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Abstract--General solution for determining stress concentration
around square hole in infinite isotropic plate subjected to in
plane tension/shear at infinity and internal pressure and/or
shear on hole boundry are obtained using complex variable
method . For obtaining stress functions, Cauchy’s integral is
evaluated for given boundary conditions. The generalize
formulation is coded using MATLAB 6.5 and stressfield around
the dliptical opening isaobtain. Some of the results are compared
with finite element results using ANSYS.
Index Terms-- stress function, internal pressure, infinite plate

I. INTRODUCTION

N practice depending on the application and different

service requirements holes are made in structures and

machines. These holes work as stress raisers and hence it is
desirable to know stress distribution around them.

Kolosov-Muskhellishvilli’s[1] complex variable approach
is useful and handy tool to study two dimensional stress
analysis problem. Here, using this approach generalized
solution for finding stress distribution around a square hole is
presented. Gao’s[2] arbitrary biaxial loading condition is
employed to facilitate the solution of bidirectional loading.
The solution is capable of handling different hole orientation
and loading pattern. For sake of comparison few loading
cases for the square hole are solved using finite element
method and the results are found in close agreement.

1. BOUNDARY CONDITIONS AT INFINITY

The boundary conditions for different in-plane loading
conditions are as follows:

0 J— . © J— . © J—
o =A0; o,=0; T, =0 at |z| —> o (1)
Where, O'f;O' ;?; stresses applied about X', y' axes at

infinity. A=0 and A=1 explains uniaxial and biaxial loading
conditions, respectively. The boundary conditions about
XOY can be written explicitly as:

o, =%[(/1+1)+(/1—1)cos2a]

o, = %[(/1 +1)— (4 —1)cos2a] 2)

o .
Ty = By [(A-1)sin2a]
1. COMPLEX VARIABLE FORMULATION

The basic equations of plane elasticity in complex variable
form are given by Kolosov-Muskhellishvilli [1] as follows.

o +0, =20 (2)+4 (D)|=4Relg ()]

o, —0, +2ir, =272+ (2)]

Where ¢(Z),/(Z) =complex potentials of the complex
variable Z= X +1y

Fig 1 Arbitrary biaxial loading

In order to find stress distribution around a hole in z-plane,
it is mapped to a region outside unit circle in {-plane, which
has origin at {=0. The mapping function is given as
follows.[3]

R m m m, ms My
z=a)(§)=(§+++++ 4)
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Where My=-1/6, M, =1/56, M, =-1/176, M =1/384,

m,, =-7/4864

The stress functions in {-plane are given by

#(&)=[9(O) + 4, (O)]
w(&) =W () +w, ()] 5)
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In absence of hole stress functions (&) and iy ({') can be

written as ¢l(§)= [(B + |C)w(§)]

w (&) =[(B+HCYa(O)] (6)
Where
o,+o, Beo

B=—" ,

-0,;C=17,,:;C=0 @)

The boundary condition in {-plane is given by

f(t) = g(t) + (())¢ ©+y® ®

Substltutlng the functions in equation 8 we get

B(t+”‘3+m;+';111+':}55+':}99j

f(t):%e +(B-iC") ©)

C +mt’ +mt” +mt" +m.t" +ml9t‘°j

When internal shear or internal pressure on hole boundary is
considered the boundary condition is given as below.

2(B+ p+iT)(t+mj+rtT:7 %+T§ T};j
1
f(t)=§ +(B-iC") (19)

Gﬁtmﬁ3 +mt’ +m,t" +m.t" +ml9t19j

Where, p=internal pressure, T=internal shear.
by evaluating Cauchy’s integral, stress function @,(<)

and y,({) can be obtained as follows.

1 ¢ f(t)dt
WO =38

~ L fdt &)
wo(Q) = R ,(é,)¢o (&)

Substituting equation 10 in to 11 and solving equation we
get,

(11

2(B+ p+iT)[§+?§+m7+ M M +m‘9j

_ 4/7 11 4115 4/19
$()=-= @iy
) g
. 1
2(B T —
(B+p+i )(§]+
R B+iC (12)
WO (BT e T
¢ ¢ g ¢ <
(&)
( ) (é“)]

And so from equatlon 5
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From the stress functions obtained above(i.e. y(£);®@(()) the
stresses in polar co-ordinate can be found as follows:

o,+to,=0,+0, =4Re[¢ (&)/ @' ($)]
(O'y—O'X+2iZ'xy)

0y—0,+27,,=|( 2w ()
(/fW?)]

(13)

VII RESULTS AND DISCUSSION

The stress functions obtained above are the generalized
solutions, using which stress field around square hole under
different loading conditions is presented. The material
parameters taken are: E=200GPa; G=80GPa and v=0.3. The
following cases have been considered.
1-Plate subjected to uniaxial tension at infinite distance.
2-Plate subjected to biaxial tension at infinite distance.
3-Plate subjected to shear at infinite distance.
4-Plate having hole subjected to internal pressure on
boundary.
5-Plate having hole subjected to internal shear on the hole
boundary

1) Plate subjected to uniaxial tension at infinite distance

The infinite plate with single hole is subjected to uniaxial
tension (A=0). Hole orientation angle ¢« is taken zero. The
stresses in X-direction, Y-direction, shear stress and Von-
mises stresses are calculated at hole boundary using
MATLABG.5. The stress fields obtained from the present
method are also compared with Finite element solution using
ANSYS(Refer fig2 and fig 3).The table 1 gives comparison
of the some of results.
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Fig 2 Von-Mises stress (Present method) (A=0)
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Fig 3 Von-Mises stress (ANSYS) (A=0)

TABLE I
COMPARISON OF RESULTS OBTAINED BY PRESENT METHOD
AND ANSYS (SUBJECTED TO UNIAXIAL AND BIAXIAL TENSION)

Uniaxial Load(A=0)
Present ANSYS Percentage
method difference
Stress in  Max 3.613 3.632  0.523128

X-direction

Stress in  Max 7.731 7772  0.527535
Y -direction

Shear Max 3.387 3.436 1.426077
stress
Von-mises ~ Max 8.736 9.004  2.976455
stress

2) Plate subjected to biaxial tension at infinite distance

Here stress distribution around same hole shape under
equi-biaxial loading (A=1) is shown in fig.4 while fig.5
shows same stress distribution using FEM (ANSYS) The
comparison of some of the results with that of ANSYS is
tabulated below (Table 2).

Fig.4 Von-Mises stress in plate (A=1)(Present method)

Fig.5 Von-Mises stress in plate (A=1)(ANSYS)

TABLE I
COMPARISON OF RESULTS OBTAINED BY PRESENT METHOD
AND ANSYS (SUBJECTED TO SHEAR LOAD AT INFINITY)

Biaxial Load(A=1)

Present ANSYS Percentage

method difference
Stress in  Max 9.956 9.951 -0.05025
X-direction
Stress in  Max 9.956 9.965 0.090316
Y-direction
Shear Max 7.127 7.31 2.50342

stress

Von-mises ~ Max 14.25 14.682  2.942378
stress

3) Plate subjected to shear at infinite distance
In this case Von-Mises stress patterns for infinite plate with

hole rotated by 45° under shear loading at infinity. The
comparison of results derived from present method and FEM
(ANSYYS) can be seen from fig 7 and fig 8.Also, some of the
extremum results are compared separately (refer table 3).
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Fig. 7 Von-Mises stress in plate (A=-1)(ANSYS)

TABLE 3
COMPARISON OF RESULTS OBTAINED BY PRESENT METHOD
AND ANSYS (SUBJECTED TO SHEAR LOAD AT INFINITY)

Shear Load(A=-1)(a=45")
Present ANSYS Percentage
method difference
Stress  in  Max 5.239 5.31 1.3371
X-direction
Stress in  Max 5.239 5.224 -0.28714

Y -direction

Shear Max -3.565 -3.55 -0.42254
stress
Von-mises  Max 7.339 7.252 -1.19967
stress

4) Plate with hole subjected to internal Pressure/Shear

Solution is also capable to handle pressure or shear on hole
boundary. Fig.9 and Fig.10 shows comparison of Von-Mises
stress for internal pressure (P=1). Comparison of results for
this loading condition is shown in table 4.

Fig.8 Von-Mises stress in plate (p=1) (Present method)

Fig.9 Von-Mises stress in plate(A=-1)(Present method)

TABLE IV
COMPARISON OF RESULTS OBTAINED BY PRESENT METHOD
AND ANSYS (SUBJECTED TO INTERNAL PRESSURE)

Shear Load(p=-1)
Present ANSYS Percentage
method difference
Stress in  Max 8.956 8.948 -0.08941
X-direction
Stress  in  Max 8.956 8.879 -0.86721

Y-direction

Shear Max 7.127 7.115 -0.16866
stress
Von-mises  Max 13.78 13.253  -3.97646
stress

vIII CONCLUSIONS

The general solution presented in this paper is very much
useful to study stress field around square hole under different
type of in-plane loading. A detailed parametric study can be
easily made using the present solution by merely introducing
the mapping function, the orientation angle and the biaxial
loading factor. The computer implementation is easier and
faster then finite element method and the results are quite
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comparable. With slight modification in mapping function
same formulation can be used to find stress fields around
different hole shapes and also for hole with one or two cracks
emanating from it, and hole with cusps.
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