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Abstract

The Finite element method and other numerical methods are very effectively im-

plemented in static as well as dynamic, linear and nonlinear analysis of structure.

Recently, a new method has been developed called Applied Element Method (AEM).

This method is more applicable for failure modelling of structure. Applied element

method is used for modelling of structure subjected to large displacement and when

there is possibility of separation of structural elements. FEM is helpful in predicting

failure of structure but can not model separation of elements. The main advantage of

applied element method is that it can track the structural collapse behaviour passing

through all stages of the application of loads, like elastic stage, crack initiation and

propagation in tension-weak materials, reinforcement yielding, element separation, el-

ement collision (contact), and collision with the ground and with adjacent structures.

The objective of present study is to understand application of AEM for linear static

analysis of structure. In applied element method structure is assumed to be di-

vided into number of rigid elements connected by springs. Springs represent force-

displacement relationship of structural elements. So, derivation of stiffness matrix

in AEM is different than that of FEM. The present study deals with derivation of

stiffness matrix for one dimensional and two dimensional elements.

The study also includes basic introduction of applied element method and funda-

mental difference between FEM and AEM. Methodology used for applied element

analysis is presented. Computer program for meshing of various types of structure is

prepared and is used for preparing input data for main applied element analysis pro-

gram. One dimensional problems like axially loaded column subjected to point load

and uniformly distributed load is studied. Two dimensional problems like cantilever

beam, deep beam with and without opening, portal frame are solved using computer

program developed for Applied Element Analysis. Displacement results are obtained

by varying size of elements and varying number of springs used for connectivity of
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elements. For comparison of analysis results of AEM, finite element analysis of struc-

ture is carried out using ANSYS software. From the application of AEM to various

problems it is observed that it can analyse various structure with similar accuracy as

finite element analysis. Further the program developed in this study can be modified

for dynamic analysis as well as for nonlinear analysis.
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Chapter 1

Introduction

1.1 General

Earthquake of last decades like Bhuj earthquake in 2001 caused heavy damage to mul-

tistorey buildings[7]. Many buildings were completely collapsed during earthquake.

These damages have clearly shown behavior of the structure to given ground motion.

Strength of a structure mainly depends on deformation capacities of the individual

component of the structure. In order to determine capacity of any structure beyond

the elastic limits some form of nonlinear analysis such as the pushover procedure

are required to be performed. Usually seismic demands are computed by nonlinear

static analysis of the structure, which is subjected to monotonically increasing lat-

eral forces with a constant distribution of the forces throughout height until a target

displacement is reached. However, clear understanding about the performance under

critical dynamic loading is difficult to understand by following this procedure. For

this purpose, a highly efficient numerical modeling procedures is required.

Simulation of such a behavior is not an easy task using currently available numerical

techniques. Currently available numerical methods for structural analysis can be clas-

sified into two categories. In the first category, model is based on continuum material

equations. The finite element method (FEM) is typical example of this category. The

mathematical model of the structure is modified to account for reduced resistance of

1
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yielding components. Computer programs are available that directly model nonlinear

behavior efficiently in static way and to some reasonable level of accuracy in dynamic

way. However, to perform collapse behavior of the structures that exceeds beyond

their elastic limit is a difficult task to solve by presently available numerical methods.

Currently there are several limitations in adopting this approach. For example in

case of highly nonlinear case where crack has initiated and element is not detached

from the structure, smeared crack approach is followed. However, smeared Crack

approach is difficult to use in zones where separation occurs between adjacent struc-

tural elements. While, Discrete Crack Methods (DCM) assumes that the location

and direction of crack propagation are predefined before the analysis.[7]

The second category of methods uses the discrete element approaches like the Rigid

Body and Spring Model (RBSM) and Modified or Extended Distinct Element Method

(MDEM or EDEM). The main advantage of these methods is that they are efficient

in modeling of cracks present in the structure. While the main advantage of these

method is they can easily track the crack propagation path. Analysis using the RBSM

could not be performed up to complete collapse of the structure. On the other hand,

the EDEM can follow the structural behavior from zero loading and up to complete

collapse of the structure. But the required accuracy in results cannot obtain using

EDEM for small deformation range as compared with FEM. Hence, the failure behav-

ior obtained by repeated many calculations is affected due to cumulative errors and

cannot be predicted accurately using the EDEM. However, Applied Element Method

(AEM) has the capability of simulating behavior of structures from zero loading to

collapse can be followed with reliable accuracy, reasonable CPU time and with rela-

tively simple material models.[7]

Hence numerical simulation can be performed with Applied Element Method (AEM).

The major advantages of the Applied Element Method (AEM) are simple modeling

and programming and high accuracy of the results with relatively short CPU time.

Using the AEM, highly nonlinear behavior, i.e. crack initiation, crack propagation,
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separation of structural elements, rigid body motion of failed elements and collapse

process of the structure can be followed with high accuracy.

The Applied Element Method (AEM) is a numerical analysis used in predicting the

continuum and discrete behavior of structures. the purpose of AEM is to Bridge

the gap between continuum models and discrete element models. The AEM provides

techniques that allow a structure to be analyzed within one model from the unloaded

stage, through small displacement loading, through large displacement loading, and

up to collapse. Therefore, with the AEM, crack initiation, crack propagation, sepa-

ration of structural elements, rigid body motion of element, and the collapse process

of whole structure, can be modeled.

AEM is based on dividing the structure into small parts called Elements. Elements

can be of various shapes like cuboid, trapezoidal ..etc. Each of which could be ana-

lyzed by relatively straight forward method. Then these elements are assembled into

a complete structure for which solution can be obtained by simple mathematics.

The modeling method in AEM adopts the concept of discrete cracking allowing it to

automatically track structural collapse behavior passing through all stages of load-

ing: elastic, crack initiation and propagation in tension-weak materials, reinforcement

yield, element separation, element contact and collision, as well as collision with the

ground and adjacent structures.
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1.2 Historical Background

The numerical analysis methods available at the time, were not adequate to model

the full-range of loading that is seen during an earthquake or potential collapse event.

The AEM was established at the University of Tokyo by Hatem Tagel-Din during his

doctoral studies during the late 1990’s (Tagel-Din, 1998). Motivation for the method-

ology arose from catastrophic earthquakes in the region (Kobe 1995) which brought

about the realization that engineered structures could collapse. Acknowledging that

engineered structures could collapse created an interest in analytical modeling for

such events. Thus, the AEM was created, designed to overcome the limitations of

current methods and allow for the complete collapse analysis of structures.

The term “Applied Element Method” was first coined in 2000 in a paper called

“Applied element method for structural analysis: Theory and application for linear

Materials.” Since then AEM has been the subject of research by a number of aca-

demic institutions and the driving factor in real-world applications. Research has

verified its accuracy for: elastic analysis, crack initiation and propagation, estimation

of failure loads at reinforced concrete structures, reinforced concrete structures un-

der cyclic loading, buckling and post-buckling behavior, nonlinear dynamic analysis

of structures subjected to severe earthquakes, fault-rupture propagation, nonlinear

behavior of brick structures, and the analysis of glass reinforced polymers (GFRP)

walls under blast loads.
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1.3 Introduction to Applied Element Method (AEM)

With the AEM, a structure is modeled by virtually dividing it into an assembly of

small Elements. Adjacent elements are connected through series of normal and shear

springs located at contact points that are distributed over the surface of each element.

At each contact point, there is one normal spring and two shear springs in orthogonal

directions. Fig.1.1 and 1.2 illustrates the division of a structure into elements and an

example of the connectivity between elements. The area of influence on each element

for a set of springs is highlighted in bold.

Figure 1.1: Division of structure into small element

Figure 1.2: Spring distribution and area of influence for each pair of springs
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The spring stiffness equations are:

knormal =
E × d× t

a
and kshear =

G× d× t
a

(1.1)

Where, “E” and “G” are Young’s Modulus and Shear modulus, respectively, “d” is

the distance covered by springs, “t” is the thickness of element, and “a” is the length

of the representative area. This is the equation for axial stiffness.

In two dimensional problem each element has three degrees of freedom located at its

centroid representing the rigid body motion of the element. Each set of springs on

an elements surface can be geometrically related to the three degrees of freedom at

the centroid, thus creating a stiffness matrix for that set of springs. The element

stiffness matrix is then created by summing up the stiffness matrices of each individ-

ual set of springs. The model can then be analyzed by utilizing the following equation:

[KG][∆] = [F ] (1.2)

Where,{F} is applied load vector,[∆] is the displacement vector and [KG] is the global

stiffness matrix.

For large displacement analysis, modifications must be made to the force side of

the governing equation to account for incompatibility between spring strains and

stresses and the geometrical changes in the structure. Formulation of this equation

is presented by Meguro and Tagel-Din in ”Applied Element Method Used for Large

Displacement Structural Analysis”[12].

Utilizing these equations and techniques to model structures differentiate the AEM

from other methodologies. The AEM has been proven to be as accurate as the FEM

in modeling linear structures in the small deformation range, but through implemen-

tation of its principles, the AEM is able to surpass the capabilities of the FEM in large

displacement and collapse events. The AEM offers four distinct advantages in struc-
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tural modeling: automatic crack generation, element separation, element re-contact,

and element impact.

Each of the advantages within the AEM arises from the use of springs to connect adja-

cent elements. For each set of normal and shear springs, stress and the corresponding

strain is calculated throughout the loading. Referencing default or user-defined mate-

rial properties, once the criteria is reached, springs are cut. This can occur anywhere

within the model, therefore no pre-conceived notion of where the cracks will initiate

is necessary. Crack propagation follows the same principles.

If all of the springs connecting an element are cut, the element is allowed to sepa-

rate from the structure. In a dynamic analysis, the element has an assigned mass

and generates inertial forces. As the element falls, if it contacts another element,

the contact is automatically detected and contact springs are generated between the

colliding elements.

These contact springs model the inertial forces transferred between the elements,

as well as forces due to bearing and friction. The ability to cover this vast range

of structural behavior in a single model is what distinguishes the AEM from other

analysis methods.

1.3.1 Assumptions

Following assumptions are made in AEM.

• Elements are assumed to be rigid (i.e. Shape and size of element doesn’t change

under applied loading.).

• Elements are assumed to be connected on face with large number of springs.

• Assembly of rigid mass and spring behaves as Rigid body Spring Mass model(RBSM).

• Deformation of an element are equal to deformation of springs.
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• Direction of loading are assumed to be constant for analysis of problem.

1.3.2 Various aspects of Applied Element Analysis

The knowledge of Applied Element Analysis (AEA) makes a good structural design

engineer better while just user without the knowledge of AEA may produce more

dangerous results. To use the AEA properly, the user must know the following points

clearly:

a. Types of elements to be used for solving the problem in hand.

b. Modeling a Structure by using spring mass elements.

c. Discretization of structure.

d. Development of element properties and their limitations.

e. Introduction of boundary conditions.

f. Interpretation of results produced by AEA

g. Understanding the difficulties involved in the development of AEA programs.

Hence there is a need for checking the commercially available package with the

results of standard cases.
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1.4 Comparison of AEM and FEM

Various points are discussed below to understand distinct idea of applied element

method compared to Finite Element Method.

• Finite element method is based on continuum mechanics for numerical analysis

of various problems. Whereas in case of applied element method it useful in

both continuum as well as discrete/fracture mechanics.

• Finite element method is not much efficient beyond crack initiation, whereas

AEM has no such limitation.

• In FEM one cannot model deteriorated structure where AEM is very easily used

for such kind of modeling.

Now some points which describes difference in modeling of structural member.

• In case of FEM structure, lines and dummy plans are used for discretization of

structure. Whereas, In AEM structure is an assembly of small elements.

• In FEM elements are compulsorily connected at nodes only. Whereas in AEM

elements are connected along faces of elements.

• In FEM, Nodes are used for connection of an element. In AEM springs are used

to connect elements at faces.

• Many types of finite elements are used for meshing of structure. Generally

Cuboid is only element used for meshing of structure in AEM.

• The number and the types of degrees of freedom of the model depend on the

type of finite elements used for modeling in FEM. In AEM two elements are

connected through a series of contact points. At each points there are three

contact springs: a normal spring and two shear springs.

• In FEM, transition elements are needed to switch from large sized elements

to smaller elements as elements are connected at nodes only (i.e. No partial
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connectivity is allowed). In case of AEM, No need for transition element as

element are connected at faces (i.e. partial connectivity between elements is

allowed), as shown in Fig1.3.

Figure 1.3: Partial connectivity of elements

• In case of FEM, the Global stiffness matrix [K] is determined based of contri-

bution of each elements. In AEM, the Global stiffness matrix [K] is determined

as sum of contributions of all springs.

1.5 Objectives of study

The main objective of present work is to understand applications of applied element

method for linear static analysis of structure under applied loading conditions. From

engineering point of view, development of efficient computer is more important for

solving complex problems. The choice of element, organization of computational

process and solution of equations are, therefore, important. Many times computer

programs developed, suitable for specific need, are very useful for handling typical

problems.
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Looking to above need the objectives of present study are:

• To understand theory and applications of Applied Element Method for linear

static analysis.

• To formulate element properties for one and two dimensional elements

• To develop computer program for Applied Element Method (AEM).

• To illustrate application of AEM to 1D and 2D problems.

1.6 Scope of Work

To achieve above objectives the scope of work is decided as follows:

• Understanding AEM and its difference with FEM.

• Formulation of properties of 1D and 2D elements.

• Development of computer program for analysis using AEM

• Linear static analysis of axially loaded column, cantilever beam, deep beam

..etc using AEM and comparison of results with other exact method. These

problems are solved considering with varying no. of elements and varying no.

of springs. Comparison of analysis results is made for better understanding of

AEM
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1.7 Organization of Report

The content of major project report is divided into different chapters as follows:

Chapter 1, presents the introduction and overview of the major project work,

Historical background, Introduction to Applied Element Method (AEM), Comparison

of AEM and FEM are included. It also includes objectives of study and scope of work.

Chapter 2, presents brief literature review on AEM. Literature survey is carried

out to understand theory and applications of Applied Element Method (AEM).

Chapter 3, gives basics of Applied Element Method which includes discretiza-

tion, methodology adopted,factors affecting analysis results.

Chapter 4, presents procedure followed for development of computer program for

Applied Element Method (AEM). It also includes, computer implementation of AEM.

The application of applied element method are covered in Chapter 5. Applica-

tion of AEM is explained by solving various types of problems like analysis of axially

loaded column, cantilever beam, portal frame and deep beam.

Summary, conclusions and future scope of work are discussed in Chapter 6.

The source code of computer programmes, sample input file and output file are

included in Appendix.



Chapter 2

Literature Review

2.1 General

For the objectives of major project discussed in Chapter 1, an extensive Literature

review relevant to Applied element method is carried out. This chapter presents

review of literature related to theoretical aspect and applications of applied element

method.

2.2 Literature Review

2.2.1 Theoretical aspects

Meguro[7] discussed basic concept and advantages of the applied element method

for structural analysis. Separate material models were used for plain concrete and re-

inforcement bars. Internal stresses and strains were calculated for reinforcement bars

or concrete at any location. They had also given application of AEM for studying

the nonlinear dynamic behavior of structures. Behavior of material under effects of

cracking, concrete crushing, yield of reinforcement had been introduced. The applica-

tions of AEM for static and dynamic cases, monotonic and cyclic loading conditions

and also for small and large deformation ranges were specified. Various topics based

on fracture mechanics of structure like, collapse mechanism of structures, additional

13
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effects like buckling of reinforcement bars and spalling of concrete were also explained.

Tagel-din and Meguro[11] presented formulation and verification of numerical tech-

nique of elastic-static loading condition. The effect due to element size, number of

connecting springs between elements and poisson’s ratio had been clearly mentioned.

They concluded that, increasing the number of connecting springs lead to much ac-

curate results for crack propagation in nonlinear analysis. Increasing the number of

connecting springs had no effect on stiffness matrix of an element as decreasing the

number of spring lead to increase in area represented by each spring.

Meguro and Tagel-din[8] introduced the elements formulation of the applied-

element method. They also discussed the effects of the element size and arrangement.

The accuracy of the applied element method in a nonlinear material case was verified

by studying the behavior of RC structures under cyclic loading. Effects caused by

the size and arrangement of the elements were studied. They showed that accurate

results of stresses and strains could be obtained by using small size elements. Crack

initiation and Failure behavior simulation of RC structures had also been illustrated

explicitly by authors. The calculated load-displacement relationship and the failure

load results showed reliable accuracy.

Meguro and Tagel-Din[12] presented further applications of AEM where FEM

doesn’t perform efficiently. A brief overview of the method’s formulation was pre-

sented. Modifications needed to analyze the behavior of structures subjected to large

displacements under static loading were introduced. They also added some idea on

simplicity and applicability of AEM. No geometric stiffness matrix was needed as it

requires in FEM for simulation of large deformation of a member. So the formulation

was simple, general and applicable to any type of structural configuration or material.

Limited applications of the AEM were presented. The direction of the applied forces

is assumed to be constant. Because of this, when load conditions changed its results

were not accurate, and as in case if a member buckle. A series of examples that verify
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the applicability of the proposed technique were also presented.

2.2.2 Applications

In this section applications of AEM is reviewed.

Dessousky[1] discussed special algorithms to model the interface between the blocks

and added to an Applied Element-Based solver. These algorithm predicted the

strength and stiffness at interfaces when cracks opened and closed. In addition to

interface springs, contact springs were added automatically when collision occur and

springs were removed when elements separate. Through the use of interface and

contact springs, contact, re-contact and dislocation phenomena were traced. The

program results were verified first for small problems and then a case study was sim-

ulated. Results of response of a minaret consisting of stone blocks placed on top of

one another, and expected damage patterns for sub-assemblages were also discussed.

Tagel-din[5] presented simulation of collapse processes of scaled reinforced concrete

structure by using AEM and compared with results obtained by shake table exper-

iments. Paper presented results of experiment performed using eleven storied RC

building model subjected to a series of base excitations. The numerical simulation

was performed with two-dimensional Applied Element Method (AEM). The simu-

lated structural response had shown good agreement with experimental results. Due

to the limitations of capacity of the shaking table used, the experiment was performed

only up to the start of collapse. However, the numerical analysis using the AEM was

extended to simulate the detailed collapse behavior under magnified base excitations.

Raparla[3] considered a set of four bare frames designed as per Indian Standards

for studying performance of building up to collapse. All bare frames were subjected

to Northridge earthquake ground motion (freq. 1-4 Hz). Applied Element Method

(AEM) was used as numerical tool for analytical solution of bare frames. They ob-

served that initial crack were appeared first in concrete as the height of structure

were increasing. They also observed that, as the structure vibrates more bending
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stresses were likely to develop in taller structure due to same drift. All the structures

had predominantly behaved in bending mode. However, as the steel bars failed, then

the progressive collapse phase started in the frames. They found that progressive

collapse started in single storey frame at 6.7 sec, in three storey frames at 5.8 sec, in

five storey frame at 7 sec and in ten storey frame at 6.8 sec.

An effective application of Applied element method was presented by Salem[2]. Fail-

ure modeling of several reinforced concrete structures collapsed due to floods in Sinai

and Aswan, Egypt had performed. Scouring of soil beneath foundations caused ex-

cessive differential settlements, leading to failure of main structural members and

complete structural collapse. A three-dimensional nonlinear dynamic analysis of a

multi-storey reinforced concrete framed structure with induced soil scour under its

foundation was carried out. The analysis of the structure followed until its complete

collapse. The numerical analysis were then used to propose a safe design against col-

lapse. Three different alternatives were proposed for preventing progressive collapse

by varying dimensions of floor beams, tie beams connecting footings, and diagonal

bracings. They did not found much effectiveness of increasing the size of the floor

beams on mitigating progressive collapse, while the use of diagonal bracings in the

ground floor was found to be effective in preventing progressive collapse. The tie

beam reinforcement was found to have a significant effect on the structural behavior

during such an extreme loading case.

Tagel din[9] discussed the large deformation of elastic structure under static load

condition. Formulation for stiffness matrix used was simple and general computa-

tional process. They specified simplicity and applicability of stiffness matrix to the

various structural configuration and material types. Technique used was based on

determination of residual forces due to geometrical changes of the structure during

simulation. They checked the accuracy of proposed technique by comparing with

theoretical results. By using this technique they solved problems of the buckling of

column and post buckling behavior of structure.



CHAPTER 2. LITERATURE REVIEW 17

2.3 Summary

In this chapter, review of literature related to Applied element method is carried out.

Literature related to theoretical background of method and application of AEM is

reviewed in this chapter.



Chapter 3

Basics of Applied Element Method

3.1 General

Applied Element Method (AEM) is numerical technique for analyzing structural sys-

tems. A structure can be defined as a skeletal or a continuum. Examples of skeletal

structure are:

• Multistorey building frame.

• Truss...etc

Examples of continuum structure are:

• Dam

• Deep Beam...etc

The objective of structural analysis is to find deflection and stresses magnitude at a

desired location of skeletal or continuum structure.

18
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3.2 Types of elements

Following are the various types of elements used in structural analysis using AEM.

a. One dimensional element

b. Two dimensional element

c. Three dimensional element

3.2.1 One dimensional element

If the geometry, material properties, and the field variable of the problem can be

described in terms of only one spatial coordinate then one dimensional element can

be used. In case of one dimensional element one normal spring is considered for

connection between elements at contact points located at the faces of each element

as shown in Fig3.1. This normal spring will be totally responsible for the axial

deformation of an element. Although these elements have cross-sectional area, they

are generally shown schematically as a cube. In some case depending upon typical

geometry of a structure cross section of a cube element may vary.

Figure 3.1: One dimensional element connectivity
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3.2.2 Two dimensional element

When the configuration and field variables of the problem can be described in terms of

two independent spatial coordinates, the two-dimensional elements can be used. The

Figure 3.2: Two dimensional element connectivity.

basic element useful for two-dimensional analysis is cube. In case of two dimensional

element a pair of one normal spring and one transverse spring are considered for

connection between elements at contact points located at the faces of each element

shown in Fig3.2. Although these elements have cross-sectional area, they are generally

shown schematically as a cube. In some case depending upon typical geometry of a

structure cross section of a cube element may vary.

Same way in case of three dimensional element (not considered for project work) a

pair of three springs i.e. one normal to the face and two springs in transverse direction

to the normal is used at each contact point.

3.3 Basic element shape

The shapes, sizes, number, and configurations of the elements have to be chosen

carefully such that the original geometry of body is simulated as closely as possible

without increasing the computational effort needed for the solution. Mostly the type
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of element considered for analysis of all kind of geometries is cube. All neighbouring

element have node located at the centroid of each element. When we consider two

adjacent elements then it will represent two node element having length equal to the

center to center dimension of elements. Element connectivity is assumed on faces of

each element using a pair of springs.

3.4 Discretization

The basic concept of AEM is discretization. Discretization (Discrete means separate)

is a process in which the system is divided into many distinct smaller portions. These

portions are known as an element. And the opposite of discretization is assembly

or composing. AEM consists of both discretization and assembling of an element.

In process of assembling, the elements are placed back and assembled. In short, in

AEM first the system is discretized and then finally assembled. In order to derive

the force deformation relationship of structure discretization is carried out. It is

difficult to find force deformation relation of entire structure so, the structure is

divided into small elements known as discretization. Based on force deformation

characteristic properties i.e. stiffness matrix of element is developed. After finding

properties of individual elements they are assembled together to represent properties

of entire structure. Assembling of element properties should ensure equilibrium and

compatibility.

3.5 Node generation

In applied element analysis structure is meshed with the small element by dividing

structure virtually. Generating nodes is preliminary task to perform which will define

the geometry of a member. Node in member represents small element in discretized

structure. In applied element analysis nodes are generated manually or with auto-

mated meshing tool which depends on type of geometry to be analyzed. Number of

nodes to be used for analysis depends on discretization of any member. Smaller the
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size of element discretization higher will be total number of nodes. For 1D analysis of

structural element Nodes are distributes along major axis of an element. For example,

if 1D bar is considered, bar element is used for analysis of member subjected to axial

force only. These members are having one dimensional (length) considerably large

as compared to cross sectional dimensions. Bar in tension and axially loaded column

falls under these category. In case of 2D and 3D analysis nodes are generated along

all principle directions.

3.6 Element connectivity and contact point

In AEM, meshing is performed to discretize the geometry of structure into small

elements. The effect of discretization of member can be explained in simplest way

using varying element sizes. Effect of discretization has been discussed in Chapter 6

by solving various problems using varying meshing patterns. However, In FEM the

problem domain can be divided (meshed) into small elements using a set of nodes

that are connected in a predefined manner using nodal lines, the solution within each

element can be approximated very easily using simple functions such as polynomials,

which are termed shape functions. But in case of AEM small elements are connected

to each of its neighbour element on their side faces. Elements are connected using

pair of springs at their contact points as shown in Fig3.3. In this method each side

faces are also messed to define the location of contact points which mainly depends

on the numbers of springs to be used for connectivity of an element. Distribution of

pair of springs at contact point on face of element is as shown in Fig3.3. In case of

1D element connectivity the spring is considered in one direction only using linear

spring. Same way a pair of one normal and one shear spring is to be taken into

account for 2D element. Connectivity for 2D element is performed in two principle

direction. Information, such as the element connectivity must also be created during

the meshing for simulation.
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Figure 3.3: Arrangement of contact points and influence of each springs.

3.7 Formulation of elemental stiffness matrix

Formulation of elemental stiffness matrix for one dimensional and two dimensional

elements are explained in section 3.7.1 and 3.7.2. Remaining steps of analysis i.e.

assembly of stiffness matrix, incorporation of boundary conditions, solution of equa-

tions to obtain displacements are same as finite element method or other displacement

based methods.

3.7.1 One dimensional element

Consider a linear spring as shown in Fig3.4 the displacements of the two end points

of the spring are u1 and u2 and the two points are subjected to axial forces f1 and

f2 respectively. Both displacements and forces are assumed in the right-hand side

direction which is assumed to be positive in the present applied element formulation.

If the spring is in equilibrium, the sum of forces becomes zero. That is,

f1 + f2 = 0 (3.1)

As a result, f2 = - f1 and Fig.3.4 shows the equilibrated linear spring. The spring is

compressed by these forces and the contraction of the spring is proportional to them.
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Using the spring constant k, the force and displacement relationship becomes,

k(u1 − u2) = f1 (3.2)

From Eqs (3.1) and (3.2), we obtain

k(−u1 + u2) = f2 (3.3)

Rewriting Eqs (3.2) and (3.3) in matrix form yields

 k −k

−k k

 u1

u2

 =

 f1

f2

 (3.4)

This is the matrix equation for a linear spring. A spring is like a linear finite element.

As a result, the matrix is called the element stiffness matrix and the right-hand side

vector is called the element force vector. A system consisting of series of linear springs

can be analysed.

Figure 3.4: Linear spring

The linear spring can represent various systems in engineering applications. One

direct application is the axial member. Consider an axial member with length L,

uniform cross- section A and elastic modulus E. The elongation δ of the axial member

subjected to an axial force P is computed from,

δ =
PL

AE
(3.5)

Rewriting above equation,

P =
AE

L
δ (3.6)
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As a result, the equivalent spring constant for the axial member is.

keq =
AE

L
(3.7)

3.7.2 Two dimensional element

Consider two elements connected by pairs of normal and shear springs located at

contact points which are distributed around the element edges as shown in Fig3.5.

Each pair of springs totally represents stresses and deformations of a certain area of

the specified elements. The spring stiffness is determined as equation [3.8]:

Knormal =
E × d× t

a
Kshear =

G× d× t
a

(3.8)

Where, ”d” is the distance between springs, ”t” is the thickness of the element and

”a” is the length of the representative area, E and G are Young’s and shear modulus

of the material, respectively. The above equation indicates that each spring represents

the stiffness of an area (d×t) with length ”a” of the specified material. In case of

reinforcement, this area is replaced by that of the reinforcement bar. The above

equation indicates that the spring stiffness is calculated as if the spring connects the

element centerlines.

Figure 3.5: Spring distribution and area of influence for each springs
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Now, Fig3.6 shows two elements which are connected by pair of springs at their

contact points. Each element is having 3 DOF, u1, u2 and u3 respectively at centroid

of each element. Therefore, total 6 DOF are considered for each adjacent element.

To calculate stiffness matrix of an element shown in Fig3.6 unit displacement in the

direction of each DOF, is applied.

Figure 3.6: General position of a deformed element

In case of 2-D analysis, three degrees of freedom are assumed for each element while

six degrees of freedom are used for 3-D problems. These degrees of freedom represent

the rigid body motion of the element in 2-D or 3-D. Although the element motion is

as a rigid body, its internal deformations are represented by the spring deformation

around each element.

To get a general stiffness matrix, the element and contact springs locations are as-

sumed in a general position. The stiffness matrix components corresponding to each

degree of freedom are determined by applying a unit displacement in that degree of

freedom direction and by determining forces at the centroid of each element. The

element stiffness matrix size is only (6 x 6) in case of 2-D analysis and it is (12 x 12)
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in case of 3-D analysis. It is clear that the stiffness matrix depends on the contact

spring stiffness and the spring location.

To calculate components of stiffness matrix, unit displacement in direction of u1 is

considered and the action corresponding to u1, u2, u3, u4, u5, u6 are obtained as

shown in Fig3.7. By this we get,

Figure 3.7: Unit displacement in direction of u1 i.e u1 = 1

K11 = Kn sin(α + θ) sin(α + θ) +Ks cos(α + θ) cos(α + θ) (3.9)

K12 = −Kn sin(α + θ) cos(α + θ) +Ks cos(α + θ) sin(α + θ) (3.10)

K13 = −Kn sin(α + θ)L cos(α) +Ks cos(α + θ)L sin(α) (3.11)

K14 = −Kn sin(α1 + θ1) sin(α + θ) +Ks cos(α1 + θ1) cos(α + θ) (3.12)

K15 = −Kn cos(α1 + θ1) sin(α + θ)−Ks sin(α1 + θ1) cos(α + θ) (3.13)

K16 = Kn sin(α + θ)L1 cos(α1) +Ks cos(α + θ)L1 sin(α1) (3.14)

Where α and θ corresponds to inclination of spring at first node while α1 and θ1

corresponds to inclination of spring at second node as 3.6.
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Similarly, applying unit displacement in direction of u2 (i.e. u2=1) as shown in Fig3.8.

Figure 3.8: Unit displacement in direction of u2 i.e u2 = 1

K21 = −Kn sin(α + θ) cos(α + θ) +Ks cos(α + θ) sin(α + θ) (3.15)

K22 = Kn cos(α + θ) cos(α + θ) +Ks sin(α + θ) sin(α + θ) (3.16)

K23 = Kn cos(α + θ)L cos(α) +Ks sin(α + θ)L sin(α) (3.17)

K24 = Kn sin(α1 + θ1) cos(α + θ) +Ks cos(α1 + θ1) sin(α + θ) (3.18)

K25 = Kn cos(α1 + θ1) cos(α + θ)−Ks sin(α1 + θ1) sin(α + θ) (3.19)

K26 = −Kn cos(α + θ)L1 cos(α1) +Ks sin(α + θ)L1 sin(α1) (3.20)
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Applying unit rotation in direction of u3 (i.e. u3 = 1) as shown in Fig3.9.

Figure 3.9: Unit rotation in direction of u3 i.e u3 = 1
.

K31 = −Kn sin(α + θ)L cos(α) +Ks cos(α + θ)L sin(α) (3.21)

K32 = Kn cos(α + θ)L cos(α) +Ks sin(α + θ)L sin(α) (3.22)

K33 = KnL cos(α)L cos(α) +KsL sin(α)L sin(α) (3.23)

K34 = Kn sin(α1 + θ1)L cos(α) +Ks cos(α1 + θ1)L sin(α) (3.24)

K35 = Kn cos(α1 + θ1)L cos(α)−Ks sin(α1 + θ1)L sin(α) (3.25)

K36 = −KnL cos(α)L1 cos(α1) +KsL sin(α)L1 sin(α1) (3.26)
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Applying unit displacement in direction of u4 (i.e. u4 = 1) as shown in Fig3.10, and

considering action corresponding to other DOF, stiffness coefficients are obtained as

follows:

Figure 3.10: Unit displacement in direction of u4 i.e u4 = 1

K41 = −Kn sin(α1 + θ1) sin(α + θ) +Ks cos(α1 + θ1) cos(α + θ) (3.27)

K42 = Kn sin(α1 + θ1) cos(α + θ) +Ks cos(α1 + θ1) sin(α + θ) (3.28)

K43 = Kn sin(α1 + θ1)L cos(α) +Ks cos(α1 + θ1)L sin(α) (3.29)

K44 = Kn sin(α1 + θ1) sin(α1 + θ1) +Ks cos(α1 + θ1) cos(α1 + θ1) (3.30)

K45 = Kn cos(α1 + θ1) sin(α1 + θ1)−Ks sin(α1 + θ1) cos(α1 + θ1) (3.31)

K46 = −Kn sin(α1 + θ1)L1 cos(α1) +Ks cos(α1 + θ1)L1 sin(α1) (3.32)
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By applying unit displacement in direction of u5 (i.e. u5 = 1) as shown in Fig3.11.

Figure 3.11: Unit displacement in direction of u5 i.e u5 = 1

K51 = −Kn sin(α + θ) cos(α1 + θ1)−Ks cos(α + θ) sin(α1 + θ1) (3.33)

K52 = Kn cos(α + θ) cos(α1 + θ1)−Ks sin(α + θ) sin(α1 + θ1) (3.34)

K53 = Kn cos(α1 + θ1)L cos(α)−Ks sin(α1 + θ1)L sin(α) (3.35)

K54 = Kn sin(α1 + θ1) cos(α1 + θ1)−Ks cos(α1 + θ1) sin(α1 + θ1) (3.36)

K55 = Kn cos(α1 + θ1) cos(α1 + θ1)−Ks sin(α1 + θ1) sin(α1 + θ1) (3.37)

K56 = −Kn cos(α1 + θ1)L1 cos(α1) +Ks sin(α1 + θ1)L1 sin(α1) (3.38)
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Applying unit rotation in direction of u6 (i.e. u6 = 1) as shown in Fig3.12.

Figure 3.12: Unit rotation in direction of u6 i.e u6 = 1

K61 = Kn sin(α + θ)L1 cos(α1) +Ks cos(α + θ)L1 sin(α1) (3.39)

K62 = −Kn cos(α + θ)L1 cos(α1) +Ks sin(α + θ)L1 sin(α1) (3.40)

K63 = KnL cos(α)L1 cos(α1) +KsL sin(α)L1 sin(α1) (3.41)

K64 = −Kn sin(α1 + θ1)L1 cos(α1)−Ks cos(α1 + θ1)L1 sin(α1) (3.42)

K65 = −Kn cos(α1 + θ1)L1 cos(α1)−Ks sin(α1 + θ1)L1 sin(α1) (3.43)

K66 = KnL1 cos(α1)L1 cos(α1) +KsL1 sin(α1)L1 sin(α1) (3.44)
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3.8 Factors affecting analysis results

To obtain realistic design of any kind of structure, analysis results should be more

accurate. Results obtain from numerical technique have some dependent variables

which affects the analysis results. Following are the some factors which have consid-

erable importance for Applied Element Analysis (AEA) used in this work.

3.8.1 Effect of number of connecting springs

The effect of number of connecting spring between elements has been explained by

Meguro[7]. The number of connecting spring between elements is the key factor that

is to be considered in applied element analysis. Effect of connecting springs can be

more precisely understood by performing nonlinear analysis of structure. This section

gives idea for selecting number of connecting spring in elastic analysis. Referring to

Figure 3.13: Effect of numbers of connecting springs

Fig.3.13, it is assumed that “2n” springs are connecting two elements together. Each

spring represents the stiffness of a distance of (b/2n). Number of connecting springs

has no effect on translation degree of freedom but it’s effect is very well seen in case

of rotational degree of freedom.
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Decreasing the number of connecting spring leads to increasing area to be represented

by each spring. Ultimately the total area represented by springs becomes equal to the

complete area of an element. It means that one spring can represent totally transla-

tional degrees of freedom of an element but cannot contribute to rotational degree of

freedom. Rotation of an element has effect due to the number of springs. For static

analysis effect of number of spring is discussed in chapter 5 by solving different types

of problems.

3.8.2 Effect of Element Size

Adjustment of element size in the analysis is very important. Simulation of structures

using elements of large size leads to increasing the structure stiffness and failure load.

This means that the calculated displacements become smaller and by this failure load

will be get larger than the actual one.

3.9 Summary

Basics of applied element method (AEM) are discussed in this chapter. One dimen-

sional and two dimensional elements are presented. Derivation of stiffness matrix for

one and two dimensional applied element id presented in this chapter.



Chapter 4

Development of computer program

4.1 General

Theoretical formulation of Applied Element Method is presented in Chapter 3. In

this chapter computer implementation of AEM is discussed. The computer program

is prepared in C-language. The computer program is useful in solving number of

problems with varying geometry, discretization and number of springs.

Applied element analysis involves three stages of activity: preprocessing, processing,

and postprocessing. Preprocessing involves the preparation of data, such as member

data, element data, nodal coordinates, connectivity, and number of springs, number of

element, boundary conditions, and loading and material information. The processing

stage involves stiffness matrix generation, global stiffness matrix formulation and

solution of equations to obtain displacement in elements are evaluated at this stage.

The postprocessing stage deals with the presentation of results. A complete applied

element analysis is a logical interaction of the three stages. The preparation of data

and postprocessing requires considerable effort if all data are to be handled manually.

Computer program for analysis of 1-D problems and 2-D problems are developed.

Programming of 1D element involves axially loaded column. The program gives nodal

displacements as output. Likewise 2D element program is able to solve problems of

cantilever beam, deep beam, 2D frame..etc.

36
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4.2 Structure of Applied Element Analysis Pro-

gram

The program starts with INPUT information to define the problem. Then the data

given is processed and required result is obtained. The flow chart of the program is as

shown in Fig4.1. The application of program in solving various problems is discussed

in Chapter 5. The steps to be followed are the following:

4.2.1 Input Information

In Applied Element Method (AEM) elements are connected by means of springs at

contact faces of element. Connectivity between elements are at centroid of both

adjacent elements hence joint coordinates are generated at centroid of element. In-

formation pertaining to the structure itself must be defined clearly.

The various input required to define a problem may be grouped into the following:

• Geometric Data:

a. General information like total number of elements, total number of nodal

points, type of element (number of nodes, degrees of freedom for each

node), are to be supplied.

b. Coordinates of each node to be supplied or generated.

c. For each element nodal connectivity is to be supplied.

• Material Properties: The total number of materials used, and for each mate-

rial material properties like Young’s Modulus, Poisson’s ratio...etc are defined.

• Load Data: It consists of total types of loads and for each load its magnitude,

point of application (coordinate or line or surface of application) etc.
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Figure 4.1: Flow chart of AEM program
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• Restraint condition: The next step is to define the boundary conditions.

Restraint conditions are defined at nodes corresponding to degree of freedom

at that node. Input required is about total number of boundary conditions and

for each boundary condition specified displacements. For preparation of input

data file a separate program is developed. The Program carry out meshing of

the geometry and prepare data related to number of nodes, elements, element

connectivity, nodal coordinates, restraint conditions and joint loads.

4.2.2 Data processing

Data supplied is processed as follows to complete the analysis.

• Construction of Stiffness Matrix: The stiffness matrix is an inherent prop-

erty of the structure and is based upon the structural data only. Element

stiffness matrix is first initialized. Then element loop is entered to assemble

element stiffness matrix. It starts with initializing global stiffness matrix and

load matrix. The depending on number of springs stiffness matrix is obtained

by summation of contribution of all connected springs. With the help of nodal

connectivity details, the position of each value of element stiffness matrix in

global matrix is identified and added to existing value. When element loop is

completed global stiffness matrix is available.

• Identification of Load Data : All loads acting on the structure must be

specified in a manner suitable for computer programming. Loads acting on

member are converted into nodal load. Loads are directly applied to the nodes,

no member loads are considered as members are assumed to be connected vir-

tually by means of springs. Using load details nodal loads are to be assembled.

The equivalent joint loads may then be added to construct total joint loads to

produce a problem in which the structure is imagined to be loaded. All nodal

values are summed up to get final load vector {F}. After, the stiffness equations

are ready, Gauss Jordan elimination solution is used to solve the equation to get

nodal variables. In the final phase of the analysis all of the joint displacements
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in elements are computed.

4.2.3 Postprocessing

Based on solution of equilibrium equations deformed shapes of members are drawn

with obtained results. From the nodal displacements deformation of springs are ob-

tained. Based on spring stiffness and spring deformation , forces in springs are ob-

tained. Forces in springs represents stresses in element. The flow of analysis listed

above constitute an orderly approach having certain essential features that are ad-

vantageous when dealing with large complicated frameworks. Listing of following

programs are included in Appendix A.

a. Meshing of continuum.

b. Analysis of 2-D programs.

4.3 Summary

In this chapter development of computer program of AEM using C-language is dis-

cussed. Three major stages of program:Preprocessing, Processing and Post processing

is discussed. The application of computer program is discussed in next chapter.



Chapter 5

Application of Applied Element

Method

5.1 General

Theory and methodology for application of applied element method (AEM) is dis-

cussed in chapter 3. Computer implementation of AEM is discussed in Chapter 5.

Static linear analysis using AEM is illustrated in this chapter. One dimensional and

two dimensional structural engineering problems are solved using computer program

developed in Chapter 4. The problems are solved considering varying number of ele-

ments and number of springs. The analysis results are compared with results obtained

from finite element analysis.

5.2 One Dimensional Problem

A structural engineering problem is considered as one dimensional, if following con-

ditions are satisfied.

a. When its dimension along major axis (length) is much higher as compared to

cross sectional dimensions.

b. Direction of applied force and deformation of member is in plane along major

41
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axis of a member.

Examples of one dimensional problems are bar, axially loaded column.. etc. Axially

loaded column is considered to illustrate application of AEM for one dimensional

problem.

5.2.1 Axially Loaded Column

Geometrical data,material properties, restraint conditions and type of loading con-

sidered for analysis are given below.

Length of column = 300.00 mm

Width of column = 10.00 mm

Thickness of column = 10.00 mm

Modulus of Elasticity = 100.00 N/mm2

Load case 1: Point load of 10 N at top.

Load case 2 : Uniformly distributed load of 10 N/mm.

The column is divided into various number of elements like 5, 10 and 15 as shown

in Fig5.1, to understand the effect of element size on analysis results. All elements

are assumed to be connected by 5 springs. As problem is one dimensional, only axial

spring is considered for connecting elements.

Analysis results in terms of displacements at nodes are obtained for for each case of

discretization. Two types of loads are applied for analysis as mentioned above.
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(a) 5 Elements (b) 10 Elements (c) 15 Elements

Figure 5.1: Discretization of column into number of elements

Case (1): Axially loaded column subjected to point load at top with different number

of nodes is as shown in Fig5.1. Table5.1, 5.2 and 5.3 shows the displacement at nodes

considering 5,10 and 15 elements for column respectively. Fig5.2 shows graphical

comparison of the displacement results. Results are also compared with that obtained

by finite element method.

Table 5.1: Nodal displacement considering 5 Elements

Element no. Dist.(mm) Disp.(mm)
1 270 2.4
2 210 1.8
3 150 1.2
4 90 0.6
5 30 0.0
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Table 5.2: Nodal displacement considering 10 Elements

Element Dist. Disp. Element Dist. Disp.
no. (mm) (mm) no. (mm) (mm)
1 285 2.7 6 135 1.2
2 255 2.4 7 105 0.9
3 225 2.1 8 75 0.6
4 195 1.8 9 45 0.3
5 165 1.5 10 15 0.0

Table 5.3: Nodal displacement considering 15 Elements

Element Dist. Disp. Element Dist. Disp.
no. (mm) (mm) no. (mm) (mm)
1 290 2.8 8 150 1.4
2 270 2.6 9 130 1.2
3 250 2.4 10 110 1.0
4 230 2.2 11 90 0.8
5 210 2.0 12 70 0.6
6 190 1.8 13 50 0.4
7 170 1.6 14 30 0.2

15 10 0.0
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Figure 5.2: Displacement results for axially loaded column subjected to point load.

The maximum displacement obtained at top of column with different discretization

is shown in Table5.4.

Table 5.4: Maximum displacement in column with varying number of elements

No. of Elements Maximum displacement (mm)
5 2.4
10 2.7
15 2.8

Exact 3.0

It is observed that with increase in number of elements maximum displacement tends

to exact displacement.
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Case 2: Axially loaded column subjected to uniformly distributed load with different

number of nodes is shown in Fig5.3. Uniformly distributed load is converted in to

equivalent nodal load and analysis is carried out. Nodal displacement results are as

shown in Table 5.5, 5.6, 5.7. The deflection along the height with different no. of

elements and its comparison with that of finite element method are shown in Fig5.4.

(a) 5 Elements (b) 10 Elements (c) 15 Elements

Figure 5.3: Discretization of column into number of elements

Table 5.5: Nodal displacement considering 5 Elements

Element no. Dist(mm) Disp.(mm)
1 270 36.0
2 210 32.4
3 150 25.2
4 90 14.4
5 30 0.0
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Table 5.6: Nodal displacement considering 10 Elements

Element Dist. Disp. Element Dist. Disp.
no. (mm) (mm) no. (mm) (mm)
1 285 40.5 6 135 27.0
2 255 39.6 7 105 21.6
3 225 37.8 8 75 15.3
4 195 35.1 9 45 8.1
5 165 31.5 10 15 0.0

Table 5.7: Nodal displacement considering 15 Elements

Element Dist. Disp. Element Dist. Disp.
no. (mm) (mm) no. (mm) (mm)
1 290 42.0 8 150 30.8
2 270 41.6 9 130 27.6
3 250 40.8 10 110 24.0
4 230 39.6 11 90 20.0
5 210 38.0 12 70 15.6
6 190 36.0 13 50 10.8
7 170 33.6 14 30 5.6

15 10 0.0



CHAPTER 5. APPLICATION OF APPLIED ELEMENT METHOD 48

Table 5.8: Maximum displacement in column with varying number of elements

No. of Elements Maximum displacement (mm)
5 36
10 40.5
15 42

Exact 45

It is observed from Fig5.4 that with increase in number of elements maximum dis-

placement tends to exact results, as obtained by FEM. The maximum displacement

obtained at top of column with different discretization is shown in Table5.4.

Figure 5.4: Displacement results for axially loaded column subjected to UDL.
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5.3 Two Dimensional Problem

Two dimensional problems has three degrees of freedom at each node i.e. translation

in horizontal and vertical direction and rotation. Development of stiffness matrix for

analysis is discussed in Chapter 3. Application of AEM in two dimensional problems

is illustrated by considering cantilever beam, deep beam and portal frames.

5.3.1 Cantilever Beam

Geometrical data, material properties, restraint condition and type of loading con-

sidered for analysis are given below:

Length of beam = 3000 mm

Depth of beam = 600 mm

Width of beam = 300 mm

Modulus of Elasticity of concrete E = 25000 N/mm2 (for M25 grade concrete)

Poission’s ratio = 0.15

Shear modulus of material G = 3750 N/mm2

Moment of inertia (I) of section = 5.4 × 109 mm4.

Loading : Point load of 100 kN at free end

The beam is divided into varying size of square elements to understand the effect

of element size on analysis results. The sizes of elements considered for analysis are

300 mm, 200 mm, 150 mm and 120 mm as shown in Fig5.5. The elements are

connected by both normal and shear springs. To understand the effect of number of

connecting springs on analysis results the elements are assumed to be connected by 1,

3, 5, 7 and 10 springs (both normal and shear). The point load of 100 kN is applied

to node closer to free end, while joints are restraint considered at node closer to fixed

support. The discretization of cantilever beam is as shown in Fig5.5.
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(a) 300 × 300 mm element size (b) 200 × 200 mm element size

(c) 150 × 150 mm element size (d) 120 × 120 mm element size

Figure 5.5: Geometry of beam with different discretization

Analysis results in terms of nodal displacement are obtained by using computer pro-

gram as discussed in Chapter 4. The nodal displacement result of beam with 300 mm,

200 mm, 150 mm and 120 mm size elements and with varying number of connecting

springs are as shown in Fig5.6.

The variation in displacement with 1, 3, 5, 7 and 10 springs considering varying

sizes of elements are as shown in Fig5.6.
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(a) 300 mm Element size (b) 200 mm Element size

(c) 150 mm Element size (d) 120 mm Element size

Figure 5.6: Displacement of cantilever beam with varying sizes of elements

Variation in displacement along the length of beam for varying number of spring be-

tween elements are shown in Fig.5.7.



CHAPTER 5. APPLICATION OF APPLIED ELEMENT METHOD 52

(a) 1 Spring (b) 3 Springs

(c) 5 Springs (d) 7 Springs

(e) 10 Springs

Figure 5.7: Displacement results for cantilever beam with constant number of springs.

The maximum displacement at free end with varying number of springs and varying

size of elements and its comparison with finite element analysis results are as shown

in Fig5.8 and Table5.9. Finite element analysis is carried out using ANSYS software.
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Table 5.9: Maximum displacement in column with varying number of elements

Size of No. of Max Displacement (mm)
Element Springs AEM FEM

1 7.16
3 7.08

120 5 7.09 7.217
7 7.08
10 7.11
1 7.13
3 6.98

150 5 7.01 7.186
7 7.01
10 7.03
1 7.15
3 6.89

200 5 6.91 7.142
7 6.92
10 6.95
1 7.60
3 6.91

300 5 6.98 7.071
7 7.00
10 7.05

Figure 5.8: Maximum displacement in cantilever beam
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From Table5.9 and Fig5.8, it is observed that with increase in number of spring the

displacement reduces. There is not much difference in displacement given by AEM

and FEM with same size of element. With larger size of element more numbers of

springs gives displacement close to FEM results. But with small sizes of elements less

number of springs are adequate.

5.3.2 Solid Deep Beam

Deep beam is defined as a beam having a ratio of effective span to overall depth less

than 2 for simply supported beam as per IS 456-2000. They are used in transfer

girder, pile cap, foundation wall, raft beam. wall of rectangular tank and floor di-

aphragm.

Geometrical data, material properties, restraint condition and type of loading con-

sidered for analysis are given below.

Support condition : Simply supported

Span of deep beam (L) = 3600 mm

Depth of deep beam (D) = 3000 mm

L/D ratio = 1.2

Width of deep beam = 300 mm

Modulus of Elasticity of concrete (E) = 25000 N/mm2 (For M25 grade concrete)

Poission’s ratio = 0.15

Shear modulus of material G = 3750 N/mm2

Loading : 500 kN/m uniformly distributed load.

Deep beam is divided into various size of square elements as shown in Fig5.9. Uni-

formly distributed load is converted into equivalent nodal loads and applied at cen-

troid of top row of square elements. The elements are assumed to be connected by 1,

3, 5, 7 and 10 springs.
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(a) 600 Element size (b) 300 Element size

(c) 200 Element size (d) 150 Element size

(e) 120 Element size

Figure 5.9: Discretization of solid deep beam with different no. of elements
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(a) Size of element 600 mm (b) Size of element 300 mm

(c) Size of element 200 mm (d) Size of element 150 mm

(e) Size of element 120 mm

Figure 5.10: Nodal displacement of simply supported deep beam with AEM.
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The displacement along the span of beam for varying size of element i.e. 600 mm,

300 mm, 200 mm, 150 mm and 120 mm connected by different number of springs are

shown in Fig 5.10(a) to 5.10(e). Effect of increasing in number of spring for different

size square element is shown in Fig5.11.

(a) 1 Spring (b) 3 Springs

(c) 5 Springs (d) 7 Springs

(e) 10 Springs

Figure 5.11: Displacement result for solid deep beam with constant number of springs.
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The maximum displacement at joint nearer to the center of beam with varying size

of element and varying number of springs and its comparison with FEA results are

shown in Table5.10 and Fig5.11.

Table 5.10: Maximum displacement in column with varying number of elements

Size of No. of Max Displacement (mm)
Element Springs AEM FEM

1 1.090
3 1.120

120 5 1.130 1.612
7 1.140
10 1.150
1 1.020
3 1.060

150 5 1.070 1.553
7 1.080
10 1.090
1 0.932
3 0.963

200 5 0.976 1.477
7 0.980
10 0.996
1 0.804
3 0.830

300 5 0.843 1.373
7 0.847
10 0.854
1 0.562
3 0.571

600 5 0.584 1.200
7 0.588
10 0.595

From Table5.9 and Fig5.12, it is observed that the finite element analysis gives higher

displacement as compared to AEM. With reduction in size of elements the difference

in FEM and AEM result is reducing. With increase in number of spring for particular

size of element there is not much variation in displacement. Smaller size of element

with more number of spring gives better accuracy of solution for solid deep beam

considered here.
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Figure 5.12: Comparison of maximum displacement of solid deep beam.

5.3.3 Deep Beam with Opening

Geometrical data, Loading, Material properties and Support condition are same as

considered for solid deep beam in Section 5.3.2. In this study one opening of dimen-

sion 1200 mm × 600 mm is provided at the center of deep beam as shown in Fig5.13.

Different element sizes used for discretizing the deep beam with opening are shown

in Fig5.13.

Deep beam with opening is divided into various size of element as shown in Fig.5.13.

Deep beam is subjected to uniformly distributed load of 500 kN/m at top. This load

is converted into equivalent point load and applied at centroid of element in top layer.

Effect of opening on displacement of beam is studied using varying number of springs

and size of elements.
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(a) Element size 600 mm (b) Element size 300 mm

(c) Element size 200 mm (d) Element size 150 mm

(e) Element size 120 mm

Figure 5.13: Various discretization of deep beam with opening
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(a) Element size = 600 mm (b) Element size = 300 mm

(c) Element size = 200 mm (d) Element size = 150 mm

(e) Element size = 120 mm

Figure 5.14: Displacement of deep beam with opening by varying no. of springs

Displacements along the span of beam for varying size of element are obtained as

shown in Fig5.14. Presence of opening in deep beam increases the central deflection

of beam. Effect of increasing number of springs for different size square element is

shown in Fig 5.15.
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(a) 1 Spring (b) 3 Springs

(c) 5 Springs (d) 7 Springs

(e) 10 Springs

Figure 5.15: Displacement of deep beam with opening by varying size of elements

The maximum displacement near the centre of span for deep beam with opening for

varying number of contact springs and size of elements and its comparison with FEA

results are shown in Fig5.16 and Table5.11.
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Table 5.11: Maximum displacement in column with varying number of elements

Size of No. of Max Displacement (mm)
Element Springs AEM FEM

1 1.260
3 1.290

120 5 1.300 1.681
7 1.310
10 1.310
1 1.200
3 1.230

150 5 1.250 1.605
7 1.250
10 1.260
1 1.120
3 1.140

200 5 1.160 1.506
7 1.200
10 1.170
1 1.170
3 1.580

300 5 1.610 1.378
7 1.620
10 1.630
1 0.796
3 0.765

600 5 0.786 1.211
7 0.793
10 0.805

Figure 5.16: Maximum displacement in deep beam with opening

From Table5.11 and Fig5.16, it is observed that finite element analysis gives higher

displacement compared to AEM. The difference in AEM and FEM result is almost

same with different sizes of element. For particular size of element, variation in

number of spring has no significant effect on displacement.
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5.3.4 Portal Frame Subjected to Lateral Load

In this section, the application of Applied Element Method for analysis of portal

frame subjected to lateral load and combined lateral and vertical load is discussed.

Portal frame subjected to lateral load have been analysed using Applied Element

Analysis. Geometrical data Material properties, End conditions and type of loading

conditions are as follows:

Column spacing = 4200 mm c/c

Storey height = 3000 mm

Width of beam and column = 300 mm

Depth of beam and column = 600 mm

Cross section area of beam and column = 180 × 103 mm2.

Modulus of Elasticity of concrete E = 25000 N/mm2 (for M25 grade of concrete)

Poission’s ratio = 0.15

Shear modulus of material G = 3750 N/mm2

Moment of inertia (I) of section = 5.4 x 109 mm4.

Support condition = Fixed at column base.

Loading : Point load of 500 kN at top in lateral direction.

The Frame is divided into varying size of square elements, to understand the effect of

element size on analysis results. The sizes of elements considered for analysis are 300

mm, 200 mm, 150 mm and 120 mm as shown in Fig5.17. To understand the effect

of number of connecting springs on analysis results the elements are assumed to be

connected by 1, 3, 5, 7 and 10 number of springs. The discretization of portal frame

is as shown in Fig5.17.
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(a) 2 Element at base (b) 3 Elements at base

(c) 4 Elements at base

(d) 5 Elements at base

Figure 5.17: Various discretization of portal frame subjected to lateral load.
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(a) 300 mm Element size (b) 200 mm Element size

(c) 150 mm Element size (d) 120 mm Element size

Figure 5.18: Comparison of displacement by varying no. of springs

Lateral displacement along the height of portal frame from varying size of elements

i.e. 300 mm, 200 mm, 150 mm and 120 mm connected by different no. of springs

are as shown in Fig5.18. Effects of varying numbers of spring for different square size

element are shown in Fig5.19.
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(a) 1 Spring (b) 3 Springs

(c) 5 Springs (d) 7 Springs

(e) 10 Springs

Figure 5.19: Comparison of displacement by varying size of element

The maximum displacement at node near to top of frame with varying size of element

and with varying no. of spring and its comparison with FEM results are shown in

Table5.12 and Fig5.20.

From Table5.12 and Fig5.20, it is observed that with larger size of square elements

the difference in FEM and AEM result is more. With reduction in size of element

AEM results tend to FEM result. The effect of increasing number of contact springs

for a particular size of element is not significant. The small size of element with less

number of springs represent the behaviour of portal frame accurately.
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Table 5.12: Comparison of maximum displacement in frame with varying number of
elements

Size of No. of Max Displacement (mm)
Element Springs AEM FEM

1 8.69
3 8.42

120 5 8.45 8.61
7 8.44
10 8.48
1 8.75
3 8.43

150 5 8.46 8.455
7 8.49
10 8.51
1 8.96
3 8.46

200 5 8.53 8.246
7 8.55
10 8.60
1 8.73
3 7.80

300 5 7.94 7.922
7 7.98
10 8.07

Figure 5.20: Comparison of maximum displacement of frame subjected to lateral load
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5.3.5 Portal Frame Subjected to Combined Loading

Geometrical data, Discretization, Material properties and end conditions are as shown

in Fig5.21.

Column spacing = 4200 mm c/c

Storey height = 3000 mm

Width of beam and column = 300 mm

Depth of beam and column = 600 mm

Cross section area of beam and column = 180 × 103 mm2.

Modulus of Elasticity of concrete E = 25000 N/mm2 (for M25 grade of concrete)

Poission’s ratio = 0.15

Shear modulus of material G = 3750 N/mm2

Moment of inertia (I) of section = 5.4 x 109 mm4.

Support condition = Fixed at column base.

Loading : 500 kN in lateral direction and two point loads of 200 kN in vertical di-

rection.

The Frame is divided into varying size of square elements, to understand the effect of

element size on analysis results. The sizes of elements considered for analysis are 300

mm, 200 mm, 150 mm and 120 mm as shown in Fig5.21. To understand the effect

of number of connecting springs on analysis results the elements are assumed to be

connected by 1, 3, 5, 7 and 10 number of springs. The discretization of portal frame

is as shown in Fig5.21.
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(a) 2 Element at base (b) 3 Elements at base

(c) 4 Elements at base

(d) 5 Elements at base

Figure 5.21: Various meshing patterns of member for frame subjected to combine
loading



CHAPTER 5. APPLICATION OF APPLIED ELEMENT METHOD 71

Lateral displacement along the height for varying size of elements i.e. 300 mm, 200

mm, 150 mm and 120 mm by varying number of springs are shown in Fig5.22.

(a) 300 mm Element size (b) 200 mm Element size

(c) 150 mm Element size (d) 120 mm Element size

Figure 5.22: Displacement of portal frame subjected to combine loading with varying
sizes of elements.
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The effect of increase in number of spring for different size of elements are as shown

in Fig.5.23.

(a) 1 Spring (b) 3 Springs

(c) 5 Springs (d) 7 Springs

(e) 10 Springs

Figure 5.23: Displacement of portal frame subjected to combine loading with varying
number of springs.
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Vertical displacement along the span of beam in portal frame for varying size of

elements i.e. 300 mm, 200 mm, 150 mm and 120 mm by varying number of springs

are shown in Fig5.24.

(a) 300 mm Element size (b) 200 mm Element size

(c) 150 mm Element size (d) 120 mm Element size

Figure 5.24: Displacement of portal frame subjected to combine loading with varying
sizes of elements.

The effect of increase in number of spring for different size of elements are as shown

in Fig.5.25.

The maximum displacement along the height of portal frame under combine load-

ing with varying size of element and varying number of springs and its comparison

with FEM are as shown in Table5.13 and Fig.5.26.
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(a) 1 Spring (b) 3 Springs

(c) 5 Springs (d) 7 Springs

(e) 10 Springs

Figure 5.25: Displacement of portal frame subjected to combine loading with varying
number of springs.
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Table 5.13: Comparison of maximum displacement of portal frame subjected to com-
bine loading

Size of No. of Max Displacement (mm)
Element Springs AEM FEM

1 3.65
3 3.56

120 5 3.57 3.96
7 3.58
10 3.59
1 3.71
3 3.58

150 5 3.6 3.92
7 3.61
10 3.62
1 3.85
3 3.64

200 5 3.67 3.85
7 3.68
10 3.7
1 3.8
3 3.46

300 5 3.53 3.73
7 3.55
10 3.6

Figure 5.26: Comparison of maximum horizontal displacement for portal frame sub-
jected to combine loading.

5.4 Summary

The application of Applied Element Method (AEM) in linear static analysis of one-

dimensional and two-dimensional problems are discussed in this chapter. Axially

loaded column is considered as one-dimensional problem and cantilever beam, deep

beam and portal frames are considered for two-dimensional problems. The results of

AEM are compared with that obtained by FEM.



Chapter 6

Summary and Conclusions

6.1 Summary

In present report introduction to Applied Element Method, its difference with finite

element method, methodology used for applied element analysis (AEA) and applica-

tions of AEA for linear static analysis of structures are presented.

Introduction and overview of the Applied Element Method (AEM) and its advantages

for numerical modelling of large deformation, crack initiation, crack propagation in

structure are discussed.

Methodology of applied element analysis is illustrated. The stiffness matrix for one

dimensional and two dimensional elements are derived and various factors affecting

analysis results of applied element analysis are discussed.

Computer programs using C-language are developed for applied element analysis.

Using computer programs various one dimensional and two dimensional problems are

solved. One dimensional problem includes column with point load and uniformly

distributed load. Two dimensional problems include cantilever beam with point load

at free end, solid deep beam and deep beam with opening subjected to uniformly

distributed load and portal frame subjected to vertical and lateral load. The varia-

tions in results with different size of elements and with different number of connecting

springs are observed. The results of applied element method are compared with that

obtained by finite element method to check the accuracy of applied element method.
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6.2 Conclusions

From study carried out in this project following observations are made:

• The deformation and forces in element are represented by deformation and the

forces in springs. Two types of springs i.e. axial and shear, if considered in

various directions it can model one-dimensional, two dimensional and three

dimensional problems. Elements connected by one axial spring represents one-

dimensional problem, elements connected by one shear and one axial spring

represents two-dimensional problem and elements connected by two shear and

one axial spring represents three-dimensional problem.

• Stiffness matrix can be obtained by applying unit displacement in direction of

degrees of freedom and considering forces in spings of each direction. Derivation

of stiffness matrix is much simpler compared to that of FEM.

• The variables affecting accuracy of AEM results are : size of element and number

of contact springs. Smaller size of element with less number of springs gives

accurate results while larger size of element with more number of springs gives

less errors in analysis results.

• From solution of various one dimensional and two dimensional problems it is

observed that the accuracy of applied element method in analysis results is

similar to that of finite element method. The applied element method can be

used in place of finite element analysis for linear static analysis.

• The computer program developed for elastic analysis using applied element

method can be extended to non linear analysis.
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6.3 Future scope of work

The present work can be extended in future to include following aspects:

• In present study program is developed to calculate nodal displacement. In

future, stress and strain in various elements can be obtained using nodal dis-

placements, and spring forces.

• Linear static analysis of structural problems is carried out in this study. So,

further computer program can be extended for nonlinear analysis also.

• Work can also be extended to calculate failure or cracking load of structure

using nonlinear load-deformation relationship.
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Appendix A

List of Useful Websites

• www.sciencedirect.com

• www.asce.com

• www.pdf-search-engine.com

• www.elsevier.com
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Appendix B

Source code of Applied Element

Method

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<malloc.h>

#define cal(zz,qq) ((qq *) calloc(zz,sizeof(qq)))

float **sff,*df,*aj;

void main()

{

int i,j,k,ns,is,ne,nn,ie,*je,*ke,im[7],nrj,*rj,u,nlj,lj,type;

int *jrl,*kb,c1,nra,n1,*id,i1,i2,ir,ic,item1,nb;

float kn1,ks1,kn,ks,alp,the,len,alp1,the1,len1,sm[7][7],**sj,*ac;

float *e,*g,*x,*y,*th,*dispx,*dispy,*rotz,a, a1, b, b1,ad,d1,gama;

float temp,temp1,load,dm[7],am[7];

float *djg,*aj1;

char ch1[30],ch2[30];

void banfac(int n,int nb);

void bansol(int n,int nb);

FILE *f1,*f2;
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clrscr();

printf(“Enter the name of input file :”);

gets(ch1);

printf(“Enter the name of output file :”);

gets(ch2);

f1 = fopen(ch1,“r”);

f2 = fopen(ch2,“w”);

printf(“Welcome to first AFEM Program ”);

fscanf(f1,“%d %d %d”,&ne,&nn,&ns);

fprintf(f2,“No. of elements = %dNo. of nodes = %dNo.of springs=%d”,ne,nn,ns);

je = cal( (ne + 1) , int );

ke = cal( (ne + 1) , int );

th = cal( (ne + 1) , float );

e = cal( (ne + 1) , float );

g = cal( (ne + 1) , float );

x = cal( (nn + 1) , float );

y = cal( (nn + 1) , float );

jrl = cal( (3*nn + 1) , int );

id = cal( (3*nn + 1) , int );

ac = cal( (3*nn + 1) , float );

aj = cal( (3*nn + 1) , float );

aj1 = cal( (3*nn + 1) , float );

sj = (float **) calloc(3*nn+1,sizeof(float *));

for(i=1;i¡=3*nn;i++)

sj[i] = (float *) calloc(3*nn+1,sizeof(float));

for(i=1;i¡=ne;i++)

{

fscanf(f1,“%d %d %f %f %f”),&je[i],&ke[i],&th[i],&e[i],&g[i]);

fprintf(f2,“Member no.=%d”,i);

fprintf(f2,“j end= %d, k end= %d, thickness= %f ”,je[i],ke[i],th[i]);
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fprintf(f2,”Elasticity= %f, Modulus of rigidity= %f ”,e[i],g[i]);

}

for(i=1;i¡=nn;i++)

{

fscanf(f1,“%f %f”,&x[i],&y[i]);

fprintf(f2,“joint no.=%d, X-co-ordinate=%f Y-co-ordinate=%f ”,i,x[i],y[i]);

}

fscanf(f1,“%d”,&nrj);

rj = cal( (nrj + 1) , int );

dispx = cal( (nrj + 1) , float );

dispy = cal( (nrj + 1) , float );

rotz = cal( (nrj + 1) , float );

fprintf(f2,“No. of restrained joints=%d ”,nrj);

for(i=1;i¡=nrj;i++)

{

fscanf(f1,“%d %f %f %f”,&rj[i],&dispx[i],&dispy[i],&rotz[i]);

fprintf(f2,“joint no=%d,Displacement in x=%f, Displacement in y=%f, Rotation @

z=%f”,rj[i],dispx[i],dispy[i],rotz[i]);

}

fscanf(f1,“%d”,&nrj);

kb = cal( (nrj + 1) , int );

for(i=1;i¡=3*nn;i++)

jrl[i]=0;

fprintf(f2,“NRJ= %d”,nrj);

for(i=1;i¡=nrj;i++)

{

fscanf(f1,“%d”,&kb[i]);

fprintf(f2,“rest joint = %d”,kb[i]);

for(j=1;j¡=3;j++)
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{

fscanf(f1,“%d”,&c1);

fprintf(f2,“c1 = %d”,c1);

if(c1 ! = 1) jrl[3*kb[i]-(3-j)] = 1;

}

}

for(i=1;i¡=3*nn;i++)

fprintf(f2,“jrl[%d]=%d”,i,jrl[i]);

nra=0;

for(i=1;i¡=3*nn;i++)

{

if(jrl[i] ! = 0)continue;

nra = nra + 1;

}

fprintf(f2,“NRA=%d”,nra);

n1 = 0.;

for(i=1;i¡=3*nn;i++)

{

n1 = n1 + jrl[i];

if(jrl[i] > 0)

{

id[i] = nra + n1;

}

else

{

id[i] = i - n1;

}

}

for(i=1;i¡=3*nn;i++)

fprintf(f2,“id[%d]=%3d ”,i,id[i]);
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fprintf(f2,“Restr.Jt.:Restrain X : Restrain Y :Rot z:”);

for(i=1;i¡=nn;i++)

{

fprintf(f2,“%4d — %4d — %4d — %4d —”,i,jrl[3*i-2],jrl[3*i-1],jrl[3*i]);

}

nb = 0;

for(i=1;i¡=ne;i++)

{

k=0;

for(j=1;j¡=3;j++)

{

if(jrl[3*je[i]+1-j]==0)continue;

else k=k+1;

}

for(j=1;j¡=3;j++)

{

if(jrl[3*ke[i]+1-j]==0)continue;

else k=k+1;

}

if(nb¡= (3*(abs(je[i]-ke[i])+1)-k)) nb=3*(abs(je[i]-ke[i])+1)-k;

}

fprintf(f2,“Band Width = %d”,nb);

sff = (float **) calloc(nra+1,sizeof(float *));

for(i=1;i¡=nra;i++)

sff[i] = (float *) calloc(nb+1,sizeof(float));

for(i=1;i¡=nra;i++)

for(j=1;j¡=nb;j++)
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sff[i][j]=0.0;

for(ie=1;ie¡=ne;ie++)

{

for(i=1;i¡=6;i++)

for(j=1;j¡=6;j++)

sm[i][j] = 0.0;

ad=sqrt((x[je[ie]]-x[ke[ie]])*(x[je[ie]]-x[ke[ie]])+(y[je[ie]]-y[ke[ie]])*(y[je[ie]]-y[ke[ie]]));

gama=asin((y[ke[ie]]-y[je[ie]])/(ad))*180.0/3.14159253;

printf(“Gamma = %f”,gama);

gama=atan((y[je[ie]]-y[ke[ie]])/(x[je[ie]]-x[ke[ie]]))*180.0/3.14159253;

gama = 0.0;

kn1=e[ie]*th[ie]/ad;

ks1=g[ie]*th[ie]/ad;

fprintf(f2,“Element No. %d Length of ele = %f,KN1 = %f,KS1= %f”,ie,ad,kn1,ks1);

fprintf(f2,“Inclination of element = %f”,gama);

for(is=1;is¡=ns;is++)

{

d1=ad/ns;

kn=kn1*d1;ks=ks1*d1;

len=sqrt((ad/2)*(ad/2)+((ad/2)-((is-0.5)*d1))*(ad/2-((is-0.5)*d1)));

fprintf(f2,“length(%d) = %f”,is,len);

alp=asin((ad/2)/len)*180.0/3.14159253;

the=90.0-alp+gama;

fprintf(f2,“alpha(%d) = %f , thetha(%d) = %f”,is,alp,is,the);

a = (alp + the) * 3.141592536/180.0;

a1 = alp * 3.141592536/180.0;

alp1=alp;len1=len;the1=90-alp1-gama;

// fprintf(f2,“length1(%d) = %f”,is,len1);

// fprintf(f2,“alpha1(%d) = %f , thetha1(%d) = %f”,is,alp,is,the);

b = (alp1 + the1) * 3.141592536/180.0;
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b1 = alp1 * 3.141592536/180.0;

sm[1][1] += kn*sin(a)*sin(a) + ks*cos(a)*cos(a);

sm[1][2] += -kn*cos(a)*sin(a) + ks*sin(a)*cos(a);

sm[1][3] += -kn*sin(a)*len*cos(a1) + ks*cos(a)*len*sin(a1);

sm[1][4] += -kn*sin(b)*sin(a) + ks*cos(b)*cos(a);

sm[1][5] += -kn*cos(b)*sin(a) - ks*sin(b)*cos(a);

sm[1][6] += kn*len1*cos(b1)*sin(a) + ks*len1*sin(b1)*cos(a);

sm[2][2] += kn*cos(a)*cos(a) + ks*sin(a)*sin(a);

sm[2][3] += kn*cos(a)*len*cos(a1) + ks*sin(a)*len*sin(a1);

sm[2][4] += kn*sin(b)*cos(a) + ks*cos(b)*sin(a);

sm[2][5] += kn*cos(b)*cos(a) - ks*sin(b)*sin(a);

sm[2][6] += -kn*len1*cos(b1)*cos(a) + ks*len1*sin(b1)*sin(a);

sm[3][3] += kn*len*len*cos(a1)*cos(a1) + ks*len*len*sin(a1)*sin(a1);

sm[3][4] += kn*sin(b)*len*cos(a1) + ks*cos(b)*len*sin(a1);

sm[3][5] += kn*cos(b)*len*cos(a1) - ks*sin(b)*len*sin(a1);

sm[3][6] += -kn*len1*cos(b1)*len*cos(a1) + ks*len1*sin(b1)*len*sin(a1);

sm[4][4] += kn*sin(b)*sin(b) + ks*cos(b)*cos(b);

sm[4][5] += kn*cos(b)*sin(b) - ks*sin(b)*cos(b);

sm[4][6] += -kn*len1*cos(b1)*sin(b) + ks*len1*sin(b1)*cos(b);

sm[5][5] += kn*cos(b)*cos(b) + ks*sin(b)*sin(b);

sm[5][6] += -kn*len1*cos(b1)*cos(b) - ks*len1*sin(b1)*sin(b);

sm[6][6] += kn*len1*len1*cos(b1)*cos(b1) + ks*len1*len1*sin(b1)*sin(b1);

}

for(i=2;i¡=6;i++)

for(j=1;j¡=(i-1);j++)

sm[i][j] = sm[j][i];

fprintf(f2,“Stiffness Matrix of element %d:”,ie);

for(i=1;i¡=6;i++)

{
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for(j=1;j¡=6;j++)

fprintf(f2,“%f ”,sm[i][j]);

fprintf(f2,“ ”);

}

im[1]=3*je[ie]-2;

im[2]=3*je[ie]-1;

im[3]=3*je[ie];

im[4]=3*ke[ie]-2;

im[5]=3*ke[ie]-1;

im[6]=3*ke[ie];

for(j=1;j¡=6;j++)

{

i1 = im[j];

if(jrl[i1] > 0)continue;

for(k=j;k¡=6;k++)

{

i2 = im[k];

if(jrl[i2] ¿ 0)continue;

ir = id[i1];

ic = id[i2];

if(ir¡ic) ic=ic-ir+1;

else{

item1=ir;

ir=ic;

ic=item1;

ic=ic-ir+1;

}

sff[ir][ic] = sff[ir][ic] + sm[j][k];

}

}
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}

fprintf(f2,“Overall Stiffness Matrix :”);

for(i=1;i¡=nra;i++)

{

for(j=1;j¡=nb;j++)

fprintf(f2,“%f ”,sff[i][j]);

fprintf(f2,“”);

}

fscanf(f1,“%d”,&nlj);

for(i=1;i¡=nlj;i++)

{

fscanf(f1,“%d %d %f”,&lj,&type,&load);

ac[3*lj+(type-3)] += load;

}

fprintf(f2,“Combined load vector : ”);

for(i=1;i¡=3*nn;i++)

{

fprintf(f2,“ac[%d]=%f”,i,ac[i]);

fprintf(f2,“”);

}

for(i=1;i¡=nra;i++)

aj[i]=0.;

for(i=1;i¡=3*nn;i++)

aj1[id[i]]=ac[i];

for(i=1;i¡=nra;i++)

aj[i]=aj1[i];

df=cal((nra+1),float);

djg = cal((3*nn+1),float);
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banfac(nra,nb);

bansol(nra,nb);

for(i=1;i¡=3*nn;i++)

djg[i]=0.0;

k=1;

for(i=1;i¡=3*nn;i++)

{

if(jrl[i] ! = 0) djg[i] = 0.;

else

{

djg[i] = df[k];

k = k+1;

}

}

fprintf(f2,“GLOBAL DISPLACEMENT VECTOR.”);

fprintf(f2,“Joint Disp.- X Disp.- Y Rotn.- Z ”);

for(i=1;i¡=nn;i++)

fprintf(f2,“%.5d %9.2e %9.2e %9.2e ”,i,djg[3*i-2],djg[3*i-1],djg[3*i]);



Appendix C

C program for meshing of beam

The developed c program is used for generating meshing for beam and solid deep

beam

#include<stdio.h>

#include<math.h>

void main()

{

int i,j,k,nb,ns,nspr;

float bl,sh,elast,g,th ;

float mibeam,abeam,massb;

char ch1[30];

FILE *f1;

clrscr();

printf(”Enter name of Input file to be prepared :”);

gets(ch1);

f1=fopen(ch1,”w”);

printf(”Enter no. of bays :”);

scanf(”%d”,&nb);

printf(”Enter width of bays :”);

scanf(”%f”,&bl);

printf(”Enter no. of storeys :”);
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scanf(”%d”,&ns);

printf(”Enter height of storeys :”);

scanf(”%f”,&sh);

printf(”Enter number of springs :”);

scanf(”%d”,&nspr);

printf(”Enter thickness of element:”);

scanf(”%f”,&th);

printf(”Enter Modulus of Elasticity of material:”);

scanf(”%f”,&elast);

printf(”Enter Modulus of Rigidity of Material:”);

scanf(”%f”,&g);

fprintf(f1,”%d %d %d”,(ns*(2*nb+1))+nb,((nb+1)*(ns+1)),nspr);

for(i=1;i¡=ns;i++)

{

if(i == 1)

{

for(j=1;j¡=nb;j++)

{

fprintf(f1,”%d %d %f %f %f”,j,j+1,th,elast,g);

}

}

for(j=1;j¡=nb+1;j++)

{

if(j == 1)

{

fprintf(f1,”%d %d %f %f %f”,(i-1)*(nb+1)+j,i*(nb+1)+j,th,elast,g);

}

if(j == (nb+1))

{

fprintf(f1,”%d %d %f %f %f”,(i-1)*(nb+1)+j,i*(nb+1)+j,th,elast,g);



APPENDIX C. C PROGRAM FOR MESHING OF BEAM 94

}

if(j ! = 1 && j ! = (nb+1))

{

fprintf(f1,”%d %d %f %f %f”,(i-1)*(nb+1)+j,i*(nb+1)+j,th,elast,g);

}

}

for(j=1;j¡=nb;j++)

{

fprintf(f1,”%d %d %f %f %f”,i*(nb+1)+j,i*(nb+1)+j+1,th,elast,g);

}

}

for(i=1;i¡=ns+1;i++)

{

for(j=1;j¡=nb+1;j++)

{

fprintf(f1,”%f %f”,(j-1)*bl,(i-1)*sh);

}

}

}



Appendix D

C program for meshing of portal

frame

Using this program an element connectivity and nodal coordinates are generated for

portal frame.

#include<stdio.h>

#include<math.h>

void main()

{

int i,j,k,nb,ns,nspr,ncol,nbb,nsb;

float bl,sh,elast,g,th,colspac;

float mibeam,abeam,massb;

char ch1[30];

FILE *f1;

clrscr();

printf(“Enter name of Input file to be prepared :”);

gets(ch1);

f1=fopen(ch1,”w”);

printf(“Enter no. of columns : ”);

scanf(“%d”,&ncol);

printf(“Enter column spacing :”);
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scanf(“%f”,&colspac);

printf(“Enter no. of bays :”);

scanf(“%d”,&nb);

printf(“Enter width of bays :”);

scanf(“%f”,&bl);

printf(“Enter no. of storeys :”);

scanf(“%d”,&ns);

printf(“Enter height of storeys :”);

scanf(“%f”,&sh);

printf(“Enter no. of bays in beam : ”);

scanf(“%d”,&nbb);

printf(“Enter no. of storeys in beam : ”);

scanf(“%d”,&nsb);

printf(“Enter number of springs :”);

scanf(“%d”,&nspr);

printf(“Enter thickness of element:”);

scanf(“%f”,&th);

printf(“Enter Modulus of Elasticity of material:”);

scanf(“%f”,&elast);

printf(“Enter Modulus of Rigidity of Material:”);

scanf(“%f”,&g);

fprintf(f1,“%d %d %d”,((nsb*(2*nbb+1))+ncol*(nb+1)+nbb)+ncol*((ns*(2*nb+1))+nb),

(nsb+1)*(nbb+1)+ncol*((nb+1)*(ns+1)),nspr);

for(k=1;k<ncol;k++)

{

if(k==1) {

for(i=1;i<=ns;i++)

{

if(i == 1)

{
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for(j=1;j<=nb;j++)

{

fprintf(f1,“%d %d %f %f %f”,j,j+1,th,elast,g);

}

}

for(j=1;j<=nb+1;j++)

{

if(j == 1)

{

fprintf(f1,“%d %d %f %f %f”,(i-1)*(nb+1)+j,i*(nb+1)+j,th,elast,g);

}

if(j == (nb+1))

{

fprintf(f1,“%d %d %f %f %f”,(i-1)*(nb+1)+j,i*(nb+1)+j,th,elast,g);

}

if(j ! = 1 && j ! = (nb+1))

{

fprintf(f1,“%d %d %f %f %f”,(i-1)*(nb+1)+j,i*(nb+1)+j,th,elast,g);

}

}

for(j=1;j¡=nb;j++)

{

fprintf(f1,“%d %d %f %f %f”,i*(nb+1)+j,i*(nb+1)+j+1,th,elast,g);

}

}

}



APPENDIX D. C PROGRAM FOR MESHING OF PORTAL FRAME 98

for(i=1;i<=ns;i++)

{

if(i == 1)

{

for(j=1;j<=nb;j++)

{

fprintf(f1,“%d %d %f %f %f”,2*(ns*nb)+2*nb+j,

2*(ns*nb)+2*nb+j+1,th,elast,g);

}

}

for(j=1;j<=nb+1;j++)

{

if(j == 1)

{

fprintf(f1,“%d %d %f %f %f”,2*(ns*nb)+2*nb+(i-1)*(nb+1)+j,

2*(ns*nb)+2*nb+i*(nb+1)+j,th,elast,g);

}

if(j == (nb+1))

{

fprintf(f1,“%d %d %f %f %f”,2*(ns*nb)+2*nb+(i-1)*(nb+1)+j,

2*(ns*nb)+2*nb+i*(nb+1)+j,th,elast,g);

}

if(j ! = 1 && j ! = (nb+1))

{

fprintf(f1,“%d %d %f %f %f”,2*(ns*nb)+2*nb+(i-1)*(nb+1)+j,

2*(ns*nb)+2*nb+i*(nb+1)+j,th,elast,g);

}

}

for(j=1;j<=nb;j++)

{
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fprintf(f1,“%d %d %f %f %f”,2*(ns*nb)+2*nb+i*(nb+1)+j,

2*(ns*nb)+2*nb+i*(nb+1)+j+1,th,elast,g);

}

}

}

for(i=1;i<=nsb;i++)

{

if(i == 1)

{

for(j=1;j<=nbb;j++)

{

fprintf(f1,“%d %d %f %f %f”,2*(2*nb*(ns+1))+j,

2*(2*nb*(ns+1))+j+1,th,elast,g);

}

for(j=1;j<=nbb;j++)

{

if(j<=nb+1)

{

fprintf(f1,“%d %d %f %f %f”,2*(nb*ns)+j,

2*(2*nb*(ns+1))+j,th,elast,g);

}

if(j>=(colspac/bl)+nb)

{

fprintf(f1,“%d %d %f %f %f”,2*(ncol*(nb*ns)+ncol*nb)-(nb+1)+j,

2*(2*nb*(ns+1))+(colspac/bl)+nb+j,th,elast,g);

}

}

for(j=1;j<=nbb+1;j++)
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{

if(j == 1)

{

fprintf(f1,“%d %d %f %f %f”,2*(2*nb*(ns+1))+(i-1)*(nbb+1)+j,

2*(2*nb*(ns+1))+i*(nbb+1)+j,th,elast,g);

}

if(j == (nbb+1))

{

fprintf(f1,“%d %d %f %f %f”,2*(2*nb*(ns+1))+(i-1)*(nbb+1)+j,

2*(2*nb*(ns+1))+i*(nbb+1)+j,th,elast,g);

}

if(j ! = 1 && j ! = (nbb+1))

{

fprintf(f1,“%d %d %f %f %f”,2*(2*nb*(ns+1))+(i-1)*(nbb+1)+j,

2*(2*nb*(ns+1))+i*(nbb+1)+j,th,elast,g);

}

}

for(j=1;j<=nbb;j++)

fprintf(f1,“%d %d %f %f %f”,2*(2*nb*(ns+1))+i*(nbb+1)+j,

2*(2*nb*(ns+1))+i*(nbb+1)+j+1,th,elast,g);

}

}

}

for(k=1;k<ncol;k++)

{

if(k==1)

{

for(i=1;i<=ns+1;i++)

{
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for(j=1;j<=nb+1;j++)

{

fprintf(f1,“%f %f”,(j-1)*bl,(i-1)*sh);

}

}

}

for(i=1;i<=ns+1;i++)

{

for(j=1;j<=nb+1;j++)

{

fprintf(f1,“%f %f”,colspac+bl+(j-1)*bl,(i-1)*sh);

}

}

}

for(i=1;i<=nsb+1;i++)

{

for(j=1;j<=nbb+1;j++)

{

fprintf(f1,“%f %f”,(j-1)*bl,(i-1)*sh+((ns+1)*sh));

}

}

}



Appendix E

Sample Input and Output File

Input file for axially loaded column subjected to UDL

\∗ “Height of column” “Width of column” “Thickness of column” “No. of elements”

“No. of springs”“E”

300 10 10 5 10 100

\∗“Element connectivity”

1 2

2 3

3 4

4 5

\∗ No. of restraint joint (nrj)

5

\∗ Restraint condition

1 1

2 1

3 1

4 1

5 0
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\∗“Nodal load condition (column subjected to UDL of 10 N/mm. UDL is converted

into equivalent nodal load of 200 N/mm.

5

1 -600

2 -600

3 -600

4 -600

5 -600

\∗ End of input for column subjected to UDL.

Output file for axially loaded column subjected to UDL

length of an element = 300.00

Width of an element = 10.00

thickness of element= 10.00

elasticity=100.00

No. of springs = 05

No.of element =05

length of spring element= 60.00

Width of a spring element = 2.00

Number of member= 04

1 (30.00)

2 (90.00)

3 (150.00)

4 (210.00)

5 (270.00)

member data for 1 member: je= 1 ke= 2

member data for 2 member: je= 2 ke= 3

member data for 3 member: je= 3 ke= 4
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member data for 4 member: je= 4 ke= 5

No. of restrained joint= 05

restrained joint no.=1, dispx=1

restrained joint no.=2, dispx=1

restrained joint no.=3, dispx=1

restrained joint no.=4, dispx=1

restrained joint no.=5, dispx=0

stiffness matrix for member 1, 2, 3, 4 & 5

spring stiffness matrix 1

33.33 -33.33

-33.33 33.33

spring stiffness matrix 2

33.33 -33.33

-33.33 33.33

Likewise, stiffness matrix for each spring can be obtained.

Equivalent stiffness matrix for element 1, 2, 3 & 4

166.67 -166.67

-166.67 166.67

Assembled stiffness matrix:

166.67 -166.67 0.00 0.00 0.00

-166.67 333.33 -166.67 0.00 0.00

0.00 -166.67 333.33 -166.67 0.00

0.00 0.00 -166.67 333.33 -166.67

0.00 0.00 0.00 -166.67 166.67
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Combined load Vector:

ac[1]=-600.00

ac[2]=-600.00

ac[3]=-600.00

ac[4]=-600.00

ac[5]=-600.00

Displacements:

Disp[1]=-36.00

Disp[2]=-32.40

Disp[3]=-25.20

Disp[4]=-14.40

Disp[5]=-0.00

\∗ End of output for column subjected to UDL.
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Input file for cantilever beam subjected to point load at free end

\∗ “No. of member” “No. of Elements” “No. of springs”

28 20 5

\∗“J-end”“K-end”“Thickness of member”“E”“G”

1 2 300.00 25000.00 3750.00

2 3 300.00 25000.00 3750.00

3 4 300.00 25000.00 3750.00

4 5 300.00 25000.00 3750.00

5 6 300.00 25000.00 3750.00

6 7 300.00 25000.00 3750.00

7 8 300.00 25000.00 3750.00

8 9 300.00 25000.00 3750.00

9 10 300.00 25000.00 3750.00

1 11 300.00 25000.00 3750.00

2 12 300.00 25000.00 3750.00

3 13 300.00 25000.00 3750.00

4 14 300.00 25000.00 3750.00

5 15 300.00 25000.00 3750.00

6 16 300.00 25000.00 3750.00

7 17 300.00 25000.00 3750.00

8 18 300.00 25000.00 3750.00

9 19 300.00 25000.00 3750.00

10 20 300.00 25000.00 3750.00

11 12 300.00 25000.00 3750.00

12 13 300.00 25000.00 3750.00

13 14 300.00 25000.00 3750.00

14 15 300.00 25000.00 3750.00

15 16 300.00 25000.00 3750.00

16 17 300.00 25000.00 3750.00

17 18 300.00 25000.00 3750.00
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18 19 300.00 25000.00 3750.00

19 20 300.00 25000.00 3750.00

\∗“X-coordinate”“Y-coordinate”

0.00 0.00

300.00 0.00

600.00 0.00

900.00 0.00

1200.00 0.00

1500.00 0.00

1800.00 0.00

2100.00 0.00

2400.00 0.00

2700.00 0.00

0.00 300.00

300.00 300.00

600.00 300.00

900.00 300.00

1200.00 300.00

1500.00 300.00

1800.00 300.00

2100.00 300.00

2400.00 300.00

2700.00 300.00

\∗“No. of restraint joint”

2

\∗“Joint No.”“Horizontal DOF”“Vertical DOF”“Rotational DOF”

1 0 0 0

11 0 0 0
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\∗“No. of joint loads”

1

\∗“Joint No.”“Load type”“Intensity of load”

20 2 -100000

\∗ End of input file for cantilever beam subjected to 100kN point at free end

Output file for cantilever beam subjected to point load (300 mm Element

size & 5 No. of Springs

No. of elements = 28

No. of nodes = 20

No.of springs=5

“Member connectivity and Material properties”

Member no.=1

j end= 1, k end= 2, thickness= 300.00 Elasticity= 25000.00, Modulus of rigidity=

3750.00

Member no.=2

j end= 2, k end= 3, thickness= 300.00 Elasticity= 25000.00, Modulus of rigidity=

3750.00

Member no.=3

j end= 3, k end= 4, thickness= 300.00 Elasticity= 25000.00, Modulus of rigidity=

3750.00

Member no.=4

j end= 4, k end= 5, thickness= 300.00 Elasticity= 25000.00, Modulus of rigidity=

3750.00

Similarly, for all members 1-28.
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joint no.=1, X-co-ordinate=0.00 Y-co-ordinate=0.00

joint no.=2, X-co-ordinate=300.00 Y-co-ordinate=0.00

joint no.=3, X-co-ordinate=600.00 Y-co-ordinate=0.00

joint no.=4, X-co-ordinate=900.00 Y-co-ordinate=0.00

joint no.=5, X-co-ordinate=1200.00 Y-co-ordinate=0.00

joint no.=6, X-co-ordinate=1500.00 Y-co-ordinate=0.00

joint no.=7, X-co-ordinate=1800.00 Y-co-ordinate=0.00

joint no.=8, X-co-ordinate=2100.00 Y-co-ordinate=0.00

joint no.=9, X-co-ordinate=2400.00 Y-co-ordinate=0.00

joint no.=10, X-co-ordinate=2700.00 Y-co-ordinate=0.00

joint no.=11, X-co-ordinate=0.00 Y-co-ordinate=300.00

joint no.=12, X-co-ordinate=300.00 Y-co-ordinate=300.00

joint no.=13, X-co-ordinate=600.00 Y-co-ordinate=300.00

joint no.=14, X-co-ordinate=900.00 Y-co-ordinate=300.00

joint no.=15, X-co-ordinate=1200.00 Y-co-ordinate=300.00

joint no.=16, X-co-ordinate=1500.00 Y-co-ordinate=300.00

joint no.=17, X-co-ordinate=1800.00 Y-co-ordinate=300.00

joint no.=18, X-co-ordinate=2100.00 Y-co-ordinate=300.00

joint no.=19, X-co-ordinate=2400.00 Y-co-ordinate=300.00

joint no.=20, X-co-ordinate=2700.00 Y-co-ordinate=300.00

\∗ Stiffness matrix for element.

Stiffness Matrix of element 1:

7500000.00 -0.481299 -540000000.00 -7500000.00 -0.651169 540000000.00

-0.481299 1125000.00 168750032.00 0.651169 -1125000.00 168749952.00

-540000000.00 168750032.00 79312502784.00 540000000.00 -168749952.00 -28687503360.00

-7500000.00 0.651169 540000000.00 7500000.00 0.481299 -540000000.00

-0.651169 -1125000.00 -168749952.00 0.481299 1125000.00 -168750032.00

540000000.00 168749952.00 -28687503360.00 -540000000.00 -168750032.00 79312502784.00
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\∗ Applied Load Vector{F}

ac[1]=0.00

ac[2]=0.00

ac[3]=0.00

.

.

.

ac[58]=0.00

ac[59]=-100000.00

ac[60]=0.00

\∗ GLOBAL DISPLACEMENT VECTOR.

Joint Disp.- X Disp.- Y Rotn.- Z

1 0.00e+000 0.00e+000 0.00e+000

2 -1.70e-001 -1.84e-001 -9.55e-004

3 -3.09e-001 -6.01e-001 -1.62e-003

4 -4.27e-001 -1.20e+000 -2.16e-003

5 -5.27e-001 -1.94e+000 -2.61e-003

6 -6.08e-001 -2.81e+000 -2.97e-003

7 -6.71e-001 -3.77e+000 -3.26e-003

8 -7.16e-001 -4.81e+000 -3.46e-003

9 -7.42e-001 -5.89e+000 -3.55e-003

10 -7.42e-001 -6.97e+000 -3.45e-003

11 0.00e+000 0.00e+000 0.00e+000

12 3.84e-002 -1.79e-001 -8.71e-004

13 8.30e-002 -5.94e-001 -1.52e-003

14 1.24e-001 -1.19e+000 -2.06e-003

15 1.59e-001 -1.93e+000 -2.51e-003

16 1.87e-001 -2.80e+000 -2.87e-003

17 2.10e-001 -3.76e+000 -3.16e-003
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18 2.26e-001 -4.80e+000 -3.36e-003

19 2.36e-001 -5.88e+000 -3.47e-003

20 2.45e-001 -6.98e+000 -3.46e-003

\∗ End of output cantilever beam subjected to point load (300 mm Element size & 5

No. of Springs).



Appendix F

List of Papers Published/

Communicated

• Vikas Gohel and Dr. Paresh Patel, “Static Analysis of Beam Subjected to

Point Load at Free End using Applied Element Method (AEM)”, 8th Bien-

nial Conference (SEC-2012), SVNIT, Surat, India, 19-21 December. (Abstract

Communicated)

• Vikas Gohel and Dr. Paresh Patel, “Static Analysis of Portal Frame Subjected

to Lateral Load using Applied Element Method (AEM)”, 3rd International

Conference,NUiCON-2012, Nirma University, Ahmedabad, Gujarat, India, 6-

8 December. (Abstract Communicated)
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