that during its normal operation. Since dynamic power dissipation in

CMOS circuits is proportional to switching activity, this excessive

switching activity during test may be responsible for cost, reliability,

performance verification, autonomy and technology related problems

[11].

The dynamic power has been the major part of overall power dissipation

in CMOS circuits. Since this dynamic power is directly proportional to

switching activity, the problem of test power reduction can be considered

as problem of ‘Switching Reduction’.

1.4 Issues Related to IP Core Based SoC

As discussed in section 1.2 and 1.3, the existing fabrication testing

method faces two major problems: test cost and test power. As stated

there, test cost problem can be addressed using test data compression

and test power problem can be addressed using switching activity

reduction. However, the current research on test data compression and

13

switching power reduction cannot be directly applied to the IP core based

SoC.

The structure of IP cores are often hidden from system integrator. For

this reason, neither any modification to its internal scan chain nor any

DFT insertion is possible for IP cores. Further, any testing tools like

Automatic Test Pattern Generator (ATPG) or fault simulation cannot be

applied to it. Such cores are coming with ready to use test data. This test

data is used to test the core when it is in isolation as well as when it is as

a part of system after being integrated into system. It is usually assumed

that the core is directly accessible and it becomes the task of the system

integrator to ensure that the logic surrounding the core allows the test

stimuli to be applied and the produced responses to be transported for

evaluation.

In this scenario, only those test data compression and switching

reduction schemes which do not require any modification in scan chain

or internal structure are suitable to this application. Further, these

schemes should not demand the help of any testing tool like ATPG or

fault simulation and must be applicable to any kind of test data i.e.

partially specified or fully specified.

1.5 Objective

The motivation here is to solve the issues like test cost and test power in

context of hidden structure of IP core. The goal decided is to use test

data compression for test cost, switching activity reduction for test power

and ready-made test data in context of IP core based SoC. Figure 1.7 and

1.8 shows the motivation of the thesis and goal of the thesis respectively.

14

Figure 1.7: Motivation of the Thesis

Figure 1.8: Goal of the Thesis

The objective of the thesis is defined as:

To design a test data processing or/and compression method specifically

for IP core based SoC which

1. does not require any insertion or modification in internal structure

of IP core

2. does not require any test development tools like ATPG or fault

simulation

3. increases the compression

4. reduces the overall test application time (TAT)

5. reduces the switching activity during scan operation

6. does not increase the on-chip area overhead

compared to existing methods.

1.6 Adopted Methodology

In this thesis work, the methodology adopted is:

1. The need or issues related to current generation testing is studied.

2. The existing solutions for that issue are surveyed.

15

3. From the available solutions, the possible solutions for IP core

based SoC are separated.

4. These solutions are implemented and analyzed.

5. The existing solutions are optimized.

6. For further improvement, new methods are proposed and proved

mathematically supported by sufficient amount of experimental

results.

1.7 Thesis Organization

The rest of the thesis work is divided into four chapters. The detail and

publications related to each chapter is as follows:

Chapter 2 Literature Survey

In this chapter, the need and parameters related to test data

compression is discussed in brief. The various test data compression

schemes like linear decompression based schemes, broad cast scan

based scheme and code based scheme with their suitability to IP cores is

reviewed. After the survey on all four classifications of code based

scheme, i.e. run-length based code, statistical code, dictionary codes and

constructive code, the classifications suitable to IP core, `run length

based code' and `statistical code' is explained in detail.

This chapter also includes the complete survey on various classifications

of switching activity reduction methods in case of external testing, DFT

and BIST techniques with criteria of the suitability to IP core. The

selected external low power testing technique is further explored and

'don't care bit filling method' as well as 'test vector reordering method' is

described in detail.

[Publications Related to This Chapter: Ref. J-3, C-1, C-8, C-9]

16

Chapter 3 Run Length Code Based Test Data Compression

This chapter contains the overview and analysis through implementation

and simulation of existing run length based test data compression

techniques like simple run length coding, Golomb coding, Frequency

Directed Run length coding (FDR), extended FDR, modified FDR,

alternating FDR, shifted alternating FDR, etc. The analysis of area

overhead for various on-chip decoders is included. The proposed `Run

Based Bit Filling' depending upon the classification of run types is

described with necessary motivational example. The upper limit of

compression based on entropy is estimated for the proposed 'Run Based

Bit Filling'. The test data processing method “Hamming Distance Based

Reordering and Columnwise Bit Filling with Difference Vector (HDR-CBF-

DV)" is included in this chapter. This chapter also contains the power

efficient test data processing technique “2-D Reordering” and the power

efficient ‘Weighted Transition Based Reordering (WTR)’. The effectiveness

for each scheme is demonstrated with sufficient simulation results.

[Publications Related to This Chapter: Ref. J-1, J-5, C-3, C-4, C-5, C-6]

Chapter 4 Statistical Code Based Test Data Compression

This chapter includes overview and analysis through implementation and

simulation of existing statistical test data compression methods like

Huffman code, selective Huffman code, optimal selective Huffman code,

variable length input Huffman code (VIHC), Split VIHC, fixed plus

variable length coding, RL-Huffman code, multilevel Huffman code etc. A

test data compression code `Modified Selective Huffman Code (MS-

Huffman Code)' with necessary decoder architecture is proposed. The

improvement in compression and overall test application time compared

17

to existing method without any extra area overhead is proved

mathematically as well as demonstrated with necessary simulation

results. This chapter includes the test data processing technique

`Frequency Dependant Bit Appending and Filling (FDBAF)'.

[Publications Related to This Chapter: Ref. J-2, J-4, C-2, C-7]

Chapter 5 Conclusion and Future Work

This chapter presents the conclusion of the thesis. It also uncovers the

scope of future work in the same direction.

Chapter 2

Literature Survey
Because of the development in fabrication and design technology, IP Core

based SoC has come up as the current state of art for VLSI design. While

test cost and test power remain burning issues for testing, the hidden

structure of IP core has further exaggerated the problem.

The test cost is directly proportional to test application time which is

directly related to amount of test data. Hence it can be said that test cost

problem can be converted in to test data compression problem.

Similar way, the dynamic power plays the significant role in overall test

power consumption. The dynamic power is directly proportional to

switching activity during test. It means that the overall test power can be

directly controlled by reducing the switching activity during test.

The detailed survey on test data compression and switching activity

reduction methods follows in subsequent sections.

2.1 Test Data Compression

The advantage of test data compression is that it generates the complete

set of patterns applied to the CUT with ATPG, and this set of test

patterns can be optimized with respect to the desired fault coverage. Test

data compression is also easier to adopt in industry because it's

compatible with the conventional design rules and test generation flows

for scan testing. Test data compression has two advantages. The most

19

important is it can reduce the test time for a given test data bandwidth.

The second advantage is it reduces the amount of data stored on the

tester, which can extend the life of older testers that have limited

memory.

Test data compression involves two methodologies: 1. for the single scan

chain testing, it reduces the number of bits to be transferred from ATE to

DUT and thus reduces the test data transfer time. At DUT, there is one

on-chip decoder to expand the code word again in original form. This

decoding time may further affect the overall reduction in test application

time. 2. for multiple scan chain testing, the decompressor expand the

data from n tester channels to fill greater than n scan chains. Increasing

the number of scan chains shortens each scan chain, in turn reducing

the number of clock cycles needed to shift in each test vector.

Test data compression must compress the test vectors lossless (i.e. it

must reproduce all the care bits after decompression) to preserve fault

coverage. Test vectors are highly compressible because typically only 1%

to 5% of their bits are specified (care) bits. The rest are don't-cares,

which can take on any value with no impact on the fault coverage. A test

cube is a deterministic test vector in which the bits that ATPG does not

assign are left as don't-cares (i.e. the ATPG does not randomly fill the

don't-cares). In addition to containing a very high percentage of don't-

cares, test cubes also tend to be highly correlated because faults are

structurally related in the circuit. Both of these factors are exploitable to

achieve high amounts of compression.

2.2 Test Data Compression Methods

There is variety of data compression algorithms available in literature

used for multimedia, communication and such other applications which

compresses the data either lossy or lossless. These algorithms can

compress any type of data i.e. fully specified (without any don't care bits)

20

or partially specified (with don't care bits). From all these methods, only

those methods which compress data lossless can be applied for

compression of test vectors so that the fault coverage is retained.

The ATPG uncompacted test-data consists a large number of unspecified

bits, so-called don't-care bits which, together with regularities in the test-

data can be explored during the compression, such that a minimal

amount of test-data needs to be stored in the tester memory [12]. The

test application time can be reduced if decoders are placed on-chip, since

the amount of test-data to be applied through the chip I/O pins is

reduced [13].

The quality factors of test data compression techniques are:

1. The amount of compression possible

2. The area overhead because of decoding architecture. The on-chip

decompression circuitry must be small so that it does not add

significant area overhead. The properties of the code are chosen

such that the decoder has a very small area.

3. The reduction in test time. Transferring compressed test vectors

takes less time than transferring the full vectors at a given

bandwidth. However, in order to guarantee a reduction in the

overall test time, the decompression process should not add much

delay (which would subtract from the time saved in transferring

the test data). The properties of the code are chosen is guaranteed

to be able to decode the test data as fast as the tester can transfer

it.

4. The scalability of compression (does the compression technique

work with various design sizes, with few or many scan channels,

and with different types of designs?)

5. Power dissipation is an important factor in today's chip design.

6. The robustness in the presence of X states (can the design

maintain compression while handling X states without losing

coverage?)

21

7. The ability to perform diagnostics of failures when applying

compressed patterns

8. Type of Decoder: data-independent decoder or data dependant

decoder. In the former category, the on-chip decoder or

decompression program is universal, i.e., it is reusable for any test

set. In contrast, the decoder of a data-dependent technique can

only decompress a specific test vector. They have difficulties in

terms of size and organization for improved compression and often

require large on-chip memory. Hence, data-independency is a

preferable property

Various methods described in literature to compress specifically VLSI

test data can be classified in following subsections.

1. Linear Decompression Based Test Data Compression

Method

From a small number of bits (i.e. seed) stored on ATE, a large test data

can be reproduce at DUT using only linear operations on seed with help

of Linear Feedback Shift Register(LFSR) and XOR network. These

schemes are called linear decompression based schemes. This

methodology is effectively used in [14, 15, 16, 17, 18 and 19].

2. Broadcast Scan Based Test Data Compression Method

The second classification of these techniques which is called broadcast

scan based method, is based on the idea of broadcasting the same value

to multiple scan chains (a single tester channel drives multiple scan

chains). This is actually a special degenerate case of linear

decompression in which the decompressor consists of only fan-out wires.

This methodology is widely used in [20, 21, 22, 23] etc.

22

3. Code Based Test Data Compression Method

The third classification is code based data compression method. It uses

data compression codes to encode the test cubes. This involves

partitioning the original data into symbols, and then replacing each

symbol with a code word to form the compressed data. To perform

decompression, a decoder simply converts each code word in the

compressed data back into the corresponding symbol. Various code

based data compression methods are evolved as described in next section

of this chapter.

2.3 Compression Methods for IP Cores

The test data compression methods classified as above is widely accepted

for ASIC testing. While considering its application for IP core based SoC

testing, the suitability of such methods to IP must be analyzed.

From above three compression methods,

• Linear decompression method requires very simple controlling logic

and is very efficient in compressing. The main drawback here is, it

requires two stage ATPG. Also it is more convenient with partially

specified test data only.

• The Broadcast scan methods are also efficient in compression and

require a simple decoder. Like linear decompression, this method

also requires one step ATPG and more suitable to partially

specified test data with large amount of don't care bits.

• The code based test data compression method is not as efficient in

exploiting don't care bits and requires a complex control logic.

However it is suitable to any kind of test data and does not require

any testing tool.

23

From above discussion, it can be inferred that the code based test data

compression method is suitable to IP core based SoC. Hence, this

method is selected as basic scheme for further consideration during this

work. Before continuing the survey on code based compression methods,

the parameters influencing the code based methods are discussed in the

following section.

2.4 Test Data Compression Environment

Test data compression environment (TDCE) [24] comprising compression

method and on-chip decoder, is defined and analyzed with respect to

three TDCE parameters: compression ratio, area overhead and test

application time. Testing in TDCE implies sending the compressed test

data from the ATE to the on-chip decoder, decompressing the test data

on-chip and sending the decompressed test data to the core under test

(CUT). There are two main components in TDCE: the compression

method, used to compress the test set off-chip, and the associated

decompression method, based on an on-chip decoder, used to restore the

initial test set on-chip. The on-chip decoder comprises two units: a unit

to identify a compressed code and a unit to decompress it. If the two

units can work independently (i.e., decompressing the current code and

identifying a new code can be done simultaneously), then the decoder is

called parallel. Otherwise, the decoder is referred to as serial.

Testing in TDCE is characterized by the following two parameters:

1. Compression Ratio: which identifies the performance of the

compression method and the memory & channel capacity

requirements of the ATE

2. Area Overhead: imposed by the on-chip decoder (dedicated

hardware or on-chip processor)

24

There are a number of factors which influence the above parameters:

1. The mapping and reordering algorithm, which prepares the test set

for compression by mapping the ‘don't cares’ in the test set to ‘0’s

or ‘1’s, and by reordering the test set.

2. The compression algorithm, which based on a coding scheme,

compresses the initial test set.

3. The type of input patterns used as input by the coding scheme,

which can be of fixed or variable lengths.

4. The length of the pattern which is the maximum allowed input

pattern length used in the coding scheme.

5. The type of the on-chip decoder, i.e., the on-chip decoder can be

serial or parallel.

Compression Ratio

Using patterns of various types and various lengths, the compression

algorithms exploit different features of the test set. Mapping and

reordering the initial test set emphasizes these features. Therefore, the

compression ratio is influenced first by the mapping and reordering

algorithm, and then by the type of input patterns and the length of the

pattern, and finally by the compression algorithm.

As a quantitative measure of test data compression, the following two

expressions can be used:

݋݅ݐܽݎ ݊݋݅ݏݏ݁ݎ݌݉݋ܿ ܽݐܽ݀ ݐݏ݁ݐ ൌ
ሻݏݐܾ݅ ݂݋ #ሺ ܽݐܽ݀ ݐݏ݁ݐ ݀݁ݏݏ݁ݎ݌݉݋ܿ

ሻݏݐܾ݅ ݂݋ #ሺ ܽݐܽ݀ ݐݏ݁ݐ ݈ܽ݊݅݃݅ݎ݋

…………….. (2.1)

% ݊݅ ݊݋݅ݏݏ݁ݎ݌݉݋ܿ ܽݐܽ݀ ݐݏ݁ݐ

ൌ
ሻݏݐܾ݅ ݂݋ #ሺ ܽݐܽ݀ ݐݏ݁ݐ ݈ܽ݊݅݃݅ݎ݋ െ ሻݏݐܾ݅ ݂݋ #ሺ ܽݐܽ݀ ݐݏ݁ݐ ݀݁ݏݏ݁ݎ݌݉݋ܿ

ሻݏݐܾ݅ ݂݋ #ሺ ܽݐܽ݀ ݐݏ݁ݐ ݈ܽ݊݅݃ݎ݋ ܺ 100

…………….. (2.2)

25

Area Overhead

Area overhead depends upon the decoder type and input pattern. If the

decoder is serial then the synchronization between the two units (code

identification and decompression) is already at hand. However, if the

decoder is parallel, then the two units have to synchronize, which can

lead to increased control complexity and consequently to higher area

overhead. Depending on the type of the input pattern different types of

logic are required to generate the pattern on-chip. For example, if the

coding scheme uses fixed-length input patterns, then a shift register is

required to generate the patterns, however, if variable-length input

patterns (runs of '0's for example) are used, then counters can be

employed to generate the patterns. Since the length of the pattern

impacts the size of the decoding logic, it also influences the area

overhead.

% ݊݅ ݄݀ܽ݁ݎ݁ݒܱ ܽ݁ݎܣ ൌ
ݐ݅ݑܿݎ݅ܿ ݈ܽ݊݅݃݅ݎ݋ ݂݋ ܽ݁ݎܽ െ ݎ݁݀݋ܿ݁݀ ݂݋ ܽ݁ݎܽ

 ݐ݅ݑܿݎ݅ܿ ݈ܽ݊݅݃݅ݎ݋ ݂݋ ܽ݁ݎܽ
ܺ 100

 …………….. (2.3)

Test Application Time (TAT)

Test data compression will reduce the test time for transferring the data

from ATE to DUT. However, the on-chip decoder will add decoding time

to overall test application time. Hence, it should be taken care that the

compression does not increase the overall test application time (TAT).

26

2.5 Code Based Test Data Compression

Methods

The data compression codes are generally classified into four categories

based on symbol size and codeword size. As the name suggests, in fixed

to fixed coding schemes, the symbol size as well as codeword size is fixed.

In fixed to variable coding schemes, the symbol size is fixed but codeword

size is variable. In variable to fixed coding schemes, the symbol size is

variable but codeword size is fixed. While in variable to variable coding

schemes, the symbol as well as codeword size is variable. Based on the

basic schemes and evolved variants, the code based compression

methods are broadly divided into four different categories: Statistical

Codes, Run-Length Codes, Dictionary Codes, and Constructive Codes.

All these categories are discussed in following subsections:

2.5.1 Statistical Code Based Methods

Statistical coding partitions the original data into n bit symbols and

assigns variable length code words based on each symbol's frequency of

occurrence. It assigns shorter code words to symbols that occur more

frequently, and longer code words to those that occur less frequently.

This strategy minimizes the average length of a code word.

The Huffman code is very widely used code in all lossless data

compression applications as the Huffman code is an optimal statistical

code that is proven to provide the shortest average codeword length

among all uniquely decodable variable length codes. The only

disadvantage is that when the Huffman hardware decoder is placed in

chip, it requires a large amount of area overhead because its size grows

exponentially with symbol size [25].

27

The improved approach is a selective Huffman coding [26] for which a

very simple decoder can be constructed. It only codes the most frequently

occurring blocks in-stead of all blocks using code words with small

numbers of bits.

The Selective Huffman encoding required extra bit with each codeword.

This constant overhead, although minimum for the unencoded data

blocks, can be relatively high for the most frequently occurring code

words. An optimal selective Huffman code [27] uses an additional

Huffman codeword in front of only the unencoded data blocks, relieving

in this way the most frequently occurring codewords from the extra-bit

over-head.

An arithmetic coding based compression method is proposed in [28, 29].

Given a test set in which all the test vectors are fully specified, some

primary input values may be changed to opposite logic values without

losing fault coverage [30]. This helps in reducing the number of distinct

blocks which later coded with Huffman coding [31].

There are number of techniques proposed by researchers which explore

the advantages of statistical codes in combinations of other coding

techniques.

In RL-Huffman coding [32], the don't care bits in test vector are first filled

with either ‘0’ or ‘1’ such that the overall run length of 1s or 0s has been

increased. Such runs with variable size are coded using Huffman coding.

The Multilevel Huffman test data compression method [33, 34] is based

on Huffman coding with a limited number of codewords. The test cubes

of the CUT are compared against the pseudorandom sequences

generated by various cells of an LFSR and if they match, the Huffman

coded index for each selected LFSR cell is chosen for feeding the scan

chain of the CUT.

As per variable-to-variable Huffman coding [35], densely specified regions

are the main sources of unencoded data, and, therefore, their

compression is favored by the usage of small distinct blocks. On the

28

other hand, sparsely specified regions are more efficiently compressed

using large distinct blocks, so to improve compression, the test sets

should be partitioned into variable-length parts, which means that

variable-length distinct blocks should be encoded. Apart from the

variable-to-variable nature of the proposed approach, the generated

codewords are reusable in the sense that they can encode compatible

blocks of different sizes.

2.5.2 Run Length Code Based Methods

The first data compression codes that researchers explored for

compressing scan vectors were encoded by runs of repeated values of

zeroes.

The simplest scheme based on run-length codes that encoded runs of 0s

using fixed-length code words was proposed in [36]. To increase the

prevalence of runs of 0s, this scheme uses cyclic scan architecture to

allow the application of difference vectors.

A technique based on Golomb codes [37, 38] encodes runs of 0s with

variable-length code words. The codewords are divided into groups of

equal size m where m is any power of 2. The use of variable-length code

words allows efficient encoding of longer runs, although it requires a

synchronization mechanism between the tester and the chip.

A Frequency Directed Run length code (FDR) similar to Golomb code is

proposed in [39, 40] but the difference is the variable group size. It is

based on the observation that the frequency of runs of 0s with run length

less than 20 is high and even within the range of 0 to 20, the frequency

of runs decreases rapidly with increase in run length. So test data

compression can be more efficient if the runs of 0s with shorter run

length are mapped to shorter codewords.

The FDR code is very efficient for compressing data that has few 1s and

long runs of 0s but inefficient for data streams that are composed of both

29

runs of 0s and runs of 1s. Generally test vectors contain 0s and 1s in

group i.e. there will be a run of 1s followed by run of 0s and vice versa. In

an extension of FDR (EFDR) [41], the run of 0s followed by bit '1' and run

of 1s followed by bit '0' are coded same way as FDR but adding an extra

bit at beginning of FDR codeword.

Generally, the test set T is composed of alternating runs of zeros and run

of ones. In alternating FDR coding (AFDR) style [42], instead of adding

the extra bit to each run length code-word, only one bit will be added at

beginning to indicate the type of first run length and then successive run

length is automatically alternating type. So all run lengths are coded

with normal FDR but at beginning, one bit will be added to indicate the

first run type.

An evolution in alternating FDR is Shifted Alternating FDR (SAFDR) [43].

Here the runs are of either made of only ones or only zeroes. The both

types of runs are placed alternating. So in such alternating FDR, no

codeword is required for zero run length and each codeword will be

shifted to one position higher run length. This helps in achieving higher

compression compared to Alternating FDR.

Regardless of the good compression ratios the area overhead of FDR is a

disadvantage. So a mix of Huffman and FDR is proposed which instead

of only patterns of fixed-length uses patterns of variable-length as input

to the Huffman algorithm (VIHC) [24]. Here the compression ratio is

retained because of FDR and the area overhead is reduced using

selective Huffman Coding.

Spilt VIHC [44] approach demonstrates that before going to the VIHC, if

the test file is divided in to two or more equal parts and the vectors are

reordered in a specific way, the compression ratio can be still improved.

One more scheme based on probability of 0s and FDR is Modified

Frequency-Directed Run-length (MFDR)[45]. In this scheme, the groups

of FDR is further modified such a way to give better compression ratio

than FDR if the probability of 0s in the test set is greater than 0.8565.

30

A scheme based on selectively relaxing some bits of test vector before

encoding it using FDR or Golomb code is proposed in [46]. Here by

changing a specified bit with value 1 to a don't-care, two consecutive

runs of 0s in the test sequence can be concatenated into a longer run of

0, thereby facilitating run-length coding. This procedure retains the fault

coverage of the test set.

The data independent run length coding [47] explores the don't care bits

in test patterns. It transmits the first segment of pattern as it is and then

compares all other subsequent segments with first segment and decides

either the next segment is same as first or complement of first segment.

Stuck at faults based test patterns can be reordered without any loss of

fault coverage. The test patterns are reordered based on the minimum

Hamming distance between them.

The run based reordering approach [48] is based on reordering the test

patterns to give the bigger run lengths of 0s. The variable to fixed plus

variable length coding [49] scheme divides code word into two parts: fixed

length head section and variable-length tail section. Combined partial

test vector reuse and FDR coding [50] finds such a vector, from which

parts of each test vector from the different test sets can be sought. Based

on this, a vector named overlapped vector which contains parts of each

test vector and has shorter length than that of the sum of each test

vector's length is decided.

2.5.3 Dictionary Code Based Methods

The basic idea behind dictionary codes is to take advantage of a number

of commonly occurring sequences. This scheme partitions the original

data into n-bit symbols and uses a dictionary to store each unique

symbol. This technique compresses data by encoding each n-bits using a

b-bit code word that corresponds to the symbol's index in the dictionary

(b is less than n when all possible symbols do not occur in the data).

31

A scan vector compression scheme that uses a complete dictionary is

proposed in [51]. The size of each index equals [log2n], where n is the

number of distinct scan slices.

A partial-dictionary coding scheme [52] constrains the dictionary size

based on the allocated area for the decompressor.

A method based on LZW, particularly LZ77 is proposed in [53, 54]. A

partial dictionary along with a correction network that inputs bits to

convert a dictionary entry into the desired scan slice is proposed in [55].

A hybrid test data compression method using scan chain compaction

and dictionary based Scheme is proposed in [56].

2.5.4 Constructive Code Based Methods

Constructive codes exploit the fact that each n-bit scan slice typically

contains relatively few care bits. It is possible to construct the scan slice

by incrementally specifying all the care bits using a sufficient number of

code words.

A scheme to construct the current scan slice from the previous scan slice

by flipping bits is proposed in [57]. A constructive code method [58] first

sets all bits in a scan slice to either 0 or 1 (whichever matches the largest

number of care bits), and then incrementally loads the care bits with

opposite value using either a single-bit or a group-copy mode.

2.6 Code Based Method for IP Cores

The dictionary codes and constructive codes have reported high

compression ratio, however, their results in terms of consistency to

achieve a high compression ratio, cost of memory demanding decoder,

and scan-in power due to high bit transitions are not favoring them for

further use [32]. A drawback of using a complete dictionary is that the

dictionary size can become very large, resulting in too much overhead for

32

the decompressor. The drawback for constructive coding is very complex

and data dependant decoder.

The remaining two methods: statistical coding and run length based

coding are further selected for this thesis work on testing of IP core based

SoC.

2.7 Test Power

Generally, a circuit in test mode may consume the power as high as

three to four times the power consumed in the normal mode [10]. The

main reasons of this extra power are parallel testing strategy and extra

power drawn by DFT circuits in addition to normal circuit. This extra

power consumption due to test application may give rise to severe

hazards to the circuit reliability [11]. Moreover, it may be responsible for

cost, performance verification as well as technology related problems.

The terminology related to power issues [59] is as follows:

Energy

The total switching activity generated during test application. Energy has

impact on the battery lifetime during power up or periodic self-test of

battery operated devices.

Peak Power

The peak power is the highest value of power at any given instant. The

peak power determines the thermal and electrical limits of components

and the system packaging requirements. If the peak power exceeds a

certain limit, the correct functioning of the entire circuit is no longer

guaranteed [11].

The peak power consumption corresponds to the maximum of the

instantaneous power consumed during the test session. It therefore

33

corresponds to the highest energy consumed during one clock period,

divided by T. More formally, it can be expressed by equation 2.4 [64]:

௣ܲ௘௔௞ ൌ ௞ൣܲ௜௡௦௧ሺ௏௞ሻ൧ݔܽ݉ ൌ
௢ܥ௞ሾݔܽ݉ ൈ ஽ܸ஽

ଶ ൈ ∑ ܵሺ݅, ݇ሻ௜ ൈ ௜ሿܨ
2 ൈ ܶ

……………(2.4)

Average Power

The total distribution of power over a time period, which is generally the

amount of power consumed during the application of a test. Elevated

average power adds to the thermal load that must be vented away from

the device under test. It may cause structural damage to the silicon (hot

spots), to bonding wires or to the package.

The average power consumed during the test session is the total energy

divided by the test time, and is given in equation 2.5:

௔ܲ௩௚ ൌ
ሾܥ௢ ൈ ஽ܸ஽

ଶ ൈ ∑ ܵሺ݅, ݇ሻ௜ ൈ ௜ሿܨ
2 ൈ ௧௘௦௧݄ݐ݈݃݊݁ ൈ ܶ

……………. (2.5)

Where VDD is the power supply voltage, C0 is the minimum size parasitic

capacitance of the circuit, S (i, k) is the number of switching provoked by

Vk at node i, Lengthtest is the length of vector sequence, the fanout Fi is

the fanout, Si is the number of switching on node i and T is the clock

period.

According to the above expressions of the power and energy

consumption, and assuming a given CMOS technology and supply

voltage for the circuit design, it is inferred in [59] :

1. The number of switching of a node i in the circuit is the only

parameter that has impact on both, the peak power and the

average power consumption.

34

2. The clock frequency used during testing has impact on both the

peak power and the average power.

3. The test length the number of test patterns applied to the CUT, has

impact only on the total energy consumption

Scan and Capture Power

Figure 2.1: Shift and Capture Power during Scan Tests

Figure 2.1 [60] shows transitions in scan cells that cause shift and

capture power consumption during scan tests. In this circuit, the first

test vector 10001 is shifted into the scan chain in five clock cycles. After

one capture cycle, the response vector 00110 is captured into the scan

chain and scanned out while the next test vector 01100 is scanned in

simultaneously. Each vector row in this figure represents states of the

scan cells in one test cycle, the dash lines highlight where transitions

happen. During the shift phase, transitions on the scan chain occur

35

when adjacent bits in test vectors have different logic values, and the

number of transitions that it takes is determined by the position where it

happens. It means, for scan based designs, each transition from ‘1-to-0’

or ‘0-to-1’ in the scan-in and scan-out vectors has multi-fold impacts on

switching activities. In this regards, it can be inferred that to reduce the

test power, the switching activities during scan operation must be

reduced.

Differently, capture power is caused by transitions happened when scan

cells have different values before and after capture.

The following is the detailed description of scan power.

Scan-in Power

Figure 2.2: Weighted Transitions during Scan In

Figure 2.2 demonstrates how the position of transition in scan vector

contributes to test power.

36

For a given test data set containing m vectors with n bits each, the

Weighted Transition for each test vector is given by equation 2.6 and the

total weighted transition during test is given by equation 2.7.

݊ܽܿݏ ݎ݋݂ ݊݋݅ݐ݅ݏ݊ܽݎܶ ݀݁ݐ݄ܹ݃݅݁ െ ݆ ݎ݋ݐܿ݁ݒ ݊݅ ൌ ෍൫ݐሺ݆, ݅ሻ ۩ ݐሺ݆, ݅ ൅ 1ሻ൯ כ ሺ݊ െ ݅ሻ
௡

௜ୀଵ

……………..(2.6)

݊ܽܿݏ ݃݊݅ݎݑ݀ ݊݋݅ݐ݅ݏ݊ܽݎܶ ݀݁ݐ݄ܹ݃݅݁ ݈ܽݐ݋ܶ െ ݅݊ ൌ ෍ ෍൫ݐሺ݆, ݅ሻ ۩ ݐሺ݆, ݅ ൅ 1ሻ൯ כ ሺ݊ െ ݅ሻ
௡

௜ୀଵ

௠

௝ୀଵ

……………..(2.7)

Scan-Out Power

Figure 2.3: Weighted Transitions during Scan Out

Figure 2.3 demonstrates how the position of transition in scan-out vector

(response) contributes to test power.

37

For a given test data set containing m vectors with n bits each, the

Weighted Transition for each scan-out test vector is given by equation

2.8 and the total weighted transition during test is given by equation 2.9.

݊ܽܿݏ ݎ݋݂ ݊݋݅ݐ݅ݏ݊ܽݎܶ ݀݁ݐ݄ܹ݃݅݁ െ ݆ ݎ݋ݐܿ݁ݒ ݐݑ݋ ൌ ෍൫ݐሺ݆, ݅ሻ ۩ ݐሺ݆, ݅ ൅ 1ሻ൯ כ ݅
௡

௜ୀଵ

……………..(2.8)

݊ܽܿݏ ݃݊݅ݎݑ݀ ݊݋݅ݐ݅ݏ݊ܽݎܶ ݀݁ݐ݄ܹ݃݅݁ ݈ܽݐ݋ܶ െ ݐݑ݋ ൌ ෍ ෍൫ݐሺ݆, ݅ሻ ۩ ݐሺ݆, ݅ ൅ 1ሻ൯ כ ݅
௡

௜ୀଵ

௠

௝ୀଵ

……………..(2.9)

2.8 Switching Activity Reduction Methods

Various Switching Activity Reduction (SAR) methods described in

literature can be classified as follow:

1. Methods dealing with Built-In-Self-Test (BIST)

2. Methods dealing with Design-For-Test(DFT)

3. Methods dealing with external testing or ATE.

2.8.1 SAR Techniques for Built-In-Self-Test

In these techniques, either the BIST architecture is made power

conscious or some of the components of BIST are designed with power

consideration.

The BIST architecture contains two major components: test pattern

generator (TPG) and response checker [2]. Both of these components use

Linear Feedback Shift Register (LFSR). The LFSR can be design to reduce

the power consumption during test in following ways:

38

Reducing the Transitions in Test pattern Generator

Various methods for power reduction in case of BIST like a modified

clock scheme for a low power BIST test pattern generator, POWERTEST

tool : a tool for energy conscious weighted random pattern testing, LT-

RTPG: a test-per-scan BIST TPG for low heat dissipation, etc. are

discussed in [57]. A low power test pattern generator using the LFSR,

called LP-TPG is presented in [61] which inserts intermediate patterns

between the random patterns to reduce the transitional activities of

primary inputs which eventually reduces the switching activities inside

the circuit under test, and hence, power consumption. A polynomial-time

algorithm that converts the test pattern generation problem into

combinatorial problem called Minimum Set Covering is proposed in [62].

A low power BIST TPG scheme in [63] uses a transition monitoring

window (TMW) that comprised of a TMW block and a MUX. The proposed

technique suppresses transitions of patterns using the k-value which is a

standard that is obtained from the distribution of TMW to observe over

transitive patterns causing high power dissipation in a scan chain. A

TPG based on Read Only Memory (ROM) which is carefully designed to

store the test vectors with minimum area over the conventional ROM is

presented in [64]. In [65], an approach to reconfigure the CUT's partial-

acting-inputs into a short ring counter (RC), and keep the CUT's partial-

freezing-inputs unchanged during testing is used. A low hardware

overhead TPG [66] for scan-based built-in self-test (BIST) can reduce

switching activity in circuits under test (CUTs) during BIST and also

achieve very high fault coverage with reasonable lengths of test

sequences. In [67], low-transition linear feedback shift register (LT-LFSR)

technique reduces transitions in two dimensions: between consecutive

patterns and between consecutive bits within a pattern. The proposed

architecture increases the correlation among the patterns generated by

LT-LFSR with negligible impact on test length. An algorithm to synthesize

39

a built-in TPG from low power deterministic test patterns without

inserting any redundancy test vectors is proposed in [68].

Generation of the Useful Vectors Only

A significant amount of energy is wasted in the LFSR and in the CUT by

useless patterns that do not contribute to fault dropping. LFSR tuning

modifies the state transitions of the LFSR such that only the useful

vectors are generated according to a desired sequence. This phenomenon

is used in [69, 70].

Filtering of Unnecessary Vectors

There are some non detecting sequences generated by LFSR. By

inhibiting such vectors during testing, over all switching can be reduced

and hence power consumption can be reduced. A test-vector-inhibiting

technique to filter out some non detecting subsequences of a

pseudorandom test set generated by an LFSR was extended in [71] by the

filtering action to all the nondetecting subsequences. A scan cell

architecture that decreases power consumption and the total consumed

energy [72] is based on the data compression.

Circuit Partitioning

The circuit is strategically partitioned in to sub-circuits to achieve the

parallel testing. An efficient scan partitioning technique reduces average

and peak power in the scan chain during shift and functional cycles.

Main goal here is to partition the circuit in to sub circuit so that parallel

testing can be achieved. A novel low-power BIST strategy based on circuit

partitioning is proposed in [73]. This strategy partitions the original

circuit into two structural sub circuits so that two different BIST

sessions can successively test each sub circuit. A low-power virtual test

40

partitioning technique [74] where faults in the glue logic between

subcircuits can be detected by patterns with low power dissipation that

are applied at the entire circuit level, while the patterns with high power

dissipation can be applied within a partitioned subcircuit without loss of

fault coverage.

Separate Testing Strategy for Memory

Various RAM transition reduction techniques by reordering read and

write access are described for low power consumption. In [59], the

authors suggested the strategy on RAM transition reduction by

reordering the read and write accesses and the address counting scheme.

These results in decrease of the energy consumption while keeping test

time the same, so they also minimize the average power. A row bank-

based precharge technique based on the divided word line (DWL)

architecture is proposed in [75] for low-power testing of embedded

SRAMs. In low-power test mode, instead of precharging the entire

memory array, only the current accessed row bank is precharged. This

will result in significant power saving for the precharge circuitry. A low

power memory BIST is proposed in [76].

2.8.2 SAR Techniques for Design-For-Test

Apart from internal and external techniques, in these categories, some

DFT techniques are described for low power testing. Here main goal is to

reduce switching activity by adding some hardware as DFT. Two design-

for-testability (DFT) techniques based on clock partitioning and clock

freezing to ease the test generation process for sequential circuits is

proposed in [75]. In the first DFT technique, a circuit is mapped into

overlapping pipelines by selectively freezing different sets of registers so

that all feedback loops are temporarily cut. In the second DFT technique,

41

selective clock freezing is used to temporarily cut only the global

feedback loops. In a Jump scan technique (or J-scan) for low power

testing [78], the J-scan shifts two bits of scan data per clock cycle so the

scan clock frequency is halved without increasing the test time. The

experimental data shows that the proposed technique effectively reduces

the test power by two thirds compared with the traditional MUX scan.

2.8.3 SAR Techniques for External Testing

This category contains various techniques adopted to reduce the power

consumption during external testing by ATE. These methods depend on

the number of transitions in test data set. Either the ATPGs are trained

to generate the test vectors with minimum transitions or the generated

test vectors are explored to minimize the transitions. Sometimes, the

internal switching activities are controlled using primary input vectors,

many times, the partially specified test data is filled with specified bits to

give minimum transitions. It means, these schemes generally deal with

test data rather than modification in circuit architecture.

2.9 SAR Techniques for IP Cores

The main focus here is IP core based SoC testing. The power reduction

techniques for Built-In-Self-Test deals with the architecture design of

BIST. Mostly, this category focuses on exploring the structure of

components of BIST architecture like LFSR. It means that this category

is in any case not suitable to IP core based SoC where IPs are not allowed

for any change at system integration level. The same case is for power

reduction techniques with help of specific DFT insertion. Neither the

insertion nor modification in scan chain is possible. In this regards, the

first two classifications are not applicable to this particular case. The

42

only option remains for the given application is ‘power reduction

techniques for external testing’ which is further explored in next section.

2.10 SAR Techniques for External Testing

The power reduction techniques described in literature which are used

with external testing are further classified as follows:

2.10.1 Low Power ATPG Algorithms

The current research in this field focuses on ATPG algorithm which not

only gives maximum fault coverage but ensures the maximum fault

coverage at lowest possible power dissipation. In [79], a heuristic method

to generate test sequences is proposed which create worst-case power

droop by accumulating the high and low-frequency effects using a

dynamically constrained version of the classical D-algorithm for test

generation.

A novel scan chain division algorithm [80] that analyzes the signal

dependencies and creates the circuit partitions such that both shift and

capture power can be reduced when using the existing ATPG flows.

In [81], ATPG technique simultaneously reduces capture and shift power

during scan testing. This ATPG performs power reduction during

dynamic test compaction so the test length overhead is very small. A low

capture power ATPG and a power aware test compaction method is

presented in [82].

2.10.2 Input Control

Here the idea is to identify an input control pattern such that by applying

that pattern to the primary inputs of the circuit during the scan

operation, the switching activity in the combinational part can be

43

minimized or even eliminated. The basic idea of input control technique

with existing vector-or latch-ordering techniques that reduces the power

consumption has been covered in [59]. In the same area, [83] presented a

technique of gating partial set of scan cells. The subset of scan cells is

selected to give maximum reduction in test power within a given area

constraint.

2.10.3 Ordering Techniques

In this technique, the test vectors are reordered to reduce the number of

transitions and hence the test power. The problem of test vector

reordering has been mapped into finding the Hamiltonian path in a fully-

connected weighted graph which is similar to the traveling salesman

problem (TSP). As there exists no polynomial time algorithm for TSP,

approximation methods of solution have been used. In [84], a greedy

algorithm is proposed to decrease test power consumption without

modifying the initial fault coverage. A second technique based on

Simulated Annealing (SA) has been proposed in which the greedy

solution is used as initial solution and it shows a considerable average

power reduction during test application. Another work [85] has also

considered the Hamming distance minimization between adjacent vectors

to reduce the dynamic power dissipation during testing. In [86],

reduction of power dissipation during test application has been studied

both for scan designs and for combinational circuits tested using built-in

self-test (BIST). They have shown that heuristics with good performance

bounds can be derived for combinational circuits tested using BIST and a

post-ATPG phase has been proposed for reducing power dissipation

during test application in full-scan circuits and for pure combinational

circuits. They have shown that scan-latch ordering along with test-vector

reordering can give considerable improvement in power dissipation and

considerable savings can be obtained by repeating some of the test

44

vectors. In [85], an evaluation of different heuristic approaches has been

done in terms of execution time and quality. In [87], a GA-based

formulation is proposed to solve the problem of generating a test pattern

set such that it has high fault coverage and low power consumption.

Hamming distance based reordering is described in [89]. In [90], another

method based on Artificial Intelligence (AI) is proposed to order the test

vectors for combinational circuits in an optimal manner to minimize

switching activity during testing.

2.10.4 Don't Care Bit Filling

ATPG generated uncompacted test data contains a large number of don't

care bits. In test vectors, only 1% to 5% of their bits are specified (care)

bits. Such don't care bits in test data can be manipulated to reduce the

test power. An automatic test pattern generation (ATPG) scheme for low

power launch-off-capture (LOC) transition test is proposed in [91]. In

[92], a Genetic Algorithm based heuristic to fill the don't cares is used. A

segment-based X-filling to reduce test power and keep the defect

coverage is presented in [93]. Based on the operation of a state machine,

[94] elucidates a comprehensive frame for probability-based primary-

input dominated X-filling methods to minimize the total weighted

switching activity (WSA) during the scan capture operation. In [95, 96],

the effect of don't care filling of the patterns generated via automated test

pattern generators is described. It presents a trade-off in the dynamic

and static power consumption.

45

2.11 External Testing SAR Techniques for

IP Cores

Reviewing the characteristics of low power external testing techniques,

the following points need to be considered.

Improved ATPG Algorithms

The implementation of this method

• deals with generation of new test set rather than available test

sequence or test architecture

• requires the netlist of the design. It cannot be directly applicable to

hard core

• requires the knowledge of internal details of design

Input Control

The implementation of this method

• deals with test architecture rather than test sequence

• requires the knowledge of internal details of design

• requires the additional hardware to modify test pattern sequence

• requires modification in internal structure

Ordering Technique

The implementation of this method

• deals with test sequence rather than test architecture

• requires the well defined test sequence i.e. test data set

• does not requires the knowledge of internal details of design

• requires the additional hardware to reorder test pattern sequence

• does not requires modification in internal structure

46

Exploring Don't Care Bits

The implementation of this method

• deals with test data bit sequence rather than test vector sequence

or test architecture

• requires the well defined test sequence i.e. test data set

• does not require the knowledge of internal details of design

• does not require any additional hardware

• does not requires modification in internal structure

Out of the above mentioned four classifications, the ‘low power ATPG

algorithms’ and ‘input control’ classifications require the internal details

i.e. netlist of the design under test. Generally such details are not

available with IP cores and hence, in context of IP core based SoC, these

two classifications are not suitable. The remaining options for switching

reduction in case of IP core based SoC testing are “ordering techniques”

and “don't care bit filling” methods.

2.12 Methodology for Experiments

This section contains the methodology adopted for experimental work in

this thesis and also the experimental results for test data compression

with contemporary tool i.e. TestKompress from MentorGraphics.

2.12.1 Results for the Proposed Methods in This

Thesis

The experiments are conducted on a workstation containing a 2.0 GHz

Core2duo T5750 processor with 2.99 GB of RAM. For various methods

described in thesis, the mathematical models are implemented using

47

MATLAB7.0 and then final implementation is done in C language for

experimental work.

Unless specified differently, for the quantitative measurement of test data

compression, test application time and number of transitions (for power

calculations), the experiments were performed on test data compression

for test cubes generated by MINTEST for the widely used six largest

ISCAS'89 benchmark circuits. The author is thankful to Prof. Nur A.

Touba for providing this test cubes generated by MINTEST for the widely

used six largest ISCAS'89 benchmark circuits. The experiment results in

mostly all reference papers refereed for result comparison in this thesis

have used the same test sets. The details of these test sets for the six

largest ISCAS benchmark circuits are given in Table 2.1.

Table 2.1: Details of MINTEST Generated Test Set for ISCAS’89 Circuits

ISCAC
 Circuit

of
Test

 Vectors

of
Bits/Vector

of
Total
Bits

% of
0s

% of
1s

% of
Xs

S5378 111 214 23754 12.4947 14.8901 72.6151

S9234 159 247 39273 12.2629 14.7302 73.0069

S13207 236 700 165200 3.8093 3.0387 93.1519

S15850 126 611 76986 9.5186 6.922 83.5593

S38417 99 1664 164736 14.0279 17.891 68.0811

S38584 136 1464 199104 9.2781 8.4448 82.2771

The equation 2.2 is used for all analysis and comparison of different

methodologies as this definition of compression ratio is widely used in

literature.

For the quantitative measurement of test power reduction, the total

number of transitions (i.e. from ‘0-to-1’ or ‘1 to 0’) is considered for all

analysis and comparisons.

For on-chip decoder area comparison, the decoder FSMs are

implemented using VHDL. The EDA tools used are Mentor graphics HDL

48

designer for design entry, Modelsim for simulation and Leonardo

spectrum for synthesis. The library used for synthesis is TSMC 0.35u

(Taiwan Semiconductor Machine Corporation). For the results for area

overhead of on-chip decoder, the parameters like equivalent NAND gates,

nets, ports and maximum clock frequency are taken from synthesis

report.

2.12.2 Comparisons of Results with Contemporary

Profession Tool

In this thesis, the work is done on a ready to use test data for a given IP

core where the internal structure is hidden and no ATPG or fault

simulation is possible. Still to have a comparison of results with

contemporary professional tool, the results from TestKompress from

Mentror Graphics are presented here.

Table 2.2: Details of TestKompress Generated Test Set for ISCAS’89 Circuits

 # of
Test Vectors

of
Bits/Vector

of
Total Bits

S5378 111 160 17760

S9234 80 135 10800

S13207 131 483 63273

S38417 109 1463 159467

S38584 133 1260 167580

TestKompress uses the Embedded Deterministic Test (EDT) technology

[9]. In this technology, the compression algorithm is tightly integrated

with the dynamic compaction of the ATPG engine. The linear equation

solver works iteratively with ATPG to maximize compression. The Table

2.2 presents the size of test set generated by TestKompress. However, it

should be noted that the TestKompress involves the use of ATPG and

49

requirement of netlist which is against the objective of this research

work. Further, the test data generated by TestKompress is fully specified

i.e. without any don’t care bit.

2.13 Inferences

From the above literature survey, it could be inferred that

• The test data compression reduces the test time which results in

test cost reduction. Out of wide range of test data compression

methods, “run length code” and “statistical code” based

compression methods are suitable to IP core based SoC.

• The same way, out of wide range of switching activity reduction

techniques, “reordering of test vectors” and “don't care bit filling”

are suitable to IP core based SoC.

For a common solution to test cost, test time and test power problems, a

“run length code” or “statistical code” based test data compression

method involving “test vector reordering” and “don't care bit filling”

should be developed and it should be further optimized for overall test

application time and on-chip area overhead.

Chapter 3

Run Length Code Based Test Data

Compression

The ATPG generates binary test data with a large number of don’t care

bits. These don’t care bits can be converted into either zeros or ones.

Because of that the test data can form long runs of ones or zeros and

hence can be efficiently compressed with a run-length code. This chapter

includes the simple run-length code and all its variants for test data

compression. The proposed test data processing methods to enhance the

compression in case of run length based codes are included in this

chapter.

3.1 Existing Run Length Codes

This section includes the overview and analysis of various run length

based test data compression methods.

3.1.1 Overview of Existing Run Length Codes

This section includes the detailed descriptions of various run length

codes like simple, Golomb code, Frequency Directed Run length (FDR)

code, Extended FDR (EFDR) code, Modified FDR (MFDR) code,

51

Alternating Run Length code, Shifted Alternating Run Length coding,

etc.

Simple and Modified Simple Run Length Code

Figure 3.1: Example of Simple Run Length Coding

The example of a variable-to-block run-length code is shown in Table 3.1.

A variable number of bits are encoded by a fixed number of bits. The

example shown in Figure 3.1 follows the coding table where the fixed

number of bits is 3. The simple run length code is inefficient when runs

of 1s occur. To overcome this inefficiency, the modified simple run length

code is proposed in [36] as shown in Table 3.1.
Table 3.1: Modified 3 - Bit Run length Code

Code
Word

Symbol
For 3–Bit Run
Length Code

Symbol
For Modified 3–Bit Run
Length Code

000 1 10
001 01 11
010 001 01
011 0001 001
100 00001 0001
101 000001 00001
110 0000001 000001
111 0000000 000000

Golomb Code

The simple or modified run length codes are very efficient when

probability of occurring ‘0’ is very high compared to probability of

52

occurring ‘1’ i.e. for long runs of ‘0s’. Unlike that scan test data, the

probability of occurring 0 or 1 is same. Moreover, in such test data, the

runs are generally short. So to make run length code more efficient for

scan test data, the Golomb code [37, 38] is proposed. The coding table is

shown in Table 3.2, Golomb codes encode runs of 0s with variable-length

code words. The codewords are divided into groups of equal size m (m is

any power of 2). Each group Ak is assigned a group prefix (k -1) 1s

followed by a ‘0’ and as each group contains uniquely identifiable

symbols, the final code word consists of a group prefix and a tail of n bit

which identifies the member in group. The Figure 3.2 demonstrates this

coding method.

Figure 3.2: Example of Golomb Coding

Table 3.2: Golomb Code for m = 4

Group Run
Length

Group
Prefix Tail Code word

A1
0

0
00 000

1 01 001
3 11 011

A2

4

10

00 1000
5 01 1001
- -- ----
7 11 1011

A3 8 110 000 110000
 9 001 110001

53

Frequency Directed Run Length Code (FDR)

Table 3.3: Frequency Directed Run Length Code

Group Run Length Group Prefix Tail Code word

1 0 0 0 00
1 1 01

2
2

10
00 1000

-- -- ----
5 11 1011

3
6

110
000 110000

7 001 110001
---- --- ----

A new scheme ‘Frequency Directed Run length coding’ [39, 40] is

proposed based on the observation that the frequency of runs of 0s with

run length less than 20 is high and even within the range of 0 to 20, the

frequency of runs of length l decreases rapidly with increasing l. Test

data compression can be more efficient if the runs of 0s with shorter run

length are mapped to shorter codewords. The FDR is similar to Golomb

code but the difference is the variable group size. The size of the ith group

is equal to 2i i.e. that group contains 2i members. Table 3.3

demonstrates the codewords for different run length. The example in

Figure 3.3 demonstrates this coding format.

Figure 3.3: Example of Frequency Directed Run length Coding

54

Extended FDR Code (EFDR)

Figure 3.4: Example of Extended FDR Coding

The FDR code is very efficient for compressing data that has few 1s and

long runs of 0s but inefficient for data streams that are composed of both

runs of 0s and runs of 1s. Generally test vectors contain 0s and 1s in

group i.e. there will be a run of 1s followed by run of 0s and vice versa.

An extension of FDR is EFDR [41]. Here the ‘run of 0s followed by bit 1’

and ‘run of 1s followed by bit 0’ are coded same way as FDR but adding

an extra bit at beginning of FDR codeword. Codewords for this method

are shown in Table 3.4. The sample of encoded data is given in Figure

3.4.

Table 3.4: Extended Frequency Directed Run Length Code

Group Run Length
Group
Prefix

Tail
Code word Runs

of 0s
Code word Runs

of 1s

1
1

0
0 000 100

2 1 001 101

2

3

10

00 01000 11000
4 01 01001 11001
5 10 01010 11010
6 11 01011 11011

3

7

110

000 0110000 1110000
8 001 0110001 1110001

---- --- ---- ----
14 111 0110111 1110111

55

Alternating FDR Code

The FDR code is very efficient for compressing data that has few 1s and

long runs of 0s. However, for data streams that are composed of both

runs of 0s and runs of 1s, the FDR code is rather inefficient. In fact, the

sizes of encoded test sets obtained for such test sets were larger than the

sizes of uncompressed test sets. The alternating FDR (AFDR) [42] follows

the same coding scheme as FDR but it uses the runs are of both types,

i.e. runs of ‘0s followed by one 1’ and runs of ‘1s followed by one 0’. It is

assumed that the data starts with run of 0 and then it keeps alternating

between runs of 0 and 1. If the first run is not of 0 than a code word of

indicating 0 run length should be prefixed. It has been made clear in

Figure 3.5.

Figure 3.5: Example of Alternating FDR Coding

Shifted Alternating FDR Code (SAFDR)

Table 3.5: Shifted Alternating Frequency Directed Run Length Code

Group Run Length Group Prefix Tail Code word

1
1

0
0 00

2 1 01

2

3

10

00 1000
4 01 1001
-- -- ----
6 11 1011

3 7 110 000 110000

56

The AFDR is inefficient for data containing the large number of short

runs [43]. The evolution in AFDR is Shifted Alternating Run Length

based FDR (SAFDR) [43].

In this coding format, the runs contain only 0s or only 1s. It does not

contain any post-amble bit. Moreover, the data can start with any type of

run. To indicate the type of first run, the encoded data will be preceded

by a special bit. This bit will be 0 (or 1) if the first run type is ‘0s followed

by 1’ (or ‘1s followed by 0’). This coding format follows FDR coding format

as shown in Table 3.3. As, in SAFDR, there will be no run-length of 0

sizes, the code word of 0 of FDR scheme is assigned to run length size 1

and so on each code word is shifted to one position higher as shown in

Table 3.5. This helps in achieving higher compression compared to AFDR

which is demonstrated in Figure 3.6 by encoding same data used in

Figure 3.5.

Figure 3.6: Example of Shifted Alternating FDR Coding

Modified FDR Code (MFDR)

In MFDR (Modified Frequency-Directed Run-length), groups of FDR is
further modified to give better compression ratio than FDR if the
probability of 0s in the test set is greater than 0.8565 [45].

57

Table 3.6: Modified Frequency Directed Run Length Code

 Group Run Length Group Prefix Tail Code word

A1
0

01
00 000

1 01 001
3 11 011

A2
4

10
00 1000

- -- ----
7 11 1011

A3
8

001
00 11000

-- -- --
11 11 11011

A4
12

110
000 110000

- - -
19 111 110111

A5
20

0001
000 0001000

- - -

Variable Length Input Huffman Code

Few other variants of run length codes are developed using a

combination of run length and statistical code. The FDR code requires a

complicated decoder with higher area overhead. Therefore, regardless of

the good compression ratios the area overhead of FDR is a disadvantage.

A mix of Huffman and FDR ‘Variable Length Input Huffman Code (VIHC)’

is proposed which instead of fixed-length pattern uses variable-length

pattern as input to the Huffman algorithm [24]. In this method, the

compression ratio is retained because of FDR and the area overhead is

reduced using selective Huffman Coding. Spilt VIHC (SVIHC) [44] code

demonstrates that before going to the VIHC, if the test data set is divided

in to two or more equal parts and the vectors are reordered in a certain

way, the compression ratio can be still improved.

Fixed Plus Variable Length Run Length Code (FPVL)

A test data compression based on Fixed-Plus-Variable-Length (FPVL)

coding [49] divides code word into two parts: fixed length head section

and variable-length tail section. The value presenting tail is the length of

58

runs in the original test data plus ‘2’. In order to obtain further

compression, the highest bit of the tail section is reduced from the code

words because all of the highest bits in the tail section of the tail are ‘1’.

The Table 3.7 shows codewords.

Table 3.7: Fixed Plus Variable Length Run Length Code

 Group Run Length Head (K=2) Tail Code word

1
0

00
10 000

1 11 001

2
2

01
100 0100

- --- ----
5 111 0111

3
6

10
1000 10000

---- ---- ----
13 1111 10111

4
14

11
10000 110000

---- ----- -----
29 11111 111111

3.1.2 Analysis of Existing Run Length Codes

The existing run length codes are verified by the implementation of the

codes using MATLAB. The corresponding on-chip decoder area overhead

is derived using the VHDL coding and Leonardo Spectrum synthesizer

with TSMC 0.35u library. The compression, on-chip area overhead and

test power in terms of number of switching is as follows:

Compression

For the various ISCAS’89 bench mark circuits, the % compression is

shown in Table 3.8. These results clearly advocate the Extended FDR

code. For cases where the probability of 0s in the test set is very high,

MFDR gives the better results.

59

Table 3.8: Comparison of % Compression for Run Length Based Codes

ISCAS’89
Circuits

Original Test
Data

Golomb
Code FDR

EFDR

Alternating
FDR

MFDR

FPVL

S5378 23754 40.70 48.02 51.93 -NA- 51.47 52.15
S9234 39273 43.34 43.59 45.89 44.96 57.74 45.82
S13207 165200 74.78 81.30 81.85 80.23 83.42 81.58
S15850 76986 47.11 66.22 67.99 65.83 66.93 67.70
S38417 164736 44.12 43.26 60.57 60.55 57.95 43.06
S38584 199104 47.71 60.91 62.91 61.13 59.32 32.29

On-chip Decoder

Table 3.9 shows the comparison of hardware requirement. Being the

simplest one, the Golomb decoder requires minimum area overhead.

Table 3.9: Comparison of On-chip Decoder Area for Run Length Codes

Coding
scheme

of Equivalent
NAND gates

of
ports

of
nets

Maximum Clock
Frequency (MHz)

GOLOMB 580 3 361 29.7 MHz
FDR 1104 3 797 24.6 MHz

EFDR 1078 3 757 13.9 MHz
ASFDR 1111 3 799 11.3 MHz
MFDR 2199 3 1493 11.0 MHz

3.2 The Proposed Run Based Bit Filling

Method

This section contains the proposed optimizations for existing run length

codes.

3.2.1 Problem Formulation

During the survey and analysis of various run length codes discussed in

Section 3.1, it is observed that the existing run length codes can be

60

broadly classified into five categories on the basis of types of runs

formed. These five categories are listed below:

Type-A. These codes consider the runs of ‘zeros followed by one’ like

simple run length code, Golomb Code, FDR Code, MFDR

Code

For example: 001 01 000001 . . .

Type-B. These codes consider the runs of ‘ones followed by zero’. This

is a proposed case. No such code is proposed in literature

but we have taken this case for comparison purpose. This

code gives very promising results for data with probability of

occurrence of bit '1' is much higher compared to probability

of occurrence of `0'can be more efficient

For example: 1110 10 111110 10. . .

Type-C. These codes consider runs of ‘zeros followed by one’ as well

as runs of ‘ones followed by zero’ like Extended FDR

For example: 001 1110 10 000001 01 11110 1110. . .

Type-D. These codes consider the alternating runs of ‘only zeros’ and

‘only ones’ (with-out any post-ambled bit) like Shifted

Alternating FDR

 For example: 00 1111 0000 11 00000 111 0 . . .

Type-E. These codes consider alternating runs of ‘zeros followed by

one’ and runs of ‘ones followed by zeros’ like Alternating FDR

 For example: 001 1110 0001 10 00001 110 . . .

Here it should be noted that even though the different authors have

followed the different types of runs, the don't care bit filling method

adopted in majority of the cases is replacing don't care bits with ‘0’.

To get the maximum compression, the don't care bits should be filled

such that it supports the type of run and elongates the run. So instead of

filling the don't care bits blindly with ‘0’ only, the don't care bits should

be filled with 1s or 0s depending up on the different type of run.

61

So here the following five different methods for don't care bit filling on the

basis of run type are proposed.

Method: A X Filling for Codes Considering Runs of ‘0s followed by 1’

For codes like Golomb, FDR and MFDR, the symbols are

made of runs of ‘0s followed by 1’. So a simple technique for

replacing all don't care bits with 0s is adopted. It will

increase the run length of 0s resulting into increase in the

data compression

Method: B X Filling for Codes Considering Runs of ‘1s followed by 0’

This is a new case introduced to analyze the compression

results. The symbols are made of runs of ‘1s followed by 0’.

Here all Xs are replaced by 1s. So the runs of 1s will

increase.

Method: C X Filling for Codes Considering Runs of ‘0s followed by 1’ as

well as Runs of ‘1s followed by 0’

The code EFDR is a case which accepts both the types of

runs. The X filling must be done in such a way that it should

not only maximize the run length but it should not introduce

any new symbol also. While filling the X, the logic applied is

that if the run has ended just before the position of X, the X

should be filled with reference to next run. But if there is a

continuous run going on at position of X, X should be filled

such that it increases the run length of ongoing run.

Proposed algorithm needs to do forward tracking as well as

backward tracking.

Method: D X Filling for Codes Considering Alternating Runs of ‘only 0s’

and ‘only 1s’

For code like SAFDR, the runs are made of alternating runs

of 0s and 1s without any post-ambled bit. So in this case, all

the Xs are replaced with last non-X value i.e. don't cares

62

following a run of zeros are mapped to zeros, and don't cares

following a run of ones were mapped to ones to minimize the

number of runs. If test set starts with don't care bits, all

such initial don't care bits are replaced with the first

specified (fixed) bit.

Method: E X Filling for Codes Considering Alternating Runs of ‘0s

followed by 1’ and Runs of ‘1s followed by 0’

For code like AFDR, the symbols are made of alternating

runs of ‘0s followed by 1’ and ‘1s followed by 0’. Here the first

run must be of zero type. So all the initial ‘Xs’ before the first

specified bit comes, will be replaced by 0s. If first bit is '1',

because of the absence of first '0s followed by 1', it is

considered that the first run is of zero length. After that, all

the X bits are filled with last non-X value.

3.2.2 Entropy Based Maximum Compression Limit

For any data compression method, the entropy is an important concept

used to calculate the maximum possible limit of % compression that can

be achieved by that compression code. The entropy of a symbol E(S) is

the minimum number of bits needed to encode that symbol. The entropy

of the test set is calculated from the probabilities of occurrence of unique

symbols using the formula in equation 3.1

ሺܵሻܧ ݐ݁ݏ ܽݐܽ݀ ܽ ݂݋ ݕ݌݋ݎݐ݊ܧ ൌ ෍ ௜ܲ

௡

௜ୀଵ

כ ଶ݃݋݈
1

௜ܲ

……………. (3.1)

where Pi is the probability of occurrence of symbol Xi in the test set and

n is the total number of unique symbols.

63

In case of test data compression methods for which symbol length is

fixed, the formula for maximum compression based on entropy in

percentage that can be achieved is given by equation 3.2 [96].

.ݔܽܯ ሻ݄ݐ݈݃݊݁ ݈݋ܾ݉ݕݏ ݀݁ݔ݂݅ ݎ݋ሺ݂ ݊݋݅ݏݏ݁ݎ݌݉݋ܥ ൌ
݄ݐ݈݃݊݁ ݈݋ܾ݉ݕܵ െ ݕ݌݋ݎݐ݊݁

݄ݐ݈݃݊݁ ݈݋ܾ݉ݕݏ
 ܺ 100

……………. (3.2)

and in case of test data compression methods for which where symbol

length is variable, the formula for entropy based maximum compression

in percentage that can be achieved is given by equation 3.3

.ݔܽܯ ሻ݄ݐ݈݃݊݁ ݈݋ܾ݉ݕݏ ݈ܾ݁ܽ݅ݎܽݒ ݎ݋ሺ݂ ݊݋݅ݏݏ݁ݎ݌݉݋ܥ

ൌ
݄ݐ݈݃݊݁ ݈݋ܾ݉ݕܵ ݁݃ܽݎ݁ݒܣ െ ݕ݌݋ݎݐ݊݁

݄ݐ݈݃݊݁ ݈݋ܾ݉ݕݏ ݁݃ܽݎ݁ݒܣ
 ܺ 100

……………..(3.3)

݄ݐ݃݊݁ܮ ݁݃ܽݎ݁ݒܣ ൌ ෍ ௜ܲ כ | ௜ܺ|
௡

௜ୀଵ

……………….(3.4)

where Pi is the probability of occurrence of symbol Xi. |Xi| is the length

of symbol Xi and n is the total number of unique symbols.

Mathematically it can be proved that the formula in equation 3.5 is a

generic formula for maximum compression and is valid for any type of

symbol length.

.ݔܽܯ ݊݋݅ݏݏ݁ݎ݌݉݋ܥ ݈ܾ݁݅ݏݏ݋ܲ ൌ
ܶ െ ሺܵ כ ሻܧ

ܶ
 ܺ 100

……………..(3.5)

where T is the total number of bits in original uncoded test data, S is the

total number of symbols needed to be encoded and E is the entropy. For

64

all further discussion, the formula in equation 3.5 is used for estimation

of maximum limit of % compression based on entropy.

3.2.3 Experimental Results

Implementation Steps

For this proposed bit filling algorithm, the following steps are applied:

----------------------------Algorithm For Don't Care Bit Filling------------------

Step: 1 Filling the unspecified bit corresponding to specific run type

Step: 2 Finding the difference vector for successive test vectors

(where ever necessary for comparison with existing results)

Step: 3 Calculating the length of runs and frequency of occurrence

of each distinct run length.

Step: 4 Calculating the total number of runs i.e. symbols S.

Step: 5 Calculating entropy and hence maximum limit of %

compression using equations 3.1 and 3.5 successively.

--

The max possible compressions in Table 3.10 are calculated from the

exact values of entropy that were generated after the X filling.

Table 3.10: % Compression for Proposed Bit Filling Methods

ISCAS’89
Circuit

Test
Data
Bits

% Compression for Various
 X Filling Methods A, B, C, D, E

A B C D
E

S5378 23754 52.36 54.33 56.38 40.73 38.94
S9234 39273 47.80 44.34 53.37 35.92 35.33
S13207 165200 83.65 81.12 85.55 79.72 79.59
S15850 76986 68.18 62.49 71.90 60.72 60.32
S38417 164736 54.50 57.44 65.84 55.77 55.14
S38584 199104 62.49 60.09 66.67 54.65 54.21

65

Table 3.11: Total # of Symbol for Proposed Bit Filling Methods

ISCAS’89
Circuits

Total No. of Symbols Needed to be
Encoded

A B C D E
S5378 3538 2969 2094 3129 3130
S9234 4817 5786 3216 4904 4905
S13207 5021 6294 3550 5427 5428
S15850 5330 7329 3647 5628 5629
S38417 29473 23110 9548 13751 13752
S38584 16814 18474 10771 16275 16275

Table 3.12: Total # of Distinct Symbols for Bit Proposed Bit Filling Methods

ISCAS’89
Circuits

Total No. of Distinct Symbols
A B C D E

S5378 79 87 141 131 136
S9234 74 86 141 133 134
S13207 211 178 331 314 314
S15850 173 145 234 230 229
S38417 121 154 236 233 238
S38584 214 191 345 333 333

Table 3.13: Entropy for Proposed Bit Filling Methods

ISCAS’89
Circuits

Entropy
A B C D E

S5378 3.20 3.65 4.95 4.50 4.63
S9234 4.26 3.78 5.69 5.13 5.17
S13207 5.38 4.95 6.72 6.17 6.21
S15850 4.60 3.94 5.93 5.37 5.42
S38417 2.54 3.03 5.89 5.29 5.37
S38584 4.44 4.30 6.16 5.54 5.60

Table 3.14: Scan-In Power for Proposed Bit Filling Methods

ISCAS
Circuit

Peak Power Average Power
A B C D A B C D

S5378 12085 12375 11732 11522 4300 4087 3524 3526
S9234 15395 15640 14092 14103 6706 6521 4002 4022
S13207 110129 126820 94879 94886 12318 1453 8073 7887
S15850 84360 88794 70875 70894 19448 25636 13611 13659
S38417 514716 539019 437884 437935 194843 193140 118100 118080
S38584 530464 533975 481158 481171 133320 142220 86135 86305

66

3.2.4 Observations and Analysis

For the ISCAS’89 benchmark circuits, Table 3.10 and 3.11 compares the

% compression and the total number of symbols for various X filling

method respectively. For method C, the total number of symbols needed

to be encoded is minimum compared to remaining methods, hence %

compression is maximum in this case. However, as it can be shown in

Table 3.13, for the same method C, the entropy is maximum compared to

other methods. The reason of higher entropy is the higher number of

distinct symbols shown in Table 3.13. It means, in spite of higher

number of distinct symbols and higher value of entropy compared to

other method, the method C results in to maximum compression as the

number of total runs are minimum compared to remaining methods A, B,

D and E.

As seen in Table 3.10, the maximum % Compression is achieved when

the bit filling is done with Type C and the minimum % compression is

achieved when the bit filling is done with Type E. The % improvement

with Type C compared to Type E is shown in Table 3.15.

Table 3.15: Improvement in % Compression for Run Based Bit Filling Methods

ISCAS’89 % Compression % Improvement
in %

Compression Circuit Type C Type E
S5378 56.38 38.94 44.79
S9234 53.37 35.33 51.06
S13207 85.55 79.59 7.49
S15850 71.9 60.32 19.20
S38417 65.84 55.14 19.41
S38584 66.67 54.21 22.98

The Type C method consider runs of ‘zeros followed by one’ as well as

runs of ‘ones followed by zero’. Here, the runs are not necessarily in

alternating sequence. While Type E method consider ‘zeros followed by

one’ and runs of ‘ones followed by zeros’ in alternating sequence only.

67

For example:

The test data set 000001111011111000001001 will be interpreted by

Type C and Type E methods as follow:

In case of Type C:

Runs: 000001 1110 111110 00001 001

Run Type : 0 1 1 0 0

Run length: 5 3 5 4 2

In case of Type E:

Runs: 000001 1110 * 111110 00001 * 001

Run Type: 0 1 0 1 0 1 0

Run length: 5 3 0 5 4 0 2

The run formation in Type C method is such that there can not be any

run with length zero. Hence, the code word for zero run length need not

be added in compressed data.

While the run formation in Type E method is such that it also need to

introduce the runs of length zero to maintain the alternating sequence

(as shown with bold letters in the above example). For such runs with

length zero, the corresponding code word related to length zero needs to

be added in compressed data. It means that the runs with zero length in

Type E cause the code word overhead and reduce the % compression.

Such reduction in % compression is appreciably large when the test data

is having a large number of stand alone “zero” sandwiched between

“ones” (e.g. 111101111) or stand alone “one” sandwiched between

“zeros”(e.g. 00000010000).

3.3 The Proposed HDR-CBF-DV Method

This section introduces the proposed ‘Hamming Distance Based

Reordering - Columnwise Bit Filling – Difference Vector’. The following

subsections describe its various aspects.

68

3.3.1 Problem Formulation

From the analysis in section 3.1, it can be seen that the run length codes

like Simple, Golomb, FDR, EFDR, MFDR and SAFDR uses the runs of 0s.

If for a given test set, we can generate long run of 0s, it would result into

higher test data compression and more scan-power reduction also. To

increase the runs of 0s, the very first approach is to fill all the don't care

bits with 0s. The maximum achievable test data compression based on

entropy using this approach for various ISCAS’89 circuit is given in

column-A of Table 3.10. To go beyond this limit is not possible for the

given data. However, if the don’t care bits are filled differently and data is

reordered, it is another form of the same data, and for such data, the

compression can be increased. It means that, the test data must be

processed differently compared to existing methods.

The proposed method “Hamming Distance Based Reordering (HDR) and

Columnwise Bit Filling (CBF) with Difference Vector (DV)" is the method

to prepare the test data set for long run of 0s before the run length based

codes are applied to it. In this thesis, it is sometimes referred as 1-

Dimensional (1-D) method of reordering also because it reorders the

positions of test vectors only. Here the bits within the test vectors are not

reordered.

3.3.2 Hamming Distance Based Reordering

The following observations are considered for reordering:

a. The ATPG derived test set for given DUT contains the test patterns

with a large amount of don't care values.

b. Stuck at faults based test patterns can be reordered without any

loss of fault coverage. Here only thing that needs to be taken care

is: the corresponding fault free outputs that are stored in ATE as

golden references must be also reordered in the same sequence.

69

To calculate the Hamming distance between two test vectors, the

following definitions are used.

Incompatible & Compatible

Given two bits i, j  {0, 1, X}, i and j are incompatible if i = 0 and j =1 or

vice versa. All other circumstances are compatible as shown in Table

3.16.
Table 3.16: Compatibility of Bits

Type of
Bit

1 0
X

(don’t care)
1 Compatible Incompatible Compatible
0 Incompatible Compatible Compatible

don’t care(X) Compatible Compatible Compatible

Distance

The distance between two scan vectors is equal to the number of

corresponding incompatible bits. This definition is similar to Hamming

distance with extension of don't-care bits

Total Hamming Distance (THD)

Total Hamming Distance (THD) is defined as sum of Hamming distance

between successive test vectors in the sequence. Let Hamming distance

d[ti, tj] be the total number of changes between ith and jth test vector. The

Total Hamming Distance (THD) for the whole test vector set is calculated

by the following relation.

ܦܪܶ ൌ ෍ ݀ሾݐ௜, ௜ାଵሿݐ
௡

௜ୀଵ

……………..(3.6)

where n represents total number of test vectors in the whole set.

70

For example given below, two vectors t1 = (10XX01) and t2 = (001X11), the

distance d(t1, t2) is 2 because the first and the fifth corresponding bits in

the vectors are incompatible.

Selection of First Test Vector of Reordered Set

For the selection of first test pattern, the heuristic that is applied in this

scheme is ‘Hardest Path First’. The test pattern with minimum don't

cares will be selected as the first test pattern of reorder list. The reason

for selecting the test pattern with minimum don't care bits is that there

is a minimum flexibility for bit filling. If more than one test pattern have

minimum don't care bits than any test pattern with minimum don’t care

bits can be selected. Following example illustrates the selection

procedure. The test set T contains five test patterns of 14 bits each.

Test patterns # of X

O1 1 X 1 0 0 X X 0 1 X 0 0 X 1 5

O2 1 1 1 X 0 X 0 X 1 0 X 0 X X 6

O3 1 0 1 1 0 X 0 0 X X X 0 1 0 4

O4 0 X X 0 X X 1 0 X X X 0 X X 9

O5 1 0 1 X 1 X 1 X 1 0 X 0 0 X 5

Here the third test pattern from original list (O3) is selected as first test

pattern of reordered new list (N1).

Hamming Distance Based Reordering

From remaining test patterns, the pattern with minimum Hamming

distance from first reordered pattern will be selected as next reordered

pattern. The logic behind the selection of pattern with minimum

Hamming distance as the next reordered pattern is: when the further bit

filling and difference vector will be done, this new sequence will generate

maximum zeroes.

71

If each test pattern is taken as a vertex in a complete undirected graph

G, and the distance between two patterns as the weight of an edge, then

the problem of reordering the test pattern is similar to Hamilton problem,

which is NP-hard and solved by various greedy algorithms.

The simplest pure greedy algorithm is: choosing as the next pattern in a

path the one that is closest to the current pattern, provided it hasn't

been visited yet. It seems that the Hamilton path of G is the solution to

this reordering problem.

Now from the first pattern of new list (N1), the Hamming distances for

remaining all vectors O1, O2, O4 and O5 from N1 are 2, 1, 3 and 2

respectively. As the O2 has minimum Hamming distance from N1, we will

put O2 at second position of reordered set as N2. Now remaining vectors

will be compared with N2 and the vector with minimum Hamming

distance will be placed as N3. This process will be continue still the

original test vector list is empty. The reordered test set is as follow:

N1 1 0 1 1 0 X 0 0 X X X 0 1 0

N2 1 1 1 X 0 X 0 X 1 0 X 0 X X

N3 1 X 1 0 0 X X 0 1 X 0 0 X 1

N4 0 X X 0 X X 1 0 X X X 0 X X

N5 1 0 1 X 1 X 1 X 1 0 X 0 0 X

The overall procedure to minimize the difference bits in consecutive

vectors during testing is as follows:

---------------Algorithm for Hamming Distance Based Reordering------------

Step: 1 Consider a digital circuit with f scan flipflops, p inputs and q

outputs.

Step: 2 Generate all the test vectors to detect all the single stuck at

faults of the circuit. Let the number of test vectors be n.

Step: 3 Find the Hamming distance between each and every test

vectors and load the same in array Hd of size n x n. Let Hd[i][j]

72

be the array elements which gives Hamming distance

between ith and jth test vectors.

Step: 4 Apply reordering algorithm to find the reordered test vector

sequence with minimum total Hamming distance.

--

 The reordering algorithm used in step 4 is as follows:

----------------------------------- Reordering Algorithm----------------------------

The various parameters used in the algorithms are as follows:

t1, t2, …… tn be n test vectors with m bits in each vector.

T={ t1, t2, …tk…tn} where k represents kth position in the vector set

generated by ATPG.

R is a set to store reordered test vector sequence. bits_init[] is an array

containing the value of number of don’t care bits in each test vector. Q is

a set to store T-R.

Step: 1 Select a test vector x such that bits_init[x] is minimum in the

array bits_init which contains the number of don't care bits

in each vector.

Step: 2 Add x to set R.

Step: 3 Select a test vector y such that Hd[x][y] is minimum in the

array.

Step: 4 Add y to R; Q← T-R; x← y.

Step: 5 From the array Hd[x][j] when j varies as in Q, find y so that

hd[x][y] is the smallest value.

Step: 6 Go to step 3.

Step: 7 In the step 4, if Hd[x][j] has more than one smallest value,

then select any one value randomly.

--

Finally the set R will have reordered test vector sequence which will

produce maximum zeroes after difference vector.

73

3.3.3 Columnwise Bit Filling

The bit filling of first vector will be done depending up on the type of run

length code going to be used with the test data. For the don't care bit

filling, method ‘A’ will be used for the codes like Golomb, FDR or MFDR;

the method ‘C’ will be used for EFDR, and method ‘D’ will be used for

SAFDR.

For the second test patterns and onwards, the don't care bit will be filled

with the same value either ‘1’ or ‘0’ which its upper vector has at the

same bit position. In given example, the first vector ‘10110X00XXX010’

will be ‘10110000000010’ after bit filling.

Now for the second test pattern, the bit filling will be like this.

Bit filled 1st vector : 1 0 1 1 0 0 0 0 0 0 0 0 1 0

 2nd Vector : 1 1 1 X 0 X 0 X 1 0 X 0 X X

Bit Filled 2nd Vector : 1 1 1 1 0 0 0 0 1 0 0 0 1 0

After bit filling, the vectors for given example are as follow:

Reordered Bit Filled Test Set NRB

1 0 1 1 0 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 1 0 0 0 1 0

1 1 1 0 0 0 0 0 1 0 0 0 1 1

0 1 1 0 0 0 1 0 1 0 0 0 1 1

1 0 1 0 1 0 1 0 1 0 0 0 0 1

3.3.4 Difference Vector

The next step is to take the difference vector of two consecutive vectors.

This will further increase the numbers of zeroes and hence data

compression. Let TD = {t1; t2; ….; tn} be the ordered precomputed test set.

Tdiff is defined as follows: Tdiff = {d1; d2; . . . ; dn} = { t1; t1 ۩ t2; t 2 ۩ t3 ;……..;

74

tn-1 ۩ tn }; where a bit-wise exclusive-or operation is carried out between

patterns ti and ti+1. The successive test patterns in a test sequence often

differ in only a small number of bits. Therefore, Tdiff contains few 1s and

it can be efficiently compressed using any run length code.

For given example: The first vector will be as it is: 10110000000010

The next vector will be difference of first and second vector.

1st vector : 1 0 1 1 0 0 0 0 0 0 0 0 1 0

2nd Vector : 1 1 1 1 0 0 0 0 1 0 0 0 1 0

Difference Vector : 0 1 0 0 0 0 0 0 1 0 0 0 0 0

The difference vector set for given example is as follow:

Reordered Bit Filled Difference Test Set NRBD

1 0 1 1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 1 0

3.3.5 On-Chip Decoder

While considering the on-chip area overhead in case of proposed method,

it should be noted that the comparison is between ‘simple data encoded

using a run length code’ and ‘proposed HDR-CBF-DV method based

preprocessed data encoded using the same run length’.

Figure 3.7: On-Chip Decoder for Difference Vector

75

It means that the same on-chip silicon decoder used for that particular

run length code can be used in case of proposed method also. The only

area overhead in case of the proposed scheme is because of difference

vector. The decoder needs an extra mechanism for difference vector [36].

This will add a little area penalty only i.e. extra area for one XOR gate

and feed-back mechanism as shown in Figure 3.7.

3.3.6 Experimental Results

After the test data set is processed with the proposed ‘HDR_CBF_DV’,

this preprocess data is applied various code based scheme like FDR,

Golomb, EFDR, MFDR and SAFDR. The detailed description of codes is

available in Section 3.1 of this chapter.

The Table 3.17 and Table 3.18 compare the compressions of following

three cases:

1. % compression claimed in literature for corresponding run length

method i.e. FDR, EFDR, SAFDR, etc.

2. Maximum Possible % Compression based on entropy for

unprocessed test data

3. % compression in case of test data processed with HDR-CBF-DV

method.

Table 3.17: % Compression of FDR, Golomb, MFDR and HDR-CBF-DV method

ISCAS’89
Circuits

% Compression

XOR
+FDR
[40]

HDR-
CBF-
DV

+FDR

Golomb
[38]

HDR-
CBF-DV
+Golomb

MFDR

HDR-
CBF-DV
+MFDR

[45]

Max. Limit
for

Unprocessed
Data

S5378 48.02 62.33 40.70 52.97 51.47 57.26 52.36
S9234 43.59 61.06 43.34 56.05 57.74 60.58 47.80

S13207 81.30 87.47 74.78 70.03 83.42 87.80 83.65
S15850 66.22 72.84 47.11 62.55 66.93 72.82 68.18
S38417 43.26 66.18 44.12 56.09 57.95 62.46 54.50
S38584 60.91 64.79 47.71 55.87 59.32 61.83 62.49

76

Table 3.18: % Compression of EFDR, SAFDR and HDR-CBF-DV Method

ISCAS’89

Circuits

% Compression

EFDR[41]

Max. Limit
for

Unprocessed
Data

 (Method C)

HDR-

CBF-DV

+EFDR
SAFDR[43]

Max. Limit
for

Unprocessed
Data

(Method D)

HDR-

CBF-DV

+SAFDR

S5378 51.93 56.32 60.03 49.95 51.44 57.36
S9234 45.89 53.37 57.56 45.14 47.26 53.23
S13207 81.85 85.54 86.40 80.11 82.45 85.16
S15850 67.99 71.90 70.43 65.63 67.25 67.53
S38417 60.57 65.84 65.67 60.52 62.93 62.18
S38584 62.91 66.67 63.10 61.09 62.23 59.29

The same comparisons are shown graphically in Figure 3.8 and 3.9.

Figure 3.8: Improvement in % Compression in FDR by Proposed HDR-CBF-DV

Figure 3.9: Improvement in % Compression in EFDR by Proposed HDR-CBF-DV

77

3.3.7 Observations and Analysis

From the experimental results in Tables 3.17 and 3.18, it can be

observed that the proposed HDR-CBF-DV method of the test data

processing helps in increasing the compression of test data. For the test

data processed with the proposed method, the % compression is more

than the entropy based maximum possible compression predicted for

unprocessed data.

For unprocessed data, as shown in Table 3.17 and 3.18, the maximum %

compression is achieved for EFDR coding and minimum % compression

is achieved for Golomb coding. Table 3.19 represents the improvement in

compression when the test data is preprocessed with the proposed HDR-

CBF-DV scheme. The Column II of Table 3.19 shows the relative %

improvement in % compression when the data is processed with HDR-

CBF-DV scheme and compressed with FDR coding compared to

unprocessed row data compressed with FDR coding. Similarly, Columns

III to VI represent the relative % improvement for Golomb, MFDR, EFDR

and SAFDR coding. Table 3.19 shows that the proposed test data

processing scheme enhances the % compression for each of the coding

method like FDR, Golomb, MFDR, EFDR and SAFDR.

Table 3.19: Relative % Improvement in % Compression with HDR-CBF-DV Method

ISCAS’89
Circuits

Relative % Improvement in % Compression with Proposed
HDR-CBF-DV Test Data Processing Scheme compared to

Unprocessed Data
FDR Golomb MFDR EFDR SAFDR

S5378 29.8 30.15 11.25 13.49 14.83
S9234 40.08 29.33 4.92 20.27 17.92
S13207 7.59 6.35 5.25 5.27 6.30
S15850 10.00 32.77 8.80 3.46 2.90
S38417 52.98 27.13 7.78 7.77 2.74
S38584 6.37 17.10 4.23 0.30 6.87

78

3.4 The Proposed 2-D Reordering Method

This section contains the various aspects of the prosed ‘2 – D Reordering’

Method.

3.4.1 Problem Formulation

The 1-Dimension reordering (HBR-CBF-DV) method gives very good

result for compression but does not address the issue of scan-power

reduction. The next method proposed is 2-Dimensional reordering which

not only increases the % compression but also reduces the test power.

This method ‘Hamming Distance Based 2-Dimensional Reordering with

Power Efficient Don't Care Bit Filling’ is an enhancement to HDR-CBF-

DV (1-Dimensional) method. The partially specified test set from ATPG is

two-fold reordered with the Hamming distance parameter. Test set is

considered as a matrix of [m X n] where m is the total number of vectors

in each set and n is the number of bits per vector. The first reorder is of

row i.e. vectors. The m vectors are reordered on the basis of Hamming

distance between them. The second reorder is of column. All n columns

i.e. bits in the row-wise reordered set are reordered using Hamming

distance. Then the unspecified bits in this 2-D reordered test set are

mapped with power efficient bit mapping method.

3.4.2 Row-wise First Reordering

The approach used for the first reordering of partially specified

uncompacted test set from ATPG, the heuristic for selection of first test

vector and then remaining test vector is same as described in section

3.3.1. To avoid the repetition, it is not described here again. The same

motivational example used in case of HDR-CBF-DV method will be used

here to explain the next coming subsections.

79

3.4.3 Columnwise Second Reordering

For second reorder, the location of bits will be interchanged in each test

vector. The same test data T as a matrix of m X n where m is the number

of test pattern and n is the number of bits per test vector is considered.

TR is the row-wise reordered data set. As we want to cluster the 0s and

1s in each test vectors, the columns with matched bits should be placed

nearby. For this, the transpose matrix TTR of the TR is used. Here the first

raw of TTR is kept unshifted and for remaining rows, the same Hamming

Distance based reordering which is described in subsection 3.3.1 is

applied. At the end of second reorder, TTDR, i.e. the reordered TTR will be

prepared. Transpose matrix of TTDR will be the required 2-dimensionally

reordered test data set TDR.

The 2-D reordered test set TDR for given example is as follow:

t1: 1 1 X X 0 0 X 1 1 0 X X 0 0

t2:1 1 X 1 X 0 0 X 1 1 X 0 0 X

t3:1 1 X 0 X 0 0 0 X X 1 X 0 0

 t4: 0 X X X 0 X 1 X X X X X 0 0

t5:1 1 X 0 X 1 1 X 1 X 0 0 0 X

3.4.4 Power Efficient Bit Filling

The don't care bit mapping of test vector will be done using minimum

transition fill (MT-fill) algorithm. Each unspecified (don't care) bit will be

mapped by its predecessor specified bit. If the first test vector starts with

unspecified bit(s), this unspecified bit(s) will be replaced by the first

specified bit in the vector. Here, test data after bit mapping will be like:

t1:1 1 1 1 0 0 0 1 1 0 0 0 0 0

t2:1 1 1 1 1 0 0 1 1 1 1 0 0 1

t3:1 1 1 0 1 0 0 0 1 1 1 1 0 0

t4:0 0 0 0 0 0 1 0 0 0 0 0 0 0

t5:1 1 1 0 0 1 1 0 1 0 0 0 0 0

80

3.4.5 On-Chip Decoder

Figure 3.10: On-Chip Decoder Architecture for 2-D Method

The proposed 2-D test data processing method when applied with any of

run length code, demands the basic decoder of the respective code only.

This approach totally avoids the use of difference vector method. So it

does not require any CSR area overhead and does not introduce any

delay because of CSR. However, it needs a different routing for scan-in.

Suppose for a given scan chain made of scan flip flops f1, f2, f3, f4 and f5,

the scan test data has four scan-in test vectors t1, t2, t3, t4. In each test

vector there are five bits b1, b2, b3, b4 and b5 corresponding to f1, f2, f3, f4

and f5. During the first reorder, the test vectors are reordered in t4, t1, t3,

t2 sequence. During the second reorder, the bits are reordered in b1, b3,

b4, b5, b2. This bit sequence will be then encoded by ASFDR (may be

EFDR also). Let the encoded data for t4 be e1, e2. This encoded data will

serially move from ATE to on-chip decoder. The decoder will regenerate

the b1, b3, b4, b5, b2 bit sequence from the encoded data sequence e1, e2.

The routing of scan flip-flops is done according to the second reordering

i.e. f1, f3, f4, f5 and f2, then the bits will automatically reach to proper

flip-flops. The Figure 3.10 shows the architecture for 2D reordered data

decoder.

81

3.4.6 Experimental Results

This subsection contains the experimental results of ‘2-D reordering’

methods for various ISCAS’89 benchmark circuits.

Test Data Compression

The Table 3.20 and 3.21 compares the compressions of following three

cases:

1. % compression in case of simple EFDR (or SAFDR)

2. Maximum % compression predicted by Entropy from Table 3.10

3. % compression achieved when test data is processed with 2-D

reordering and applied EFDR (or SAFDR).

Table 3.20: % Compressions of EFDR with Proposed 2-D Method

ISCAS’89
Circuits

% Compression
EFDR[41] Max. Limit for

Unprocessed Test
Data

(Method C)

2-D
+EFDR

S5378 51.93 56.32 53.47
S9234 45.89 53.37 51.76

S13207 81.85 85.54 82.39
S15850 67.99 71.90 70.15
S38417 60.57 65.84 57.74
S38584 62.91 66.67 67.91

Table 3.21: % Compressions of SAFDR with Proposed 2-D Method

ISCAS’89
Circuits

% Compression
SAFDR[43] Max. Limit for

Unprocessed Test
Data

(Method D)

2-D
+SAFDR

S5378 -NA- 51.44 54.00
S9234 44.96 47.26 52.03

S13207 80.23 82.45 82.41
S15850 65.83 67.25 70.24
S38417 60.55 62.93 57.79
S38584 61.13 62.23 68.02

82

Figure 3.11: % Compression for EFDR, Max. Limit (C), HDR-CBF-DV and 2-D

Figure 3.12:% Compression for SAFDR, Max. Limit (D), HDR-CBF-DV and 2-D

Scan-In Test Power

The Table 3.22 and 3.23 compares the scan-in peak power and average

power in terms of total number of weighted transitions of following three

cases:

a. Power in case of don't care bits mapped to ‘0’ [47]

b. Power in case of don't care bits mapped to minimize transitions

c. Power in case of Hamming distance based 2-D reordered test set

with power efficient bit filling, i.e. don't care bits mapped to

minimize the transitions in 2-D reordered test set

d. % reduction in power

83

Table 3.22: Comparison of Peak Power

ISCAS’89
Circuits

Peak Power (# of Weighted Transitions)
Uncompacted
test sets with
don’t cares

mapped to 0s
[47]

Uncompacted
test sets with
don’t cares
mapped to

minimize WT
[47]

2-D %
Reduction

S5378 10127 9531 5010 50.53
S9234 12994 12060 6667 48.69

S13207 101127 97606 37972 62.45
S15850 81832 63478 34974 57.26
S38417 505295 404617 205989 59.23
S38584 531321 479530 182769 65.79

Average % Reduction in Peak Power 57.32

Table 3.23: Comparison of Average Power

ISCAS’89
Circuits

Peak Power (# of Weighted Transitions)

Uncompacted
test sets with
don’t cares

mapped to 0s
[47]

Uncompacted
test sets with
don’t cares
mapped to

minimize WT
[47]

2-D %
Reduction

S5378 3336 2435 1581 52.61
S9234 5692 3466 2369 58.38

S13207 12416 7703 5140 58.60
S15850 20742 13381 9257 55.37
S38417 172665 112198 106040 35.02
S38584 136634 88298 52494 61.58

Average % Reduction in Average Power 53.59

As it clearly shown in graph of Figure 3.12 and 3.13, the scan-in power

is reduced drastically for each ISCAS’89 circuit. The average reduction in

peak power is 57.32% and in average power is 53.59%.

84

Figure 3.13: Comparison of Average Power for 2-D Method

Figure 3.14: Comparison of Peak Power for 2-D Method

85

3.4.7 Observations and Analysis

Table 3.24: Relative % Improvement in % Comparison and Power in case of the
Proposed 2-D Reordering Method

ISCAS’89
Circuits

Relative % Improvement in compression and Power for 2-D
Reordering Method compared to the unprocessed test data

Compression Power

EFDR SAFDR Average
Power Peak Power

S5378 2.97 -NA- 50.53 52.61
S9234 12.79 15.73 48.69 58.38
S13207 0.66 2.72 62.45 58.6
S15850 3.17 6.70 57.26 55.37
S38417 4.67 4.56 59.23 35.02
S38584 7.95 11.27 65.79 61.58

For unprocessed data, as shown in Table 3.17 and 3.18, the compression

is large for EFDR and SAFDR compared to FDR, MFDR and Golomb

coding. Table 3.24 represents the relative % improvement in compression

when the test data is preprocessed with the proposed 2-D test data

processing method. The Colum II of Table 3.24 represents the relative %

improvement in compression when the data is processed with 2-D

processing (reordering) method and EFDR scheme is applied. It is

compared with unprocessed data directly applied the EFDR. Similarly,

Column III represents the relative % improvement in compression when

the data is processed with 2-D processing (reordering) method and

applied the SAFDR compared to unprocessed data directly applied the

SAFDR. From above analysis (Ref. Table 3.24), it can be shown that the

proposed 2-D test data processing method applied on test data further

improves the % compression in case of EFDR and SAFDR. In addition,

the proposed 2-D processing (reordering) method provides additional %

improvement in reduction of peak power and average power at the cost of

the larger on-chip area overhead.

86

3.5 The Proposed WTR-CBF-DV Method

The earlier proposed Hamming Distance based Reordering - Columnwise

Bit Filling and Difference Vector (HDR-CBF-DV) is taken as the basic

scheme for this method.

3.5.1 Problem Formulation

During the reordering process for various circuits, the authors found

that very frequently, the test set contains more than one test vectors with

same Hamming distance. This tie should be broken in favor of power

reduction. So this proposed method applies both ‘the Hamming distance

and weighted transitions’ as the criteria for reordering. The Hamming

distance improves the compression and weighted transition improves

power reduction.

3.5.2 Weighted Transition Based Reordering

This section contains the steps of weighted transition based reordering

like selection of first vector, reordering and bit filling of remaining

vectors, run length coding etc.

Selection of the First Vector

Same as HDR-CBF-DV, for the selection of first test pattern, the heuristic

applied in this scheme is "Hardest Path First". The test pattern with

minimum don't cares will be selected as the first test pattern of reordered

list. Unlike random selection in HDR-CBF-DV, in WTR-CBF-DV, if there

are more than one test vectors with minimum number of don't care bits,

each will be MT filled and then evaluated for its weighted transitions and

the vector with minimum weighted transition will be selected as the first

87

test vector of the reordered test set. Further in HDR-CBF-DV, the first

vector is kept unfilled until all the test vectors are reordered but in this

proposed scheme, the selected first vector is MT filled immediately before

continue reordering to make the overall testing and selection of

remaining test vectors power aware.

Reordering and Bit Filling of Remaining Test Vectors

For reordering of the remaining test patterns in HDB-CBF-DV, the

pattern with minimum Hamming distance from first pattern of reordered

set will be placed next to first pattern of reordered set. It is decided to

take the next vector with minimum Hamming distance because when the

further columnwise bit filling and difference vector will be done, this

reordered vector sequence will generate maximum zeroes such that run

length and hence the compression will increase. After completing the

reordering of all the vectors, for the second test patterns and onwards,

the don't care bit will be replaced by the same value which its upper

vector has at the same position. Unlike this approach of HDR-CBF-DV,

in the WTR-CBF-DV, while selecting the next vector of the reordered test

set, if there are more than one vectors with the same Hamming distance

from the last selected vector of reordered set, the weighted transition will

be taken into consideration. All this equidistance vectors will be

considered for applying columnwise bit filling and their weighted

transitions are calculated. The vector with the minimum weighted

transitions will be selected as next vector of reordered test set. The don't

care bits in this vector will be replaced by the same value which its upper

vector has at the same position before selecting the next vector for

reordered set. The same procedure will be repeated until all the vectors

are reordered.

88

3.5.3 Difference Vector

The next step is to take the difference vector of two consecutive vectors in

the reordered set same as described in HDR-CBF-DV. This will further

increase the numbers of zeroes and hence data compression.

3.5.4 Run Length Code for Compression

For the proposed method, the test data will be first pre-processed by

WTR-CBF-DV scheme and then, the Frequency Directed Run Length

code (FDR) [28] will be applied to pre-process data. The example in

Figure 3.3 and Table 3.3 demonstrates this coding format.

3.5.5 Algorithm for WTR-CBF-DV

--WTR-CBF-DV---------------------------------

Step: 1 Consider a digital circuit with n scan flipflops, p inputs and q

outputs. The ATPG generated partially specified test set with

m scan-in test-vectors each of n bits is the input to this

algorithm.

Step: 2 Find the test vector with minimum number of don't care bits

in the given test set.

Step: 3 If there are more than one vector with minimum don't care

bits,

a. Apply MT fill to each vector

b. Calculate weighted transition for each vector.

c. Select the MT filled vector with minimum WT as first

vector of reordered set

Step: 4 Find the Hamming distance of remaining each vector from

the first vector of reordered set.

89

Step: 5 Select the vector with minimum Hamming distance as next

vector.

Step: 6 If there are more than one vector with minimum Hamming

distance, than

a. Apply columnwise bit filling to each vector i.e. replace the

don't care bit of the vector with the same position bit value of

last selected vector.

b. Calculate weighted transition for each vector.

c. Select the columnwise bit filled vector with minimum WT as

next vector of reordered set

Step: 7 Repeat step-6 until all the vectors are reordered.

Step: 8 Apply difference vector mechanism.

Step: 9 First vector of reordered set is kept unchanged.

Step: 10 From the second vector onward, if the same position bits in

last vector and current vector are same, replace the bit by 0

else 1.

Step: 11 Apply frequency directed run length code.

--

3.5.6 Motivational Example

Considering the following test data for example:

Test Vector Set

1 X 1 0 0 X X 0 1 X 0 0 X 1

1 1 1 X 0 X 0 X 1 0 1 0 X X

1 0 1 1 0 X 0 0 X X X 0 1 0

0 X X 0 X X 1 0 X X X 0 X X

1 0 1 X 1 X 1 X 1 0 X 0 0 X

1 1 1 1 0 X 0 0 X X X X 0 0

90

Selection of First Test Vector of Reordered Set

In the above test data, vector V3 has the minimum number of don't care

bits i.e. 4. Now this vector is MT filled as shown below:

V3 : 1 0 1 1 0 0 0 0 0 0 0 0 1 0

Its corresponding weighted transition as per equation 2.4 is 38.

Reordering Remaining Test Vector with Columnwise Bit Filling

After placing the V3 at first place and V1 shifted to position of vector 3,

the test set after first vector selected and filled is:

Test Vectors after First Vector Reordered

R1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

V2 1 1 1 2 0 2 0 2 1 0 1 0 2 2

V3 1 2 1 0 0 2 2 0 1 2 0 0 2 1

V4 0 2 2 0 2 2 1 0 2 2 2 0 2 2

V5 1 0 1 2 1 2 1 2 1 0 2 0 0 2

V6 1 1 1 1 0 2 0 0 2 2 2 2 0 0

Now the Hamming distance of remaining each test vector V2, V3, V4, V5

and V6 from first reordered vector R1 is 3, 3, 3, 4 and 2. Hence, V6 is

selected as next vector of reordered set. After placing V6 as R2, the

columnwise bit filling is done.

Partially Reordered Test Vectors

R1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

R2 1 1 1 1 0 0 0 0 0 0 0 0 0 0

V3 1 2 1 0 0 2 2 0 1 2 0 0 2 1

V4 0 2 2 0 2 2 1 0 2 2 2 0 2 2

V5 1 0 1 2 1 2 1 2 1 0 2 0 0 2

V6 1 1 1 2 0 2 0 2 1 0 1 0 2 2

91

Now the Hamming distance of V3, V4, V5 and V6 from R2 is calculated as

3, 3, 4 and 2. So V6 is selected as R3

Partially Reordered Test Vectors

R1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

R2 1 1 1 1 0 0 0 0 0 0 0 0 0 0

R3 1 1 1 1 0 0 0 0 1 0 1 0 0 0

V5 0 2 2 0 2 2 1 0 2 2 2 0 2 2

V6 1 0 1 2 1 2 1 2 1 0 2 0 0 2

V7 1 2 1 0 0 2 2 0 1 2 0 0 2 1

Now the remaining all three V4, V5 and V6 vectors have equal Hamming

distance 3 from R3. Now each vector will be tried for its weighted

transition as if columnwise bit filling is applied to it.

R3 1 1 1 1 0 0 0 0 1 0 1 0 0 0

V4 0 1 1 0 0 0 1 0 1 0 1 0 0 0

Applying the equation 2.4, the weighted transition is equal to 57 for this

case.

R3 1 1 1 1 0 0 0 0 1 0 1 0 0 0

V5 1 0 1 1 1 0 1 0 1 0 1 0 0 0

and

R3 1 1 1 1 0 0 0 0 1 0 1 0 0 0

V6 1 1 1 0 0 0 0 0 1 0 0 0 0 1

The possible weighted transitions for V5 and V6 are 67 and 23

respectively as shown above. V6 is selected as the next test vector.

Repeating the reordering process until the last vector is reordered, the

final reordered set is as follow:

92

Reordered Test Vectors

R1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

R2 1 1 1 1 0 0 0 0 0 0 0 0 0 0

R3 1 1 1 1 0 0 0 0 1 0 1 0 0 0

R4 1 1 1 0 0 0 0 0 1 0 0 0 0 1

R5 0 1 1 0 0 0 1 0 1 0 0 0 0 1

R6 1 0 1 0 1 0 1 0 1 0 0 0 0 1

Difference Vector

The next step is to take the difference vector of two consecutive vectors in

reordered set to increase the numbers of zeroes and hence data

compression. The difference vector set is as shown below.

Difference Test Vectors

R1 1 0 1 1 0 0 0 0 0 0 0 0 1 0

D2 0 1 0 0 0 0 0 0 0 0 0 0 1 0

D3 0 0 0 0 0 0 0 0 1 0 1 0 0 0

D4 0 0 0 1 0 0 0 0 0 0 1 0 0 1

D5 1 0 0 0 0 0 1 0 0 0 0 0 0 0

D5 1 1 0 0 1 0 0 0 0 0 0 0 0 0

Run Length Coding

The difference vector set is applied the frequency directed run length

coding as described in subsection 3.5.3.

Comparison

In Table 3.25, the comparison of % compression, peak power and average

power for various test data processing scheme with FDR coding applied

to test data of motivational example is given.

93

Table 3.25: Comparison of Test Data Processing Methods Applied with FDR Coding

 MT Fill 0 Fill - DV HDR-CBF-DV WTR-CBF-DV

% Compression

-2.38 7.14 16.67 16.67

Peak Power
(# of Weighted
Transitions)

38 81 82 82

Average Power
(# of Weighted
Transitions)

23.83 36.83 42.17 38.67

The column II in Table 3.25 shows the results when test data is applied

with MT filling and FDR coding. The peak power and average power is

minimum in this case but the compression is negative. Column III is for

test data where don't care bits are filled with 0s and without reordering,

the difference vectors are created and FDR is applied. The column IV and

V represents the results for HDR-CBF-DV and WTR-CBF-DV. As it is

seen from these results, the % compression is maximum in case of HDR-

CBF-DV and WTR-CBF-DV. While average power is comparable in case of

difference vector only, HDR-CBF-DV and WTR-CBF-DV.

3.5.7 On-Chip Decoder

The WTR-CBF-DV is a test data processing method applied in

conjunction with FDR coding. The same FDR decoder described in [28]

as shown in Figure 3.7 is used for this method. As in this approach, the

difference vector is already used, the proposed WTR-CBF-DV does not

require any extra on-chip area overhead.

3.5.8 Experimental Results

The Table 3.26, 3.27 and 3.28 shows the comparison of % compression,

average power and peak power for various ISCAS’89 circuits' test data

with FDR coding when test data is applied the following processing prior

to FDR coding:

94

1. Don't care bits are MT filled but no reordering is applied.

2. Don't care bits are filled with on the basis of run type but no

reordering is applied (Here the maximum possible compression is

taken into consideration).

3. Don't care bits are filled with 0s, difference vector is applied [27].

4. HDR-CBF-DV applied.

5. 2-D Reordering is applied.

6. WTR-CBF-DV applied.
Table 3.26: % Compression for WTR-CBF-DV Method with FDR Coding

 MT Fill 0 Filling
+XOR

Run Based
Bit Filling
Max. Limit

HDR
CBF
DV

2-D WTR
CBF
DV

s5378 -12.31 48.02 52.36 62.33 59.66 62.35
s9234 -20.67 43.59 47.80 61.06 61.35 63.31
s13207 6.16 81.30 83.65 87.47 88.22 88.04
s15850 -17.91 66.22 68.18 72.84 73.96 73.33
s38417 -20.39 43.26 54.50 66.18 65.13 66.38
s38584 -8.90 60.91 62.49 64.79 66.08 65.20

Table 3.27: Average Power for WTR-CBF-DV Method

 MT Fill
0 Filling
+XOR

Run Based
Bit Filling
Max. Limit

HDR
CBF
DV

2-D
WTR
CBF
DV

s5378 3433 3526 3526 11133 7934 10344
s9234 3958 4022 4022 14382 13329 13492
s13207 7735 7887 7887 113890 78856 103400
s15850 13514 13659 13659 82421 71015 64275
s38417 117540 118080 118080 452860 486000 443030
s38584 85656 86305 86305 410240 423260 329110

Table 3.28: Peak Power for WTR-CBF-DV Method

 MT Fill 0 Filling
+XOR

Run Based
Bit Filling
Max. Limit

HDR
CBF
DV

2-D WTR
CBF
DV

s5378 3433 3526 3526 11133 7934 10344
s9234 3958 4022 4022 14382 13329 13492
s13207 7735 7887 7887 113890 78856 103400
s15850 13514 13659 13659 82421 71015 64275
s38417 117540 118080 118080 452860 486000 443030
s38584 85656 86305 86305 410240 423260 329110

95

3.5.9 Observations

The proposed test data processing scheme ‘WTR-CBF-DV’ improves the

% compression compared to earlier methods described in literature.

Moreover, this method increases the compression beyond the limit of

maximum possible compression in case if data is filled with run type

basis. The peak power and average power is controlled using weighted

transition based reordering. The proposed scheme demands no extra on-

chip area overhead compared to earlier methods in literature.

3.6 Inferences

In this chapter, first of all, the current run length based test data

compression techniques are implemented and analyzed. From the

comparison of % compression in case of each technique, it is inferred

that the Extended FDR (EFDR) method gives the maximum compression.

It was observed that the various types of runs used in run length codes

can be classified in to four categories only. On the basis of this

observation, five different bit filling methods were proposed. The

maximum test data compression limit based on entropy is calculated for

the proposed run based bit filling methods.

It was enforced that to achieve the compression improvement beyond the

maximum possible limits in case of run type based filling, the test data

must be further processed before applying the coding.

The proposed ‘Hamming Distance Based Reordering-Columnwise Bit

Filling-Difference Vector (HDR-CBF-DV or 1-D) is the data processing

method which helps the % compression to increase beyond the

maximum limit that was predicted for unprocessed data.

While considering HDR-CBF-DV method of data processing, only test

data compression was taken in to consideration. The scan-in power, on-

chip area overhead and test data compression are trade off. In the next

96

proposed ‘2-Dimensional Reordering with Power Efficient Bit Filling'

method for data processing, scan-in power is considered with test data

compression. The results of 2-D reorder method show that with use of

this approach, the scan-in power reduces drastically. The compression is

also higher compared to the base run length code and bit filling method.

However, the trade off is larger on-chip area for decoder.

The ‘Weighted Transition Based Reordering – Columnwise Bit Filling –

Difference Vector (WTR-CBF-DV)’ reduces the scan-in power without

scarifying on-chip area.

From all above observations, finally it is concluded that in case of run

length based test data compression method, if the WTR-CBF-DV is

applied to prepare the data for long runs of zeros and then FDR coding is

applied, it gives the best results in terms of compression, scan-in power

and area overhead.

Chapter 4

Statistical Code Based Test Data

Compression
The statistical codes are fixed-to-variable length codes. In this method,

the original test cubes are partitioned into n-bit blocks to form the

symbols. These symbols are then encoded using variable-length

codewords which represent fixed-length blocks of bits in a data set. The

code words are assigned based on each symbol's frequency of

occurrence. It assigns shorter code words to symbols that occur more

frequently, and longer code words to those that occur less frequently.

This strategy minimizes the average length of a code word.

4.1 Existing Statistical Codes

The overview of the existing statistical codes used for test data

compression followed by their analysis is given in this section.

4.1.1 Overview of Existing Statistical Codes

This section contains the detailed description of Huffman code and its

variants like selective Huffman code, optimal selective Huffman code, RL

Huffman code etc..

98

4.1.1.1 Huffman Code

The Huffman code is very widely used statistical code in all lossless data

compression applications as the Huffman code is an optimal statistical

code that is proven to provide the shortest average codeword length

among all uniquely decodable variable length codes. The only

disadvantage is that when the Huffman hardware decoder is placed in

chip, it requires a large amount of area overhead because decoder size

grows exponentially with symbol size.

4.1.1.2 Selective Huffman Code

A scan vector compression scheme based on selective Huffman coding is

described in [26]. The idea is to only code the most frequently occurring

blocks instead of all blocks using codewords with small numbers of bits.

Consider the case where the test set is divided into fixed-length blocks of

n bits. The first bit of each codeword will be used to indicate whether the

following bits are coded or not. If the first bit of the codeword is a 0, then

the next n bits are not coded and can simply be passed through the

decoder as it is (hence, the complete codeword has n+1 bit). If the first bit

of the codeword is a ‘1’, then the next variable number of bits forms a

prefix-free code that will be translated by the decoder into an n-bit block.

Even though, this method gives less compression ratio compare to simple

Huffman coding, it simplifies the complexity of decoder and hence

requires less on chip area overhead.

4.1.1.3 Optimal Selective Huffman Code

The inefficiency of the Selective Huffman encoding stems from the fact

that the required extra bit equally lengthens all data in the compressed

test set (encoded or not), irrespective of their occurrence frequency [27].

This constant overhead, although minimum for the unencoded data

99

blocks, can be relatively high for the most frequently occurring

codewords. A better approach would be to use an additional Huffman

codeword in front of only the unencoded data blocks, relieving in this

way the most frequently occurring codewords from the extra-bit

overhead. Thus, the gain from shortening the codewords that appear very

often in the compressed test set will overbalance the loss from using a

whole codeword, instead of a single bit, in front of the unencoded data

blocks (the unencoded data blocks are usually a small fraction of the

compressed test set). This approach is used in optimal selective Huffman

code [27]. Table 4.1 demonstrates the example of the Selective Huffman

Code and optimal selective Huffman code where the number of distinct

symbols to be coded (n) is 3.

Table 4.1: Selective and Optimal Selective Huffman Codes

Distinct
Patterns

Freq Selective
Huffman

Code (n=3)

Optimal Selective
Huffman Code

(n=3)
S0- 1010 9/20 10 0
S1- 0000 5/20 110 10
S2- 1111 3/20 111 110

0001 2/20 00001 1110001
0010 1/20 00010 1110010

4.1.1.4 RL-Huffman Code

In RL-Huffman Coding [32], the don't care bits in test vector are first

filled with either ‘0’ or ‘1’ such that the overall run length of 1s or 0s has

been increased but still the run lengths are in alternating form. i.e. runs

of 0s and 1s are alternating. Now each run length will have some

occurrence of frequency. Based on occurrence of frequency, they are

coded using Huffman coding. In final codeword, the first bit will be the

indication of type of first run length and then followed by Huffman codes

indicating the size of alternating run length block.

100

Figure 4.1: Example for RL-Huffman Code[32]

Table 4.2: RL-Huffman Code for Given Example

Run
Length

Occurrence
 of Frequency

Huffman
Code

Saving

4 3 00 +6
9 2 010 +12
7 2 011 +8
5 1 100 +2
8 1 101 +5
6 1 110 +5
1 1 111 -2

Total savings (in bits) +34

4.1.1.5 Multilevel Huffman Code

The Multilevel Huffman test data compression method [33, 34] is based

on Huffman coding with a limited number of codewords. The test cubes

(test vectors with ‘X’ values) of the CUT are compared against the

pseudorandom sequences generated by various cells of an LFSR, and if

they match (i.e. they are compatible), an appropriate cell is chosen for

feeding the scan chain(s) of the CUT. What is actually coded is an index

for each selected LFSR cell, i.e. each Huffman codeword is used for

enabling a specific LFSR cell to feed the scan chain(s). If no match with

101

an LFSR-cell sequence can be found, then the test data are directly

encoded using a selective Huffman code.

4.1.1.6 Variable Length Input Huffman Coding

This method uses patterns of variable-length as input to the Huffman

algorithm [24], allowing an efficient exploitation of test sets which exhibit

long runs of ‘0s’. Table 4.3 demonstrates this coding method.
Table 4.3: % Compression for VIHC (Group size=4)

Symbol Pattern Frequency Code
L0 1 4 00
L1 01 3 011
L2 001 2 010
L3 0001 5 10
L4 0000 7 11

4.1.1.7 Variable-To-Variable Huffman Code

In [35], the well-known characteristic that, in every test set, there are

regions with many defined bits (i.e. densely specified) and regions with

many x bits (i.e., sparsely specified) is explored. Densely specified regions

are the main sources of unencoded data, and, therefore, their

compression is favored by the usage of small distinct blocks. On the

other hand, sparsely specified regions are more efficiently compressed

using large distinct blocks, since, this way, many test set parts, despite

their big size, are compatible with the encoded distinct blocks due to the

great number of x bits that they contain. To improve compression, the

test sets should be partitioned into variable-length parts. It means that

variable-length distinct blocks should be encoded. Apart from the

variable-to-variable nature of the proposed approach, the generated

codewords are reusable in the sense that they can encode compatible

blocks of different sizes [35].

102

4.1.1.8 Split Variable Input Huffman Code (Split-VIHC)

Spilt VIHC [44] approach demonstrates that before going to the VIHC, if

the test data sete is divided in to two or more equal parts and the vectors

are reordered in a certain way. Then applying VIHC coding scheme on

both file, the compression can be improved compare to VIHC. The same

test data used in Table 4.3 is divided into two equal halves. One half

contains the first two vectors and other half the remaining two. Now if

the VIHC coding is applied separately on both files as shown in Table 4.4

and 4.5, then the total compression length becomes 26+14=40. Then

compression ratio is 37.5% which is higher the VIHC coding scheme.

Table 4.4: Split VIHC for Test Set 1

Symbol Patterns Frequency Code
L0 1 4 00
L1 01 1 0111
L2 001 2 010
L3 0001 1 0110
L4 0000 4 1

Table 4.5: Split VIHC for Test Set 2

Symbol Patterns Frequency Code
L0 1 2 11
L1 0001 4 0
L2 0000 3 10

4.1.2 Analysis of Existing Statistical Codes

Various statistical codes are reverified by their implementation using

MATLAB and C language. This section contains the analysis of

compression, power and area based on the experimental results of these

implementations.

103

 Test Data Compression

For analysis of % compression, various statistical codes described in

literature are implemented. Table 4.6 represents % compression in case

of various statistical codes.
Table 4.6: % Compression for Various Huffman Codes

On-Chip Area Comparison

The on-chip area overhead of existing statistical code is described inthis

subsection.

Huffman Decoder

The encoded test data is read out one bit at a time during decoding. The

patterns can be decoded from the contents of encoded data using a

simple finite-state machine (FSM) as described in Figure 4.2 [25].

The FSM receives a single-bit input from encoded data set and produces

an n-bit output for the test patterns, where n is the length of each

pattern. The decoder also produces a single-bit control output VALID.

The control output is enabled only when a valid pattern is generated by

the decoder. The prefix-free property of the Huffman code, on which the

design is based, ensures that no short codeword is duplicated as the

beginning of a longer codeword. The use of the VALID signal ensures that

the sequence of D is preserved and no additional patterns are output

Circuit Selective
Huffman Code

B= 8, N=8

Optimal Selective
Huffman Code

B= 8, N=8

VIHC Split
VIHC

s5378 26.7 42.6 43.8 44.9
s9234 30.2 50.3 44.6 45.7
s13207 45.1 69.2 67.1 69.5
s15850 35.1 57.6 57.1 58.7
s38417 30.3 49.6 54.7 55.6
s38584 36.2 57.8 55.2 56.4

104

from the decoder. The FSM decoder for Huffman code with a symbol size

of n bits contains total 2n states.

Figure 4.2: FSM for Huffman Decoder [25]

Selective Huffman Decoder

The selective Huffman decoder [26] is shown in Figure 4.3.

Figure 4.3: FSM Decoder for Selective Huffman Code

Optimal Selective Huffman Decoder

For optimal selective Huffman code, only coding scheme is described in

[27]. The FSM for optimal selective Huffman code is proposed in Figure

4.4. Figure 4.4 describes the example of an implementation of the

decoder using simple FSM for a specific case of 3 bits per symbols and 4

105

Figure 4.4: FSM Decoder for Optimal Selective Huffman Code

symbols to be encoded. There are two inputs to the decoder, one is the

tester clock and the other is the serial input from the tester channel. For

a symbol size of m, the decoder has m data outputs and two control

outputs. The two control outputs are: parallel load (Par) and serial load

(Ser). These two signals control the buffering and loading of data into the

serializer when the data has been decoded. On arrival of the first bit of

the codeword, the decoder branches on each bit one at a time until it

reaches the end of the codeword at which point it does a parallel loading

of the appropriate m-bit block into the register. The codeword ‘111’

indicates that the next m bits are original unencoded data bits. So Ser

signal will be high for next m cycles and will load next m bits serially

from coded data.

Area overhead for on chip decoder is directly proportion to the states of

decoder FSM and the memory requirement to store the symbol words. To

make the discussion technology independent, the total bits required to

implement the FSM as well as memory is used here for comparison

purpose. After implementing the FSMs for various symbol size and

number of symbols to be coded, it is observed that if N is the number of

distinct symbols to be encoded, and M is the number of bits per symbol,

106

the number of states in FSM will be N+M as shown in equation 4.1. For

on-chip storage of N distinct symbols with size M bits each, the memory

requirement is approximately N X M bits. So the total hardware

requirement for selective or optimal selective Huffman decoder can be

approximated as shown in equation 4.2.

௙ܵ௦௠ ݏ݁ݐܽݐܵ ܯܵܨ ݂݋ # ൌ ሺܰሻ ݏ݈݋ܾ݉ݕܵ ݀݁݀݋ܥ ݂݋ # ൅ ሻܯሺ݈݋ܾ݉ݕܵ/ݏݐ݅ܤ݂݋ #

…………….. (4.1)

ܱ݊ െ ሻݏݐܾ݅ ݐ݈݊݁ܽݒ݅ݑݍ݁ ݂݋ #ሺ ݎ݁݀݋ܿ݁ܦ ݈ܽ݉݅ݐ݌ܱ ݎ݋݂ ܽ݁ݎܣ ݌݄݅ܥ ൌ ଶሺܰ݃݋݈ ൅ ሻܯ ൅ ሺܰ כ ሻܯ

………………(4.2)

VIHC Decoder

The details of block diagram and other units of the VIHC decoder are

given in Figure 4.5, 4.6 and 4.7 from [32]. The decoder comprises a

Huffman decoder (Huff-decoder) and a Control-and-Generator-Unit

(CGU). The Huff-decoder is a finite state machine (FSM) which detects a

Huffman code and outputs the corresponding binary code.

Figure 4.5: VIHC Decoder [24]

Figure 4.6: FSM for VIHC Decoder [24]

107

Figure 4.7: CGU for VIHC Decoder [24]

The CGU is responsible for controlling the data transfer between the ATE

and the Huff-decoder, generate the initial pattern and control the scan

clock for the CUT. The data in line is the input from the ATE

synchronous with the external clock (ATE clock). When the Huff-decoder

detects a codeword, the code line is high and the binary code is output

on the data lines. The special input to the CGU is used to differentiate

between the two types of patterns composed of '0's only (Lmh) and runs of

'0's ending in ‘1’ (L0.Lmh-1).

Split VLIHC Decoder

The decoder is similar to VLIHC decoder. It consists of two parallel units:

a finite state machine (FSM) and a code generation unit (CGU). The

interface between the two units is also similar to the VLIHC decoder as

shown in Figure 4.7 [24]. The FSM provides data, code and special bit.

108

The data is the binary index of the word to be output by the CGU, code

identifies the time when data is valid. Special bit distinguishes an all zero

block from the block having only last bit as 1. In Split VLIHC controller,

only a single FSM is used to detect code words from two files. The FSM

for this is shown in Figure 4.8 [44].

Figure 4.8: FSM for Split VIHC Decoder [44]

4.1.3 Observations

The Figure 4.9 represents the comparison of % compression and Figure

4.10 represents the comparison of area overhead for various statistical

codes. Even though the % compression for optimal Huffman code, VLIHC

and Split VLIHC is nearly same, the area overhead is very less in case of

optimal selective coding style. For further development, the optimal

selective code is chosen as the reference code.

109

Figure 4.9: % Compression for Various Statistical Codes

Figure 4.10: % Area Overhead for Various Statistical Decoders

110

4.2 The Proposed MS-Huffman Code

This section describes the various aspects of the proposed Modified

Selective Huffman (MS-Huffman) code.

4.2.1 Problem Formulation

In section 4.1, it has been shown that, compared to selective Huffman

code, in case of optimal selective Huffman code, the compression has

increased to large extent with a marginal increase in the on-chip area

overhead.

However, for optimal efficiency in terms of test application time, the

unencoded blocks must be directly transferred from the ATE to serializer

or scan chain in serial mode without any extra routing. The weakness of

optimal selective Huffman code is that it places one code word in front of

each unencoded symbol. Before the uncoded symbol bits are transferred

from ATE to serializer, these bits will have to pass through a large

number of FSM states of decoder at an ATE clock speed which is quite

slow in normal case. Thus this extra codeword preamble to each uncoded

symbol is an overhead not only to compression ratio but to overall test

application time also.

One more drawback of optimal selective Huffman is because of the

number of codewords being used. Optimal selective Huffman code uses

one more code word compared to the number of codewords being used in

case of selective Huffman code. Suppose there are n distinct symbols to

be coded, the selective Huffman code requires n codewords. However for

the same case, optimal selective Huffman code requires n+1 codewords.

The bit size of nth codeword in case of optimal selective Huffman is large

than the size of nth codeword in case of selective Huffman code. As shown

in the Table 4.1, for the third block S2, the size of codeword is 2 for

selective Huffman and 3 for optimal selective Huffman scheme. Hence,

111

the optimal selective code requires more transfer time compared to

selective Huffman code during the minimum frequency encoded symbol

and the remaining unencoded symbols.

4.2.2 The Modified Selective Huffman Code

The modified selective Huffman code is proposed here on the basis of the

observation that during scan-in operations, only few input ports of the

device-under-test (DUT) are used and remaining are idle. In case of single

scan-chain, one normal data input port may be multiplexed with scan-in

data input port to load the scan-in data serially to scan chain. In case of

multiple scan-chains also, the number of input ports multiplexed for

shifting the scan data is equal to number of chains. In any case, there

are still a large number of idle input ports of DUT available during scan-

in operation.

Further, for scan-in process, the encoded test data is being transferred

serially from automatic test equipment (ATE) to DUT. In case of single

scan chain, such shifting requires only one ATE channel and in case of

multiple scan-chain, depending upon the coding style, it may demand

more than one ATE channel. In this scenario, a large number of ATE

channels are also idle during scan-in operations.

The main objective of this proposed modified selective Huffman code is to

effectively use these idle input ports of DUT as well as idle channels of

ATE during scan-in operations for increasing test data compression and

hence effectively reduce the TAT.

In the selective Huffman code or optimal selective Huffman code, the

information related to block i.e. ether it is encoded or unencoded, being

transmitted serially with the encoded data itself. Unlike these schemes,

in proposed code, such information is being transmitted parallel to the

test data itself. Here, one signal E/N' is used to indicate the status of test

data being shifted. If E/N' is 1 then, the test data being transferred is

112

encoded and if E/N' is 0, then the data being transferred is without

encoded.

Referring to given example in Table 4.4, Table 4.7 shows the comparison

of the selective Huffman code, optimal selective Huffman code and MS-

Huffman code. As shown in Table 4.7, in the case of MS-Huffman also,

same as other two techniques, three distinct blocks are encoded. Here

when the encoded blocks S0, S1 and S3 are being transmitted, the signal

E/N' is high. When blocks 0001 and 0010 are transmitted without

coding, the signal E/N' is low.

Table 4.7: Modified Selective Huffman Code

Distinct Patterns Freq Selective
Huffman

Code
n=3

Optimal
Selective
Huffman

Code
n=3

MS-Huffman
Code

Test
data

E/N’

S0- 1010 9/20 10 0 0 1
S1- 0000 5/20 110 10 10 1
S2- 1111 3/20 111 110 11 1

0001 2/20 00001 1110001 0001 0
0010 1/20 00010 1110010 0010 0

Bits in Encoded
Test data

80
(original)

57 49 37

% compression 28.75 38.75 53.75

Here it should be noted that all the three approach encode the same

distinct blocks. The extra signal E/N' in case of MS-Huffman plays the

same role as adding an extra bit to code word in selective Huffman or

using one more codeword in optimal Huffman code. Moreover, while four

Huffman codewords are used in case of optimal selective Huffman code,

only three codewords are used for modified selective Huffman code. This

has made the difference in average codeword length. In optimal Huffman

codeword, the length of S2 codeword is three while in case of MS-

Huffman, it is only two. In general, if the symbols S1, S2,. . . .Sm are the

symbols arranged in descending order of its frequency of occurrence,

113

than the mth codeword of this sequence will have larger codeword length

in case of optimal selective Huffman code compared to MS-Huffman

code.

4.2.3 Mathematical Analysis

Consider two different data sets D1 and D2 are applied Huffman coding.

The number of distinct blocks (m) is same for both the set. For the first

set D1: p1, p2, …. pm, are the occurrence frequencies of m distinct blocks

b1, b2,..., bm . (p1≥ p2 ≥ . . .≥ pm). li , i ε [1, m] is the length of the Huffman

codeword of the each encoded distinct block bi , i ε [1, m] for set D1. For

the another set D2 : p’1, p’2,….., p’m, p’m+1 , are the occurrence frequencies

of m+1 distinct blocks b’1, b’2, . . ., b’m, b’m+1. l’i , i ε [1, m+1] is the length

of the Huffman codeword of the each encoded distinct block b’i , i ε [1,

m+1] for set D2.

It is observed that the length of first (m-1) codewords for both the data

set is same irrespective of their frequency of occurrence.

݈௜ ൌ ݈௜
ᇱ ݂ݎ݋ ݅ ൏ ݉

……………..(4.3)

For mth codeword, the length is different by 1 bit for both the data set.

݈௜ ൅ 1 ൌ ݈௜
ᇱ ݂ݎ݋ ݅ ൌ ݉

……………..(4.4)

The (m+1)th codeword length in set D2 is same as mth codeword length in

set D2.

݈௠Ԣ ൌ ݈௠ାଵԢ ݂ݎ݋ ݅ ൏ ݉

……………..(4.5)

114

Now the test data set T of an IP core is considered. Here the same

terminology is used. It is assumed that p1, p2,….., pm, are the occurrence

frequencies of m distinct blocks b1, b2, . . ., bm that will be encoded and

that pu = pm+1 + pm+2+... ...+ pk is the sum of the occurrence frequencies

of all the remaining k-m unencoded blocks. (p1≥ p2 ≥ . . .≥ pm).

The average block length of the proposed encoding, which is the average

length of the codeword and the unencoded data blocks in the

compressed test set is given by the relation

ெܹௌିு௨௙௙௠௔௡ ൌ ሾ݈ଵ݌ଵ ൅ ݈ଶ݌ଶ ൅ … … … . ൅݈௠ିଵ݌௠ିଵሿ ൅ ݈௠݌௠ ൅ ݈௕݌௨

……………..(4.6)

where li , i ε [1, m] is the length of the Huffman codeword of the each

encoded distinct block bi , i ε [1, m] and lb is the length of the original

unencoded data block.

Now for the same test set T, if optimal selective Huffman code is applied

then the average block length of the optimal selective Huffman code is

the average length of the codeword and the unencoded data blocks.

௢ܹ௣௧௜௠௔௟ିு௨௙௙௠௔௡ ൌ ݈ଵԢ݌ଵ ൅ ݈ଶԢ݌ଶ ൅ … … … . ൅݈௠Ԣ݌௠ ൅ ሺ݈௠ାଵ
ᇱ ൅ ݈௕ሻ כ ௨݌

……………..(4.7)

It means

௢ܹ௣௧௜௠௔௟ିு௨௙௙௠௔௡ ൌ ݈ଵԢ݌ଵ ൅ ݈ଶԢ݌ଶ ൅ … … … ൅ ݈௠ିଵԢ݌௠ିଵሿ ൅ ݈௠Ԣ݌௠ ൅ ݈௠ାଵ
ᇱ ௨݌ ൅ ݈௕݌௨

……………..(4.8)

where l’i , i ε [1, m] is the length of the Huffman codeword of the each

encoded distinct block bi , i ε [1, m], l’m+1 is the length of the codeword

corresponding to the unencoded data blocks and lb is the length of the

original unencoded data block.

115

Here the term lbpu is common in Equations 4.6 and 4.8. The terms in

brackets in 4.6 and 4.8 are also same as per Equation 4.3. The term lm

pm in Equation 4.6 should be compared with l’mpm+l’m+1 pu in Equation

4.8.

From Equation 4.4,

݈௠Ԣ݌௠ ൅ ݈௠ାଵԢ݌௨ ൌ ሺ݈௠ ൅ 1ሻ݌௠ ൅ ሺ݈௠ ൅ 1ሻ݌௨

……………..(4.9)

 ൌ ݈௠݌௠ ൅ ݈௠݌௨ ൅ ݌௠ ൅ ௨݌

……………..(4.10)

As lm, pu and pm > 0, it can be said that

݈௠Ԣ݌௠ ൅ ݈௠ାଵԢ݌௨ ൐ ݈௠݌௠

……………..(4.11)

It means that

௢ܹ௣௧௜௠௔௟ିு௨௙௙௠௔௡ ൐ ெܹௌିு௨௙௙௠௔௡

……………..(4.12)

It proves that Wopt is larger by WMS-Huffman. From that, it can be concluded

that MS-Huffman gives the better compression than optimal selective

Huffman code as well as selective Huffman code. If the difference

between the number of encoded data bits in case of optimal selective

Huffman and MS- Huffman is denoted by Tdiff then

ௗܶ௜௙௙ ൌ ݈௠݌௨ ൅ ௠݌ ൅ ௨݌

……………..(4.13)

As discussed earlier, the length of mth codeword lm is m-1 bits,

ௗܶ௜௙௙ ൌ ሺ݈௠ ൅ 1ሻ݌௨ ൅ ௠݌

……………..(4.14)

116

ௗܶ௜௙௙ ൌ ௨݌݉ ൅ ݌௠

……………..(4.15)

4.2.4 On Chip Decoder

The proposed scheme involves statistical coding for compression of data

to be stored on ATE. The decompression will be done at chip using an

on-chip decoder. The compressed data from the ATE will be transferred

serially to chip using a single scan-in input. Figure 4.11 illustrates the

block diagram of architecture of on-chip decoder for the proposed code.

Figure 4.11: Architecture of On-chip Decoder for MS-Huffman Code

 The tester channel DIN shifts a stream of variable size codewords

(corresponding to encoded blocks of fixed length) or fixed length

unencoded blocks in serial fashion. One more channel E/N' from ATE

indicates the status of the bit stream on DIN channel. E/N' is high when

the data bits on DIN channel corresponds to codewords of corresponding

117

blocks. The E/N' is low when the data bits on DIN corresponds to

unencoded data blocks. E/N' is applied to chip through any input port of

chip. The data being loaded through DIN is applied to a 2-to-1

multiplexer. The selection line of this multiplexer is connected to E/N'

signal.

If E/N' is low, the data on DIN is normal (i.e. without coding) and hence

should be applied directly to serializer bypassing the decoder. The signal

serial will go to high indicating that the serializer is being loaded serially.

If the block length is B bits, it takes B clock cycles of ATE clock to

serially load the block to serializer.

If the E/N' is high, the data on DIN is coded and should be applied to

decoder which decodes the data bits. If the length of codeword is L bits

then decoder will take L clock cycles of ATE clock to decode the data and

then loads the corresponding block of B bits to serializer in parallel

mode. The signal parallel is high indicating that the serializer is being

loaded parallel. Here the size of serializer is B bits.

Once the serializer is full with valid codeword, it will have to shift the B

bits to scan chain. This shifting will take B clock cycles of DUT clock.

Generally, the DUT clock is faster than the ATE clock. For simplicity of

diagram, control signals are not shown in Figure 4.11.

Figure 4.12 shows the FSM decoder for MS-Huffman code. Here the

number of distinct blocks being coded is three: S0, S1 and S2. ‘0’, ‘10’ and

‘11’ are the corresponding codewords. Compared to the FSM decoder for

optimal selective Huffman code shown in Figure 4.4, the FSM of Figure

4.12 is quite simple. So it can be easily shown that in spite of addition of

one 2-to-1 multiplexer, the overall decoder complexity is very less in

proposed architecture.

118

Figure 4.12: FSM Decoder for MS-Huffman Code

Figure 4.12 shows the FSM decoder for MS-Huffman code. Considering

the same example given in Table 4.7, the symbol S0 (1010) is coded with

codeword ‘0’, the symbol S1 (0000) is coded with codeword ‘10’ and

symbol S2 (1111) is coded with codeword ‘11’. When the E/N’ is ‘1’, as

the bit stream of test data contains the codewords of corresponding

symbols and such bit stream is directed towards the FSM. The ‘0’ in bit

stream indicates the codeword for symbol S0 and hence corresponding

symbol will be loaded to serializer. The same way, the detection of

sequence ‘10’ and ‘11’ indicate the corresponding symbols S1 and S2.

Compared to the FSM decoder for optimal selective Huffman code shown

in Figure 4.4, the FSM of Figure 4.12 is quite simple. So it can be easily

shown that in spite of addition of one 2-to-1 multiplexer, the overall

decoder complexity is very less in proposed architecture.

Here it should be noted that to achieve a minimum limit of % data

compression for any data set, depending up on the frequency

distribution, the number of encoded symbols are to be selected. The

decoder FSM is directly dependant on the number of encoded symbols.

4.2.5 Test Application Time (TAT)

The overall test application time (TAT) includes the time to transfer the

encoded test data from ATE to chip as well as the time to decode the

codewords of encoded data. The complexity of decoder plays a vital role

in overall test application time. If the decoder takes a large amount of

119

time to decode the data, even if the compression is very high and data

transfer time from ATE to chip is small, decoder consumes a large

amount of time and effectively, there is not much reduction in TAT.

Generally, the ATE operating frequency is slower compared to chip test

clock.

Consider the code words which are not encoded and directly transferred

to chip. While this type of blocks are transferred, E/N' is low. The data is

fed to multiplexer and multiplexer route this data to serializer directly. In

this case, the time required to load the data into scan chain is equal to

the time required to serially load the data in to serializer and then pass it

to scan chain. This transfer takes B+1 cycles of ATE clock. Here B is the

block size. If the block is encoded, then E/N' is high and compressed

data is routed to decoder FSM via multiplexer. Here the transfer time is

equal to Li ATE clock cycles where Li is the length of the corresponding

code word. It should be noted that compared to selective or optimal

selective Huffman, in the proposed method, the unencoded block need

not to unnecessarily pass through decoder FSM and hence the overall

TAT is reduced significantly. The TAT analysis for the proposed method is

analyzed with respect to the ratio of on chip test frequency and ATE

operating frequency. If α = fchip/fATE then for the proposed method, the

lower bound on the size of codeword Lmin that will allow maximum

reduction in TAT is same as [26, 27]

௠௜௡ܮ ൌ
ܤ
 ߙ

……………. (4.16)

After a Huffman code is identified, α-1 internal clock cycles from the

current ATE cycle can be used to generate the pattern [97].

120

For the proposed scheme, the TAT in terms of ATE clock cycle for each

distinct block of size B is given by formula:

ܣܶ ெܶௌିு௨௙௙௠௔௡௜
ൌ ܤ௜ ሺ݌ ൅ 1ሻ. . . if the ith block is unencoded

………………(4.17)

 ൌ ௜ܮ௜ ሺ݌ ൅ 1ሻ. . . if for ith block, ܮ௜ ൐ ߙ/ܤ

……………….(4.18)

 ൌ ܤ௜ ሺ݌ ൅ 1ሻ/ߙ. . . if for ith block, ܮ௜ ൏ ߙ/ܤ

……………….(4.19)

where pi is the occurrence frequency of the distinct block and Li is the

size of codeword for that distinct block.

The total test application time for compressed test data set made of total

D distinct blocks is given by

ܣܶ ௧ܶ௢௧௔௟ಾವషಹೠ೑೑೘ೌ೙ ൌ ෍ ܣܶ ெܶௌିு௨௙௙௠௔௡೔

஽

௜ୀଵ

……………..(4.20)

Considering the similar analysis for optimal selective Huffman code, the

TAT in terms of ATE clock cycle for each distinct block of size B is given

by formula in Equation 4.21:

ܣܶ ௢ܶ௣௧௜௠௔௟௜
ൌ ܤ௜ ሺ݌ ൅ ௜ܮ ൅ 1ሻ. . . if the ith block is unencoded but a

codeword of length Li is prefixed

 to it.………………………………..(4.21)

 ൌ ௜ܮ௜ ሺ݌ ൅ 1ሻ. . . …………………if for ith block, ܮ௜ ൐ ߙ/ܤ

……………….(4.22)

 ൌ ܤ௜ ሺ݌ ൅ 1ሻ/ߙ. . . …………….if for ith block, ܮ௜ ൏ ߙ/ܤ

……………….(4.23)

The total test application time for compressed test data set made of total

D distinct blocks in case of optimal selective Huffman code is given by

ܣܶ ௧ܶ௢௧௔௟೚೛೟೔೘ೌ೗ ൌ ෍ ܣܶ ௢ܶ௣௧௜௠௔௟೔

஽

௜ୀଵ

……………..(4.24)

121

4.2.6 Experimental Results

This section contains the experimental results for compression, test time

analysis and on-chip area overhead.

Test Data Compression

Table 4.8: % Compression for Selective, Optimal Selective and MS- Huffman Code (N=8)

Circuit
Encoded Blocks N = 8

B=4 B=8 B=12 B=16
A B MS A B MS A B MS A B MS

S5378 28.9 47.1 54.2 50.1 54.7 61.2 53.0 54.9 58.7 50.3 51.1 55.0
S9234 30.0 51.4 55.5 50.4 55.3 61.7 50.7 51.8 55.9 46.1 46.1 49.1
S13207 45.6 69.9 70.3 69.2 80.2 81.5 76.6 83.4 84.3 78.6 83.1 84.3
S15850 38.8 62.1 64.2 60.0 67.9 71.4 63.6 67.3 69.4 61.6 63.6 66.8
S38417 34.9 55.9 59.9 55.3 60.9 67.5 56.9 59.3 63.8 54.4 55.2 60.9
S38584 37.8 60.4 61.9 58.5 65.4 70.9 62.2 65.2 70.1 61.7 63.3 67.3

Table 4.9: % Compression for Selective, Optimal Selective and MS- Huffman Code

(N=16)

Circuit
Encoded Blocks N=16

B=8 B=12 B=16
A B MS A B MS A B MS

S5378 50.2 55.8 61.5 55.1 57.5 60.5 53.8 55.0 58.3
S9234 50.2 57.7 61.4 54.2 56.8 59.1 51.0 51.9 54.1
S13207 69.2 80.6 81.4 77.1 84.3 84.8 79.7 84.5 85.3
S15850 59.9 69.3 71.2 65.6 70.4 71.3 64.8 67.2 69.4
S38417 55.5 62.8 67.8 58.9 61.8 66.1 57.3 58.6 63.6
S38584 58.5 66.9 70.8 63.9 68.0 71.6 64.1 66.1 69.8

Table 4.8 and 4.9 show the % compression for ISCAS’89 benchmark

circuit test set for the number of encoded blocks is 8 and 16 respectively.

For each of the case, the % compression for selective Huffman code [26],

optimal selective Huffman code [27] and modified selective Huffman code

is placed in column A, column B and column C respectively. The

experiment result clearly shows that the % compression for MS-Huffman

code has increased significantly for each of the benchmark circuit.

122

On-Chip Area Overhead

Table 4.10: Area Overhead for Selective, Optimal Selective and MS-Huffman Code

 Selective
Decoder

Optimal
Selective Decoder

MS-Huffman
Decoder

of equivalent NAND gates 388 389 362
ports 5 5 6
nets 225 226 217

Max clock (MHz) 1506.2 1242.4 1927.2

Table 4.10 shows the comparison in terms of NAND gates, nets and

ports. Total number of equivalent NAND gates and nets is minimum in

case of MS-Huffman scheme. The maximum allowable frequency is also

highest in case of proposed scheme. As expected from architecture, the

port requirement is one higher than the others.

Test Application Time

To compare the overall test application time in case of optimal selective

Huffman compression scheme and the proposed scheme, a simulator

was implemented using analysis for both the compression schemes as

shown in Equations 4.13 and 4.21.

Table 4.11 shows the circuit, the compression method and the TAT

obtained for five different frequency ratios: α = 1, 2, 4, 16, 32. The block

size B is kept same (i.e. B = 16) for each circuit. The number of encoded

distinct blocks N is also same for each circuit (i.e. N=8). The frequency

ratios are selected to get the range of B/α from ½ (i.e. B/ α < 1) to 16 (i.e.

B/ α = 1). The second column of Table has the value of α is 1. i.e. ATE

clock and chip test clock has the same frequency. Even though the ATE

clock will be slower compared to chip test clock but for the worst case

consideration, this ratio (α = 1) has been considered. For B/α = 1 case,

the maximum reduction in TAT is achieved. For any value of B/ α < 1, as

expected, the TAT is same as when B/ α = 1.

123

Table 4.11: Test Application Time for Selective, Optimal Selective and MS-Huffman Code

ISCAS’89
Circuit

TAT (# of ATE clock cycles)
B/α = 16 B/α = 8 B/α = 4 B/α = 1 B/α = ½
α = 1 α = 2 α = 4 α = 16 α = 32

OPT MS OPT MS OPT MS OPT MS OPT MS
S5378 25449 23760 18073 16384 14610 12846 13600 11608 13600 11608
S9234 41344 39280 29960 27896 25268 22704 24901 21414 24901 21414
S13207 168404 165200 92212 89008 55936 51961 39510 35535 39510 35535
S15850 80589 76992 51685 48088 38562 34556 33922 29143 33922 29143
S38417 174591 164736 118503 108648 93051 82167 83495 71407 83495 71407
S38584 199104 207888 131760 122976 98681 87927 87125 74603 87125 74603

The tables 4.12 and Table 4.13 describes the test application time for

block size B = 32 and block size B = 8 respectively for various ISCAC’89

circuits test data
Table 4.12: TAT for Selective, Optimal Selective and MS-Huffman Code for Block Size = 32

ISCAS
’89

Circuit

TAT (# of ATE clock cycles)
Block Size = 32 No. of Symbols to be coded = 8

B/α = 32 B/α = 16 B/α = 4 B/α = 1 B/α = ½
 α = 1 α = 2 α = 8 α = 32 α = 64
 OPT MS OPT MS OPT MS OPT MS OPT MS
S5378 24652 23776 19772 18896 16256 15316 16147 14966 16147 14966
S9234 41074 39296 35650 33872 31764 29895 31832 29715 31832 29715
S13207 167388 165216 96364 94192 44021 41551 37773 34385 37773 34385
S15850 78958 76992 56190 54224 39750 37535 38788 35399 38788 35399
S38417 170252 164736 132012 126496 104447 98456 104046 96140 104046 96140
S38584 204206 199104 145470 140368 103187 97309 102358 93585 102358 93585

Table 4.13: TAT for Selective, Optimal Selective and MS-Huffman Code for Block Size = 08

ISCAS’
89

Circuit

TAT (# of ATE clock cycles)
Block Size = 8 No. of Symbols to be coded = 4

B/α = 8 B/α = 4 B/α = 2 B/α = 1 B/α = ½
α = 1 α = 2 α = 4 α = 8 α = 16

OPT MS OPT MS OPT MS OPT MS OPT MS
S5378 26220 23760 17620 15160 14506 11567 14506 11567 14506 11567
S9234 43324 39280 29076 25032 25297 19814 25297 19814 25297 19814
S13207 169532 165200 91264 86932 55831 50837 55831 50837 55831 50837
S15850 81894 76992 49934 45032 37993 31383 37993 31383 37993 31383
S38417 177954 164736 113210 99992 89452 72404 89452 72404 89452 72404
S38584 212274 199104 130282 117112 100439 82330 100439 82330 100439 82330

Table 4.14: Test Application Time for Various Compression Methods

Benchmark
Circuit

TAT (ATE clock cycles)
Statistical

Code
Golomb

Code FDR VIHC Optimal
Selective

MS-
HUFFMAN

S5378 15491 11892 12968 11516 13600 11608
S9234 25324 17735 21381 17735 24901 21414
S13207 36784 47781 41989 36065 39510 35535
S15850 46067 30339 33767 30264 33922 29143
S38417 103604 75758 81578 74943 83495 71407
S38584 124011 85668 96677 85668 87125 74603

124

Table 4.14 shows the comparison of TAT for a wide spectrum of

compression schemes including various run length based schemes and

statistical schemes. For each compression scheme, the minimum TAT (in

ATE clock cycles) out of presented TAT [97] is selected for comparison.

Table 4.14 shows that out of six circuits, for four circuits, the proposed

scheme gives minimum TAT. For one circuit, the proposed scheme gives

a comparable TAT.

4.2.7 Observations

For the proposed modified selective Huffman code, it is proved that the

proposed approach gives better test data compression compared to

recently proposed selective Huffman compression scheme and optimal

selective Huffman scheme. It is also verified and demonstrated with

experiment results that the proposed approach does not only improve the

test data compression but also reduces the overall test application time

and on-chip decoder area overhead compared to recently proposed

schemes.

4.3 The Existing Bit Filling Methods

When the bit filling is being done with reference to data compression, one

of the advantages of implementing this Huffman encoding scheme on test

cubes is that the unspecified bits can be filled with 1's and 0's in a way

that the frequency distribution of the patterns becomes skewed.

This algorithm is based on bit filling method from [26]. When the block

size is sufficiently small, an exact analysis can be done by considering all

binary combinations (minterms) contained in the unspecified blocks.

This algorithm is illustrated with an example in the following paragraphs.

For a given test data set of length 12, and the block size be b = 4, let the

given test cubes partitioned into a set of 9 four-bit blocks are: B = {10X1;

125

XX10; 1XXX; X011; 10X1; 10X1; 0X10; 101X; 1XXX}. Each unspecified

block can contain from 1 (if fully specified) to 24 = 16 (if completely

unspecified) possible binary combinations (minterms). For each of the 16

possible minterms for a block, the frequency of occurrence is determined

by seeing

how many of the unspecified blocks (in set B) contain that minterm. For

example, the minterm 1111 is contained in two of the unspecified blocks

in the set B, while the minterm 0000 is not contained in any of the

unspecified blocks. The minterm that occurs most frequently (i.e., is

contained in the largest number of unspecified blocks in set B) is

selected first. The Xs in each unspecified block that contains the most

frequent minterm are specified so that it matches that minterm, and the

unspecified block is then removed from the set B. The frequency of

occurrence for each of the remaining minterms is then recomputed since

the set B has been changed, and the procedure repeats until the set B is

empty. This procedure maximizes the frequency of occurrence of the

codewords thereby increasing the encoding efficiency of the statistical

encoding. For given example, the most frequently occurring minterm is

1011. Seven of the unspecified blocks in B contain 1011, so after the first

iteration, the set B will contain only XX10 and 0X10. The most frequently

occurring minterm in the second iteration is 0010, which is contained in

both remaining unspecified blocks. This algorithm provides an exact

analysis of the frequency distribution of the minterms by considering all

possibilities. However, this comes at a cost in terms of the runtime of the

algorithm. It is easy to see that the algorithm is exponential in block size

b and, hence, the use of this algorithm should be limited to small block

sizes only.

126

4.4 The Proposed FDBAF Method

The proposed ‘Frequency Dependant Bit Appending and Filling’ method

is described in this section with necessary example.

4.4.1 Problem Formulation

During the reverification of existing Huffman code for this thesis work, it

was observed that for any Huffman based codes, when the length of test

vector is a prime number, the on-chip area overhead increases to a large

amount. As per Equation 4.2, the on-chip area requirement for optimal

selective Huffman decoder depends on the symbol size i.e. m

bits/symbol. For test vectors with length of l bits where l is a prime

number, the vector cannot be divided into small symbols and hence the

symbol size is too large which in turn requires large FSM and larger

memory storage. The proposed approach here is to convert this

undividable test vector in to divisible vectors so it can be cut it in to

smaller symbols. The scheme proposed here adds some extra bits at the

end of test vector such that the total number of bits per test vector is

divisible by a preferred number (i.e. m bits/symbol).

The simplest approach is to append the necessary number of zeros at the

end of each test vector. But when the zeroes are appended to test vectors

with prime number of bits, it is observed that the total no of distinct

symbols increases. Hence frequency distribution for distinct symbols is

widened and the compression reduces. This had affected the selection

criteria for number of symbols to be encoded and finally the area

overhead and % compression.

The main concern here is that the bits appended to test vectors should

not widen the frequency distribution but it should narrow down the

distribution. For the solution of this problem, a scheme based on

Frequency Dependant Bit Appending and Filling (FDBAF) is proposed

127

here. The concept is to append the bits in such a way that it does not

add any new symbol but it creates the symbol same as any one of the

existing symbols with the highest possible frequency. In this case, each

new symbol created by bit appending will strengthen the frequency

distribution of symbols and improves the overall compression. The

following steps describe the proposed scheme for software

implementation.

4.4.2 The FDBAF Algorithm

..FDBAF Algorithm…………...........................

Step: 1 Calculate the total number of test vectors (t) and total

number of bits per each test vector (l).

Step: 2 For m = 2 to ቒ௟
ଶ
ቓ, where m is the symbol size, do the following

steps

Step: 3 Is the bits/ test vector is divisible by m? If yes, go to step:6

Step: 4 Append the m-r don’t care bits at the end of test vector.

Where r = rem(l, m)

Step: 5 Divide each vector into symbols of m bits

Step: 6 Separate the symbols in two types: 1. fully specified symbols

and 2. partially specified symbols

Step: 7 Find out the total number of distinct symbols for both cases

i.e. in case of fully specified symbols and partly specified

symbols.

Step: 8 Prepare the list of distinct symbols in ascending order of

frequency.

Step: 9 Take the partially specified symbol with highest frequency of

occurrence and compare it with one by one all symbols in

fully specified list arranged in ascending order of frequency.

If the partially specified symbol gets a match for it in fully

128

specified symbol list, merge the partially specified symbol

with that fully specified symbol and add the frequency of

partially specified symbol to fully specified symbol.

Step: 10 If there is no match of partially specified symbol in the fully

specified symbol list, add this partially specified symbol to

fully specified list as new member of the list.

Step: 11 Rearrange the fully specified list in ascending order of

frequency.

Step: 12 Repeat from step: 10 to step:13 until the partially specified

symbol list is vacant.

Step: 13 If there is any symbol with don’t care bit (it would be added

from partially specified list because of no match available) in

fully specified list, the don’t care bits in the symbol should

be MT filled

...
Table 4.15: Relation between % Compression and # Bits/Symbol for FDBAF Method

of
Distinct
Symbols
Coded

(n)

of Bits/symbol (m)

 2 3 4 5 6 11*
2 12.6 12.6 18.6 13.0 16.2 -1.2
3 16.6 24.9 24.1 21.3 24.1 2.0
4 21.3 27.7 27.7 26.5 28.5 5.1
5 29.6 30.8 27.3 31.6 7.9
6 30.8 31.2 27.7 35.2 10.7
7 32.0 31.6 28.1 35.6 13.4
8 32.0 28.1 36.8 16.2
9 32.4 28.5 37.5 18.6
10 33.2 29.2 38.7 20.9
11 34.8 30.0 39.9 23.3
12 30.8 41.5 25.7
13 32.0 43.9 28.1
14 34.0 30.4
15 32.8
16 35.6
17 38.3
18 41.1
19 43.9

129

In Table 4.15, the % compression for various values of number of bits per

symbol (m) and number of symbols coded (n) in case of optimal selective

Huffman code for the ISCAS’89 benchmark circuit 74L85 is presented.

Column 7 of the Table indicates the % compression when the symbol size

is equal to no. of bits per vector. i.e. no appending is done. While column

2 to 6 is the % compression for different symbol size i.e. appending is

done here. For the case of bit appending, the maximum possible data

compression is 43.9% for which the number of bits per symbol (m) is 6

and number of symbols encoded (n) is 13. Now for the nearly same %

compression (coincidently in this case, both are exactly same) in case of

no bit appending is done (i.e. in column 7), the number of bits per

symbol (m) is 11 and number of symbols encoded (n) is 19.

4.4.3 On-Chip Decoder

Figure 4.13: FSM Decoder for FDBAF Algorithm

Figure 4.13 describes an implementation of the decoder using simple

FSM for a specific case of 3 bits/symbols and 4 symbols to be encoded.

The inputs and outputs are same as in FSM for optimal selective

130

Huffman decoder. Only one signal count (C) is added to indicate the

index of symbol being decoded. Counter counts up to total symbols per

vector.

The concept is divided in to two parts.

Part: 1 If C is less than 3, it means the code word is not

corresponding to last symbol of test vector. On arrival of the

first bit of the codeword, the decoder branches on each bit

one at a time until it reaches the end of the codeword at

which point it does a parallel load of the appropriate m-bit

block into the parallel and C is incremented by 1 to indicate

that one codeword is successfully decoded and

corresponding symbol is loaded. The codeword “111”

indicates that the next m bits are original uncoded data bits.

So ser signal will be high for next m cycles and will load next

m bits serially from coded data.

Part: 2 If C is equal to 3, the code word is corresponding to last

symbol of test vector. On arrival of the first bit of the

codeword, the decoder branches on each bit one at a time

until it reaches the end of the codeword at which point it

does a parallel load of the appropriate r bits from m bits

symbol into the parallel, C is set to 0 to indicate that one

complete test vector is successfully decoded and

corresponding symbol is loaded.. The codeword “111”

indicates that the next m bits are original uncoded data bits.

Only r bits (1 bit in this case) should be passed to DUT

through serial load. Remaining m-r bits should be discarded.

The same counter is used to count up to r and when it

reaches to r, FSM moves to initial state.

131

Here the extra hardware requirement compared to optimal Huffman

decoder (shown in Figure 4.3) is one counter of ܿݐ݊ݑ݋ ൌ ቒ ௟
௠

ቓ bits to

indicate that the symbol created by decoding of codeword is a complete

symbol or it contains few of the appended bits which later on needs to be

removed.

4.4.4 Experimental Results

Table 4.16 compares the % compression in case of test data is processed

with MT fill algorithm and FDBAF algorithm respectively for ISCAS’89

circuits.
Table 4.16: % Compression for Proposed FDBAF Method

ISCAS’89 Circuits % Compression
(MS Huffman Code, Block Size = 8 Bits)
MT Fill Algorithm FDBAF Algorithm

s5378 52.11 60.53
s9234 45.17 56.34
s13207 72.17 78.85
s15850 60.34 64.11
s38417 58.41 60.54
s38584 56.88 65.61

4.4.5 Observations

The proposed FDBAF algorithm prepares the test data to increase the

compression in case of statistical codes. With MS-Huffman code it gives

comparatively very high results for compression.

4.5 Inferences

After study of existing statistical codes, considering the area overhead

and complexity of decoder, it was found that the inefficiency of optimal

selective Huffman code [27] is that it prefixes a Huffman codeword to

each of uncoded symbol which not only affects the compression but also

132

highly affects overall test application time. This inefficiency is removed in

the proposed modified selective Huffman code in which the Huffman code

words are used for symbol to be coded and they are not preamble to

uncoded symbol. It is proved that this modified selective Huffman code

reduces the overall test application time compared to selective Huffman

and optimal selective Huffman code because here the coded data has to

pass through a very simple FSM which results into less clock cycles for

decoding compared to others.

The simplicity of FSM decoder for modified selective Huffman code also

gives the better result in terms of on-chip area overhead. The ‘Frequency

Dependant Bit Appending and Filling’ in combination with MS-Huffman

code further improves the compression.

Chapter 5

Conclusion and Future Work
This chapter concludes the thesis and discusses the possible future

work.

5.1 Conclusion

There are two major concerns for the existing methodology for fabrication

testing of IC: test cost and test power.

With the advances in fabrication process for IC, the testing cost is

becoming a dominating part of the overall cost of an IC. The testing cost

is directly proportional to test application time which again depends on

test data volume. This way, one of the solutions to problem of lowering

test cost can be test data compression.

Smaller geometry and lower power supply has made ‘test power’ a major

concern. Test power is strongly related to switching activity during test.

To reduce TTM, the Intellectual Property (IP) cores are widely used in

SoCs. The hidden structures of IP cores have further exaggerated the

testing issues like test data compression and test power. The test data

compression methods and test power reduction methods which are been

specifically developed for ASIC, can not be directly applicable to SoC with

IP cores.

134

In this thesis, the techniques for increasing test data compression and

reducing the switching activity are developed in context of IP core based

SoC i.e. these techniques require neither the internal details of IP core

nor the test development tools. The effectiveness of these methods is

proved through the extensive simulation results using MATLAB and C. In

addition, it is also demonstrated that these methods do not add

significant area overhead through the adequate synthesis results using

VHDL, Modelsim and LeonardoSpectrum. One test data compression

method is proposed and it is proved mathematically that this method

reduces the overall test application time (i.e. test data transfer time plus

decoding time) compared to existing methods.

The main contributions of this thesis are as follow:

In Chapter 2, various test data compression methods like linear

decompression based compression methods, broadcast scan based

compression methods and code based compression methods are

examined for the suitability to IP cores. After surveying the requirements

of linear decompression and broadcast scan based methods, it is inferred

that they are not suitable to hidden structure of IP cores. On the basis of

its suitability to IP cores, the code based method is further selected for

this thesis work [publication ref. C-1]. After classifying the code based

methods into four categories: statistical coding, run length coding,

dictionary coding and constructive coding; it was observed that the run

length code and statistical code based test data compression methods

are efficient in terms of compression and on-chip area.

The same way, during the literature survey on test power in Chapter 2,

the various switching activity reduction techniques applicable to ASIC is

studied. During this survey, these techniques are classified into three

categories: switching reduction applicable with BIST [publication ref. C-

8], switching reduction applicable with DFT and switching reduction

135

applicable with external testing. It is observed that the switching

reduction technique applicable to external testing can be further

explored for IP cores and through a detailed survey [publication ref. J-3],

it was inferred that out of the available variants of switching reduction

techniques applicable to external testing, the ‘test vector reordering’ and

‘don’t care bit filling’ methods can be adopted to reduce the test power.

In short, Chapter 2 infers that the synergy of ‘reordering’ and ‘don’t care

bit filling’ can be used to solve the test cost and test power together. The

thesis work deals with the concepts of ‘test vector reordering’ and ‘don’t

care bit filling’ methods in conjunction with run length codes and

statistical codes to increase test data compression and to reduce the test

power as well as on-chip area overhead.

In Chapter 3, existing run length codes are analyzed through

implementing them using MATLAB and C code and extensive simulation

results. On the basis of this analysis result, the run based bit filling

method is proposed [publication ref. C-4]. This method effectively

demonstrates that instead of filling the don’t care bits simply with ‘0’

irrespective of considering the type of runs used for coding, if the don’t

care bit filling is done considering the type of run used, it enhances the

run length and the compression is increased [publication ref. J-1]. The

proposed test data processing method ‘Hamming Distance Based

Reordering-Columnwise Bit Filling-Difference Vector (HDR-CBF-DV)’

further improves the compression by reordering the test vectors, applying

don’t care bit filling corresponding to difference vector mechanism and

using the difference vectors [publication ref. C-3]. The next proposed ‘2-

Dimensional Reordering with Power Efficient Bit Filling' method for data

processing, improves the scan-in power with test data compression

[publication ref. C-5]. However, the trade off is larger on-chip area for

decoder [publication ref. C-6]. The ‘Weighted Transition Based Reordering

– Columnwise Bit Filling – Difference Vector (WTR-CBF-DV)’ reduces the

scan-in power without scarifying on-chip area [publication ref. J-5].

136

From the proposed methods for run length based test data compression

method in Chapter 3, it can be said that if the WTR-CBF-DV is applied in

combination with FDR coding, it gives the better results in terms of

compression, scan-in power and area overhead.

In Chapter 4, existing statistical codes are analyzed through

implementing them using MATLAB and C code and extensive simulation

results [publication ref. C-7 and J-4]. On the basis of this analysis result,

the ‘Frequency Dependant Bit Appending and Filling’ is proposed to

strengthen the frequency distribution of symbols and hence to improve

the compression [publication ref. C-2]. To effectively reduce the test

application time and to increase the compression without adding any

area overhead, the ‘Modified Selective Huffman (MS-Huffman) code’ is

proposed [publication ref. J-2]. Its effectiveness in improvement in

compression compared to very recently proposed selective Huffman code

[26] and optimal selective Huffman code [27] is proved mathematically

and demonstrated with sufficient experimental results. In chapter 4 it is

clearly shown that the use of FDBAF method in combination with

Modified Selective Huffman code gives the better results in terms of test

time, test power and on-chip area compared to other methods available

in literature.

“In Chapter 3, the run length code based method WTR-CBF-DV is

proposed and it has been shown that it gives the more compression and

less power compared to all other existing run length based codes without

any extra area overhead compared to existing methods. In Chapter 4, the

statistical code based MS-Huffman code is proposed and it has been

shown that the MS-Huffman code gives the enhanced compression, less

test application time (TAT) and less area overhead compared to the

existing methods like Selective Huffman and Optimal Selective Huffman

codes.

The trade off for both of the above cases is the marginal computational

load added because of test data processing schemes. It should be further

137

noted that this computational load is for one time only before the test

data is stored in ATE and the test data need not to be processed every

time the chip is being tested. Hence this one time computational load is

negligible.

The comparison of these two proposed methods shows that the run

length code based proposed “WTR-CBF-DV method in combination with

FDR coding” gives higher compression result compared to the statistical

code based proposed “FDBAF in combination with MS-Huffman coding”.

The trade off here is area penalty. The WTR-CBF-DV with FDR code

requires more area compared to FDBAF with MS-Huffman code. For both

the methods the average and peak power are nearly same.

5.2 Future Work
There are several possible extensions to the work presented in this

thesis. In this section possible extensions, directly related to the work are

presented. A few possible directions of future work that are beyond the

scope of this thesis will also be discussed.

Here follows a list of possible extensions for each of the problems

described in this thesis:

• Here various proposed methods for compression, reordering and

bit filling are analyzed for % compression, on-chip area overhead,

dynamic power and overall test application time. The compression

of test data may cause the adverse effect on error-resilience, i.e.

the capability of a test data stream which is transferred from

automatic test equipment (ATE) to the device under test (DUT) to

tolerate errors. These proposed methods can be further analyzed in

terms of error-resilience property.

• Here the fault coverage is considered using stuck-at faults only.

The don't care bit filling does not affect the stuck-at fault coverage.

It is true that the stuck-at faults plays a significant role in overall

138

fault coverage but more precise considerations, other faults such

as transitions fault, transistor stuck open or stuck-short, bridging

faults etc. need to evaluates. The don't care bit filling can affect to

such kind of fault coverage.

• The test data compression reduces the transfer time for scan-in

test vector from ATE to DUT. The same way the lossy compaction

is used to reduce the test data transfer time of output response

from DUT to ATE. The proposed test vector reordering methods can

also affect this compaction. This effects need to be further

analyzed.

• Even though, the don't care bit filling in scan vector reduces the

scan-power, the type of bit filling (i.e. either filled by 1 or filled by

0) can have the different affect on its capture power. While

considering overall test power, this change in capture power

should be considered.

References
[1] H. Chang et al., Surviving The SoC Revolution : A Guide to Platform based

Design. Kluwer Academic Publishers, 1999.

[2] M. Abramovici et al., Digital Systems Testing and Testable Design. Jacoba,
1997.

[3] “International technology roadmap for semiconductors
(ITRS),”Semiconductor Industry Association, 1999.

[4] “International technology roadmap for semiconductors (ITRS),”
Semiconductor Industry Association, 2001.

[5] “International technology roadmap for semiconductors (ITRS),”
Semiconductor Industry Association, 2009.

[6] R. Press and J. Jahangir, “Test compression”, Test and Measurement
World web site at www.tmworld.com, p. article ID CA6375810, January
2006.

[7] N. Touba, “Survey of test vector compression techniques,” IEEE Design and
Test of Computers, July 2006.

[8] J. Rajaski et al., “A SmartBIST variant with guaranteed encoding,”
Proceedings of the Asian Test Symposium, 2001.

[9] J. Rajaski, “Embedded deterministic test for low cost manufacturing test,”
Proceedings of the International Test Conference, pp. 301-310, 2002.

[10] F. Pollack, “New microarchitecture challenges in the coming generations of
CMOS process technologies,” Proceedings of the 32nd annual IEEE
international Symposium on Microarchitecture, pp. 167-172, 1999.

[11] Y. Bonhomme et al., “Test power: A big issue in large SoC designs,”
Proceedings of the First IEEE Workshop on Electronic Design, Test And
Applications, pp. 447-449, 2002.

[12] S.Kajihara et al., “Test data compression using don’t care identification and
statistical encoding,” Proceedings of the First IEEE International
Workshop on Electronic Design, Test and Applications (DELTA 02),
January 2002.

[13] A. Larsson, “Test Optimization for Core Based System on Chip”. Department
of Computer and Information Science, Linkpings Universitet Ph. D. Thesis,
2008.

[14] E. Volkerink and S. Mitra, “Efficient seed utilization for reseeding based
compression,” Proceedings of the 21st VLSI Test Symposium (VTS 03), pp.
232-237, 2003.

[15] B. Koenemann, “LFSR coded test patterns for scan designs,” Proceedings
of the European Test Conf. (ETC 91), pp. 237-242, 1991.

[16] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of compaction
and compression for test time and data volume reduction in scan designs,”
IEEE Transactions on Computers, Volume 52, Issue 11, pp. 1480-1489,
November 2003.

140

[17] S. Mitra and K. Kim, “XPAND: An efficient test stimulus compression
technique,” IEEE Transactions on Computers, Volume 55, Issue 02, pp.
163-173, February 2006.

[18] C. Krishna and N. Touba, “Adjustable width linear combinational scan
vector decompression,” Proceedings of the International Conference
Computer Aided Design (ICCAD 03), pp. 863-866, 2003.

[19] J. Lee and N.Touba, “Combining linear and non-linear test vector
compression using correlation-based rectangular coding,” Proceedings of
the 24th VLSI Test Symposium (VTS 06), pp. 252-257, 2006.

[20] K. Lee et al., “Using a single input to support multiple scan chains,”
Proceedings of the International Conference Computer Aided Design
(ICCAD 98), pp. 74-78, 1998.

[21] K. Lee, “Enhancement of the Illinois scan architecture for use with multiple
scan inputs,” Proceedings of the IEEE Computer Society Annual
Symposium VLSI (ISVLSI 04), pp. 167-172, 2004.

[22] L. Wang et al., “VirtualScan: A new compressed scan technology for test cost
reduction,” Proceedings of the 22nd VLSI Test Symposium (VTS 04), pp.
916-925, 2004.

[23] L. Wang, “UltraScan: Using time division demultiplexing multiplexing with
VirtualScan for test cost reduction,” Proceedings of the 23rd VLSI Test
Symposium (VTS 05), pp. 946-953, 2005.

[24] P. Gonciari et al., “Variable length input Huffman coding for system on a
chip test,” IEEE Transactions on Computer Aided Design , Volume 22
Issue 6, pp. 783-796, June 2003.

[25] K. C. Vikram Iyengar, “An efficient finite-state machine implementation of
Huffman decoders,” Information Processing Letters 64, 1997.

[26] X. Kavousianos, “An efficient test vector compression scheme using selective
Huffman coding,” IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, Volume 22, Issue 6, June 2003.

[27] X. Kavousianos et al., “Optimal selective Huffman coding for test data
compression,” IEEE Transactions on Computers, Volume 56 Issue 8,
August 2007.

[28] Hashempour and F.Lombardis, “Application of arithmetic coding to
compression of VLSI test data,” IEEE Transactions on Computers, Volume
54, Issue 9, September 2005.

[29] Hashempour and F.Lombardis, “Compression of VLSI test data by
arithmetic coding,” Proceedings of 19th IEEE International Symposium on
the Defect and Fault Tolerance in VLSI Systems, October 2004.

[30] S.Kajihara and K. Miyase, “On identifying don’t care inputs of test patterns
for combinational circuits,” Proceedings of the IEEE International
Conference on Computer Aided Design (ICCAD 01), November 2001.

[31] S.Kajihara et al., “Test data compression using don’t care identification and
statistical encoding,” Proceedings of the 11th Asian Test Symposium,
Novembaer 2002.

[32] M. Nourani and M.Tehranipour, “RL Huffman encoding for test compression
and power reduction in scan applications,” Transactions on Design

141

Automation of Electronic Systems (TODAES) , Volume 10 Issue 1, January
2005.

[33] X. Kavousianos et al., “Efficient test data compression for IP cores using
multilevel Huffman coding,” Proceedings of the conference on Design,
automation and test in Europe, March 2006.

[34] X. Kavousianos et al., “Multilevel Huffman test data compression for IP cores
with multiple scan chains,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems , Volume 16 Issue 7, July 2008.

[35] X. Kavousianos et al., “Test data compression based on variable-to-variable
Huffman encoding with codeword reusability,” IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems , Volume 27
Issue 7, July 2008.

[36] A. Jas and N. Touba, “Test vector compression via cyclical scan chains and
its application to testing core based designs,” Proceedings of International
Test Conference (ITC 98), pp. 458-464, 1998.

[37] A. Chandra and K. Chakrabarty, “Test data compression for system on a
chip using Golomb codes,” Proceedings of the 18th IEEE VLSI Test
Symposium, (VTS 00), 2000.

[38] A. Chandra and K. Chakrabarty, “Efficient test data compression and
decompression for system on a chip using internal scan chains and Golomb
coding,” Proceedings of the conference of Design, automation and test in
Europe (DATE 01), March 2001.

[39] A. Chandra and K. Chakrabarty, “Frequency directed run length (FDR)
codes with application to system on a chip test data compression,”
Proceedings of the 19th IEEE VLSI Test Symposium (VTS 01), March 2001.

[40] A. Chandra and K. Chakrabarty, “Test data compression and test resource
partitioning for system on a chip using frequency directed run length (FDR)
codes,” IEEE Transactions on Computers , Volume 52 Issue 8, August
2003.

[41] A. E. Maleh and R. A. Abaji, “Extended frequency directed run length code
with improved application to system on chip test data compression,”
Proceedings of the International Conference on Electronics, Circuits and
Systems, pp. 449-452, September 2002.

[42] A. Chandra and K. Chakrabarty, “Reduction of SoC test data volume, scan
power and testing time using alternating run length codes,” Proceedings of
the 39th conference on Design Automation, June 2002.

[43] S. Hellebrand and A. Wrtenberger, “Alternating run length coding: A
technique for improved test data compression,” Handouts 3rd IEEE
International Workshop on Test Resource Partitioning, Baltimore, MD,
USA, October 2002.

[44] C. Giri et al., “Test Data Compression by Split-VIHC (SVIHC),” Proceedings
of the International Conference on Computing: Theory and Applications
(ICCTA 07), March 2007.

[45] J. Feng and G. Li, “A test data compression method for system on chip,”
Proceedings of 4th IEEE International Symposium on Electronic Design,
Test and Applications (DELTA 08), 2008.

[46] S. Kajihara et al., “On combining pinpoint test set relaxation and runlength
codes for reducing test data volume,” Proceedings of 4th IEEE

142

International Symposium on Electronic Design, Test and Applications
(DELTA 08), 2008.

[47] X. Ruan and R. Katti, “Data independent pattern run length compression for
testing embedded cores in SoCs,” IEEE Transactions on Computers ,
Volume 56 Issue 4.

[48] H. Fang et al., “RunBasedReordering: A novel approach for test data
compression and scan power,” Proceedings of IEEE International
Conference on Asia South Pacific design automation (ASP DAC 07),
January 2007.

[49] W. Zhan et al., “Test data compression scheme based on variable to fixed
plus variable length coding,” Journal of Systems Architecture: the
EUROMICRO Journal , Volume 53 Issue 11,, November 2007.

[50] G. Ma et al., “Combined partial test vector reuse and FDR coding for two
dimensional SoC test compression,” Proceedings of International
Conference on Internet Computing in Science and Engineering - Volume
00 , Volume 00 (ICICSE 08), January 2008.

[51] X. Sun et al., “Combining dictionary coding and LFSR reseeding for test
data compression,” Proceedings of the 41st annual conference on Design
automation, June 2004.

[52] K. Basu and P. Mishra, “A novel test data compression technique using
application aware bitmask and dictionary selection methods,” Proceedings
of the 18th ACM Great Lakes symposium on VLSI (GLSVLSI 08), May
2008.

[53] F. Wolf and Papachristou, “Multiscan based test compression and hardware
decompression using LZ77,” Proceedings of the International Test
Conference (ITC 02), pp. 331-339, April 2002.

[54] M. Knieser et al., “A technique for high ratio LZW compression,”
Proceedings of the conference Design, Automation and Test in Europe
(DATE 03), pp. 116- 121, April 2003.

[55] A. Wrtenberger et al., “Data compression for multiple scan chains using
dictionaries with corrections,” Proceedings of the International Test
Conference (ITC04), pp. 926-935, April 2004.

[56] T. Kim et al., “An effective hybrid test data compression method using scan
chain compaction and dictionary-based scheme,” Proceedings of the 17th
IEEE Asian Test Symposium, 2008.

[57] S. Reda and A. Orailoglu, “Reducing test application time through test data
mutation encoding,” Proceedings of Design, Automation, and Test in
Europe (DATE 02), pp. 387-393, 2002.

[58] Z. Wang and K. Chakrabarty, “Test data compression for IP embedded cores
using selective encoding of scan slices,” Proceedings of the International
Test Conference (ITC 05), 2005.

[59] P. Girard, “Survey of Low power testing of VLSI circuits,” IEEE Journal on
Design and Test of Computers Volume 19, pp. 80-90, 2002.

[60] Y. H. Jia LI, Qiang XU and X. LI, “On reducing both shift and capture power
for scan-based testing,” In the proceedings of IEEE Asia and South Pacific
Design Automation Conference ASPDAC, pp. 653-658, January 2008.

143

[61] N. Ahmed et al., “Low power pattern generation for BIST architecture,”
Proceedings of IEEE International Symposium on Circuits And Systems,
pp. 689-692, 2004.

[62] N. Ahmed et al., “Low power test pattern generator design for BIST via non
uniform cellular automata,” Proceedings of International Symposium on
VLSI Design, Automation And Test, pp. 212-215, 2005.

[63] Y. Kim et al., “A new low power test pattern generator using a transition
monitoring window based on BIST architecture,” Proceedings of 14th Asian
Test Symposium, pp. 230-235, 2005.

[64] K. Gunavathi et al., “A novel BIST TPG for testing of VLSI circuits,”
Proceedings of First International Conference on Industrial And
Information Systems, pp. 106-114, 2006.

[65] B. Zhou et al., “A new low power test pattern generator using a variable
length ringcounter,” Proceedings of IEEE Conference on Quality of
Electronic Design, pp. 248-252, 2009.

[66] S. W. Wang et al., “A BIST TPG for low power dissipation and high fault
coverage,” IEEE Transaction on Very Large Scale Integration (VLSI)
Systems, Volume 15, pp. 777-789, 2007.

[67] B. Zhou et al., “Low transition test pattern generation for BIST based
applications,” IEEE Transactions on Computers Volume 57, pp. 303-315,
2007.

[68] C. Bei et al., “A low power deterministic test pattern generator for BIST
based on cellular automata,” Proceedings of 4th IEEE International
Symposium on Electronic Design, Test And Applications, pp. 266-269,
2008.

[69] H. LiGang and P. XiaoHong, “A low power dynamic pseudo random bit
generator for test pattern generation,” Proceedings of 9th International
Conference on Solid State And Integrated Circuit Technology, pp. 2079-
2082, 2008.

[70] P. Girard et al., “Low energy BIST design impact of the LFSR TPG
parameters on the weighted switching activity,” Proceedings of IEEE
International Symposium on Circuits and Systems, 1999.

[71] S. Manich et al., “Low power BIST by filtering non detecting vectors,”
Proceedings of the IEEE European Test Workshop, pp. 317-319.

[72] S. Hatami et al., “A low power scan path architecture,” Proceedings of
International Symposium on Circuits And Systems, pp. 5278-5281, 2005.

[73] S. Bhunia et al., “Power reduction in test per scan BIST with supply gating
and efficient scan partitioning,” Proceedings of Sixth International
Symposium on Quality of Electronic Design, pp. 453-458, 2005.

[74] X. Qiang et al., “Pattern directed circuit virtual partitioning for test power
reduction,” Proceedings of IEEE International Test Conference, pp. 1-10,
2007.

[75] S. Lu et al., “Low power built in self test techniques for embedded SRAMs,”
VLSI Design Archive, Volume 2007, Issue 2, pp. 1-7, 2007.

[76] W. Yuejian and I. Andre, “Low power SoC memory BIST,” Proceedings of
21st IEEE International Symposium on Defect And Fault Tolerance In VLSI
Systems, pp. 197-205, 2006.

144

[77] Y. Xiaoming and M. Abramovici, “Sequential circuit ATPG using
combinational algorithms,” IEEE Transactions on Computer Aided Design
of Integrated Circuits And Systems, Volume 24, pp. 1294-1310, 2005.

[78] C. MinHao and M. Li, “Jump scan: A DFT technique for low power testing,”
Proceedings of 23rd IEEE VLSI Test Symposium, pp. 277-282, 2005.

[79] I. Polian et al., “Power droop testing,” Proceedings of the IEEE
International Conference on Computer Design (ICCD 06), pp. 243-250,
2006.

[80] H. Fai and N. Nicolici, “Automated scan chain division for reducing shift and
capture power during broadside at speed test,” IEEE Transactions on
Computer Aided Design of Integrated Circuits And Systems, Volume 27,
pp. 2092-2097, 2008.

[81] J. C. H. Lin, T. Li, “Simultaneous capture and shift power reduction test
pattern generator for scan testing,” IET Journal on Computers & Digital
Techniques, Volume 2, pp. 132-141, 2008.

[82] S. Wang et al., “Low peak power ATPG for n detection test,” Proceedings of
IEEE International Symposium on Circuits And Systems, pp. 1993-1996,
2009.

[83] M. Elshoukry et al., “Partial gating optimization for power reduction during
test application,” Proceedings of 14th Asian Test Symposium, pp. 242-247,
2005.

[84] P. Girard et al., “Reducing power consumption during test application by
test vector ordering,” Proceedings of IEEE International Symposium on
Circuits and Systems, p. CD ROM, 1998.

[85] H. N. J. M. P. Flores, J. Costa and J. Marques-Silva, “Assignment and
reordering of incompletely specified pattern sequences targeting minimum
power dissipation,” Proceedings of the VLSID, p. 3741, 1999.

[86] I. P. V. Dabholkar, S. Chakravarty and S. Reddy, “Techniques for
minimizing power dissipation in scan and combinational circuits during test
application,” IEEE TCAD, p. 13251333, 1998.

[87] H. Hashempour and F. Lombardi, “Evaluation of heuristic techniques for
test vector ordering,” Proceedings of the Great Lake Symposium on VLSI
(GLSVLSI-04), pp. 96-99, January 2004.

[88] S. Chattopadhyay and N. Choudhary, “Genetic algorithm based approach
for low power combinational circuit testing,” Proceedings of the VLSID, vol.
pp. 552559, 2003.

[89] K. Paramasivam et al., “Algorithm for low power combinational circuit
testing,” Proceedings of IEEE Region 10 Conference, TENCON, pp. 336-
339, 2004.

[90] S. Roy et al., “Artificial intelligence approach to test vector reordering for
dynamic power reduction during VLSI testing,” Proceedings of IEEE Region
10 Conference, TENCON, pp. 1-6, 2008.

[91] S. Wang et al., “Low capture power test generation for launch off capture
transition test based on don’t care filling,” Proceedings of IEEE
International Symposium on Circuits And Systems, pp. 3683-3686, 2007.

[92] S. Kundu and S. Chattopadhyay, “Efficient don't care filing for power
reduction during testing,” Proceedings of IEEE International Conference on

145

Advances In Recent Technologies In Communication And Computing, pp.
319-323, 2009.

[93] Z. Chen et al., “Scan chain configuration based X filling for low power and
high quality testing,” IET Journal on Computers and Digital Techniques,
Volume 4, pp. 1-13, 2009.

[94] J. Yang and Q. Xu, “State sensitive x filling scheme for scan capture power
reduction,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits And Systems, Volume 27, pp. 1338-1343, 2008.

[95] T. Maiti and S. Chattopadhyay, “Don't care filling for power minimization in
VLSI circuit testing,” Proceedings of IEEE International Symposium on
Circuits And Systems, pp. 2637-2640, 2008.

[96] K. Balakrishnan and N. Touba, “Relating entropy theory to test data
compression,” Proceedings of the European Test Symposium (ETS 04),
May 2004.

[97] P. Gonciari et al., “Improving compression ratio, area overhead, and test
application time for system on a chip test data compression decompression,”
Proceedings of the International Conference on Design, automation and
test in Europe, March 2002.

List of Publications
Papers in Refereed Journals

[J-1] U. Mehta, K. Dasgupta, and N. Devashrayee, “Run length based test data

compression techniques: How far from entropy and power bounds," An Open

Access International Journal "VLSI Design", vol. 2010, article ID 670476, pp.

1-8, January 2010.

[J-2] U. Mehta, K. Dasgupta, and N. Devashrayee, “Modified selective Huffman

coding for optimization of test data compression, test application time and

area overhead," International Journal of Electronics Testing: Theory and

Application (JETTA), Springer Publications, vol. 26, no. 6, pp. 679-688,

December 2010.

[J-3] U. Mehta, K. Dasgupta, and N. Devashrayee, “Suitability of various low-power

testing techniques for IP core-based SoC: A survey," An Open Access

International Journal "VLSI Design", vol. 2011, article ID 948926, pp. 1-7,

January 2011.

[J-4] U. Mehta and K. Bhavasar, “Analysis of Statistical Code Based Techniques for

Optimization of Test Data Compression and Area Overhead," International

Journal of Computer Application (ISBN: 978-93-80747-95-7), vol. 18, no. 3,

pp. 30-34, April, 2011.

[J-5] U. Mehta, K. Dasgupta, and N. Devashrayee, “Weighted transition Based

Reordering, Columwise Bit Filling and Difference Vector –A Power Aware Test

Data Compression Method," An Open Access International Journal "VLSI

Design", Special issue on “CAD for Gigascale SoC Design and Verification

Issues”, (in press).

147

Presentations in Conferences

[C-1] U. Mehta, K. Dasgupta, and N. Devashrayee, “Survey of test data compression

techniques emphasizing code based schemes," Proceedings of 12th Euromicro

Conference on Digital System Design Architectures, Methods and Tools (DSD

09). Patras, Greece: IEEE, August 2009, pp. 617-620.

* cited by 5 as per IEEExplore

[C-2] U. Mehta, K. Dasgupta, and N. Devashrayee, “Frequency dependant bit

appending: An enhancement to statistical codes for test data compression,"

Proceedings of 3rd IEEE India Conference (INDICON 09). DAIICT,

Gandhinagar, IEEE, December 2009, pp. 301-304.

*cited by 4 as per IEEExplore

[C-3] U. Mehta, K. Dasgupta, and N. Devashrayee, “Hamming distance based

reordering and column wise bit stuffing with difference vector: A better scheme

for test data compression with run length based codes," Proceedings of 23rd

International Conference on VLSI Design (VLSID 10). Bangalore: IEEE, 2010,

pp. 33-38.

*cited by 1 as per IEEExplore

[C-4] U. Mehta, K. Dasgupta, and N. Devashrayee, “Combining unspecified test data

bit filling methods and run length based codes to estimate compression, power

and area overhead," IEEE Asia Pacific 33rd Conference on Circuits and

Systems (APCCS-10). Kuala-Lumpur, Malaysia: IEEE, December 2010, pp. (on

CD).

[C-5] U. Mehta, K. Dasgupta, and N. Devashrayee, “Hamming distance based 2-D

reordering with power efficient don’t care bit filling optimizing the test data

compression method." 9th International Symposium on System-on-Chip (SoC

2010), Tampare, Finland, 2010, pp. 1-7.

148

[C-6] U. Mehta, K. Dasgupta, N. Devashrayee, and K. Choksi, “Hamming distance

based distributed scan chain reordering for test power optimization,"

Proceedings of 4th IEEE India Conference (INDICON 10). Jadhavpur

University, Kolkatta, IEEE, December 2010, p. on CD.

[C-7] U. Mehta, K. Dasgupta, N. Devashrayee and K. Bhavsar, “Analysis of test data

compression methods using Huffman code." Proceedings of International

Conference on Current Trends in Technology, NUiCONE-10, December 2010,

p. on CD.

[C-8] U. Mehta, K. Dasgupta, N. Devashrayee and H. Parmar, “Low power testing

architecture for Built-in-Self-Test." Proceedings of International Conference on

Current Trends in Technology, NUiCONE-10, December 2010, pp. (on CD).

[C-9] U. Mehta, K. Dasgupta, and N. Devashrayee, “Benchmark circuits required for

EDA tools used with VLSI testing: A complete survey." Proceedings of

International Conference on Wireless Networks and Embedded Systems

(WECON 08), October 2008, pp. 364-368.

Annexure-I

Synthesis Reports

Decoders for Run Length Codes

Golomb Decoder

Cell: golomb View: xyz Library: chintan_and1_lib

 Cell Library References Total Area

PadInC tsmc035_typ 1 x

PadOut tsmc035_typ 2 x

and02 tsmc035_typ 4 x 1 5 gates

and03 tsmc035_typ 2 x 2 3 gates

aoi21 tsmc035_typ 5 x 1 6 gates

aoi22 tsmc035_typ 1 x 1 1 gates

buf02 tsmc035_typ 21 x 1 21 gates

dff tsmc035_typ 9 x 5 43 gates

fake_gnd tsmc035_typ 1 x

inv01 tsmc035_typ 34 x 1 26 gates

inv02 tsmc035_typ 14 x 1 11 gates

150

inv04 tsmc035_typ 2 x 1 2 gates

latch tsmc035_typ 58 x 2 144 gates

latchr tsmc035_typ 18 x 3 49 gates

nand02 tsmc035_typ 19 x 1 19 gates

nand03 tsmc035_typ 1 x 1 1 gates

nand04 tsmc035_typ 5 x 1 7 gates

nor02_2x tsmc035_typ 4 x 1 4 gates

nor02ii tsmc035_typ 71 x 1 88 gates

nor03_2x tsmc035_typ 5 x 1 6 gates

nor04 tsmc035_typ 9 x 1 13 gates

oai21 tsmc035_typ 4 x 1 5 gates

or02 tsmc035_typ 2 x 1 2 gates

or04 tsmc035_typ 1 x 2 2 gates

xnor2 tsmc035_typ 32 x 2 61 gates

xor2 tsmc035_typ 28 x 2 59 gates

 Number of ports : 3

 Number of nets : 361

 Number of instances : 353

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 580

 Number of accumulated instances : 353

 Clock Frequency Report

 Clock : Frequency

151

 clk : 29.7 MHz

FDR Decoder

Cell: fdr_1 View: xyz Library: chintan_and1_lib

 Cell Library References Total Area

PadInC tsmc035_typ 1 x

PadOut tsmc035_typ 2 x

and02 tsmc035_typ 7 x 1 9 gates

and03 tsmc035_typ 1 x 2 2 gates

and04 tsmc035_typ 8 x 2 14 gates

ao21 tsmc035_typ 3 x 2 5 gates

ao22 tsmc035_typ 7 x 2 14 gates

ao32 tsmc035_typ 23 x 2 46 gates

aoi21 tsmc035_typ 10 x 1 12 gates

aoi22 tsmc035_typ 17 x 1 25 gates

aoi221 tsmc035_typ 1 x 2 2 gates

aoi222 tsmc035_typ 1 x 2 2 gates

aoi32 tsmc035_typ 4 x 2 7 gates

aoi321 tsmc035_typ 2 x 2 4 gates

aoi322 tsmc035_typ 1 x 2 2 gates

buf02 tsmc035_typ 41 x 1 42 gates

152

buf04 tsmc035_typ 6 x 1 7 gates

buf16 tsmc035_typ 12 x 3 35 gates

dff tsmc035_typ 8 x 5 38 gates

fake_gnd tsmc035_typ 1 x

inv01 tsmc035_typ 108 x 1 82 gates

inv02 tsmc035_typ 100 x 1 76 gates

latch tsmc035_typ 17 x 2 42 gates

latchr tsmc035_typ 43 x 3 116 gates

mux21 tsmc035_typ 32 x 2 59 gates

mux21_ni tsmc035_typ 22 x 2 40 gates

nand02 tsmc035_typ 71 x 1 71 gates

nand02_2x tsmc035_typ 7 x 1 7 gates

nand03 tsmc035_typ 1 x 1 1 gates

nand03_2x tsmc035_typ 2 x 1 2 gates

nand04 tsmc035_typ 4 x 1 6 gates

nand04_2x tsmc035_typ 1 x 2 2 gates

nor02_2x tsmc035_typ 29 x 1 29 gates

nor02ii tsmc035_typ 73 x 1 91 gates

nor03_2x tsmc035_typ 4 x 1 5 gates

nor04 tsmc035_typ 2 x 1 3 gates

oai21 tsmc035_typ 13 x 1 16 gates

oai22 tsmc035_typ 22 x 1 33 gates

oai221 tsmc035_typ 1 x 2 2 gates

oai222 tsmc035_typ 1 x 2 2 gates

153

oai32 tsmc035_typ 1 x 2 2 gates

oai321 tsmc035_typ 2 x 2 4 gates

oai322 tsmc035_typ 1 x 3 3 gates

or02 tsmc035_typ 6 x 1 7 gates

or03 tsmc035_typ 3 x 2 5 gates

or04 tsmc035_typ 1 x 2 2 gates

xnor2 tsmc035_typ 63 x 2 120 gates

xor2 tsmc035_typ 4 x 2 8 gates

 Number of ports : 3

 Number of nets : 797

 Number of instances : 790

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 1104

 Number of accumulated instances : 790

 Clock Frequency Report

 Clock : Frequency

 clk : 24.6 MHz

EFDR Decoder

Cell: efdr_1 View: xyz Library: chintan_and1_lib

154

 Cell Library References Total Area

PadInC tsmc035_typ 1 x

PadOut tsmc035_typ 2 x

and02 tsmc035_typ 5 x 1 6 gates

and04 tsmc035_typ 8 x 2 14 gates

ao32 tsmc035_typ 29 x 2 57 gates

aoi21 tsmc035_typ 11 x 1 14 gates

aoi22 tsmc035_typ 17 x 1 25 gates

aoi222 tsmc035_typ 1 x 2 2 gates

buf02 tsmc035_typ 48 x 1 49 gates

buf04 tsmc035_typ 4 x 1 5 gates

buf16 tsmc035_typ 6 x 3 18 gates

dff tsmc035_typ 9 x 5 43 gates

fake_gnd tsmc035_typ 1 x

inv01 tsmc035_typ 89 x 1 68 gates

inv02 tsmc035_typ 70 x 1 53 gates

inv04 tsmc035_typ 1 x 1 1 gates

latch tsmc035_typ 19 x 2 47 gates

latchr tsmc035_typ 44 x 3 119 gates

mux21 tsmc035_typ 32 x 2 59 gates

mux21_ni tsmc035_typ 26 x 2 47 gates

nand02 tsmc035_typ 77 x 1 77 gates

nand02_2x tsmc035_typ 3 x 1 3 gates

155

nand03 tsmc035_typ 2 x 1 2 gates

nand04 tsmc035_typ 3 x 1 4 gates

nor02_2x tsmc035_typ 26 x 1 26 gates

nor02ii tsmc035_typ 82 x 1 102 gates

nor03_2x tsmc035_typ 3 x 1 4 gates

nor04 tsmc035_typ 4 x 1 6 gates

oai21 tsmc035_typ 11 x 1 14 gates

oai22 tsmc035_typ 20 x 1 30 gates

oai222 tsmc035_typ 3 x 2 7 gates

oai32 tsmc035_typ 1 x 2 2 gates

oai321 tsmc035_typ 1 x 2 2 gates

oai322 tsmc035_typ 2 x 3 5 gates

oai332 tsmc035_typ 1 x 3 3 gates

or02 tsmc035_typ 8 x 1 10 gates

or03 tsmc035_typ 2 x 2 3 gates

or04 tsmc035_typ 2 x 2 4 gates

xnor2 tsmc035_typ 67 x 2 128 gates

xor2 tsmc035_typ 9 x 2 19 gates

Number of ports : 3

 Number of nets : 757

 Number of instances : 750

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 1078

156

 Number of accumulated instances : 750

 Clock Frequency Report

 Clock : Frequency

 state(0) : N/A

 clk : 13.9 MHz

ASFDR Decoder

Cell: asfdr_1 View: xyz Library: chintan_and1_lib

 Cell Library References Total Area

PadInC tsmc035_typ 1 x

PadOut tsmc035_typ 2 x

and02 tsmc035_typ 4 x 1 5 gates

and03 tsmc035_typ 14 x 2 21 gates

and04 tsmc035_typ 9 x 2 16 gates

ao21 tsmc035_typ 1 x 2 2 gates

ao22 tsmc035_typ 1 x 2 2 gates

ao221 tsmc035_typ 1 x 2 2 gates

ao32 tsmc035_typ 16 x 2 32 gates

aoi21 tsmc035_typ 34 x 1 42 gates

aoi22 tsmc035_typ 2 x 1 3 gates

aoi221 tsmc035_typ 4 x 2 8 gates

aoi32 tsmc035_typ 17 x 2 29 gates

aoi33 tsmc035_typ 1 x 2 2 gates

157

buf02 tsmc035_typ 50 x 1 51 gates

buf04 tsmc035_typ 2 x 1 2 gates

buf16 tsmc035_typ 2 x 3 6 gates

dff tsmc035_typ 8 x 5 38 gates

fake_gnd tsmc035_typ 1 x

inv01 tsmc035_typ 111 x 1 84 gates

inv02 tsmc035_typ 67 x 1 51 gates

latch tsmc035_typ 16 x 2 40 gates

latchr tsmc035_typ 46 x 3 124 gates

mux21 tsmc035_typ 23 x 2 42 gates

mux21_ni tsmc035_typ 72 x 2 130 gates

nand02 tsmc035_typ 75 x 1 75 gates

nand02_2x tsmc035_typ 2 x 1 2 gates

nand03 tsmc035_typ 1 x 1 1 gates

nand04 tsmc035_typ 3 x 1 4 gates

nor02_2x tsmc035_typ 47 x 1 47 gates

nor02ii tsmc035_typ 33 x 1 41 gates

nor03_2x tsmc035_typ 2 x 1 2 gates

nor04 tsmc035_typ 4 x 1 6 gates

oai21 tsmc035_typ 40 x 1 50 gates

oai22 tsmc035_typ 4 x 1 6 gates

oai32 tsmc035_typ 1 x 2 2 gates

oai322 tsmc035_typ 1 x 3 3 gates

oai33 tsmc035_typ 1 x 2 2 gates

or02 tsmc035_typ 4 x 1 5 gates

or03 tsmc035_typ 16 x 2 25 gates

158

or04 tsmc035_typ 1 x 2 2 gates

xnor2 tsmc035_typ 27 x 2 52 gates

xor2 tsmc035_typ 25 x 2 53 gates

 Number of ports : 3

 Number of nets : 799

 Number of instances : 792

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 1111

 Number of accumulated instances : 792

 Clock Frequency Report

 Clock : Frequency

 clk : 11.3 MHz

MFDR Decoder

Cell: mfdr View: xyz Library: mfdr_lib

 Cell Library References Total Area

PadInC tsmc035_typ 1 x

PadOut tsmc035_typ 2 x

and02 tsmc035_typ 62 x 1 78 gates

and04 tsmc035_typ 9 x 2 16 gates

ao21 tsmc035_typ 3 x 2 5 gates

ao32 tsmc035_typ 2 x 2 4 gates

159

aoi21 tsmc035_typ 20 x 1 25 gates

aoi22 tsmc035_typ 2 x 1 3 gates

aoi221 tsmc035_typ 1 x 2 2 gates

aoi32 tsmc035_typ 17 x 2 29 gates

aoi321 tsmc035_typ 1 x 2 2 gates

buf02 tsmc035_typ 105 x 1 107 gates

buf04 tsmc035_typ 2 x 1 2 gates

dff tsmc035_typ 11 x 5 53 gates

fake_gnd tsmc035_typ 1 x

inv01 tsmc035_typ 163 x 1 124 gates

inv02 tsmc035_typ 171 x 1 130 gates

inv16 tsmc035_typ 1 x 2 2 gates

latch tsmc035_typ 65 x 2 161 gates

latchr tsmc035_typ 91 x 3 246 gates

mux21 tsmc035_typ 21 x 2 38 gates

mux21_ni tsmc035_typ 157 x 2 284 gates

nand02 tsmc035_typ 59 x 1 59 gates

nand02_2x tsmc035_typ 1 x 1 1 gates

nand03 tsmc035_typ 4 x 1 5 gates

nand04 tsmc035_typ 10 x 1 15 gates

nor02_2x tsmc035_typ 34 x 1 34 gates

nor02ii tsmc035_typ 91 x 1 113 gates

nor03_2x tsmc035_typ 5 x 1 6 gates

nor04 tsmc035_typ 17 x 1 25 gates

160

oai21 tsmc035_typ 31 x 1 38 gates

oai22 tsmc035_typ 63 x 1 93 gates

oai221 tsmc035_typ 3 x 2 6 gates

oai222 tsmc035_typ 1 x 2 2 gates

oai32 tsmc035_typ 41 x 2 71 gates

oai321 tsmc035_typ 2 x 2 4 gates

oai33 tsmc035_typ 1 x 2 2 gates

or02 tsmc035_typ 20 x 1 25 gates

or03 tsmc035_typ 2 x 2 3 gates

or04 tsmc035_typ 1 x 2 2 gates

xnor2 tsmc035_typ 141 x 2 269 gates

xor2 tsmc035_typ 53 x 2 112 gates

 Number of ports : 3

 Number of nets : 1493

 Number of instances : 1488

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 2199

 Number of accumulated instances : 1488

 Clock Frequency Report

 Clock : Frequency

 clk : 11.0 MHz

161

Decoders for Statistical Codes

Selective Huffman Decoder
LeonardoSpectrum Level 3 - 2008a.5 (Release Production Release, compiled Jun 30 2008 at 14:33:46)
Copyright 1990-2008 Mentor Graphics. All rights reserved.
Portions copyright 1991-2008 Compuware Corporation

--
-- Welcome to LeonardoSpectrum Level 3
-- Run By temp@NIT-106
-- Run Started On Fri Mar 12 14:41:39 India Standard Time 2010
--
Info, Working Directory is now 'H:/ATE with decoder/selective decoder/vhdl'
Info, History file moved to new working directory
Info, Log file moved to new working directory
Reading library file `D:\LeoSpec_LS2008a_5\\lib\tsmc018_typ.syn`...
Library version = v3.1 Release : Patch (a) : (Aug 26, 2005)
Delays assume: Process=typical Temp= 0.0 C Voltage=1.80 V
Info: setting encoding to auto
-- Reading file D:\LeoSpec_LS2008a_5\\data\standard.vhd for unit standard
-- Loading package standard into library std
-- Reading vhdl file H:/ATE with decoder/selective decoder/vhdl/serializer3.vhd into library work
-- Reading file D:\LeoSpec_LS2008a_5\\data\std_1164.vhd for unit std_logic_1164
-- Loading package std_logic_1164 into library ieee
-- Loading entity serializer3 into library work
-- Loading architecture xyz of serializer3 into library work
-- Reading vhdl file H:/ATE with decoder/selective decoder/vhdl/ate3.vhd into library work
-- Searching for SYNOPSYS package STD_LOGIC_ARITH..
-- Reading file D:\LeoSpec_LS2008a_5\\data\syn_arit.vhd for unit STD_LOGIC_ARITH
-- Loading package std_logic_arith into library ieee
-- Searching for SYNOPSYS package STD_LOGIC_UNSIGNED..
-- Reading file D:\LeoSpec_LS2008a_5\\data\syn_unsi.vhd for unit STD_LOGIC_UNSIGNED
-- Loading package STD_LOGIC_UNSIGNED into library ieee
-- Loading entity ate3 into library work
-- Loading architecture Behavioral of ate3 into library work
-- Reading vhdl file H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd into library work
-- Loading entity decoder3 into library work
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 21: Info, Enumerated type fsm_state
with 7 elements encoded as onehot.
Encodings for fsm_state values
 value fsm_state[6-0]
===============================
 a0 ------1
 a -----1-
 b ----1--
 c ---1---
 d --1----
 e -1-----
 f 1------

162

-- Loading architecture Behavioral of decoder3 into library work
-- Compiling root entity ate3(Behavioral)
"H:/ATE with decoder/selective decoder/vhdl/ate3.vhd",line 34: Warning, initial value for abc is
ignored for synthesis.
-- Compiling entity decoder3(Behavioral)
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 22: Warning, initial value for p_state
is ignored for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 22: Warning, initial value for n_state
is ignored for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 45: Info, conditions are mutually
exclusive; resolve without priority.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 45: Info, else part is never selected
for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 50: Warning, s0 should be declared
on the sensitivity list of the process.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 50: Info, conditions are mutually
exclusive; resolve without priority.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 50: Info, else part is never selected
for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 55: Warning, s1 should be declared
on the sensitivity list of the process.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 56: Warning, s2 should be declared
on the sensitivity list of the process.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 55: Info, conditions are mutually
exclusive; resolve without priority.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 55: Info, else part is never selected
for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 11: Warning, serializer is not always
assigned. Storage may be needed..
"H:/ATE with decoder/selective decoder/vhdl/decoder3.vhd",line 23: Warning, s is not always
assigned. Storage may be needed..
-- Compiling entity serializer3(xyz)
"H:/ATE with decoder/selective decoder/vhdl/serializer3.vhd",line 12: Warning, initial value for Q is
ignored for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/serializer3.vhd",line 12: Warning, initial value for Q1 is
ignored for synthesis.
"H:/ATE with decoder/selective decoder/vhdl/ate3.vhd",line 33: Warning, serialreg is not always
assigned. Storage may be needed..
-- Boundary optimization.
-- Boundary optimization.
-- Start pre-optimization for design .work.decoder3.Behavioral_unfold_1137
-- Start pre-optimization for design .work.serializer3.xyz_unfold_704
-- Start pre-optimization for design .work.ate3.Behavioral
"H:/ATE with decoder/selective decoder/vhdl/ate3.vhd", line 89:Info, Inferred counter instance 'abc' of
type 'counter_up_sclear_clock_32'
-- Start pre-optimization for design .work.decoder3.Behavioral_unfold_1137
-- Start pre-optimization for design .work.serializer3.xyz_unfold_704
-- Start pre-optimization for design .work.ate3.Behavioral
Info, Instances dissolved by autodissolve in View .work.ate3.Behavioral
"H:/ATE with decoder/selective decoder/vhdl/ate3.vhd", line 39: X1 (decoder3)
"H:/ATE with decoder/selective decoder/vhdl/ate3.vhd", line 40: X2 (serializer3)
-- Optimizing netlist .work.ate3.Behavioral
-- Matching combinational logic..
-- Matching non-combinational logic..
-- Covering..

163

-- CPU Time used : 00:00 Mapping
Re-checking DRC after adjustments
-- Final Design Rule Check..
Re-checking DRC after adjustments
-- Start timing optimization for design .work.ate3.Behavioral
Starting Timing Characterization...
Starting Timing Analysis...
Timing analysis done, time = 0 CPU secs.
Timing characterization done, time = 0 CPU secs.

Cell: ate3 View: Behavioral Library: work

 Cell Library References Total Area

and02 tsmc018_typ 18 x 1 23 gates
and03 tsmc018_typ 13 x 2 20 gates
and04 tsmc018_typ 1 x 2 2 gates
aoi21 tsmc018_typ 4 x 1 5 gates
buf02 tsmc018_typ 3 x 1 3 gates
dff tsmc018_typ 43 x 4 190 gates
dffsr_ni tsmc018_typ 1 x 6 6 gates
fake_gnd tsmc018_typ 1 x 1 1 fake_gnd
inv01 tsmc018_typ 26 x 1 20 gates
latch tsmc018_typ 4 x 2 10 gates
latchr tsmc018_typ 1 x 3 3 gates
mux21_ni tsmc018_typ 1 x 2 2 gates
nand02 tsmc018_typ 18 x 1 18 gates
nand03 tsmc018_typ 3 x 1 4 gates
nand04 tsmc018_typ 2 x 1 3 gates
nor02 tsmc018_typ 15 x 1 15 gates
nor02ii tsmc018_typ 21 x 1 26 gates
nor03 tsmc018_typ 17 x 1 21 gates
nor04 tsmc018_typ 5 x 1 7 gates
oai21 tsmc018_typ 1 x 1 1 gates
oai32 tsmc018_typ 1 x 2 2 gates
oai33 tsmc018_typ 1 x 2 2 gates
or02 tsmc018_typ 1 x 1 1 gates
or04 tsmc018_typ 2 x 2 3 gates
xnor2 tsmc018_typ 1 x 2 2 gates

 Number of ports : 5
 Number of nets : 225
 Number of instances : 204
 Number of references to this view : 0

Total accumulated area :
 Number of fake_gnd : 1
 Number of gates : 388
 Number of accumulated instances : 204
Info: setting report_delay_slack_threshold to 0.000000

164

 Clock Frequency Report

 Clock : Frequency

 ate_clk : 1506.2 MHz
 sys_clk : 248.0 MHz

 Critical Path Report

Critical path #1, (unconstrained path)
NAME GATE ARRIVAL LOAD
--
clock information not specified
delay thru clock network 0.00 (ideal)

reg_abc(1)/Q dff 0.00 0.43 up 0.05
ix452/Y nand04 0.11 0.54 dn 0.02
ix113/Y nor02ii 0.15 0.69 up 0.02
ix484/Y nand02 0.09 0.78 dn 0.02
ix145/Y nor02ii 0.15 0.92 up 0.02
ix502/Y nand02 0.09 1.01 dn 0.02
ix177/Y nor02ii 0.15 1.16 up 0.02
ix530/Y nand02 0.09 1.24 dn 0.02
ix209/Y nor02ii 0.15 1.39 up 0.02
ix539/Y nand02 0.09 1.48 dn 0.02
ix241/Y nor02ii 0.15 1.62 up 0.02
ix560/Y nand02 0.09 1.71 dn 0.02
ix273/Y nor02ii 0.15 1.86 up 0.02
ix580/Y nand02 0.09 1.94 dn 0.02
ix305/Y nor02ii 0.15 2.09 up 0.02
ix594/Y nand02 0.09 2.18 dn 0.02
ix337/Y nor02ii 0.15 2.33 up 0.02
ix622/Y nand02 0.09 2.41 dn 0.02
ix369/Y nor02ii 0.15 2.56 up 0.02
ix638/Y nand02 0.09 2.64 dn 0.02
ix401/Y nor02ii 0.15 2.79 up 0.02
ix660/Y nand02 0.09 2.88 dn 0.02
ix433/Y nor02ii 0.15 3.03 up 0.02
ix678/Y nand02 0.09 3.11 dn 0.02
ix465/Y nor02ii 0.15 3.26 up 0.02
ix700/Y nand02 0.09 3.35 dn 0.02
ix497/Y nor02ii 0.15 3.49 up 0.02
ix716/Y nand02 0.09 3.58 dn 0.02
ix529/Y nor02ii 0.18 3.76 up 0.03
ix724/Y xnor2 0.08 3.84 dn 0.01
ix533/Y nor02ii 0.12 3.95 up 0.01
reg_abc(31)/D dff 0.00 3.95 up 0.00
data arrival time 3.95

data required time not specified
--

165

data required time not specified
data arrival time 3.95

 unconstrained path
--

Info: setting novendor_constraint_file to FALSE
AutoWrite args are : decoder3_0.vhd
-- Writing file decoder3_0.vhd

Optimal Selective Huffman Decoder
LeonardoSpectrum Level 3 - 2008a.5 (Release Production Release, compiled Jun 30 2008 at 14:33:46)

Copyright 1990-2008 Mentor Graphics. All rights reserved.

Portions copyright 1991-2008 Compuware Corporation

--

-- Welcome to LeonardoSpectrum Level 3

-- Run By temp@NIT-106

-- Run Started On Fri Mar 12 14:38:52 India Standard Time 2010

--

Info, Working Directory is now 'H:/ATE with decoder/optimal selective decoder/vhdl'

Info, History file moved to new working directory

Info, Log file moved to new working directory

Reading library file `D:\LeoSpec_LS2008a_5\\lib\tsmc018_typ.syn`...

Library version = v3.1 Release : Patch (a) : (Aug 26, 2005)

Delays assume: Process=typical Temp= 0.0 C Voltage=1.80 V

Info: setting encoding to auto

-- Reading file D:\LeoSpec_LS2008a_5\\data\standard.vhd for unit standard

-- Loading package standard into library std

-- Reading vhdl file H:/ATE with decoder/optimal selective decoder/vhdl/serializer2.vhd into library
work

166

-- Reading file D:\LeoSpec_LS2008a_5\\data\std_1164.vhd for unit std_logic_1164

-- Loading package std_logic_1164 into library ieee

-- Loading entity serializer1 into library work

-- Loading architecture xyz of serializer1 into library work

-- Reading vhdl file H:/ATE with decoder/optimal selective decoder/vhdl/ate2.vhd into library work

-- Searching for SYNOPSYS package STD_LOGIC_ARITH..

-- Reading file D:\LeoSpec_LS2008a_5\\data\syn_arit.vhd for unit STD_LOGIC_ARITH

-- Loading package std_logic_arith into library ieee

-- Searching for SYNOPSYS package STD_LOGIC_UNSIGNED..

-- Reading file D:\LeoSpec_LS2008a_5\\data\syn_unsi.vhd for unit STD_LOGIC_UNSIGNED

-- Loading package STD_LOGIC_UNSIGNED into library ieee

-- Loading entity ate1 into library work

-- Loading architecture Behavioral of ate1 into library work

-- Reading vhdl file H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd into library
work

-- Loading entity decoder1 into library work

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 21: Info, Enumerated type
fsm_state with 7 elements encoded as onehot.

Encodings for fsm_state values

 value fsm_state[6-0]

===============================

 a ------1

 b -----1-

 c ----1--

 d ---1---

 e --1----

 f -1-----

167

 g 1------

-- Loading architecture Behavioral of decoder1 into library work

-- Compiling root entity ate1(Behavioral)

"H:/ATE with decoder/optimal selective decoder/vhdl/ate2.vhd",line 34: Warning, initial value for abc
is ignored for synthesis.

-- Compiling entity decoder1(Behavioral)

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 45: Warning, s0 should be
declared on the sensitivity list of the process.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 45: Info, conditions are
mutually exclusive; resolve without priority.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 45: Info, else part is never
selected for synthesis.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 50: Warning, s1 should be
declared on the sensitivity list of the process.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 50: Info, conditions are
mutually exclusive; resolve without priority.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 50: Info, else part is never
selected for synthesis.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 55: Warning, s2 should be
declared on the sensitivity list of the process.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 55: Info, conditions are
mutually exclusive; resolve without priority.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 55: Info, else part is never
selected for synthesis.

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 23: Warning, s is not always
assigned. Storage may be needed..

"H:/ATE with decoder/optimal selective decoder/vhdl/decoder2.vhd",line 11: Warning, serializer is not
always assigned. Storage may be needed..

-- Compiling entity serializer1(xyz)

"H:/ATE with decoder/optimal selective decoder/vhdl/serializer2.vhd",line 12: Warning, initial value
for Q is ignored for synthesis.

"H:/ATE with decoder/optimal selective decoder/vhdl/serializer2.vhd",line 12: Warning, initial value
for Q1 is ignored for synthesis.

168

"H:/ATE with decoder/optimal selective decoder/vhdl/ate2.vhd",line 33: Warning, serialreg is not
always assigned. Storage may be needed..

-- Boundary optimization.

-- Boundary optimization.

-- Start pre-optimization for design .work.decoder1.Behavioral_unfold_1135

-- Start pre-optimization for design .work.serializer1.xyz_unfold_702

-- Start pre-optimization for design .work.ate1.Behavioral

"H:/ATE with decoder/optimal selective decoder/vhdl/ate2.vhd", line 89:Info, Inferred counter
instance 'abc' of type 'counter_up_sclear_clock_32'

-- Start pre-optimization for design .work.decoder1.Behavioral_unfold_1135

-- Start pre-optimization for design .work.serializer1.xyz_unfold_702

-- Start pre-optimization for design .work.ate1.Behavioral

Info, Instances dissolved by autodissolve in View .work.ate1.Behavioral

"H:/ATE with decoder/optimal selective decoder/vhdl/ate2.vhd", line 39: X1 (decoder1)

"H:/ATE with decoder/optimal selective decoder/vhdl/ate2.vhd", line 40: X2 (serializer1)

-- Optimizing netlist .work.ate1.Behavioral

-- Matching combinational logic..

-- Matching non-combinational logic..

-- Covering..

-- CPU Time used : 00:00 Mapping

Re-checking DRC after adjustments

-- Final Design Rule Check..

Re-checking DRC after adjustments

-- Start timing optimization for design .work.ate1.Behavioral

Starting Timing Characterization...

Starting Timing Analysis...

Timing analysis done, time = 0 CPU secs.

169

Timing characterization done, time = 0 CPU secs.

Cell: ate1 View: Behavioral Library: work

 Cell Library References Total Area

and02 tsmc018_typ 17 x 1 21 gates

and03 tsmc018_typ 13 x 2 20 gates

and04 tsmc018_typ 1 x 2 2 gates

ao221 tsmc018_typ 1 x 2 2 gates

aoi21 tsmc018_typ 4 x 1 5 gates

buf02 tsmc018_typ 3 x 1 3 gates

dff tsmc018_typ 43 x 4 190 gates

dffsr_ni tsmc018_typ 1 x 6 6 gates

fake_gnd tsmc018_typ 1 x 1 1 fake_gnd

inv01 tsmc018_typ 26 x 1 20 gates

latch tsmc018_typ 4 x 2 10 gates

latchr tsmc018_typ 1 x 3 3 gates

mux21_ni tsmc018_typ 1 x 2 2 gates

nand02 tsmc018_typ 19 x 1 19 gates

nand03 tsmc018_typ 3 x 1 4 gates

nand04 tsmc018_typ 2 x 1 3 gates

nor02 tsmc018_typ 15 x 1 15 gates

nor02ii tsmc018_typ 20 x 1 25 gates

nor03 tsmc018_typ 17 x 1 21 gates

nor04 tsmc018_typ 5 x 1 7 gates

oai21 tsmc018_typ 2 x 1 2 gates

170

oai32 tsmc018_typ 1 x 2 2 gates

oai33 tsmc018_typ 1 x 2 2 gates

or04 tsmc018_typ 2 x 2 3 gates

xnor2 tsmc018_typ 1 x 2 2 gates

 Number of ports : 5

 Number of nets : 226

 Number of instances : 204

 Number of references to this view : 0

Total accumulated area :

 Number of fake_gnd : 1

 Number of gates : 389

 Number of accumulated instances : 204

Info: setting report_delay_slack_threshold to 0.000000

 Clock Frequency Report

 Clock : Frequency

 ate_clk : 1242.4 MHz

 sys_clk : 248.0 MHz

 Critical Path Report

Critical path #1, (unconstrained path)

NAME GATE ARRIVAL LOAD

--

clock information not specified

delay thru clock network 0.00 (ideal)

reg_abc(1)/Q dff 0.00 0.43 up 0.05

ix452/Y nand04 0.11 0.54 dn 0.02

171

ix123/Y nor02ii 0.15 0.69 up 0.02

ix484/Y nand02 0.09 0.78 dn 0.02

ix155/Y nor02ii 0.15 0.92 up 0.02

ix502/Y nand02 0.09 1.01 dn 0.02

ix187/Y nor02ii 0.15 1.16 up 0.02

ix532/Y nand02 0.09 1.24 dn 0.02

ix219/Y nor02ii 0.15 1.39 up 0.02

ix540/Y nand02 0.09 1.48 dn 0.02

ix251/Y nor02ii 0.15 1.62 up 0.02

ix560/Y nand02 0.09 1.71 dn 0.02

ix283/Y nor02ii 0.15 1.86 up 0.02

ix580/Y nand02 0.09 1.94 dn 0.02

ix315/Y nor02ii 0.15 2.09 up 0.02

ix594/Y nand02 0.09 2.18 dn 0.02

ix347/Y nor02ii 0.15 2.33 up 0.02

ix622/Y nand02 0.09 2.41 dn 0.02

ix379/Y nor02ii 0.15 2.56 up 0.02

ix640/Y nand02 0.09 2.64 dn 0.02

ix411/Y nor02ii 0.15 2.79 up 0.02

ix658/Y nand02 0.09 2.88 dn 0.02

ix443/Y nor02ii 0.15 3.03 up 0.02

ix678/Y nand02 0.09 3.11 dn 0.02

ix475/Y nor02ii 0.15 3.26 up 0.02

ix698/Y nand02 0.09 3.35 dn 0.02

ix507/Y nor02ii 0.15 3.49 up 0.02

ix714/Y nand02 0.09 3.58 dn 0.02

172

ix539/Y nor02ii 0.18 3.76 up 0.03

ix722/Y xnor2 0.08 3.84 dn 0.01

ix543/Y nor02ii 0.12 3.95 up 0.01

reg_abc(31)/D dff 0.00 3.95 up 0.00

data arrival time 3.95

data required time not specified

--

data required time not specified

data arrival time 3.95

 unconstrained path

--

Info: setting novendor_constraint_file to FALSE

AutoWrite args are : decoder2_0.vhd

-- Writing file decoder2_0.vhd

Modified Selctive Huffman Decoder

LeonardoSpectrum Level 3 ‐ 2008a.5 (Release Production Release, compiled Jun 30 2008 at 14:33:46)

Copyright 1990‐2008 Mentor Graphics. All rights reserved.

Portions copyright 1991‐2008 Compuware Corporation

‐‐ Welcome to LeonardoSpectrum Level 3

‐‐ Run By temp@NIT‐106

‐‐ Run Started On Fri Mar 12 14:37:30 India Standard Time 2010

Info, Working Directory is now 'H:/ATE with decoder/huffman decoder/vhdl'

173

Reading library file `D:\LeoSpec_LS2008a_5\\lib\tsmc018_typ.syn`...

Library version = v3.1 Release : Patch (a) : (Aug 26, 2005)

Delays assume: Process=typical Temp= 0.0 C Voltage=1.80 V

Info: setting encoding to auto

‐‐ Reading file D:\LeoSpec_LS2008a_5\\data\standard.vhd for unit standard

‐‐ Loading package standard into library std

‐‐ Reading vhdl file H:/ATE with decoder/huffman decoder/vhdl/serializer1.vhd into library work

‐‐ Reading file D:\LeoSpec_LS2008a_5\\data\std_1164.vhd for unit std_logic_1164

‐‐ Loading package std_logic_1164 into library ieee

‐‐ Loading entity serializer1 into library work

‐‐ Loading architecture xyz of serializer1 into library work

‐‐ Reading vhdl file H:/ATE with decoder/huffman decoder/vhdl/ate1.vhd into library work

‐‐ Searching for SYNOPSYS package STD_LOGIC_ARITH..

‐‐ Reading file D:\LeoSpec_LS2008a_5\\data\syn_arit.vhd for unit STD_LOGIC_ARITH

‐‐ Loading package std_logic_arith into library ieee

‐‐ Searching for SYNOPSYS package STD_LOGIC_UNSIGNED..

‐‐ Reading file D:\LeoSpec_LS2008a_5\\data\syn_unsi.vhd for unit STD_LOGIC_UNSIGNED

‐‐ Loading package STD_LOGIC_UNSIGNED into library ieee

‐‐ Loading entity ate1 into library work

‐‐ Loading architecture Behavioral of ate1 into library work

‐‐ Reading vhdl file H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd into library work

‐‐ Loading entity decoder1 into library work

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 26: Info, Enumerated type fsm_state with 2
elements encoded as binary.

Encodings for fsm_state values

 value fsm_state[0]

========================

 a 0

 b 1

174

‐‐ Loading architecture Behavioral of decoder1 into library work

‐‐ Compiling root entity ate1(Behavioral)

"H:/ATE with decoder/huffman decoder/vhdl/ate1.vhd",line 36: Warning, initial value for abc is ignored for
synthesis.

‐‐ Compiling entity decoder1(Behavioral)

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 51: Warning, s0 should be declared on the
sensitivity list of the process.

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 55: Warning, s1 should be declared on the
sensitivity list of the process.

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 56: Warning, s2 should be declared on the
sensitivity list of the process.

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 55: Info, conditions are mutually exclusive;
resolve without priority.

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 55: Info, else part is never selected for
synthesis.

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 28: Warning, s is not always assigned. Storage
may be needed..

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 27: Warning, n_state is not always assigned.
Storage may be needed..

"H:/ATE with decoder/huffman decoder/vhdl/decoder1.vhd",line 16: Warning, serializer is not always assigned.
Storage may be needed..

‐‐ Compiling entity serializer1(xyz)

"H:/ATE with decoder/huffman decoder/vhdl/serializer1.vhd",line 12: Warning, initial value for Q is ignored for
synthesis.

"H:/ATE with decoder/huffman decoder/vhdl/serializer1.vhd",line 12: Warning, initial value for Q1 is ignored for
synthesis.

"H:/ATE with decoder/huffman decoder/vhdl/ate1.vhd",line 34: Warning, serialreg is not always assigned.
Storage may be needed..

‐‐ Boundary optimization.

‐‐ Boundary optimization.

‐‐ Start pre‐optimization for design .work.decoder1.Behavioral_unfold_1135

‐‐ Start pre‐optimization for design .work.serializer1.xyz_unfold_702

175

‐‐ Start pre‐optimization for design .work.ate1.Behavioral

"H:/ATE with decoder/huffman decoder/vhdl/ate1.vhd", line 93:Info, Inferred counter instance 'abc' of type
'counter_up_sclear_clock_32'

‐‐ Start pre‐optimization for design .work.decoder1.Behavioral_unfold_1135

‐‐ Start pre‐optimization for design .work.serializer1.xyz_unfold_702

‐‐ Start pre‐optimization for design .work.ate1.Behavioral

Info, Instances dissolved by autodissolve in View .work.ate1.Behavioral

"H:/ATE with decoder/huffman decoder/vhdl/ate1.vhd", line 40: X1 (decoder1)

"H:/ATE with decoder/huffman decoder/vhdl/ate1.vhd", line 41: X2 (serializer1)

‐‐ Optimizing netlist .work.ate1.Behavioral

‐‐ Matching combinational logic..

‐‐ Matching non‐combinational logic..

‐‐ Covering..

‐‐ CPU Time used : 00:00 Mapping

Re‐checking DRC after adjustments

‐‐ Final Design Rule Check..

Re‐checking DRC after adjustments

‐‐ Start timing optimization for design .work.ate1.Behavioral

Starting Timing Characterization...

Starting Timing Analysis...

Timing analysis done, time = 0 CPU secs.

Timing characterization done, time = 0 CPU secs.

Cell: ate1 View: Behavioral Library: work

 Cell Library References Total Area

and02 tsmc018_typ 19 x 1 24 gates

and03 tsmc018_typ 13 x 2 20 gates

ao32 tsmc018_typ 1 x 2 2 gates

176

aoi21 tsmc018_typ 3 x 1 4 gates

buf02 tsmc018_typ 2 x 1 2 gates

dff tsmc018_typ 36 x 4 159 gates

dffr tsmc018_typ 1 x 5 5 gates

dffsr_ni tsmc018_typ 1 x 6 6 gates

fake_gnd tsmc018_typ 1 x 1 1 fake_gnd

inv01 tsmc018_typ 28 x 1 21 gates

latch tsmc018_typ 4 x 2 10 gates

latchr tsmc018_typ 1 x 3 3 gates

latchsr_ni tsmc018_typ 1 x 3 3 gates

mux21_ni tsmc018_typ 2 x 2 4 gates

nand02 tsmc018_typ 17 x 1 17 gates

nand03 tsmc018_typ 1 x 1 1 gates

nand04 tsmc018_typ 4 x 1 6 gates

nor02 tsmc018_typ 15 x 1 15 gates

nor02ii tsmc018_typ 21 x 1 26 gates

nor03 tsmc018_typ 16 x 1 20 gates

nor04 tsmc018_typ 5 x 1 7 gates

oai21 tsmc018_typ 1 x 1 1 gates

or04 tsmc018_typ 2 x 2 3 gates

xnor2 tsmc018_typ 1 x 2 2 gates

 Number of ports : 6

 Number of nets : 217

 Number of instances : 196

 Number of references to this view : 0

Total accumulated area :

 Number of fake_gnd : 1

 Number of gates : 362

177

 Number of accumulated instances : 196

Info: setting report_delay_slack_threshold to 0.000000

 Clock Frequency Report

 Clock : Frequency

 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

 serial_data : N/A

 ate_clk : 1927.2 MHz

 sys_clk : 247.5 MHz

 en : N/A

 Critical Path Report

Critical path #1, (unconstrained path)

NAME GATE ARRIVAL LOAD

‐‐

clock information not specified

delay thru clock network 0.00 (ideal)

reg_abc(1)/Q dff 0.00 0.44 up 0.05

ix449/Y nand04 0.11 0.55 dn 0.02

ix51/Y nor02ii 0.15 0.70 up 0.02

ix480/Y nand02 0.09 0.78 dn 0.02

ix83/Y nor02ii 0.15 0.93 up 0.02

ix500/Y nand02 0.09 1.02 dn 0.02

ix115/Y nor02ii 0.15 1.17 up 0.02

ix534/Y nand02 0.09 1.25 dn 0.02

ix147/Y nor02ii 0.15 1.40 up 0.02

ix544/Y nand02 0.09 1.49 dn 0.02

ix179/Y nor02ii 0.15 1.63 up 0.02

ix563/Y nand02 0.09 1.72 dn 0.02

ix211/Y nor02ii 0.15 1.87 up 0.02

178

ix578/Y nand02 0.09 1.95 dn 0.02

ix243/Y nor02ii 0.15 2.10 up 0.02

ix592/Y nand02 0.09 2.19 dn 0.02

ix275/Y nor02ii 0.15 2.33 up 0.02

ix618/Y nand02 0.09 2.42 dn 0.02

ix307/Y nor02ii 0.15 2.57 up 0.02

ix634/Y nand02 0.09 2.65 dn 0.02

ix339/Y nor02ii 0.15 2.80 up 0.02

ix654/Y nand02 0.09 2.89 dn 0.02

ix371/Y nor02ii 0.15 3.03 up 0.02

ix671/Y nand02 0.09 3.12 dn 0.02

ix403/Y nor02ii 0.15 3.27 up 0.02

ix690/Y nand02 0.09 3.35 dn 0.02

ix435/Y nor02ii 0.15 3.50 up 0.02

ix706/Y nand02 0.09 3.59 dn 0.02

ix467/Y nor02ii 0.18 3.77 up 0.03

ix716/Y xnor2 0.08 3.84 dn 0.01

ix471/Y nor02ii 0.12 3.96 up 0.01

reg_abc(31)/D dff 0.00 3.96 up 0.00

data arrival time 3.96

data required time not specified

‐‐

data required time not specified

data arrival time 3.96

 unconstrained path

‐‐

Info: setting novendor_constraint_file to FALSE

AutoWrite args are : decoder1_0.vhd

	0_Thesis_front_page_usha.pdf
	1_Thesis_inner_front_page.pdf
	2_Thesis_certificate_new.pdf
	CERTIFICATE
	 CERTIFICATE

	3_Acknowledgement.pdf
	4_Abstract.pdf
	5_TABLE OF CONTENTS_30_10.pdf
	6_LIST_of_TABLES.pdf
	7_LIST_of_Figures_30_10.pdf
	8_ABBREVIATIONS.pdf
	9_Chapter 1.pdf
	10_Chapter 2.pdf
	11_Chapter 3_30_10.pdf
	12_Chapter 4_A_30_10.pdf
	12_Chapter 4_B_30_10.pdf
	12_Chapter 4_C.pdf
	13_Chapter 5_30_10.pdf
	14_References_30_10.pdf
	15_List of Publications_30_10.pdf
	16_Annexure.pdf

