EFFECT OF CORNER RADIUS AND CONFINEMENT LAYERS ON BEHAVIOUR OF RC COLUMNS

By

Sushil S. Sharma 10MCLC15

DEPARTMENT OF CIVIL ENGINEERING AHMEDABAD-382481 May 2012

EFFECT OF CORNER RADIUS AND CONFINEMENT LAYERS ON BEHAVIOUR OF RC COLUMNS

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Civil Engineering (Computer Aided Structural Analysis and Design)

By

Sushil S. Sharma 10MCLC15

DEPARTMENT OF CIVIL ENGINEERING AHMEDABAD-382481 May 2012

Declaration

This is to certify that

- i) The thesis comprises my original work towards the Degree of Master of Technology in Civil Engineering (Computer Aided Structural Analysis and Design) at Nirma University and has not been submitted elsewhere for a degree.
- ii) Due acknowledgement has been made in the text to all other material used.

Sushil S. Sharma

Certificate

This is to certify that the Major Project entitled "EFFECT OF CORNER RADIUS AND CONFINEMENT LAYERS ON BEHAVIOUR OF RC COLUMNS" submitted by Mr. Sushil S. Sharma (10MCLC15), towards the partial fulfilment of the requirement for the degree of Master of Technology in Civil Engineering (Computer Aided Structural Analysis and Design) of Nirma University, Ahmedabad, is the record of work carried out by him under my supervision and guidance. In my opinion, the submitted work has reached a level required for being accepted for examination. The results embodied in this major project, to the best of my knowledge, haven't been submitted to any other university or institution for award of any degree or diploma.

Mr. Himat SolankiDr. U.Guide and Visiting Faculty,Co - GuDept. of Civil Engineering,Dept. ofInstitute of Technology,InstitutNirma University,Nirma UAhmedabad.Ahmeda

Dr. U. V. Dave Co - Guide and Professor, Dept. of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad. **Dr. P. H. Shah** Professor and Head, Dept. of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad.

Dr K Kotecha

Director, Institute of Technology, Nirma University, Ahmedabad. Examiner

Date of Examination

iv

Abstract

Existing reinforced concrete (RC) columns may be structurally deficient due to variety of reasons such as improper transverse reinforcement, flaws in structural design, insufficient load carrying capacity, etc. A poorly confined concrete column behaves in a brittle manner, leading to sudden and catastrophic failures. Carbon/Glass(G) Fibre reinforced polymer (FRP) confinement can be effectively used for strengthening the deficient RC columns.

The effectiveness of FRP wrapping for RC columns mainly depends upon corner radius of the specimens as well as number of FRP layers used for the confinement. An attempt has been made hereby to investigate the experimental behaviour of GFRP wrapped small scale square RC columns with varying corner radii. Experimentally evaluated behaviour of GFRP wrapped RC columns is compared with the performance observed for non-wrapped RC columns. Experimental behaviour of RC columns is further compared with analytical results.

27 RC columns having cross-sectional dimensions $125\text{mm} \times 125\text{mm}$ and length of 1200mm have been cast and tested under axial compression. Three columns are unwrapped and have been designated as control specimens. Three columns each with corner radii equivalent to less than cover (15mm), equal to cover (25mm) and greater than cover (35mm), are wrapped with one & two layers of GFRP, respectively. To avoid a premature rupture of the GFRP composite, remaining six columns with corner radius of 5 mm have been wrapped with one and two layers of GFRP, respectively.

Analysis and design of control RC column has been done according to IS 456:2000 and ACI 318M - 08 provisions, respectively. IS 456:2000 does not cover provisions pertaining to design of FRP wrapped columns. The FRP wrapped columns are designed using provisions of ACI 440.2R - 08. To maintain adequate correlation, the control columns are further designed based on provisions of ACI 318M - 08.

Measurements taken during testing included axial compressive strength, displacement, axial strain, lateral strain, failure modes and crack patterns. Axial load has been applied from bottom of the column with the help of hydraulic jack. Displacement and axial strain measured with the help of LVDT and lateral strain measured with the help of P3 strain indicator and recorder are observed for the columns. Interval is kept 10 kN constant up to the complete failure of the column specimen. Percentage increment in ultimate failure load is ranging from 8.10 % to 149.45 % for all wrapped columns compared to control columns. GFRP wrapped column goes under higher axial displacement in order to gain higher compressive strength over control column. Lateral strain is more at the mid side of specimen and then reduces at starting of curvature to center of curvature for the columns. From the failure of column, it is clearly shown that the rupture of GFRP sheet transfers from edges (zone 1) to mid of side face (zone 2) of the specimen.

The results showed that smoothening of the edges of square cross-section play a significant role in delaying the rupture of the FRP composite at the edges. Increasing the number of GFRP layers increases the axial compressive strength of the specimens, but the strength increase is not in linear relation with the number of GFRP layers. From results it is interpreted that the corner radius equal to concrete cover gives better results in terms of ultimate load carrying capacity than the corner radius less than cover and more than cover.

Acknowledgement

I cannot present this work without first expressing my appreciation and gratitude to **Mr. Himat Solanki** and **Dr.U.V.Dave**, for their valuable guidance and constant encouragement at every stage of progress of the major project work. It was a very pleasant and inspiring experience for me to work under them.

My sincere thanks and gratitude to **Prof. N. C. Vyas**, **Dr. P. V. Patel**, Professor, Department of Civil Engineering, and **Dr. S. P. Purohit**, Associate Professor, Department of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad for their continual kind words of encouragement and motivation throughout the dissertation work.

I further extend my thanks to **Dr. P. H. Shah**, Head, Department of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad and **Dr. K Kotecha**, Director, Institute of Technology, Nirma University, Ahmedabad for providing all kind of required resources during my study.

Furthermore, I would like to acknowledge **Mr. Kaizad Engineer**, Director, Ustha Infinity Construction Pvt Ltd., for providing technical guidance as well as manpower for executing of GFRP wrapping on specimens. I would like to convey my special thanks to **Mr. Atul Gosalia**, Director, Industrial Corporation of India, for providing GFRP material along with primer and Saturant material for the experimental work.

I am extremely thankful to Mr. P. N. Raval, Laboratory Assistant, Concrete technology laboratory, Nirma University for his assistance during testing.

My gratitude towards my parents for their endless love and moral support as my

hardships are nothing in front of the hardships that my parents went through in order to get me where I stand today.

Last but not least, all my gratitude to my friends, thank you for your love, support and encouraging me in all possible ways throughout the major project work.

> Sushil S. Sharma 10MCLC15

Abbreviation, Notation and Nomenclature

\mathbf{R}_c
l_{ex} Effective length in respect of the major axis
l_{ey} Effective length in respect of the minor axis
DDepth in respect of the major axis
bWidth of the member
h Long side cross-sectional dimension of rectangular compression member
\mathbf{P}_{u} Axial load on the member
f_{ck} Characteristic compressive strength of the concrete
f'_c
A_c Area of concrete
A_g Gross area of concrete section
f_y Characteristic strength of the compression reinforcement
A_{sc} Area of longitudinal reinforcement for columns
A_{st}
ϕ Strength reduction factor
ρ_g Ratio of area of longitudinal steel reinforcement to cross-sectional area of a
compression member
f'_{cc}
\mathbf{P}_n
P_{cn}
P_{sn} Longitudinal reinforcing steel bars
ϕ_c
ϕ_s
\mathbf{N}_b
ϕ_{frp}
frpu
t_{frp}

C_c
C_E Environment reduction factor
f_{fu}^*
ε_{fu}^*
f_l confining pressure due to the FRP
nNumber of plies
ψf FRP strength reduction factor
E_f
\mathbf{t}_f
k_{ε} Efficiency factor
S0R0 Control column
S1R0 \ldots One layer of GFRP sheet for column having 5 mm corner radius
S2R0 Two layers of GFRP sheet for column having 5 mm corner radius
S1R1 One layer of GFRP sheet for column having 15 mm corner radius
S2R1Two layers of GFRP sheet for column having 15 mm corner radius
S1R2 One layer of GFRP sheet for column having 25 mm corner radius
S2R2
S1R3 One layer of GFRP sheet for column having 35 mm corner radius
S2R3
\mathbf{f}_{cc}
\mathbf{f}_{co}

Contents

De	eclar	ation	iii
Ce	ertifi	cate	iv
Al	bstra	ıct	\mathbf{v}
A	ckno	wledgement	vii
Al	bbre	viation, Notation and Nomenclature	ix
\mathbf{Li}	st of	Tables	xiii
\mathbf{Li}	st of	Figures	$\mathbf{x}\mathbf{v}$
1	Intr 1.1 1.2 1.3 1.4 1.5 1.6 1.7	Oduction General Behaviour of RC Columns under Axial Compressive Loading Behaviour of FRP-Confined Concrete under Axial Compressive Loading Research Significance Objectives of Study Scope of Work Organization of Report	1 1 2 4 5 5 6 7
2	Lite 2.1 2.2 2.3	Prature Review General Second Seco	9 9 9 20
3	Ana 3.1 3.2 3.3 3.4	Alytical Study General General Design of RC Column as per Indian Standard General Design RC Column as per ACI Provisions General Design of RC Column as per ACI Provisions General Design of RC Column Strengthened with GFRP Wrapping General	 24 24 24 28 28

CONTENTS

4	\mathbf{Exp}	erimental Work	36
	4.1	General	36
	4.2	Material Properties	36
		4.2.1 Concrete	36
		4.2.2 GFRP Sheet	38
	4.3	Preparation of RC Column	39
		4.3.1 Steel Reinforcement Cages	40
		4.3.2 Formwork	40
		4.3.3 Casting of Specimens	44
	4.4	Procedure of GFRP Wrapping	45
		4.4.1 Surface Preparation	45
		4.4.2 Application of Primer	47
		4.4.3 Cutting of GFRP Sheet	48
		4.4.4 Application of GFRP Sheet with Saturant	48
	4.5	Levelling of Column	51
	4.6	Test Setup	51
	4.7	Instrumentation	52
		4.7.1 Hydraulic Jack	53
		4.7.2 LVDT (Linear Variable Differential Transducer)	53
		4.7.3 Electrical Strain Gauges	54
5	Res	ults and Discussion	57
	5.1	General	57
	5.2	Notations for Columns	58
	5.3	Ultimate Failure Load	58
	5.4	Load vs. Displacement	66
	5.5	Axial Stress vs. Strain	81
		5.5.1 Axial Stress vs. Axial Strain	100
		5.5.2 Axial Stress vs. Lateral Strain	105
	5.6	Corner Radius Effect	108
	5.7	Failure Modes	110
	5.8	Experimental and Analytical Results	120
6	Sum	amary and Conclusion	121
U	6.1	Summary	121
	6.2	Conclusions	121
	6.3	Future Scope	123
Re	fere	nces	124
100			1 4 1
Α	Rea	dings in Tabular form	126
В	List	of Papers Communicated	208

List of Tables

2.1	Comparison of predicted ultimate concrete compressive strength of SFRP confined cylinders	21
3.1 3.2 3.3 3.4	Properties of control RC column	25 30 31 34
$4.1 \\ 4.2 \\ 4.3$	Proportions of ingredients used for concrete mix $(1m^3)$ Average Cube Strength	37 38 39
5.1	Ultimate failure load for RC columns	59
5.2	Percentage increment in ultimate failure load	60
5.3	Average displacement of specimen S0R0	67
5.4	Average displacement of specimen S1R0	68
5.5	Average displacement of specimen S2R0	69
5.6	Average displacement of specimen S1R1	71
5.7	Average displacement of specimen S2R1	72
5.8	Average displacement of specimen S1R2	74
5.9	Average displacement of specimen S2R2	75
5.10	Average displacement of specimen S1R3	77
5.11	Average displacement of specimen S2R3	78
5.12	Average results for S0R0 - axial stress, axial strain and lateral strain	83
5.13	Average results for S1R0 - axial stress, axial strain and lateral strain	84
5.14	Average results for S2R0 - axial stress, axial strain and lateral strain	86
5.15	Average results for S1R1 - axial stress, axial strain and lateral strain	88
5.16	Average results for S2R1 - axial stress, axial strain and lateral strain	90
5.17	Average results for S1R2 - axial stress, axial strain and lateral strain	92
5.18	Average results for S2R2 - axial stress, axial strain and lateral strain	94
5.19	Average results for S1R3 - axial stress, axial strain and lateral strain	96
5.20	Average results for S2R3 - axial stress, axial strain and lateral strain	98
5.21	Mean compressive strengths and corresponding f_{cc}/f_{co}	109
5.22	Comparison for experimental results to analytical results	120

A.1	Displacement of specimen S0R0	27
A.2	Displacement of specimen S1R0	28
A.3	Displacement of specimen S2R0	\$1
A.4	Displacement of specimen S1R1	\$4
A.5	Displacement of specimen S2R1	\$7
A.6	Displacement of specimen S1R2	0
A.7	Displacement of specimen S2R2	3
A.8	Displacement of specimen S1R3	6
A.9	Displacement of specimen S2R3	9
A.10	Lateral strain of specimen S0R0	62
A.11	Lateral strain of specimen S1R0	5
A.12	Lateral strain of specimen S2R0	51
A.13	Lateral strain of specimen S1R1	i8
A.14	Lateral strain of specimen S2R1	'4
A.15	Lateral strain of specimen S1R2	\$2
A.16	Lateral strain of specimen S2R2	\$8
A.17	Lateral strain of specimen S1R3	6
A.18	Lateral strain of specimen S2R3	12

List of Figures

1.1	Development of confined core in column
1.2	Effectively confined concrete in a square column
1.3	Flow chart for variation in parameters
2.1	Comparison of average axial capacity with respect to concrete com-
2.2	pressive strengths and number of SFRP layers
2.2	Effect of corner radius on confined square columns
2.3	Effect of corner radius on confined concrete in square and cylindrical columns
2.4	Circular column 14
2.5	Square column 14
2.6	Reinforcing details of Square column
2.7	Reinforcing details of Rectangular column
2.8	Strain gauge arrangements
2.9	Stress-strain curves
2.10	Axial stress vs. axial deformation
3.1	RC column with cross section
3.2	Reinforcement details of control RC column
3.3	RC column with different corner radii
4.1	GFRP sheet
4.2	Reinforcement cage for columns with PVC cover
4.3	Schematic view of formwork with sharp edges 41
4.4	Completed formwork with sharp edges 41
4.5	Different types of corner wooden patty
4.6	Schematic view of formwork for columns with corner radius 15mm,
	25mm and 35mm
4.7	Completed formwork with corner radius patty
4.8	Application of cello tape on the surface of wooden patty and plywood 43
4.9	Formwork with reinforcement cages for RC columns
4.10	After 24 hour of casting 45
4.11	Curing period of specimens
4.12	Grinding of column specimen

4.13	Removing of dust by washing the specimen	•	•	 46
4.14	Application of primer to column surface			 47
4.15	Cutting of GFRP sheet			 48
4.16	Application of GFRP sheet with saturant			 50
4.17	Procedure of column levelling			 51
4.18	Schematic view of test setup for axial load			 52
4.19	Hydraulic jack			 53
4.20	LVDT with aluminium setup			 54
4.21	P3 strain indicator and recorder			 55
4.22	Circuit diagram and connection for Quarter bridge			 55
4.23	Location of strain gauge			 56
5.1	R0 columns with corner radius	•	•	 61
5.2	R1 columns with corner radius	•	•	 62
5.3	R2 columns with corner radius	•	•	 63
5.4	R3 columns with corner radius	•	•	 63
5.5	Column wrapped with single GFRP layer			 64
5.6	Column wrapped with double GFRP layers	•		 65
5.7	Variation in clear cover with different corner radius			 66
5.8	R0 corner radius specimens with single and double layers $\ . \ .$			 70
5.9	R1 corner radius specimen with single layer and double layers			 73
5.10	R2 corner radius specimen with single layer and double layers			 76
5.11	R3 corner radius specimen with single layer and double layers			 79
5.12	Single layer wrapped specimen with different corner radii			 80
5.13	Double layer wrapped specimen with different corner radii			 81
5.14	R0 corner radius with one layer and two layers			 100
5.15	R1 corner radius with one layer and two layers			 101
5.16	R2 corner radius with one layer and two layers			 102
5.17	R3 corner radius with one layer and two layers			 103
5.18	Single layer with different corner radius			 104
5.19	Double layers with different corner radius			 105
5.20	Strain at mid, left, Center and Right of S2R2			 106
5.21	Single layer with different corner radius			 107
5.22	Double layer with different corner radius			 108
5.23	Strength gain of confined concrete vs. corner radius ratio			 110
5.24	Control specimen S0R0			 111
5.25	Specimens - S1R0			 112
5.26	Specimen - S2R0			 113
5.27	Specimen - S1R1			 114
5.28	$\overline{Specimen} - S2R1$			 115
5.29	Specimen - $S1R2$			 116
5.30	Specimen - S2R2			 117
5.31	Specimen - $S1R3$			 118
	_			

5.32	Specimen	- S2R3															119
	10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																

Chapter 1

Introduction

1.1 General

Existing reinforced concrete columns may be structurally deficient for several reasons: substandard seismic design details, improper transverse reinforcement, flaws in structural design, and insufficient load carrying capacity. Over the last few years, there has been a worldwide increase in the use of composite materials for the rehabilitation of deficient reinforced concrete structures. One important application of this composite retrofitting technology is the use of fibre reinforced polymer (FRP) jackets or sheets to provide external confinement to reinforced concrete columns when the existing internal transverse reinforcement is inadequate. Reinforced concrete columns need to be laterally confined in order to ensure large deformation under load before failure and to provide an adequate load resistance capacity. In the case of a seismic event, energy dissipation allowed by a well-confined concrete core can often save lives. On the contrary, a poorly confined concrete column behaves in a brittle manner, leading to sudden and catastrophic failures [1].

With the development of technology, the use of high-strength concrete members has proved most popular in terms of economy, superior strength, stiffness, and durability. With the increase of concrete strength, the ultimate strength of the columns increases, but a relatively more brittle failure occurs. The lack of ductility of high-strength concrete results in sudden failure without warning, which is a serious drawback. Previous studies have shown that addition of compressive reinforcement and confinement will increase the ductility as well as the strength of materials effectively. Concrete, confined by transverse ties, develops higher strength and to a lesser degree ductility.

In recent years, the composite materials, by their non-corrodibility, high stiffness and strength-to-weight ratios, have quickly appeared as innovative solutions adapted to the strengthening and the repair of civil engineering structures. The composite materials generally used are unidirectional carbon or glass fibre externally retrofitted to concrete by bonding. The resins used are epoxy. The confinement of concrete columns is thus an application where external wrapping by glass or carbon fibre reinforced polymers is particularly effective. This innovative technique is used for reinforcing old structures in the civil engineering field. Another attractive advantage of FRP over steel straps as external reinforcement is its easy handling. Thus, minimal time and labour are required for implementation. The application of FRP in the construction industry can eliminate some unwanted properties of high-strength concrete, such as its brittle behaviour. FRP is a durable material in normal exposure conditions and is capable of wrapping any shaped concrete sections.

1.2 Behaviour of RC Columns under Axial Compressive Loading

Concrete columns when confined by suitable arrangement of transverse reinforcement shows significant increase in both strength and ductility. When concrete column is subjected to compression load, it undergoes volumetric changes with a lateral increase in dimension due to progressive internal fracturing and bears out against the transverse reinforcement, which in turn exert a compressive reaction force on the concrete core. In this state the progress of internal fracturing is prevented, which in turn increases the strength and deformation capacity of concrete and therefore the main act of the lateral reinforcement is to produce a confined core. But as the confining action is more at the level of the ties and reduced along the length, entire core of the column do not remain effective throughout the length, Also the confining action is more at the region where there is longitudinal steel and reduced as the distance increase at the same level as shown Figure 1.1. The confinement provided in the form of hoops,

Figure 1.1: Development of confined core in column

spiral or ties is termed as passive confinement, as the confinement comes in to action when the concrete start to increase in volume due to progressive internal fracturing and bears out against the transverse reinforcement.

1.3 Behaviour of FRP-Confined Concrete under Axial Compressive Loading

A square column with rounded corners is shown in Figure 1.2. To improve the effectiveness of FRP confinement, corner rounding is generally recommended. Due to the presence of internal steel reinforcement, the corner radius R_c is generally limited to small values. Existing studies on steel confined concrete have led to the simple proposition that the concrete in a square or rectangular section is confined by the transverse reinforcement through arching actions, and only the concrete contained by the four second-degree parabolas is fully confined, while the confinement to the rest is negligible. These parabolas intersect the edges at 45°. While there are differences between steel and FRP in terms of providing confinement, the observation that only a part of the section is well confined is also valid in the FRP confinement. The reduced effectiveness of FRP jacket for a square or rectangular section than for a circular section has been confirmed by experimental results. Despite this reduced effectiveness, an FRP-confined square concrete column generally fails by FRP rupture [7].

Figure 1.2: Effectively confined concrete in a square column

1.4 Research Significance

The use of externally bonded FRP composite for strengthening and repair can be a cost-effective alternative for restoring or upgrading the performance of existing concrete columns. Even though a lot of research has been directed towards circular columns, relatively less work has been performed on square and rectangular columns, to examine the effects of FRP confinement on the structural performance. However, a vast majority of all columns in buildings are square or rectangular. Therefore their strength and rehabilitation need to be given attention to preserve the integrity of building infrastructure.

Up till now a lesser amount of research has been carried out on effect of corner radius i.e. How much corner radius should be kept in square column, which is less than cover (< cover), equal to cover (= cover) or greater than cover (> cover). As the more number of confinement layers increase the material cost, how many confinement layer should be provide which gives higher value of compressive strength.

1.5 Objectives of Study

The main endeavour of this study is to experimentally scrutinize the effects of upgrading the load carrying capacity of reinforced concrete square columns subjected to axial compression by confining with GFRP wraps. The objectives of the study are as follows:

- To enhance the load carrying capacity of RC column by Strengthening using GFRP wrapping.
- 2) To evaluate axial load, vertical deflection, lateral strain, mode of failure and crack patterns of RC columns under axial compressive loading experimentally.
- 3) To evaluate the effect of the corner radius on the performance of GFRP confined

columns.

- 4) To study change in behaviour of RC columns when the corner radius is varied as 0 mm, 15 mm, 25 mm & 35 mm, respectively.
- 5) To study change in the ultimate strength of confined concrete columns when the number of confinement layers are varied from 1 to 2.
- 6) To compare experimental results with analytical results for the RC columns.

1.6 Scope of Work

In order to achieve above objectives, the scope of present study is considered as follows:

• Total twenty seven RC columns are planned to be cast in the laboratory. 3 columns are without wrapping, whereas remaining 24 columns are wrapped with GFRP composite. All the columns are wrapped in such a manner that the fibres remain in a hoop direction around the columns. Figure 1.3 shows the flowchart for variations employed in parameters of the present study.

Figure 1.3: Flow chart for variation in parameters

- Variation in the corner radii has been employed for 18 columns. Corner radii of column included in present study are less than cover, equal to cover and more than cover, respectively.
- For each corner radius, the column specimens are to be wrapped by one layer and two layers of GFRP, respectively.
- Following measurements are planned to be taken during testing of the columns.
 - a. Ultimate failure load
 - b. Cracking pattern of wrapped and unwrapped columns
 - c. Axial stress strain behaviour
 - d. Maximum deflection
- Average result of three columns is to be considered as final result in terms of variation in above structural parameter for the columns.

1.7 Organization of Report

There are seven chapters included in this report. The contents of chapters are briefly described as follows:

Chapter 1 includes introduction, behaviour of RC columns under axial compressive loading and behaviour of FRP-confined concrete under axial compressive loading. The research significance, objectives of study and scope of work are also included in this chapter.

Chapter 2 discusses literature review. Many researchers have worked to improve capacity of column using FRP material. Investigations conducted on FRP wrapping and strengthening for deficient RC columns is presented in this chapter.

CHAPTER 1. INTRODUCTION

Chapter 3 consists of analysis and design of RC column with and without using GFRP sheet based on relevant codal provisions.

Chapter 4 explains the experimental work conducted in major project. It also highlights in detail the GFRP wrapping procedure, testing setup and instrumentation to be used during the testing of RC columns.

Chapter 5 includes results and discussion of failure load, deflection, and strain for all the column specimens in tabular form as well as in form of graphical representation. It also contains details about failure modes tested columns and comparison between experimental results with analytical results.

Chapter 6 consists of concluding remarks and future scope of work on basis of the work conducted in the major project.

Chapter 2

Literature Review

2.1 General

A brief review of experimental and analytical work related to RC Column strengthened using externally bonded FRP composites reported in literature is presented in this chapter.

2.2 Experimental Work

Silva [2] performed tests on axially loaded square RC columns, with and without FRP jackets. Square cross-section was divided into three groups according to corner sharpness: R1 - sharp edged corner; R2 - corner radius equal to 20 mm; R3 - corner radius equal to 38 mm. The FRP jackets were made either of CFRP or AFRP wraps and the geometry of the specimens included square and circular cross-sections. Comparison of gains of axial strength and ductility were presented and aspects of the variation of the lateral pressure and rupture of FRP jackets were examined. The improvement of axial load capacity gained, either from jackets of AFRP, or CFRP was almost equal for cylindrical columns. CFRP jacketed square column with sharp corner evidenced neither improvement of capacity, nor ductility. In the case of AFRP confinement there was improvement of load capacity, but no significant improvement

on ductility.

El-Hacha and Mashrik [3] experimentally evaluated the effectiveness of steel fibre reinforced polymer (SFRP) sheets to confine small-scale plain concrete circular and square columns. Different parameters were investigated including: number of SFRP layers (1, 2, and 3), target concrete compressive strength (25, 30, and 35 MPa), crosssection of the columns (circular and square), and corner radius for square columns (3, 6, 10, and 25 mm). The experimental investigation was conducted in three phases. In Phase I, 36 circular specimens (150 mm diameter \times 300 mm height) and in Phase II, 36 square specimens (150 mm side length \times 300 mm height) were tested. In each phase, the specimens were divided into three groups according to concrete compressive strength. In each group, three specimens were tested without wrapping for comparison purposes, and three specimens for each number of layers. In Phase III, 12 SFRP wrapped (one layer) square specimens with a target concrete compressive strength of 25 MPa were tested to investigate the effect of varying the corner radii on the confined compressive strength. Figure 2.1 (Phase I) and (Phase II) shows comparison of average axial strength with respect to concrete compressive strengths and number of SFRP layers. The specimens were tested under monotonic concentric uni-axial compression load. Results showed that SFRP confinement improved the performance of both circular and square specimens in terms of axial strength and ductility; however, the improvement for square specimens was not as prominent as that for circular specimens. Rounding the corners of the square specimens improves the situation for square specimens and performance enhances with increasing corner radius. The confined concrete compressive strength was predicted using equations available in different codes and models and compared with experimental results.

Figure 2.1: Comparison of average axial capacity with respect to concrete compressive strengths and number of SFRP layers

Al-Salloum [4] presented the experimental and analytical results of the study conducted to investigate the influence of the radius of the cross-sectional corners (edges) on the strength of small scale square concrete column specimens confined with FRP composite laminates. The experimental part of the study was achieved by testing 20 specimens under uniaxial compression. Depending on the selected radius of the edges, the section varied from square to circular. Intermediate radii were about 1/6, 1/4, and 1/3 of the side dimension. The sharpest square specimens had a corner radius of 5 mm to make composite application easier and to avoid a premature rupture of the composite. The results showed that smoothening the edges of square cross-section plays a significant role in delaying the rupture of the FRP composite at these edges, and the efficiency of FRP confinement is directly related to the radius of the crosssection edges. A modified analytical model was presented to predict the strength of FRP-confined square as well as circular sections. Figure 2.2 clearly illustrates the

Figure 2.2: Effect of corner radius on confined square columns

effect of corner radii by comparing the stress-strain curves of square confined columns with corner radii (r) of 5, 25, 38, and 50 mm, with that of the confined cylinder. It can be seen that increasing the radius results in changing the behaviour of the confined square column to become gradually similar to that of a confined cylinder. This behaviour is illustrated in Figure 2.3.

Figure 2.3: Effect of corner radius on confined concrete in square and cylindrical columns

Esfahani and Kianoush [5] presented the results of a study on the axial compressive strength of columns strengthened with FRP wrap. The experimental part of the study included testing 6 reinforced concrete columns in two series. The first series comprised three similar circular reinforced concrete columns strengthened with FRP wrap (Figure 2.4). The second series consisted of three similar square columns, two with sharp corners, and the other with rounded corners (Figure 2.5). Axial load and displacement of columns were recorded during tests using a displacement control test set up. Test results were compared with the values calculated using CSA (Canadian Standard Association) Code provisions. It was shown that the FRP wrap increases the strength and ductility of circular columns, significantly. According to the test results, the FRP wrap did not increase the strength of square columns with sharp corners. However, the square column with rounded corners exhibited a higher strength and ductility compared to those with sharp corners.

Figure 2.4: Circular column

Figure 2.5: Square column

Wang and Hsu [6] proposed a design method and an experimental programme to evaluate the axial load strength of rectangular and square reinforced compression members confined with GFRP jackets and steel hoops. Three square and three rectangular columns were tested under axial compression up to failure. Figure 2.6 and Figure 2.7 shows dimension of columns, corner radius and reinforcement detail. The test results clearly showed the efficiency of the jackets in enhancing the ultimate strain and strength of the columns. The design method was calibrated using data from the tests. Closed-form equations are proposed for calculating the axial load strength of columns confined with FRP jackets.

Figure 2.6: Reinforcing details of Square column

Figure 2.7: Reinforcing details of Rectangular column

Wang and Wu [7] examined how jacketing confines the concrete, and increases the strength and ductility of the jacketed columns. They suggested that a sharp corner (i.e., a zero corner radius) offers no confinement. The study was undertaken of compressive testing to investigate the effect of corner radius on the strength and ductility of FRP-confined concrete columns. A series of tests on 108 CFRP confined short concrete columns were conducted. The primary variables in the investigation were the corner radius, transverse jacket stiffness, and concrete grade. Figure 2.8 shows different location of strain gauges on the surface of specimen for sharp edges as well as for the specimen having different corner radii.

Figure 2.8: Strain gauge arrangements

Benzaid et al. [1] analysed experimental results in terms of load-carrying capacity and strains, obtained from tests on square prismatic concrete column, strengthened with external glass fibre composite. The parameters considered were the number of composite layers and the corner radius for a square shape. A total of twenty-one prisms of size $100 \times 100 \times 300$ mm were tested under strain control rate of loading. From the test results it was suggested that a larger radius can expand the strong constraint zone and diminish the stress concentration. So the reduced confining pressure in a square section due to the concentration of stresses at the corners is solved by using a square section with corner radius. Figure 2.9 shows the plot of axial stress vs. axial strain for different corner radii as well as for the number of layers observed during the study.

Figure 2.9: Stress-strain curves

Wu and Wei [8] conducted tests on rectangular columns strengthened with CFRP wrap. Three series of uniaxial compression tests were conducted on 45 specimens. The parameters considered were aspect ratio, defined as the depth (longer side) / width (shorter side) of the cross-section, and the number of CFRP layers. The behavior of the specimens in the axial and transverse directions was investigated. The test results clearly demonstrate that the strength gain in the confined concrete columns relative to the original unconfined columns, $f_{cc} = f_{co}$ decreases as the aspect ratio increases, until it becomes insignificant when the aspect ratio reaches 2. The test results were compared with the analytical and significant differences were found, indicating the need for further model development.

Toutanji et al. [9] focused on axially loaded, large-scale rectangular RC columns confined with FRP wrapping. Tests were conducted to obtain the stress-strain response and ultimate load for three field-size columns having different aspect ratios and/or corner radii. Effective transverse FRP failure strain and the effect of increasing confining action on the stress-strain behavior were examined. Existing strength models, the majority of which were developed for small-scale specimens, were applied to predict the structural response. Since some of them fail to adequately characterize the test data and others were complex and require significant calculation, a simple design-oriented model was developed. The new model was based on the confinement effectiveness coefficient, an aspect ratio coefficient, and a corner radius coefficient. It accurately predicts the axial ultimate strength of the large-scale columns at hand and, when applied to the small-scale columns studied by other investigators, produces reasonable results.

Luca at el. [10] presented a pilot research that includes laboratory testing of fullscale square and rectangular RC columns externally confined with glass and basaltglass FRP laminates and subjected to pure axial load. Specimens that were representative of full-scale building columns were designed according to a American Concrete Institute (ACI) 318 code (i.e., prior to 1970) for gravity loads only. The study was conducted to investigate how the external confinement affects peak axial strength and deformation of a prismatic RC column. The results showed that the FRP confinement increases concrete axial strength, but it is more effective in enhancing concrete strain capacity. The discussions of the results included a comparison with the values obtained using existing constitutive models. Figure 2.10 shows plot of axial stress vs. axial deformation for control specimen and specimen with different wrapping material for square columns.

Figure 2.10: Axial stress vs. axial deformation

2.3 Analytical Work

El-Hacha and Mashrik [3] compared experimental results with predicted results using equations available in different codes and models for evaluated compressive strength of confined concrete. The maximum FRP-confined concrete compressive strength, f'_{cc} was predicted using the equations from the ACI Committee 440 (ACI 440.2R-08, 2008), CAN/CSA S6-06 Bridge Code, CAN/CSA S806-02 FRP Building Code, and the model by Spoelstra and Monti. In these predictions, the maximum FRP confined concrete compressive strength was based on the average measured unconfined concrete compressive strength f'_c in the corresponding test. Table 2.1 shows that the ACI model provides the most conservative estimation of the strength of SFRP confined cylinders.

Specimen designation	Experimental f'_{cc} (MPa)	ACI 440.2R-08 [10]		S6-06 Bridge Code [20]		S806-02 FRP Building Code [19]	
		f_{cc}^{\prime} MPa)	% diff.	f_{cc}^{p} (MPa)	% diff.	f_{cc}^{p} (MPa)	% diff.
C34.8W1	89.1	62.8	-29.4	67.1	-24.6	97.1	9.0
C34.8W2	142.3	90.9	-36.1	99.4	-30.1	149.6	5.1
C34.8W3	176.9	118.9	-32.8	131.7	-25.5	197.6	11.7
C41.1W1	99.8	69.1	-30.7	73.4	-26.4	102.4	2.6
C41.1W2	144.6	97.2	-32.8	105.7	-26.9	154.9	7.1
C41.1W3	183.5	125.2	-31.8	138.0	-24.8	202.9	10.6

Table 2.1: Comparison of predicted ultimate concrete compressive strength of SFRP confined cylinders

The S6-06 Bridge Code uses a simple equation,

$$f'_{cc} = f'_c + 4.1 f_y \tag{2.1}$$

where,

 $f_y =$ yield strength

To determine the lateral confinement stress f_l (maximum confinement pressure due to FRP-jacket), S6-06 Bridge Code uses f_{fu} (design ultimate tensile strength of FRP) the ultimate tensile strength of FRP as the effective stress level in the FRP at failure, which was not a rational assumption, since due to non-uniform hoop strain distribution; FRP ultimate tensile strain and hence FRP ultimate tensile strength may not be reached at failure. For this reason, the ACI model included the strain efficiency factor; which given more conservative results compared to the S6-06 Bridge Code.

Wang and Hsu [6] presented nominal concentric compressive strength of a short concrete column,

$$P_n = P_{cn} + P_{sn} \tag{2.2}$$

Where,

 P_{cn} = nominal compressive strength carried by the concrete,

 $P_{sn} =$ longitudinal reinforcing steel bars

For design purposes it was necessary to reduce the nominal concentric strength given in Eq. (2.3), to account for variations in the material properties, scatter in the design equation, bending of the columns, nature and consequences of failure and reduction in load carrying capacity under long-term loads. This reduction results in a dependable concentric strength, ϕP_n , for short column given by

$$\phi P_n = \phi_c P_{cn} + \phi_s P_{sn} \tag{2.3}$$

the ACI 318 Building Code requires for columns that the ultimate axial compressive load found from analysis shall not exceed ϕP_n calculated as,

$$\phi P_n = 0.80\phi (0.85P_{cn} + P_{sn}) \tag{2.4}$$

For the axial compression members with transverse hoops, the strength reduction factor ϕ of 0.7 is adopted. Therefore, Eq. (2.4) becomes

$$\phi P_n = 0.476 P_{cn} + 0.56 P_{sn} \tag{2.5}$$

where,

 $\phi_c=0.476$ and $\phi_s=0.56$

The predicted values resulting from the evaluation method correlate very well with the experimental results. Esfahani and Kianoush [5] evaluated axial compressive strength of concrete columns without FRP wrap. According to CSA Standard A23.3-94, the axial strength of a reinforced concrete column is calculated by:

$$P_r = \phi_c \alpha 1 f'_c (A_g - A_{st}) + \phi_s f_y A_{st}$$

$$\tag{2.6}$$

Where,

 $\alpha \ 1=0.85-0.0015 f'_c \ge 0.67,$ $A_g = \text{Gross area of section},$ $A_{st} = \text{Total area of longitudinal reinforcement},$ $f_y = \text{Specified yield strength of reinforcement},$ $\phi_c \text{ and } \phi_s = \text{Resistance factors for concrete and steel (=1 for laboratory conditions)}.$

To calculate the value of confined concrete the following equation has been presented:

$$P_{rc} = \phi_c \alpha 1 f'_{cc} (A_g - A_{st}) + \phi_s f_y A_{st}$$

$$\tag{2.7}$$

Where,

$$\begin{aligned} f_{cc}' &= f_c' \left(1 + \alpha_{pc} \ \omega_w \right) \\ \omega_w &= f_{lfrp} \ / \ \phi_c \ f_c' \\ f_{lfrp} &= 2N_{b\phi frp} \ E_{frp} \ \varepsilon_{frp} \ t_{frp} (b+h) \ / \ (bh) \\ N_b &= \text{Number of layers of FRP} \\ \varepsilon_{frp} &= \text{Resistance factor for the FRP} \ (=1 \text{ for laboratory conditions}) \\ f_{frpu} &= \text{Ultimate tensile strength of the FRP} \\ t_{frp} &= \text{Thickness of the FRP} \end{aligned}$$

Proposed equation for FRP wrapped square columns can be used to predict the axial strength of square columns only if the corners of the columns are rounded appropriately.

Chapter 3

Analytical Study

3.1 General

Experimental study is conducted on Square RC column of size $125 \times 125 \times 1200$ mm. Analysis and design of Control RC column has been done according to IS 456:2000 [12] and ACI 318M-08 [13] provisions. Analysis and design of RC column strengthened using GFRP wrapping has been conducted using ACI-440.2R [14] provisions and is further included in this chapter.

3.2 Design of RC Column as per Indian Standard

Present investigation includes a short column subjected to axial compressive load. Therefore, the column is designed based on IS 456:2000 [12] provisions to check ultimate load carrying capacity of the member. Before evaluating the failure load of column, a check is made for its slenderness. Figure 3.1 shows cross section of the column with dimensions and direction of the application of axial load.

Figure 3.1: RC column with cross section

Parameters of assumed section of RC columns are as given in Table 3.1.

Column properties						
1	Length of column	1200 mm				
b	Section width	125 mm				
d	Section depth	125 mm				
l_{ef}	Effective length of column	1200 mm				
C_c	Clear cover	$25 \mathrm{~mm}$				
f_{ck}	Characteristic cube compressive strength	$20.57 \text{ N}/mm^2$				
	of concrete	[Table 4.2]				
f'_c	Specified compressive strength of concrete	$16.46 \text{ N}/mm^2$				
	$(0.8 \times f_{cube})$	[3.3]				
f_y	Characteristic strength of the compression	$415 \text{ N}/mm^2$				
	reinforcement					

Table 3.1: Properties of control RC column

• Check for Short Compression Members

A compression member may be considered as a short column, when both the slenderness ratios l_{ex} / D and l_{ey} / b are less than 12. For short axially loaded column,

Slenderness ratio =
$$\frac{l_{ex}}{D}$$
 or $\frac{l_{ey}}{b} < 12$ (3.1)
= $1200/125$
= $9.6 < 12$

Hence, this column is a short column.

• Short Axially Loaded Members in Compression

D

The member is designed by the following equation,

$$P_u = 0.4 f_{ck} A_c + 0.67 f_y A_{sc}$$
(3.2)
= 0.4 × 20.57 × (15625 - 201.06)+(0.67 × 415 × 201.06)

= 182.81 kN

Where,

 $A_c =$ Area of concrete - A_{sc}

 A_{sc} = Area of longitudinal reinforcement for columns

(Assuming 4 - 8 mm ϕ bars are used)

• Calculation for Lateral Ties

Pitch of transverse reinforcement shall not be more than the least of the following dimension:

i) The least lateral dimension of the compression members,

= 125 mm

ii) Sixteen times the smallest diameter of the longitudinal reinforcement bar to be tied,

 $= 16 \times 8$

= 128 mm

iii) 300 mm.

Diameter of transverse reinforcement shall be taken as per following recommendations:

i) The diameter of the lateral ties shall not be less than one fourth of the diameter of the largest longitudinal bar,

$$=\frac{1}{4}\times 8$$

- = 2 mm
- ii) In no case less than 6 mm.

Hence provide, 4 Nos. of 8mm ϕ bar as longitudinal reinforcement and 6mm ϕ bar 125mm c/c as transverse reinforcement. Details of test specimen are summarized in Figure 3.2.

Figure 3.2: Reinforcement details of control RC column

3.3 Design RC Column as per ACI Provisions

IS 456:2000 [12] does not cover any provisions pertaining to design of FRP wrapped columns. The FRP wrapped columns are designed using provisions of ACI 440.2R - 08 [14]. However to maintain adequate correlation, the control columns are further designed based on provisions of ACI 318M - 08 [13]. Parameters of assumed section of RC columns are as given in Table 3.1.

For short axially loaded column,

$$P_n = 0.80[0.85f'_c(A_q - A_{st}) + f_y A_{st}]$$
(3.3)

$$= 0.80 [0.85 \times (0.8 \times 20.57) \times (15625 - 201.06)] + (415 \times 201.06)$$

= 239.34 kN

Where,

 A_g = Gross area of concrete section A_{st} = Total area of nonprestressed longitudinal reinforcement (Assumed 4 - 8mm ϕ)

Note: $f'_c = 0.8 \times f_{cube}$ = 0.8 × 20.57 [Table 4.2] = 16.46 N/mm²

3.4 Design of RC Column Strengthened with GFRP Wrapping

It is desired to design an FRP wrapping for RC column of square section, in order to evaluate increase in load bearing capacity due to the wrapping. Before application of the wrapping, in order to avoid concentration of stresses at the corners, they have been rounded with various radii as shown in Figure 3.3. Following different corner radii have been considered:

- 0 mm Corner radius (Sharp edges)
- 15 mm Corner radius (Less than cover of 25 mm)
- 25 mm Corner radius (Equal to cover of 25 mm)
- 35mm Corner radius (More than cover of 25 mm)

Figure 3.3: RC column with different corner radii

For axial column members with existing steel-tie reinforcement,

$$\phi P_n = 0.80\phi [0.85f'_c(A_g - A_{st}) + f_y A_{st}]$$

$$= 0.80 \times 0.70 [0.85 (0.8 \times 20.57) \times (15625 - 201.06) + 415 \times 201.06]$$
(3.4)

= 167.55 kN

Where,

 $\phi =$ Strength reduction factor

= 0.70 (For members with tie reinforcement)

Properties of GFRP material used for wrapping the RC columns are given in Table 3.2.

Thickness t _f	Ultimate tensile strength f _{fu} *	Modulus of Elasticity E _f	Rupture
(mm)	(MPa)	(MPa)	strain ɛ _{fu} *
0.324	3400	74500	0.043

Table 3.2: Properties of GFRP material

• Column with Sharp Edges

Sharp edges of columns are assumed to be having no corner radius. However, to avoid a premature rupture of the GFRP composite, 5mm corner radius has been provided and then wrapping is conducted using the GFRP sheet. Table 3.3 shows properties of RC column with sharp edges.

Column Properties						
1	Length of column	1200 mm				
b	Short side dimension of compression member	125 mm				
h	Long side cross-sectional dimension of rectangular compression member					
r _c	r _c Radius of edges of a prismatic cross section confined with FRP					
\mathbf{A}_{g}	Gross area of concrete section	15604 mm ²				
A _{st}	Ast Total area of longitudinal reinforcement					
ρ _g	Ratio of area of longitudinal steel reinforcement to cross- sectional area of a compression member	1.29 %				
ſc'	Specified compressive strength of concrete	16.46 N/mm ²				
f _y	Specified yield strength of nonprestressed steel reinforcement	415 N/mm ²				
ϕP_n	Design axial strength	167.55 kN				
ϕP_n (req)	Required % to achieve design axial strength	21%				

Table 3.3: RC Column Properties for Sharp edges

Design procedure given in ACI 440.2R-08 [14] for GFRP wrapped RC column computes finally number of FRP layers required to achieve particular design strength. However, in the present case, the number of wrap is to be provided for RC columns are fixed. Thus, for ϕP_n of 167.55 kN and number of GFRP layer to be used for strengthening RC column is 1. Therefore, from back propagation technique, ϕP_n (req) has been calculated as 21 % for 0 mm radius single wrap RC column.

The calculations for RC column with 5mm corner radius and strengthened using 1 GFRP wrap are as follows:

Step 1: Computation of the FRP material properties

$$f_{fu} = C_E f_{fu} * \tag{3.5}$$

$$= 0.75 \ 3400$$

$$= 2550 \text{ N/mm}^2$$

$$\varepsilon_{fu} = C_E \varepsilon_{fu} * \tag{3.6}$$

$$= 0.75 \ge 0.043$$

$$= 0.032 \text{ mm/mm}$$

where,

 C_E = Environment reduction factor 0.75 for GFRP sheet $f_{fu}*$ = Ultimate tensile strength $\varepsilon_{fu}*$ = Rupture strain

Step 2: Determination of required maximum compressive strength of confined concrete f'_{cc}

$$f'_{cc} = \frac{1}{0.85(A_g - A_{st})} \left(\frac{\phi P_{nreq}}{0.80\phi} - f_y A_{st}\right)$$
(3.7)
= 23.38 N/mm²

where,

$$\label{eq:phi} \begin{split} \phi &= 0.65 \\ \phi p_{nreq} &= 202.54 \ \mathrm{N}/mm^2 \end{split}$$

Step 3: Determination of maximum confining pressure due to the FRP jacket, f_l

$$f_l = \frac{f'_{cc} - f'_c}{3.3k_a} \tag{3.8}$$

 $= \frac{23.38 - 16.46}{3.3 \times 0.43}$ $= 4.90 \text{ N/mm}^2$

where,

$$k_a = \frac{A_e}{A_c} (\frac{b}{h})^2$$

$$= 0.43$$
(3.9)

$$\frac{A_e}{A_c} = \frac{1 - \frac{[(\frac{b}{h})(h - 2r_c)^2 + (\frac{h}{b})(b - 2r_c)^2]}{3A_g} - \rho_g}{1 - \rho_g}$$
(3.10)

= 0.43

Step 4: Determination of number of plies n

$$n = \frac{f_l \sqrt{b^2} + h^2}{\psi_f 2E_f t_f \varepsilon_{fe}}$$
(3.11)
= 1.01 \approx 1

where,

 ψ_f = FRP strength reduction factor 0.95 for fully wrapped sections E_f = Modulus of elasticity 74500 N/mm² t_f = Thickness of layer 0.324 mm

$$\varepsilon_{fe} = k_{\varepsilon} \varepsilon_{fu} \tag{3.12}$$
$$= 0.0177$$

 $k_{\varepsilon} =$ Efficiency factor 0.55

Similar, calculations are made for RC columns with 15 mm, 25 mm and 35 mm corner radii strengthened with 1 and 2 GFRP wrap, respectively. Results of all RC columns are summarized in Table 3.4.

Notation	No. of Wraps	Corner Radius (mm)	Area (mm²)	P _u as per IS 456 : 2000 (kN)	P _n as per ACI 318M - 08 (kN)	φ <i>P_n</i> as per ACI 440.2R - 08 (kN)	φP _n (required) %	φ <i>P_n</i> (kN)
S0R0	0	0	15625	182.81	239.34	-	-	-
S1R0	1	5	15604	182.63	239.12	167.55	21	202.54
S2R0	2	5	15604	182.63	239.12	167.55	49	249.40
S1R1	1	15	15432	181.23	237.20	166.04	32	219.17
S2R1	2	15	15432	181.23	237.20	166.04	71	283.92
S1R2	1	25	15089	178.41	233.36	163.35	41	230.32
S2R2	2	25	15089	178.41	233.36	163.35	89	308.73
S1R3	1	35	14573	174.17	227.61	159.32	48	235.80
S2R3	2	35	14573	174.17	227.61	159.32	102	321.84

Table 3.4: Various column parameters based on different code provisions

Where,

Notation of Specimen:

- S = Square column
- 0 = No wrapping
- 1 =Single layer of GFRP wrap
- 2 =Double layers of GFRP wrap
- R0 = 5 mm corner radius
- R1 = 15 mm corner radius
- R2 = 25 mm corner radius
- R3 = 35 mm corner radius

The values presented in Table 3.4 of various column parameters will be use full in comparing analytical results with experimental results and the same has been given in chapter.

Chapter 4

Experimental Work

4.1 General

This chapter deals with the casting and testing of RC column. Experimental work related to evaluation of compressive strength has been conducted on the column specimens. The columns are wrapped with GFRP composites to study the effect of varying corner radius and changing FRP layers in improvement of the compressive load carrying capacity of RC columns. RC columns have been tested under axial loading conditions.

4.2 Material Properties

4.2.1 Concrete

Castings of all columns are conducted by using M15 concrete grade mix. Mix design of M15 concrete has been made. Concrete mix proportion selected as Water : Cement : Sand : Coarse Aggregates, 0.60 : 1 : 3.25 : 5. Proportion of ingredients used for $1m^3$ concrete mix are shown Table 4.1. Table 4.2 shows average cube strength of 3 cubes after 28 day of curing period which was taken at the time of casting of specimens. Therefore, the average value of cube compressive strength of concrete is 20.57 N/mm^2 and also has been used in analytical computations in chapter 3 whenever required.

Ingredients	Quantity		
Cement	270 kg/m ³		
Sand	877.5 kg/m ³		
10 mm aggregate	945 kg/m ³		
20 mm aggregate	405 kg/m ³		
Free water	162 kg/m ³		

Table 4.1: Proportions of ingredients used for concrete mix $(1m^3)$

Batch No.	Date of Casting	Date of Testing	Average Dial Gauge Reading (kN)	Average Cube Strength (N/mm ²)
1	16/12/2011	13/01/2012	470	20.89
2	18/12/2011	15/01/2012	430	19.11
3	20/12/2011	17/01/2012	500	22.12
4	30/12/2011	27/01/2012	410	18.22
5	31/12/2011	28/01/2012	510	22.67
6	1/01/2012	29/01/2012	400	17.78
7	2/01/2012	30/01/2012	390	17.33
8	3/01/2012	31/01/2012	420	18.66
9	4/01/2012	1/02/2012	465	20.66
10	5/01/2012	2/02/2012	515	22.89
11	6/01/2012	3/02/2012	560	24.89
12	7/01/2012	4/02/2012	555	24.67
13	8/01/2012	05/02/2012	395	17.55
			Average value (N/mm ²)	20.57

Table 4.2: Average Cube Strength

4.2.2 GFRP Sheet

The glass-fiber sheets used in present investigation were a unidirectional wrap. The properties of GFRP sheet are presented in Table 4.3. The resin system that is used to bond the glass fabrics over the columns is an epoxy resin made of two-parts, resin and hardener.

Fiber Weight (g/m²)	Sheet Width (mm)	Fiber Thickness (mm)	Ultimate tensile strength (MPa)	Elastic modulus (MPa)	Ultimate elongation <i>εfu</i> (%)	
900	500	0.324	3400	74500	4.3	

Table 4.3: GFRP Properties Supplied by Manufacturer

Figure 4.1 (a) shows GFRP sheet which is available in roll form. This form is more flexible to carry from one place to the other place. Figure 4.1 (b) defines the direction of layers of fibers which is more in longitudinal direction as compared to the transverse direction.

(a) GFRP Sheet roll

(b) Unidirectional GFRP sheet

Figure 4.1: GFRP sheet

4.3 Preparation of RC Column

A total of 27 RC square columns with a 125 mm \times 125 mm cross-section and 1200 mm height with corner radius of 0 mm, 15 mm, 25 mm and 35 mm have been cast. Three columns were used as control specimens, and the remaining columns were wrapped

with one and two layer of GFRP Sheet respectively. Concrete is prepared in the concrete mixture of $\frac{1}{2}$ (half) cement bag capacity. Casting of all the columns has been carried out in 13 different batches.

4.3.1 Steel Reinforcement Cages

Reinforcement cage for columns are prepared as shown in Figure 4.2 (a) and Figure 4.2 (b), respectively. 25 mm size PVC covers are used for providing the cover around all the sides of the columns.

Figure 4.2: Reinforcement cage for columns with PVC cover

4.3.2 Formwork

Formwork plays very important role to maintain correct shape of the column and to achieve proper surface finishing. To avoid the problem of segregation and honeycombing in concrete, casting of the column is conducted by keeping the specimen in horizontal direction.

• Formwork with Sharpe Edges for Square Column

Formwork for the square columns has been prepared using 19 mm waterproof plywood sheets cut and assembled to provide 90° corners with a plywood formed bottom. The formwork is cut and assembled very carefully to ensure accurate vertical sides and 90° verticality for corners. Internal dimension of the formwork is $125 \times 125 \times 1200$ mm. Figure 4.3 shows schematic view with dimensions of formwork. Figure 4.4 shows the competed formwork.

Figure 4.3: Schematic view of formwork with sharp edges

Figure 4.4: Completed formwork with sharp edges

• Formwork with Corner Radius for Square Column

In order to round off the corners of the square specimens, wooden patty inserts with the desired radius are fixed with the help of screw and cello tape at the corners of the boxes. Figure 4.5 shows different types of corner wooden patty which is fixed before the time of casting into the formwork to get the radius on the columns.

Figure 4.5: Different types of corner wooden patty

Figure 4.6 shows the various corner radii in schematic view and the position of corner patty in the formworks, respectively.

Figure 4.6: Schematic view of formwork for columns with corner radius 15mm, 25mm and 35mm

Figure 4.7 (a) and Figure 4.7 (b) show completed formwork for different corner radii RC columns. Wooden clamps are used at mid portion of the formwork in order to ensure that the assembled boxes would be able to resist the pressure of freshly cast concrete.

(a) Plan view

(b) c/s view

Figure 4.7: Completed formwork with corner radius patty

For getting smooth surface cello tape is applied on the inside surface of the formwork, which is also giving the protection to the formwork against the water. Figure 4.8 (a) and Figure 4.8 (b) show application of cello tape on the wooden patty and on the surface of plywood, respectively.

(a) Cello tape on wooden patty

(b) Cello tape on plywood

4.3.3 Casting of Specimens

Although the bottom surface of all the columns is covered by the formwork formed, the top surface has been finished very carefully using steel trowel to ensure the level surface. Figure 4.9 (a) and Figure 4.9 (b) show the formwork with reinforcement cages for sharp edges and for different corner radii of the columns.

(a) Formwork for sharp edges

(b) Formwork for different corner radii

Figure 4.9: Formwork with reinforcement cages for RC columns

The concrete mix is slowly poured into the forms to prevent the segregation, and the vibrator is used to vibrate the concrete carefully, to prevent formation of voids in concrete. Figure 4.10 shows the columns which are removed from the formwork after 24 hours of casting. Figure 4.11 shows columns being cured using gunny bags arranged on their surface. All columns are given uniform water curing for 28 days.

Figure 4.10: After 24 hour of casting

Figure 4.11: Curing period of specimens

4.4 Procedure of GFRP Wrapping

GFRP wrapping operation has been performed on concrete columns after 28 days of curing. The procedure of wrapping is discussed as follows:

4.4.1 Surface Preparation

Surface of the columns on three sides is quite good due to provision of cello tape on formwork however, the top surface is found uneven. Therefore, using Grinding process the top surface of the columns has been made smooth. The corner radii has already provided with help of wooden patty, Hence there is preparing the corners of the column is not required. Figure 4.12 shows the grinding operation on the column.

Figure 4.12: Grinding of column specimen

After the completion of the grinding, the columns are washed with water in order to remove loose particle from the concrete surface as shown in Figure 4.13.

Figure 4.13: Removing of dust by washing the specimen

4.4.2 Application of Primer

Before applying primer on the surface of concrete, care is taken that the columns are in saturanted surface dry condition. Primer is application the surface of the column where GFRP is to be added. Primer comprises of two solutions which are curing agent and base. Mixing of two part of base and one part of curing agent gives primer. Figure 4.14 (a) shows primer curing agent and Figure 4.14 (b) primer base. Figure 4.14 (c) shows mixing base and curing agent. Figure 4.14 (d) shows application of primer on surface of concrete with the help of brush. Figure 4.14 (e) shows the column surface after the application of primer.

(d) Applying one coat of primer

(e) After application of primer

Figure 4.14: Application of primer to column surface

4.4.3**Cutting of GFRP Sheet**

The Square columns are of size $125 \text{ mm} \times 125 \text{ mm}$ cross-section and of 1200 mmheight. the GFRP sheet cutting is carried out. The perimeter of the section for single layer wrapping and 0 mm corner radius is 575 mm i.e. $(125 \times 4) + 75 = 575$ mm. Overlap is kept 75 mm in column to ensure the development of tensile strength of full composite. Therefore same for other column 550 mm, 532 mm, 515 mm for corner radius 0 mm, 15 mm, 25 mm, 35 mm, are respectively. For double layer the perimeters are same as mention for the single layer but second layer is provided on first layer. Figure 4.15 (a) shows measuring of GFRP sheet for cutting. Figure 4.15 (b) and Figure 4.15 (c) shows cutting of GFRP sheet in transverse and longitudinal direction.

(a) Measuring of GFRP sheet (b) Cutting of GFRP sheet in (c) Cutting of GFRP sheet in transvers direction longitudinal direction

Figure 4.15: Cutting of GFRP sheet

Application of GFRP Sheet with Saturant 4.4.4

After drying of primer from the surface of the column, GFRP wrapping is done using saturant. Saturant consist of solutions one is curing agent and another is base. After mixing of one part of curing agent and two parts of base, the solution is applied on surface of concrete. The GFRP sheets are applied on the layer of saturat with the help of roller. After applying the GFRP sheet layer, one more coat of saturant is applied. For the double layer wrapping, GFRP sheet is applied on second coat of saturant. After the application of second layer of GFRP sheet surface is saturated by saturant. Special attention is given to the installers to eliminate any voids between the GFRP sheet and the concrete surfaces. Figure 4.16 (a) shows the container of Saturant curing agent and Saturant base. Figure 4.16 (b) shows mixing of both the solution cuing agent and base. Figure 4.16 (c) shows application of saturant with the help of brush. Figure 4.16 (d) shows application of GFRP sheet on the saturant layer. Figure 4.16 (e) shows completed GFRP wrapping on the column.

(a) Saturant curing agent and base

(b) Mixing

(c) Application of one coat of (d) Application of GFRP sheet saturant

(e) After application of GFRP sheet and saturant

Figure 4.16: Application of GFRP sheet with saturant

4.5 Levelling of Column

Same formwork has been used for casting number of specimen during casting. As the base is not perpendicular to the height, chances of development of eccentricity are there during the application of load on the columns. To overcome this, the grinding is done on top and bottom face of the column. Figure 4.17 (a) shows out of plumb face of the column. Figure 4.17 (b) shows process of grinding for levelling the top and bottom surface of column. Figure 4.17 (c) shows plumb exactly matches with the face of the column.

(a) Before levelling of col- (b) Grinding on the top and (c) After grinding of base umn bottom

Figure 4.17: Procedure of column levelling

4.6 Test Setup

The specimens are tested on loading frame under axial compressive loading. The axial load is applied through hydraulic jack of 2000 kN capacity and the capacity of the frame is 1000 kN. General arrangement of test setup is shown in Figure 4.18.

The columns are placed with hinged supports on either side. The load is applied from the bottom of column through hydraulic jack. Load is transferred from jack to supporting plate to column and finally on the loading frame through ground.

Figure 4.18: Schematic view of test setup for axial load

4.7 Instrumentation

Load, displacement and lateral strain for column specimens are measured using hydraulic jack, LVDT and electrical strain gauge, respectively. Various instruments used in experimental work are as follows:

4.7.1 Hydraulic Jack

Hydraulic jack of capacity of 2000 kN is used and is working based on Pascal's principle. Basically, the principle states that the pressure in a closed container is the same at all points. Pressure is described mathematically by a Force divided by Area. Therefore if there are two cylinders connected together, a small one & a large one, and a small force is applied to the small cylinder, this would result in a given pressure. Figure 4.19 shows the hydraulic jack which has been used for the application of axial load.

Figure 4.19: Hydraulic jack

4.7.2 LVDT (Linear Variable Differential Transducer)

The vertical displacement of the specimen was measured by linear variable differential Transducer (LVDT) with a travel of 50 mm which is mounted onto two aluminium frames that were fixed at the top and bottom of the specimen 800 mm apart, as shown in Figure 4.20.

(a) LVDT attached with column (b) Digital displacement Indicator

Figure 4.20: LVDT with aluminium setup

4.7.3 Electrical Strain Gauges

The Model P3 Strain Indicator and recorder is used for measuring lateral strain on the column. Data recorded at auto mode with rate of up to 1 reading per channel per second as well as manually and is transferred by USB to a computer. Figure 4.21 shows P3 strain indicator and recorder.

Figure 4.21: P3 strain indicator and recorder

Figure 4.22 (a) shows the circuit diagram for single active gauge and Figure 4.22 (b) shows the connections for making a three-wire quarter bridge connection. Bridge completion resistors of 120, 350 and 1000 ohms are built in for quarter-bridge operation. For bridge completion wire of 350 ohms is used for quarter bridge operation.

(a) Single active gauge in uniaxial tension or compression

(b) Quarter bridge connection

Figure 4.22: Circuit diagram and connection for Quarter bridge
CHAPTER 4. EXPERIMENTAL WORK

• Application of Electrical Strain Gauges

All the columns are instrumented with strain gauges, glued either onto the concrete surface in the case of the control specimens or onto the outer layer of GFRP in case of the FRP-confined specimens. The strain gauges are mounted at multiple points at the mid-height of the columns to measure the strain at different locations. The gauge length of these electrical strain gauges is 5 mm. Figure 4.23 shows the locations of the transverse strain gauges, where M, C, L and R refer to positions on the side face, the centre of the corner, and the curvature changing point on the left and right-hand sides, respectively.

(a) Location of strain gauges on (b) Location of strain gauges on corsharp edges ner radius

(c) Strain gauges onto surface of (d) Strain gages onto surface of concrete GFRP

Figure 4.23: Location of strain gauge

Chapter 5

Results and Discussion

5.1 General

This chapter deals with reporting of test results like: Axial compressive load, displacement and strain for control and wrapped column with various corner radii. Load is increased on the column at specific intervals and corresponding to every load displacement and lateral strains are measured for the columns. Comparison of Ultimate failure load, maximum displacement, lateral strain and axial strain evaluated at different positions for both categories of columns is presented in tabular as well as in graphical form. These parameters are very essential to understand the behaviour of control and GFRP wrapped columns. Different parameters discussed in this chapter for RC columns are as follows:

- Ultimate failure load
- Load vs. displacement
- Axial stress vs. strain
- Corner radius effect
- Failure modes

• Comparison of experimental and analytical results

5.2 Notations for Columns

Following notations have been used during reporting of all results in this chapter:

S0R0 = Control column

S1R0 = One layer of GFRP sheet for column having 5 mm corner radius S2R0 = Two layers of GFRP sheet for column having 5 mm corner radius S1R1 = One layer of GFRP sheet for column having 15 mm corner radius S2R1 = Two layers of GFRP sheet for column having 15 mm corner radius S1R2 = One layer of GFRP sheet for column having 25 mm corner radius S2R2 = Two layers of GFRP sheet for column having 25 mm corner radius S1R3 = One layer of GFRP sheet for column having 35 mm corner radius S2R3 = Two layers of GFRP sheet for column having 35 mm corner radius

5.3 Ultimate Failure Load

Interval for load increment is taken as 10 kN. This interval is kept constant up to the complete failure of the column specimen. Experimental average failure load for all RC columns are given in Table 5.1.

Sr. No.	Code	Ultimate	Average ultimate	
		Failure Load	failure load	
		(kN)	(kN)	
1		310		
2	SOR0	310	303.33	
3		290		
4		460		
5	S1R0	440	446.67	
6		440		
7		590		
8	S2R0	570	596.67	
9		630		
10		490		
11	S1R1	460	486.67	
12		510		
13		470		
14	S2R1	730	700.00	
15		670		
16		630		
17	S1R2	540	573.33	
18		550		
19		800		
20	S2R2	730	756.67	
21	1	740		
22		560		
23	S1R3	600	553.33	
24	1	500		
25		690		
26	S2R3	680	666.67	
27	1	630		

Table 5.1: Ultimate failure load for RC columns

Average values are considered for finding percentage variations. Percentage increment in failure load for all columns is presented in Table 5.2. Higher load carrying capacity has been observed for all wrapped columns as compared to that of unwrapped columns. Percentage increment in ultimate failure load is ranging from 8.10 % to 149.45 % for all wrapped columns as compared to that of unwrapped columns. As compared to S0R0 column increment in ultimate failure load observed of 47.25 %, 96.70 %, 60.44 %, 130.77 %, 89.01 %, 149.45 %, 82.42 % and 119.78 % for columns S1R0, S2R0, S1R1, S2R1, S1R2, S2R2, S1R3 and S2R3, respectively. Similar type of comparison can also be evaluated for all columns using Table 5.2.

Table 5.2: Percentage increment in ultimate failure load

Specimen	S0R0	S1R0	S2R0	S1R1	S2R1	S1R2	S2R2	S1R3	S2R3
S0R0	-	47.25	96.70	60.44	130.77	89.01	149.45	82.42	119.78
S1R0		-	33.58	8.96	56.72	28.36	69.40	23.88	49.25
S2R0			-	-18.44	17.32	-3.91	26.82	-7.26	11.73
S1R1				-	43.84	17.81	55.48	13.70	36.99
S2R1					-	-18.10	8.10	-20.95	-4.76
S1R2						-	31.98	-3.49	16.28
S2R2							-	-26.87	-11.89
S1R3								-	20.48
S2R3	1								-

Comparison of ultimate failure load keeping corner radius constant

Figure 5.1 to Figure 5.4 show comparison of ultimate failure load for column specimens keeping corner radius constant. Figure 5.1 shows comparison between S0R0, S1R0 and S2R0, respectively. Here the corner keeping R0 has been kept constant and the numbers of FRP layers are varied as to single wrap and double wrap. Increase in ultimate load carrying capacity of 47.25 % and 96.70 % has been observed for columns S1R0 and S2R0 as compared to that for column S0R0, respectively.

Figure 5.1: R0 columns with corner radius

Figure 5.2 shows the comparison between S1R1 and S2R1 keeping corner radius R1 constant. Comparing S1R1 to S2R1 the value of ultimate load carrying capacity increased with 43.84 % for specimen S2R1.

Figure 5.2: R1 columns with corner radius

Figure 5.3 shows the comparison between S1R2 and S2R2 keeping corner radius R2 as a constant, value of ultimate load carrying capacity of column increase by 31.98 % for specimen S2R2 as compare with S1R2. Figure 5.4 shows comparison between S1R3 and S2R3 keeping corner radius R3 as a constant, value of ultimate load carrying capacity of column increased by 20.48 % for specimen S2R3 as compare with S1R3.

Figure 5.3: R2 columns with corner radius

Figure 5.4: R3 columns with corner radius

Comparison of ultimate failure load keeping number of layers constant Figure 5.5 shows that as the numbers of FRP layer increase the load carrying capacity of column is also increased. Comparing as single layer wrapped specimens S1R0, S1R1, S1R2 and S1R3 the ultimate load carrying capacity increase as shown in Figure 5.5. Percentage variation as compare with S1R0 to S1R1, S1R1 to S1R2 and S1R2 to S1R3 are 8.96 %, 17.81 % and - 3.49 % respectively.

Figure 5.5: Column wrapped with single GFRP layer

For the double layers wrapped column the ultimate load carrying capacity increased as same manner in single layer wrapped column. Comparing as double layer wrapped specimens S2R0, S2R1, S2R2 and S2R3 the ultimate load carrying capacity increase as shown in Figure 5.6. Percentage variation as compare with S2R0 to S2R1, S2R1 to S2R2 and S2R2 to S2R3 are 17.32 %, 8.10 % and - 11.89 % respectively.

Figure 5.6: Column wrapped with double GFRP layers

From specimen S0R0 to S2R3 the specimen radii as well as number of layers are increase, therefore in the case of radius variation as the radius increases the confinement increases which is provided by GFRP layer to the control column as shown in Figure 2.3. When the FRP layers provided in more numbers as the first layer gets confinement, the second layer provided further confinement to it. Therefore the strength of RC column is obtained in increasing manner.

Ideally for all columns ultimate failure load should increase with increase in corner radius from 0 mm, 15 mm, 25 mm and 35 mm, but in case columns having corner radius 35 mm shows less ultimate failure load than 25 mm corner radius column. For specimen having corner radius 35 mm, the specimen clear cover reduced from 25 mm to 20.51 mm at the corner as shown in Figure 5.7. Therefore the ultimate failure of the specimen S1R3 and S2R3 are failing earlier than the column S1R2 and S2R2. Due to premature failure of the specimen is also a reason for lower value of ultimate failure load for 35 mm corner radius specimen.

Figure 5.7: Variation in clear cover with different corner radius

5.4 Load vs. Displacement

Displacement is measured along the length of the column. The gauge length of column for measuring the displacement is kept 800 mm. To set the LVDT for measuring the displacement of column, aluminium frame setup is developed. Displacement of all the columns is measured at an interval of every 10 kN load till the application of ultimate load.

Comparison of ultimate failure load vs. displacement keeping corner radius constant

Table 5.3 shows average displacement at average ultimate failure load for specimen S0R0. Displacement readings for all the columns are individually shown in tabular form in Appendix A.

Specimen S0R0									
Load	Deflection	Load	Deflection						
(kN)	(mm)	(kN)	(mm)						
0	0.00	150	0.31						
10	0.01	160	0.34						
20	0.04	170	0.35						
30	0.06	180	0.37						
40	0.07	190	0.39						
50	0.09	200	0.40						
60	0.11	210	0.42						
70	0.14	220	0.45						
80	0.16	230	0.48						
90	0.19	240	0.50						
100	0.21	250	0.52						
110	0.23	260	0.54						
120	0.26	270	0.58						
130	0.28	280	0.61						
140	0.29	290	0.63						

Table 5.3: Average displacement of specimen S0R0

_

Table 5.4 shows average displacement at average ultimate failure load for specimen S1R0.

Specimen S1R0							
Load	Deflection	Load	Deflection				
(kN)	(mm)	(kN)	(mm)				
0	0.00	250	0.68				
10	0.06	260	0.72				
20	0.10	270	0.75				
30	0.14	280	0.79				
40	0.17	290	0.83				
50	0.18	300	0.87				
60	0.21	310	0.92				
70	0.23	320	0.97				
80	0.25	330	1.02				
90	0.27	340	1.08				
100	0.29	350	1.13				
110	0.31	360	1.22				
120	0.33	370	1.31				
130	0.35	380	1.40				
140	0.37	390	1.53				
150	0.40	400	1.72				
160	0.42	403	2.01				
170	0.45	407	2.72				
180	0.48	403	2.87				
190	0.51	400	3.21				
200	0.54	403	3.26				
210	0.57	413	4.01				
220	0.60	423	4.71				
230	0.62	430	5.91				
240	0.65						

Table 5.4: Average displacement of specimen S1R0

Table 5.5 shows average displacement at average ultimate failure load for specimen S2R0.

	Specimen S2R0						
Load	Deflection	Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	250	0.72	500	2.50	577	10.01
10	0.02	260	0.76	510	2.66		
20	0.04	270	0.80	520	2.95		
30	0.07	280	0.85	530	3.24		
40	0.09	290	0.90	540	3.53		
50	0.11	300	0.93	550	3.90		
60	0.15	310	0.97	553	4.42		
70	0.18	320	1.00	557	4.86		
80	0.20	330	1.06	553	5.06		
90	0.22	340	1.10	557	5.00		
100	0.25	350	1.16	553	5.60		
110	0.28	360	1.21	563	5.75		
120	0.31	370	1.27	573	6.06		
130	0.33	380	1.32	577	6.57		
140	0.36	390	1.37	580	7.26		
150	0.39	400	1.44	570	7.45		
160	0.42	410	1.51	567	7.61		
170	0.44	420	1.58	570	7.76		
180	0.48	430	1.68	580	7.98		
190	0.50	440	1.75	583	8.57		
200	0.54	450	1.82	580	8.91		
210	0.58	460	1.94	583	9.25		
220	0.62	470	2.03	580	9.39		
230	0.65	480	2.16	583	9.63		
$\overline{240}$	0.68	490	2.35	580	9.87		

Table 5.5: Average displacement of specimen S2R0

Figure 5.8 shows the average load vs. average displacement plot for specimen S0R0, S1R0 and S2R0. The displacement value for specimens S1R0 and S2R0 are more compared to specimen S0R0. For S0R0, S1R0 and S2R0 the value of average displacement are 0.63 mm, 5.91 mm and 10.01 mm and average ultimate load corresponding to displacement are 290 kN, 430 kN and 577 kN, respectively. The behaviour of all three specimens are similar up to 200 kN load.

Figure 5.8: R0 corner radius specimens with single and double layers

Table 5.6 shows average displacement at average ultimate failure load for specimen S1R1.

Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	250	1.05	467	5.82
10	0.02	260	1.10	463	6.18
20	0.05	270	1.17		
30	0.10	280	1.25		
40	0.14	290	1.32		
50	0.17	300	1.39		
60	0.20	310	1.52		
70	0.26	320	1.68		
80	0.32	330	1.80		
90	0.37	340	1.90		
100	0.44	350	2.04		
110	0.47	360	2.21		
120	0.51	370	2.37		
130	0.54	380	2.53		
140	0.57	390	2.68		
150	0.59	400	2.86		
160	0.63	410	3.05		
170	0.68	420	3.33		
180	0.71	430	3.63		
190	0.75	440	3.84		
200	0.79	450	4.21		
210	0.84	453	4.74		
220	0.89	450	4.85		
230	0.94	453	5.05		
240	0.99	457	5.42		

Table 5.6: Average displacement of specimen S1R1

Table 5.7 shows average displacement at average ultimate failure load for specimen S2R1.

Specimen S2R1									
Load	Deflection	Load	Deflection	Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)		
0	0.00	250	0.72	500	2.88	650	10.09		
10	0.04	260	0.76	510	3.09	660	10.25		
20	0.09	270	0.80	520	3.28	670	10.43		
30	0.13	280	0.85	530	3.52	670	10.74		
40	0.15	290	0.89	540	3.80	670	11.11		
50	0.17	300	0.93	550	3.98				
60	0.20	310	0.98	560	4.24				
70	0.22	320	1.03	570	4.63]			
80	0.24	330	1.09	580	4.99				
90	0.27	340	1.13	590	5.22]			
100	0.30	350	1.19	600	5.65]			
110	0.32	360	1.26	610	6.39]			
120	0.35	370	1.34	620	7.01]			
130	0.37	380	1.39	610	7.14]			
140	0.40	390	1.47	600	7.21				
150	0.42	400	1.56	610	7.41]			
160	0.45	410	1.62	620	7.55				
170	0.48	420	1.74	630	7.74]			
180	0.50	430	1.84	640	7.99				
190	0.53	440	1.93	640	8.27				
200	0.56	450	2.03	640	8.90				
210	0.59	460	2.23	640	9.18				
220	0.63	470	2.37	640	9.50]			
230	0.66	480	2.51	650	9.71]			
240	0.69	490	2.64	650	9.99				

Table 5.7: Average displacement of specimen S2R1

Average load vs. average displacement plot for Specimen S1R1 and S2R1 are shown in Figure 5.9. For S1R1 and S2R1 the values of average displacement are 6.18 mm and 11.11 mm and average ultimate load corresponding to displacement are 463 kN and 670 kN, respectively. The average displacement at ultimate load of specimen S2R1 are increased by 80 % compared to specimen S1R1.

Figure 5.9: R1 corner radius specimen with single layer and double layers

Table 5.8 shows average displacement at average ultimate failure load for specimen S1R2.

	Specimen S1R2								
Load	Deflection	Load	Deflection	Load	Deflection				
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)				
0	0.00	190	0.76	380	2.50				
10	0.03	200	0.83	390	2.72				
20	0.05	210	0.89	400	2.89				
30	0.07	220	0.94	410	3.15				
40	0.09	230	1.01	420	3.39				
50	0.10	240	1.08	430	3.61				
60	0.13	250	1.15	440	4.05				
70	0.16	260	1.23	450	4.39				
80	0.19	270	1.29	460	4.64				
90	0.22	280	1.39	470	5.03				
100	0.27	290	1.47	480	5.30				
110	0.31	300	1.55	490	5.68				
120	0.35	310	1.66	500	6.13				
130	0.40	320	1.75	510	6.69				
140	0.46	330	1.84	520	7.12				
150	0.51	340	1.95	530	7.41				
160	0.57	350	2.06	540	7.81				
170	0.62	360	2.18						
180	0.68	370	2.34						

Table 5.8: Average displacement of specimen S1R2

Table 5.9 shows average displacement at average ultimate failure load for specimen S2R2.

	Specimen S2R2							
Load	Deflection	Load	Deflection	Load	Deflection	Load	Deflection	
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	
0	0.00	200	0.72	400	2.25	600	6.64	
10	0.03	210	0.77	410	2.37	610	6.95	
20	0.07	220	0.82	420	2.49	620	7.18	
30	0.12	230	0.87	430	2.63	630	7.49	
40	0.15	240	0.92	440	2.75	640	7.83	
50	0.18	250	0.97	450	2.90	650	8.38	
60	0.21	260	1.05	460	3.03	660	8.82	
70	0.24	270	1.12	470	3.17	670	9.36	
80	0.26	280	1.19	480	3.33	680	9.55	
90	0.29	290	1.26	490	3.52	690	9.79	
100	0.32	300	1.34	500	3.75	700	10.41	
110	0.35	310	1.42	510	3.98	697	10.92	
120	0.38	320	1.50	520	4.22	687	11.04	
130	0.42	330	1.58	530	4.50	690	11.22	
140	0.45	340	1.64	540	4.71	700	11.44	
150	0.49	350	1.72	550	5.00	710	11.65	
160	0.53	360	1.88	560	5.35	720	11.94	
170	0.57	370	1.95	570	5.67	730	12.67	
180	0.62	380	2.04	580	5.89		·	
190	0.65	390	2.11	590	6.18	1		

Table 5.9: Average displacement of specimen S2R2

Average load vs. average displacement plot for Specimen S1R2 and S2R2 are shown in Figure 5.10. For S1R2 and S2R2 the values of average displacement are 7.81 mm and 12.67 mm and average ultimate load corresponding to displacement are 540 kN and 730 kN, respectively. The average displacement at ultimate load of specimen S2R2 are increased by 62 % compared to specimen S1R2.

Figure 5.10: R2 corner radius specimen with single layer and double layers

Table 5.10 shows average displacement at average ultimate failure load for specimen S1R3.

Specimen S1R3							
Load	Deflection	Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)		
0	0.00	170	0.34	340	1.05		
10	0.01	180	0.38	350	1.13		
20	0.03	190	0.41	360	1.20		
30	0.04	200	0.43	370	1.26		
40	0.05	210	0.47	380	1.36		
50	0.07	220	0.50	390	1.47		
60	0.08	230	0.53	400	1.56		
70	0.11	240	0.56	410	1.67		
80	0.12	250	0.59	420	1.76		
90	0.15	260	0.62	430	1.92		
100	0.17	270	0.69	440	2.03		
110	0.19	280	0.73	450	2.16		
120	0.21	290	0.77	460	2.35		
130	0.23	300	0.82	470	2.53		
140	0.26	310	0.87	480	2.91		
150	0.28	320	0.93	490	3.31		
160	0.31	330	0.98	500	3.64		

Table 5.10: Average displacement of specimen S1R3

Table 5.11 shows average displacement at average ultimate failure load for specimen S2R3.

Specimen S2R3							
Load	Deflection	Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)		
0	0.00	230	1.17	460	4.12		
10	0.05	240	1.22	470	4.42		
20	0.12	250	1.29	480	4.68		
30	0.19	260	1.36	490	4.98		
40	0.22	270	1.44	500	5.35		
50	0.26	280	1.50	510	5.73		
60	0.30	290	1.56	520	6.14		
70	0.35	300	1.65	530	6.48		
80	0.42	310	1.72	540	7.03		
90	0.47	320	1.82	550	7.35		
100	0.54	330	1.90	560	7.82		
110	0.59	340	2.00	570	8.24		
120	0.64	350	2.11	580	8.67		
130	0.69	360	2.23	590	9.24		
140	0.72	370	2.36	600	9.84		
150	0.78	380	2.46	603	10.11		
160	0.83	390	2.58	607	10.44		
170	0.88	400	2.76	617	10.94		
180	0.92	410	3.00	627	11.20		
190	0.97	420	3.17	637	12.09		
200	1.03	430	3.34	647	12.61		
210	1.07	440	3.51	657	13.06		
220	1.11	450	3.79	660	13.69		

Table 5.11: Average displacement of specimen S2R3

Figure 5.11 shows the average load vs. average displacement plot for specimen S1R3 and S2R3. For S1R3 and S2R3 the values of average displacement are 3.64 mm and 13.69 mm and average ultimate load corresponding to displacement are 500 kN and 660 kN, respectively. The average displacement at ultimate load of specimen S2R3 are increased by 276 % compared to specimen S1R3.

Figure 5.11: R3 corner radius specimen with single layer and double layers

Comparison of ultimate failure load vs. displacement keeping number of layers constant

Comparing specimens S1R0, S1R1, S1R2 and S1R3 keeping wrapping layer same that is one shown in Figure 5.12. In this case the average displacement at ultimate load of specimens S1R0 to S1R1, S1R1 to S1R2 and S1R2 to S1R3 are vary 5 %, 26 % and - 53 % respectively. As increasing the radius with one layer of wrapping the displacement of specimens are more except for specimen S1R3. Specimen S1R3 fails on lower loads due to premature failure of specimen therefore the displacement value shows in plot is less than the other specimen.

Figure 5.12: Single layer wrapped specimen with different corner radii

Figure 5.13 shows comparing the specimen S2R0, S2R1, S2R2 and S2R3 keeping wrapping layer same which is two. For specimens S2R0 to S2R1, S2R1 to S2R2 and S2R2 to S2R3 are varying 11 %, 14 % and 8 % respectively for the average displacement at ultimate load. As the number of layers are two the specimen shows more displacement than single layer wrapped specimens.

Figure 5.13: Double layer wrapped specimen with different corner radii

Figure 5.12 and Figure 5.13 shows plot of average ultimate load vs. average displacement which indicate that as the radius increased towards 0 mm to 35 mm radius the average value of increment of displacement is ranging from 5 to 26 % for single layer and 8 to 14 % for double layers respectively.

5.5 Axial Stress vs. Strain

Strain is measured in axial direction and lateral direction with the help of LVDT and electrical strain gauges respectively. For measuring axial strain the gauge length is for LVDT setup is 800 mm. Strain is measured in lateral direction on mid height of the column which is 600 mm. As discussed in previous chapter 4, stain gauges are located at on concrete surface and on FRP surface for different corner radius is shown in Figure 4.23. Table 5.12 to Table 5.20 shows the results of average axial stress, average axial strain and average lateral strain. Axial stress, axial strain and lateral strain readings for all the columns are individually shown in tabular form in Appendix A.

Specimen S0R0							
Axial stress	Axial strain	lateral Strain					
N/mm^2		Mid	Corner				
0.00	0.00000	0.00000	-0.00001				
0.64	0.00002	0.00003	0.00001				
1.28	0.00005	0.00005	0.00002				
1.92	0.00007	0.00005	0.00003				
2.56	0.00009	0.00005	0.00002				
3.20	0.00011	0.00005	0.00002				
3.84	0.00013	0.00006	0.00003				
4.48	0.00017	0.00007	0.00004				
5.12	0.00020	0.00008	0.00004				
5.76	0.00023	0.00010	0.00005				
6.40	0.00026	0.00012	0.00005				
7.04	0.00029	0.00011	0.00006				
7.68	0.00032	0.00012	0.00007				
8.32	0.00035	0.00013	0.00008				
8.96	0.00037	0.00013	0.00010				
9.60	0.00039	0.00015	0.00012				
10.24	0.00042	0.00016	0.00013				
10.88	0.00044	0.00017	0.00015				
11.52	0.00046	0.00018	0.00017				
12.16	0.00049	0.00018	0.00019				
12.80	0.00050	0.00019	0.00023				
13.44	0.00053	0.00019	0.00024				
14.08	0.00056	0.00019	0.00028				
14.72	0.00060	0.00022	0.00031				
15.36	0.00062	0.00024	0.00034				
16.00	0.00065	0.00037	0.00038				
16.64	0.00068	0.00044	0.00042				
17.28	0.00073	0.00048	0.00044				
17.92	0.00076	0.00052	0.00007				
18.56	0.00079	0.00059	-0.00004				

Table 5.12: Average results for S0R0 - axial stress, axial strain and lateral strain

Specimen S1R0					
Axial stress	Axial strain	lateral Strain			
N/mm^2		Mid	Corner		
0.00	0.00000	0.00000	-0.00001		
0.64	0.00008	0.00000	0.00000		
1.28	0.00013	0.00001	0.00000		
1.92	0.00018	0.00001	0.00000		
2.56	0.00021	0.00002	-0.00001		
3.20	0.00023	0.00002	-0.00001		
3.85	0.00026	0.00002	-0.00001		
4.49	0.00028	0.00002	-0.00001		
5.13	0.00031	0.00003	-0.00001		
5.77	0.00034	0.00003	-0.00001		
6.41	0.00036	0.00003	-0.00001		
7.05	0.00039	0.00004	-0.00001		
7.69	0.00041	0.00004	-0.00001		
8.33	0.00044	0.00004	0.00000		
8.97	0.00047	0.00005	0.00000		
9.61	0.00050	0.00005	0.00001		
10.25	0.00053	0.00006	0.00001		
10.89	0.00057	0.00007	0.00002		
11.54	0.00060	0.00007	0.00002		
12.18	0.00064	0.00008	0.00003		
12.82	0.00068	0.00009	0.00004		
13.46	0.00071	0.00010	0.00004		
14.10	0.00075	0.00010	0.00004		
14.74	0.00078	0.00011	0.00005		
15.38	0.00082	0.00012	0.00006		
16.02	0.00085	0.00013	0.00007		
16.66	0.00090	0.00015	0.00007		
17.30	0.00094	0.00016	0.00007		
17.94	0.00099	0.00019	0.00009		
18.58	0.00103	0.00021	0.00009		
19.23	0.00109	0.00024	0.00010		
19.87	0.00115	0.00028	0.00010		
20.51	0.00122	0.00032	0.00011		
21.15	0.00128	0.00037	0.00012		
21.79	0.00135	0.00043	0.00014		
22.43	0.00142	0.00052	0.00016		
23.07	0.00152	0.00061	0.00017		

Table 5.13: Average results for S1R0 - axial stress, axial strain and lateral strain

CHAPTER 5. RESULTS AND DISCUSSION

Specimen S1R0						
Axial stress	Axial strain	n lateral Strain				
N/mm^2		Mid	Corner			
23.71	0.00164	0.00074	0.00019			
24.35	0.00175	0.00085	0.00020			
24.99	0.00192	0.00106	0.00023			
25.63	0.00215	0.00155	0.00027			
25.85	0.00251	0.00179	0.00031			
26.06	0.00340	0.00180	0.00037			
25.85	0.00359	0.00169	0.00042			
25.63	0.00402	0.00168	0.00044			
25.85	0.00408	0.00174	0.00047			
26.49	0.00501	0.00189	0.00049			
27.13	0.00588	0.00350	0.00051			
27.56	0.00739	0.00334	0.00065			
27.34	0.00798	0.00343	0.00057			
27.13	0.00917	0.00965	0.00040			
27.34	0.01055	0.00955	0.00038			

Specimen S2R0					
Axial stress	Axial strain	lateral Strain			
N/mm^2		Mid	Corner		
0.00	0.00000	0.00000	-0.00003		
0.64	0.00002	-0.00001	-0.00007		
1.28	0.00005	-0.00001	-0.00007		
1.92	0.00009	0.00000	-0.00009		
2.56	0.00012	-0.00001	-0.00009		
3.20	0.00014	0.00000	-0.00010		
3.85	0.00018	-0.00002	-0.00020		
4.49	0.00022	-0.00001	-0.00021		
5.13	0.00025	-0.00003	-0.00020		
5.77	0.00028	-0.00003	-0.00019		
6.41	0.00031	-0.00002	-0.00018		
7.05	0.00035	-0.00002	-0.00016		
7.69	0.00038	-0.00001	-0.00014		
8.33	0.00042	-0.00001	-0.00007		
8.97	0.00045	-0.00003	-0.00002		
9.61	0.00048	-0.00002	0.00002		
10.25	0.00053	-0.00001	0.00008		
10.89	0.00055	-0.00001	0.00011		
11.54	0.00060	-0.00001	0.00015		
12.18	0.00063	0.00000	0.00025		
12.82	0.00068	0.00000	0.00036		
13.46	0.00073	0.00000	0.00044		
14.10	0.00078	0.00000	0.00050		
14.74	0.00081	0.00002	0.00062		
15.38	0.00085	0.00002	0.00078		
16.02	0.00090	0.00001	0.00092		
16.66	0.00095	0.00002	0.00112		
17.30	0.00100	0.00002	0.00124		
17.94	0.00106	0.00004	0.00152		
18.58	0.00113	0.00004	0.00178		
19.23	0.00117	0.00003	0.00199		
19.87	0.00121	0.00005	0.00224		
20.51	0.00125	0.00004	0.00253		
21.15	0.00132	0.00005	0.00254		
21.79	0.00138	0.00006	0.00263		
22.43	0.00145	0.00007	0.00263		

Table 5.14: Average results for S2R0 - axial stress, axial strain and lateral strain

Specimen S2R0					
Axial stress	Axial strain	lateral Strain			
N/mm^2		Mid	Corner		
23.07	0.00151	0.00007	0.00277		
23.71	0.00159	0.00009	0.00296		
24.35	0.00165	0.00009	0.00313		
24.99	0.00171	0.00011	0.00331		
25.63	0.00180	0.00012	0.00343		
26.28	0.00188	0.00013	0.00340		
26.92	0.00198	0.00015	0.00275		
27.56	0.00210	0.00017	0.00153		
28.20	0.00218	0.00018	0.00120		
28.84	0.00228	0.00020	0.00087		
29.48	0.00243	0.00025	0.00065		
30.12	0.00253	0.00027	0.00050		
30.76	0.00270	0.00032	0.00029		
31.40	0.00293	0.00038	0.00056		
32.04	0.00312	0.00041	0.00061		
32.68	0.00332	0.00046	0.00035		
33.32	0.00369	0.00055	-0.00005		
33.97	0.00405	0.00066	-0.00016		
34.61	0.00442	0.00073	0.00059		
35.25	0.00488	0.00083	0.00095		
35.46	0.00553	0.00090	0.00175		
35.67	0.00608	0.00093	0.00315		
35.46	0.00632	0.00098	0.00521		
35.67	0.00625	0.00101	0.00489		
35.46	0.00700	0.00105	0.00502		
36.10	0.00719	0.00106	0.00560		
36.74	0.00757	0.00108	0.00622		
36.96	0.00821	0.00119	0.00614		
37.17	0.00908	0.00133	0.00568		
36.53	0.00931	0.00138	0.00558		
36.32	0.00951	0.00137	0.00600		
36.53	0.00970	0.00140	0.00566		
37.17	0.00998	0.00144	0.00533		
37.38	0.01072	0.00150	0.00500		
37.17	0.01113	0.00170	0.00416		
37.38	0.01157	0.00178	0.00403		
37.17	0.01174	0.00179	0.00322		
37.38	0.01203	0.00184	0.00289		
37.17	0.01234	0.00187	0.00258		
36.96	$0.\overline{01251}$	0.00193	0.00217		

Specimen S1R1					
Axial stress	Axial strain	lateral Strain			
N/mm^2		Mid	Left	Center	Right
0.00	0.00000	-0.00001	0.00000	-0.00001	0.00000
0.65	0.00002	-0.00002	0.00000	-0.00001	-0.00001
1.30	0.00007	-0.00002	0.00000	-0.00001	-0.00001
1.94	0.00013	-0.00003	0.00000	-0.00002	-0.00002
2.59	0.00017	-0.00002	0.00000	-0.00001	-0.00002
3.24	0.00021	-0.00003	0.00001	-0.00001	-0.00002
3.89	0.00025	-0.00003	0.00001	-0.00002	-0.00002
4.54	0.00033	-0.00003	0.00000	-0.00002	-0.00002
5.18	0.00040	-0.00003	0.00001	-0.00002	-0.00003
5.83	0.00046	-0.00003	0.00001	-0.00003	-0.00003
6.48	0.00055	-0.00003	0.00001	-0.00003	-0.00003
7.13	0.00059	-0.00003	0.00001	-0.00004	-0.00003
7.78	0.00063	-0.00003	0.00002	-0.00004	-0.00003
8.42	0.00068	-0.00003	0.00002	-0.00005	-0.00003
9.07	0.00071	-0.00003	0.00002	-0.00005	-0.00002
9.72	0.00074	-0.00003	0.00002	-0.00005	-0.00002
10.37	0.00079	-0.00003	0.00003	-0.00005	-0.00001
11.02	0.00085	-0.00002	0.00004	-0.00005	0.00000
11.66	0.00089	-0.00002	0.00004	-0.00004	0.00001
12.31	0.00094	-0.00001	0.00005	-0.00005	0.00002
12.96	0.00099	-0.00001	0.00006	-0.00004	0.00003
13.61	0.00105	-0.00001	0.00006	-0.00005	0.00004
14.26	0.00111	-0.00001	0.00007	-0.00005	0.00006
14.90	0.00118	0.00000	0.00008	-0.00004	0.00007
15.55	0.00124	0.00000	0.00008	-0.00004	0.00009
16.20	0.00131	0.00001	0.00010	-0.00004	0.00011
16.85	0.00138	0.00001	0.00010	-0.00004	0.00013
17.50	0.00147	0.00002	0.00012	-0.00004	0.00015
18.14	0.00156	0.00002	0.00013	-0.00004	0.00018
18.79	0.00165	0.00003	0.00014	-0.00004	0.00020
19.44	0.00174	0.00004	0.00016	-0.00004	0.00023
20.09	0.00190	0.00005	0.00018	-0.00004	0.00026
20.74	0.00210	0.00007	0.00021	-0.00003	0.00030
21.38	0.00225	0.00008	0.00024	-0.00004	0.00034
22.03	0.00238	0.00009	0.00027	-0.00003	0.00037
22.68	0.00255	0.00012	0.00031	-0.00002	0.00044

Table 5.15: Average results for S1R1 - axial stress, axial strain and lateral strain

Specimen S1R1						
Axial stress	Axial strain	lateral Strain				
N/mm^2		Mid	Left	Center	Right	
23.33	0.00276	0.00014	0.00035	-0.00002	0.00049	
23.98	0.00297	0.00016	0.00041	-0.00001	0.00057	
24.62	0.00316	0.00020	0.00049	0.00001	0.00067	
25.27	0.00335	0.00023	0.00056	0.00003	0.00076	
25.92	0.00358	0.00028	0.00068	0.00007	0.00094	
26.57	0.00381	0.00032	0.00078	0.00010	0.00106	
27.22	0.00416	0.00041	0.00089	0.00014	0.00119	
27.86	0.00453	0.00051	0.00097	0.00017	0.00133	
28.51	0.00480	0.00060	0.00108	0.00020	0.00141	
29.16	0.00526	0.00074	0.00128	0.00027	0.00164	
29.38	0.00592	0.00073	0.00155	0.00038	0.00187	
29.16	0.00606	0.00073	0.00164	0.00042	0.00184	
29.38	0.00631	0.00075	0.00181	0.00052	0.00186	
29.59	0.00678	0.00075	0.00192	0.00062	0.00192	
30.24	0.00728	0.00081	0.00243	0.00083	0.00224	
30.02	0.00772	0.00079	0.00256	0.00087	0.00216	

Specimen S2R1					
Axial stress	Axial strain	lateral Strain			
N/mm^2		Mid	Left	Center	Right
0.00	0.00000	-0.00001	0.00000	0.00001	-0.00001
0.65	0.00005	0.00000	0.00002	0.00002	0.00000
1.30	0.00011	0.00001	0.00003	0.00003	0.00001
1.94	0.00016	0.00002	0.00005	0.00004	0.00003
2.59	0.00019	0.00003	0.00005	0.00005	0.00004
3.24	0.00021	0.00004	0.00007	0.00005	0.00005
3.89	0.00024	0.00005	0.00008	0.00006	0.00008
4.54	0.00027	0.00005	0.00009	0.00007	0.00012
5.18	0.00030	0.00006	0.00010	0.00008	0.00014
5.83	0.00033	0.00007	0.00011	0.00009	0.00018
6.48	0.00037	0.00008	0.00013	0.00009	0.00026
7.13	0.00039	0.00010	0.00014	0.00010	0.00031
7.78	0.00043	0.00010	0.00016	0.00011	0.00037
8.42	0.00046	0.00011	0.00016	0.00012	0.00042
9.07	0.00049	0.00013	0.00018	0.00013	0.00045
9.72	0.00052	0.00013	0.00019	0.00013	0.00049
10.37	0.00056	0.00014	0.00020	0.00014	0.00054
11.02	0.00059	0.00016	0.00021	0.00015	0.00059
11.66	0.00062	0.00017	0.00023	0.00016	0.00065
12.31	0.00066	0.00018	0.00024	0.00017	0.00069
12.96	0.00070	0.00019	0.00026	0.00017	0.00076
13.61	0.00074	0.00020	0.00027	0.00018	0.00079
14.26	0.00078	0.00021	0.00029	0.00020	0.00080
14.90	0.00082	0.00022	0.00030	0.00020	0.00080
15.55	0.00086	0.00024	0.00032	0.00021	0.00084
16.20	0.00089	0.00025	0.00034	0.00022	0.00088
16.85	0.00095	0.00027	0.00035	0.00023	0.00095
17.50	0.00100	0.00028	0.00037	0.00024	0.00092
18.14	0.00106	0.00031	0.00039	0.00025	0.00091
18.79	0.00111	0.00033	0.00042	0.00026	0.00093
19.44	0.00116	0.00035	0.00043	0.00027	0.00092
20.09	0.00122	0.00037	0.00047	0.00028	0.00076
20.74	0.00129	0.00039	0.00050	0.00029	0.00068
21.38	0.00136	0.00042	0.00053	0.00031	0.00066
22.03	0.00141	0.00045	0.00056	0.00032	0.00067
22.68	0.00148	0.00048	0.00060	0.00034	0.00070
23.33	0.00157	0.00053	0.00065	0.00036	0.00066
23.98	0.00167	0.00057	0.00070	0.00038	0.00052

Table 5.16: Average results for S2R1 - axial stress, axial strain and lateral strain

Specimen S2R1					
Axial stress	Axial strain	lateral Strain			
N/mm^2		Mid	Left	Center	Right
24.62	0.00174	0.00062	0.00075	0.00040	0.00038
25.27	0.00183	0.00068	0.00082	0.00043	0.00026
25.92	0.00194	0.00076	0.00089	0.00046	0.00016
26.57	0.00203	0.00081	0.00094	0.00048	0.00019
27.22	0.00217	0.00090	0.00103	0.00052	0.00028
27.86	0.00230	0.00097	0.00110	0.00056	0.00043
28.51	0.00241	0.00104	0.00118	0.00059	0.00063
29.16	0.00254	0.00113	0.00127	0.00063	0.00102
29.81	0.00279	0.00131	0.00142	0.00071	0.00176
30.46	0.00296	0.00144	0.00154	0.00077	0.00260
31.10	0.00314	0.00157	0.00168	0.00084	0.00132
31.75	0.00329	0.00166	0.00177	0.00089	0.00108
32.40	0.00359	0.00187	0.00196	0.00102	-0.00017
33.05	0.00386	0.00204	0.00217	0.00113	-0.00137
33.70	0.00410	0.00222	0.00234	0.00126	-0.00293
34.34	0.00440	0.00238	0.00251	0.00140	-0.00481
34.99	0.00474	0.00256	0.00275	0.00156	-0.00557
35.64	0.00497	0.00268	0.00292	0.00165	-0.00553
36.29	0.00529	0.00283	0.00308	0.00177	-0.00574
36.94	0.00578	0.00303	0.00333	0.00198	-0.00611
37.58	0.00624	0.00323	0.00362	0.00221	-0.00619
38.23	0.00652	0.00336	0.00374	0.00238	-0.00628
38.88	0.00706	0.00356	0.00430	0.00265	-0.00621
39.53	0.00799	-0.00086	0.00452	0.00315	-0.00659
40.18	0.00876	-0.00222	0.00466	0.00356	-0.00647
39.53	0.00892	0.00286	0.00459	0.00362	-0.00639
38.88	0.00901	0.00435	0.00456	0.00364	-0.00634
39.53	0.00926	0.00450	0.00450	0.00375	-0.00623
40.18	0.00944	0.00466	0.00408	0.00387	-0.00593
40.82	0.00967	0.00482	0.00464	0.00402	-0.00574
41.47	0.00998	0.00491	0.00389	0.00422	-0.00548
41.47	0.01034	0.00278	0.00406	0.00431	-0.00516
41.47	0.01112	0.00248	0.00443	0.00455	-0.00482
41.47	0.01147	0.00249	0.00458	0.00463	-0.00467
41.47	0.01188	0.00526	0.00474	0.00471	-0.00450
42.12	0.01214	0.00553	0.00517	0.00478	-0.00432
42.12	0.01249	0.00568	0.00539	0.00490	-0.00415
42.12	0.01261	0.00581	0.00537	0.00498	-0.00401
42.77	0.01281	0.00590	0.00547	0.00509	-0.00399
43.42	0.01303	0.00595	0.00564	0.00526	-0.00389
43.42	0.01343	0.00605	0.00558	0.00535	-0.00380
43.42	0.01389	0.00389	0.00552	0.00544	-0.00368
Specimen S1R2					
---------------	--------------	----------	----------	----------	----------
Axial stress	Axial strain		lateral	Strain	
N/mm^2		Mid	Left	Center	Right
0.00	0.00000	-0.00001	-0.00001	-0.00002	-0.00001
0.66	0.00003	-0.00001	-0.00002	-0.00003	0.00000
1.33	0.00006	-0.00002	-0.00003	-0.00003	0.00001
1.99	0.00009	-0.00002	-0.00003	-0.00002	0.00003
2.65	0.00012	-0.00002	-0.00004	-0.00002	0.00004
3.31	0.00013	-0.00003	-0.00005	-0.00001	0.00006
3.98	0.00016	-0.00002	-0.00007	-0.00002	0.00007
4.64	0.00020	-0.00003	-0.00010	-0.00001	0.00009
5.30	0.00023	-0.00002	-0.00012	-0.00001	0.00012
5.96	0.00028	-0.00002	-0.00013	-0.00001	0.00014
6.63	0.00034	-0.00001	-0.00016	0.00001	0.00018
7.29	0.00039	-0.00001	-0.00018	0.00002	0.00021
7.95	0.00044	0.00000	-0.00020	0.00003	0.00022
8.62	0.00050	0.00001	-0.00021	0.00003	0.00024
9.28	0.00057	0.00001	-0.00021	0.00005	0.00025
9.94	0.00063	0.00002	-0.00021	0.00007	0.00026
10.60	0.00071	0.00004	-0.00021	0.00008	0.00027
11.27	0.00077	0.00004	-0.00022	0.00010	0.00028
11.93	0.00085	0.00005	-0.00021	0.00012	0.00029
12.59	0.00095	0.00006	-0.00020	0.00016	0.00030
13.25	0.00103	0.00007	-0.00018	0.00020	0.00032
13.92	0.00112	0.00008	-0.00019	0.00023	0.00034
14.58	0.00118	0.00009	-0.00018	0.00027	0.00036
15.24	0.00127	0.00011	-0.00017	0.00031	0.00038
15.91	0.00135	0.00013	-0.00016	0.00036	0.00041
16.57	0.00143	0.00015	-0.00015	0.00040	0.00045
17.23	0.00153	0.00017	-0.00013	0.00044	0.00049
17.89	0.00162	0.00020	-0.00011	0.00048	0.00052
18.56	0.00174	0.00023	-0.00003	0.00053	0.00059
19.22	0.00183	0.00027	0.00006	0.00056	0.00063
19.88	0.00193	0.00031	0.00010	0.00060	0.00070
20.54	0.00208	0.00034	0.00014	0.00064	0.00075
21.21	0.00218	0.00040	0.00017	0.00069	0.00082
21.87	0.00230	0.00046	0.00020	0.00074	0.00092
22.53	0.00243	0.00054	0.00025	0.00080	0.00101
23.20	0.00257	0.00064	0.00035	0.00086	0.00111

Table 5.17: Average results for S1R2 - axial stress, axial strain and lateral strain

	Specimen S1R2						
Axial stress	Axial strain		lateral	Strain			
N/mm^2		Mid	Left	Center	Right		
23.86	0.00273	0.00075	0.00035	0.00093	0.00122		
24.52	0.00293	0.00088	0.00039	-0.00004	0.00136		
25.18	0.00313	0.00100	0.00043	0.00037	0.00148		
25.85	0.00340	0.00116	0.00043	0.00115	0.00160		
26.51	0.00362	0.00129	0.00042	-0.00038	0.00176		
27.17	0.00394	0.00146	-0.00210	-0.00168	0.00189		
27.83	0.00424	0.00172	-0.00209	-0.00217	0.00213		
28.50	0.00451	0.00197	-0.00060	-0.00126	0.00221		
29.16	0.00506	0.00252	-0.00234	-0.00244	0.00285		
29.82	0.00548	0.00313	-0.00672	-0.00537	0.00228		
30.49	0.00580	0.00361	-0.00879	-0.00705	0.00150		
31.15	0.00629	0.00436	-0.01019	-0.00606	0.00105		
31.81	0.00662	0.00478	-0.01060	-0.00917	0.00246		
32.47	0.00710	0.00546	-0.01083	-0.01557	0.00231		
33.14	0.00767	0.00618	-0.01156	-0.02396	0.00284		
33.80	0.00837	0.00732	-0.01254	-0.01685	0.00275		
34.46	0.00890	0.00827	-0.00839	-0.01469	0.00286		
35.12	0.00926	0.00740	0.00845	-0.01341	0.00304		
35.79	0.00976	0.00877	0.00861	-0.00922	0.00288		

Specimen S2R2					
Axial stress	Axial strain		lateral	Strain	
N/mm^2		Mid	Left	Center	Right
0.00	0.00000	0.00001	0.00000	0.00000	0.00000
0.66	0.00003	0.00003	-0.00001	0.00001	0.00001
1.33	0.00008	0.00004	0.00000	0.00002	0.00001
1.99	0.00015	0.00007	0.00001	0.00003	0.00002
2.65	0.00018	0.00009	0.00001	0.00003	0.00002
3.31	0.00023	0.00012	0.00001	0.00004	0.00002
3.98	0.00027	0.00014	0.00000	0.00003	0.00002
4.64	0.00030	0.00016	0.00000	0.00004	0.00003
5.30	0.00033	0.00017	0.00001	0.00005	0.00003
5.96	0.00036	0.00020	0.00001	0.00005	0.00003
6.63	0.00040	0.00023	0.00001	0.00005	0.00004
7.29	0.00044	0.00026	0.00001	0.00005	0.00004
7.95	0.00048	0.00029	0.00001	0.00006	0.00004
8.62	0.00052	0.00033	0.00002	0.00007	0.00005
9.28	0.00057	0.00036	0.00002	0.00008	0.00005
9.94	0.00062	0.00040	0.00002	0.00009	0.00007
10.60	0.00067	0.00046	0.00001	0.00011	0.00008
11.27	0.00071	0.00050	0.00002	0.00013	0.00008
11.93	0.00077	0.00055	0.00003	0.00014	0.00010
12.59	0.00082	0.00059	0.00004	0.00015	0.00010
13.25	0.00090	0.00065	0.00004	0.00016	0.00012
13.92	0.00096	0.00071	0.00003	0.00018	0.00013
14.58	0.00103	0.00076	0.00003	0.00019	0.00014
15.24	0.00109	0.00084	0.00002	0.00021	0.00017
15.91	0.00115	0.00091	0.00002	0.00023	0.00018
16.57	0.00122	0.00099	0.00002	0.00025	0.00019
17.23	0.00131	0.00110	0.00001	0.00027	0.00021
17.89	0.00140	0.00120	0.00001	0.00030	0.00023
18.56	0.00148	0.00131	0.00003	0.00033	0.00026
19.22	0.00157	0.00146	0.00004	0.00037	0.00029
19.88	0.00167	0.00158	0.00007	0.00041	0.00033
20.54	0.00178	0.00176	0.00011	0.00046	0.00036
21.21	0.00187	0.00192	0.00015	0.00050	0.00039
21.87	0.00197	0.00213	0.00023	0.00054	0.00043
22.53	0.00205	0.00232	0.00026	0.00058	0.00047

Table 5.18: Average results for S2R2 - axial stress, axial strain and lateral strain

Specimen S2R2						
Axial stress	Axial strain		lateral	Strain		
N/mm^2		Mid	Left	Center	Right	
23.20	0.00215	0.00260	0.00028	0.00063	0.00052	
23.86	0.00235	0.00301	0.00035	0.00070	0.00057	
24.52	0.00244	0.00347	0.00043	0.00076	0.00063	
25.18	0.00255	0.00383	0.00052	0.00081	0.00069	
25.85	0.00264	0.00421	0.00057	0.00087	0.00074	
26.51	0.00281	0.00478	0.00067	0.00095	0.00082	
27.17	0.00297	0.00537	0.00074	0.00101	0.00088	
27.83	0.00311	0.00580	0.00084	0.00108	0.00095	
28.50	0.00328	0.00669	0.00096	0.00117	0.00104	
29.16	0.00344	0.00761	0.00115	0.00129	0.00116	
29.82	0.00362	0.00830	0.00118	0.00142	0.00130	
30.49	0.00379	0.00859	0.00120	0.00155	0.00144	
31.15	0.00396	0.00867	0.00109	0.00164	0.00153	
31.81	0.00416	0.00892	0.00104	0.00176	0.00165	
32.47	0.00440	0.00946	0.00107	0.00192	0.00183	
33.14	0.00468	0.01000	0.00161	0.00208	0.00200	
33.80	0.00498	0.01087	0.00274	0.00225	0.00212	
34.46	0.00527	0.01123	0.00323	0.00244	0.00228	
35.12	0.00563	0.01163	0.00379	0.00264	0.00242	
35.79	0.00588	0.01286	0.00419	0.00280	0.00260	
36.45	0.00625	0.01444	0.00465	0.00300	0.00282	
37.11	0.00669	0.01594	0.00610	0.00324	0.00304	
37.78	0.00708	0.01647	0.00634	0.00345	0.00326	
38.44	0.00736	0.01720	0.00756	0.00366	0.00327	
39.10	0.00772	0.01772	0.00869	0.00386	0.00370	
39.76	0.00830	0.01799	0.01068	0.00409	0.00341	
40.43	0.00868	0.01822	0.01055	0.00420	0.00353	
41.09	0.00898	0.01844	0.01055	0.00430	0.00210	

E.

Specimen S1R3					
Axial stress	Axial strain		lateral	Strain	
N/mm^2		Mid	Left	Center	Right
0.00	0.00000	-0.00001	0.00000	0.00000	0.00002
0.69	0.00002	0.00000	0.00001	0.00001	0.00004
1.37	0.00004	0.00000	0.00001	0.00001	0.00006
2.06	0.00005	0.00000	0.00002	0.00002	0.00010
2.74	0.00007	0.00000	0.00002	0.00002	0.00012
3.43	0.00008	0.00000	0.00002	0.00002	0.00013
4.12	0.00010	-0.00001	0.00002	0.00002	0.00030
4.80	0.00013	-0.00001	0.00002	0.00002	0.00035
5.49	0.00015	-0.00001	0.00002	0.00003	0.00038
6.18	0.00018	-0.00002	0.00003	0.00002	0.00041
6.86	0.00021	-0.00002	0.00003	0.00003	0.00044
7.55	0.00024	-0.00002	0.00004	0.00003	0.00047
8.23	0.00026	-0.00002	0.00004	0.00004	0.00049
8.92	0.00029	-0.00002	0.00004	0.00004	0.00051
9.61	0.00033	-0.00002	0.00005	0.00005	0.00053
10.29	0.00035	-0.00001	0.00005	0.00006	0.00055
10.98	0.00039	-0.00001	0.00006	0.00006	0.00057
11.67	0.00043	-0.00001	0.00006	0.00006	0.00060
12.35	0.00047	-0.00001	0.00007	0.00007	0.00063
13.04	0.00051	-0.00001	0.00007	0.00007	0.00064
13.72	0.00054	0.00000	0.00008	0.00007	0.00067
14.41	0.00058	-0.00001	0.00008	0.00008	0.00070
15.10	0.00062	0.00000	0.00009	0.00008	0.00071
15.78	0.00066	0.00001	0.00009	0.00009	0.00072
16.47	0.00070	0.00001	0.00010	0.00009	0.00074
17.16	0.00073	0.00002	0.00010	0.00010	0.00075
17.84	0.00077	0.00003	0.00011	0.00010	0.00077
18.53	0.00086	0.00004	0.00012	0.00011	0.00078
19.21	0.00091	0.00006	0.00013	0.00012	0.00080
19.90	0.00096	0.00008	0.00015	0.00012	0.00082
20.59	0.00103	0.00011	0.00016	0.00013	0.00085
21.27	0.00109	0.00013	0.00018	0.00014	0.00089
21.96	0.00116	0.00021	0.00021	0.00015	0.00097
22.64	0.00123	0.00021	0.00022	0.00016	0.00099
23.33	0.00132	0.00026	0.00024	0.00018	0.00105

Table 5.19: Average results for S1R3 - axial stress, axial strain and lateral strain

Specimen S1R3						
Axial stress	Axial strain		lateral Strain			
N/mm^2		Mid	Left	Center	Right	
24.02	0.00141	0.00030	0.00027	0.00020	0.00112	
24.70	0.00150	0.00037	0.00031	0.00022	0.00125	
25.39	0.00157	0.00043	0.00035	0.00024	0.00134	
26.08	0.00170	0.00051	0.00040	0.00027	0.00151	
26.76	0.00184	0.00057	0.00045	0.00030	0.00164	
27.45	0.00195	0.00065	0.00050	0.00034	0.00180	
28.13	0.00209	0.00080	0.00061	0.00039	0.00212	
28.82	0.00220	0.00091	0.00069	0.00043	0.00236	
29.51	0.00240	0.00099	0.00080	0.00049	0.00259	
30.19	0.00253	0.00110	0.00089	0.00056	0.00282	
30.88	0.00270	0.00137	0.00113	0.00075	0.00342	
31.57	0.00294	0.00182	0.00148	0.00105	0.00419	
32.25	0.00317	0.00215	0.00144	0.00126	0.00474	
32.94	0.00364	0.00239	0.00161	0.00145	0.00515	
33.62	0.00413	0.00259	0.00174	0.00167	0.00565	
34.31	0.00455	0.00296	0.00198	0.00204	0.00633	

Specimen S2R3					
Axial stress	Axial strain		latera	l Strain	
N/mm^2		Mid	Left	Center	Right
0.00	0.00000	0.00000	0.00000	0.00000	0.00000
0.69	0.00006	0.00001	0.00000	-0.00001	0.00000
1.37	0.00015	0.00002	0.00000	-0.00001	0.00000
2.06	0.00024	0.00003	0.00000	0.00000	0.00001
2.74	0.00028	0.00003	0.00000	0.00000	0.00001
3.43	0.00032	0.00004	0.00000	0.00000	0.00000
4.12	0.00037	0.00004	0.00000	0.00000	-0.00001
4.80	0.00044	0.00004	0.00000	-0.00001	-0.00001
5.49	0.00052	0.00005	0.00000	0.00000	-0.00001
6.18	0.00058	0.00006	0.00000	0.00000	0.00000
6.86	0.00067	0.00007	0.00001	0.00001	0.00003
7.55	0.00073	0.00008	0.00001	0.00001	0.00007
8.23	0.00080	0.00009	0.00001	0.00002	0.00012
8.92	0.00086	0.00011	0.00002	0.00002	0.00019
9.61	0.00090	0.00012	0.00002	0.00002	0.00027
10.29	0.00097	0.00013	0.00003	0.00004	0.00039
10.98	0.00104	0.00015	0.00003	0.00004	0.00047
11.67	0.00110	0.00016	0.00004	0.00006	0.00054
12.35	0.00115	0.00018	0.00005	0.00007	0.00062
13.04	0.00121	0.00019	0.00005	0.00008	0.00069
13.72	0.00128	0.00020	0.00005	0.00010	0.00513
14.41	0.00134	0.00021	0.00006	0.00011	0.00532
15.10	0.00138	0.00023	0.00006	0.00013	0.00539
15.78	0.00146	0.00025	0.00007	0.00014	0.00538
16.47	0.00153	0.00027	0.00008	0.00016	0.00539
17.16	0.00161	0.00030	0.00010	0.00018	0.00538
17.84	0.00170	0.00034	0.00011	0.00020	0.00537
18.53	0.00180	0.00038	0.00012	0.00023	0.00535
19.21	0.00187	0.00041	0.00014	0.00025	0.00535
19.90	0.00195	0.00044	0.00016	0.00027	0.00536
20.59	0.00206	0.00048	0.00017	0.00029	0.00539
21.27	0.00215	0.00053	0.00019	0.00033	0.00541
21.96	0.00227	0.00057	0.00021	0.00036	0.00543
22.64	0.00237	0.00064	0.00024	0.00039	0.00547
23.33	0.00250	0.00069	0.00027	0.00042	0.00549

Table 5.20: Average results for S2R3 - axial stress, axial strain and lateral strain

	Specimen S2R3					
Axial stress	Axial strain		lateral	Strain		
N/mm^2		Mid	Left	Center	Right	
24.02	0.00264	0.00076	0.00029	0.00046	0.00554	
24.70	0.00279	0.00083	0.00032	0.00050	0.00559	
25.39	0.00295	0.00090	0.00036	0.00053	0.00565	
26.08	0.00307	0.00097	0.00039	0.00056	0.00570	
26.76	0.00323	0.00106	0.00042	0.00061	0.00576	
27.45	0.00345	0.00118	0.00050	0.00069	0.00588	
28.13	0.00375	0.00136	0.00060	0.00077	0.00597	
28.82	0.00396	0.00156	0.00065	0.00083	0.00557	
29.51	0.00417	0.00172	0.00072	0.00088	0.00585	
30.19	0.00439	0.00185	0.00079	0.00094	0.00562	
30.88	0.00473	0.00209	0.00088	0.00102	0.00610	
31.57	0.00515	0.00237	0.00098	0.00111	0.00621	
32.25	0.00552	0.00254	0.00100	0.00125	0.00597	
32.94	0.00585	0.00271	0.00054	0.00135	0.00582	
33.62	0.00622	0.00287	0.00114	0.00145	0.00576	
34.31	0.00669	0.00310	0.00097	0.00159	0.00482	
35.00	0.00717	0.00331	0.00135	0.00175	0.00544	
35.68	0.00767	0.00342	0.00156	0.00191	0.00597	
36.37	0.00810	0.00363	0.00175	0.00211	0.00495	
37.05	0.00879	0.00390	0.00207	0.00239	0.00541	
37.74	0.00918	0.00409	0.00221	0.00252	0.00470	
38.43	0.00978	0.00435	0.00255	0.00274	0.00558	
39.11	0.01030	0.00429	0.00255	0.00292	0.00625	
39.80	0.01084	0.00425	-0.00015	0.00305	0.00623	
40.49	0.01155	0.00435	-0.00010	0.00325	0.00554	
41.17	0.01230	0.00456	0.00249	0.00346	0.00584	
41.40	0.01264	0.00465	0.00379	0.00361	0.00560	
41.63	0.01305	0.00464	0.00387	0.00370	0.00592	
42.32	0.01367	0.00463	0.00384	0.00385	0.00508	
43.00	0.01400	0.00464	0.00394	0.00392	0.00494	
43.69	0.01511	0.00487	0.00418	0.00410	0.00583	

5.5.1 Axial Stress vs. Axial Strain

Comparing specimen S0R0, S1R0 and S2R0 keeping corner radius same R0 and varying wrapping layers. Figure 5.14 shows the average axial stress vs. axial strain plot, S0R0, S1R0 and S2R0 are subjected to total stress of 18.56 N/ mm^2 , 27.34 N/ mm^2 and 36.96 N/ mm^2 and strain observed are 0.0007, 0.0100 and 0.0125 respectively. Ultimate stress observed in S1R0 and S2R0 are 27.34 N/ mm^2 and 36.96 N/ mm^2 which are 47 % and 99 % higher than S0R0 respectively. From the plot for specimen S1R0 and S2R0, the axial strain is same up to axial stress of 25 N/ mm^2 .

Figure 5.14: R0 corner radius with one layer and two layers

For specimen S1R1 and S2R1 keeping corner radius same R1 and varying wrapping layer that are one and two. Figure 5.15 shows the average axial stress vs. axial strain plot, S1R1 and S2R1 are subjected to total stress of 30.02 N/mm^2 and 43.42 N/mm^2 and strain observed are 0.0077 and 0.0138 respectively. Ultimate stress of S2R1 is 45 % higher than S1R1.

Figure 5.15: R1 corner radius with one layer and two layers

Figure 5.16 shows the average axial stress vs. axial strain plot, S1R2 and S2R2 are subjected to total stress of 35.79 N/ mm^2 and 41.09 N/ mm^2 and strain observed are 0.0097 and 0.0089 respectively. Ultimate stress of S2R2 is 15 % higher than S1R2. From the plot for specimen S1R2 and S2R2, the axial strain is same up to axial stress of 13 N/ mm^2 .

Figure 5.16: R2 corner radius with one layer and two layers

Figure 5.17 shows the average axial stress vs. axial strain plot, S1R3 and S2R3 are subjected to total stress of 34.31 N/ mm^2 and 43.69 N/ mm^2 and strain observed are 0.0045 and 0.0151 respectively. Ultimate stress observed higher than S1R3 for specimen S2R3 which is 27 %.

Figure 5.17: R3 corner radius with one layer and two layers

Figure 5.21 shows average axial stress vs. axial strain plot for specimens S1R0, S1R1, S1R2 and S1R3. For specimen S1R0, S1R1, S1R2 and S1R3 are subjected to stress of 27.34 N/ mm^2 , 30.02 N/ mm^2 , 35.79 N/ mm^2 and 34.31 N/ mm^2 and strain observed are 0.0105, 0.0077, 0.0098 and 0.0045 respectively. Ultimate stress observed in percentage comparing between S1R0 to S1R1, S1R1 to S1R2 and S1R2 to S1R3 are 10 %, 19 % and - 4 % varying respectively. Specimens S1R1 and S1R2 are show same axial strain up to axial stress of 30 N/ mm^2 .

Figure 5.18: Single layer with different corner radius

Figure 5.19 shows average axial stress vs. axial strain plot for specimens S2R0, S2R1, S2R2 and S2R3. For specimen S2R0, S2R1, S2R2 and S2R3 are subjected to stress of 36.96 N/ mm^2 , 43.42 N/ mm^2 , 41.09 N/ mm^2 and 43.69 N/ mm^2 and strain observed are 0.0125, 0.0138, 0.0089 and 0.0151 respectively. Ultimate stress observed in percentage comparing between S2R0 to S2R1, S2R1 to S2R2 and S2R2 to S2R3 are 17 %, - 5 % and 6 % varying respectively. Specimens S2R0 and S2R1 are show same axial strain up to axial stress of 25 N/ mm^2 .

Figure 5.19: Double layers with different corner radius

5.5.2 Axial Stress vs. Lateral Strain

Figure 5.20 shows the plot of axial stress vs. lateral strain for the specimen S2R2. Lateral strain measured at the mid of side face and left, center and right on corner radius. Plot shows that strain is more at mid and then in decreasing left, right points and at the center. Specimen S2R2 is subjected to total stress of 41.09 N/ mm^2 and strain observed at mid, left, center and right is 0.0045, 0.0029, 0.0017 and 0.0050 respectively. After debonding of FRP at axial stress 30 N/ mm^2 the strain developed in right is more as shown from the graphical plot. Strain developed in mid is more from the starting of the axial stress. From the strain results it is clear that strain developed in Specimen S2R2 at mid is more than left and right points and same left and right points results are more than the center one, which shows the ideal condition.

Figure 5.20: Strain at mid, left, Center and Right of S2R2

Figure 5.21 shows a plot of average axial stress vs. lateral strain for specimens S1R0, S1R1, S1R2 and S1R3. For plotting of graph only mid-point is consider as at mid-point the value of strain is more than other points. For specimen S1R0, S1R1, S1R2 and S1R3 are subjected to stress of 27.34 N/ mm^2 , 30.02 N/ mm^2 , 35.79 N/ mm^2 and 34.31 N/ mm^2 and strain observed are 0.0105, 0.0077, 0.0097 and 0.0045 respectively. Ultimate stress observed in percentage comparing between S1R0 to S1R1, S1R1 to S1R2 and S1R2 to S1R3 are 10 %, 19 % and - 4 % varying respectively.

Figure 5.21: Single layer with different corner radius

Figure 5.22 shows a plot of average axial stress vs. lateral strain for specimens S2R0, S2R1, S2R2 and S2R3. For specimen S2R0, S2R1, S2R2 and S2R3 are subjected to stress of $36.96 \text{ N/}mm^2$, $43.42 \text{ N/}mm^2$, $41.09 \text{ N/}mm^2$ and $43.69 \text{ N/}mm^2$ and strain observed are 0.0125, 0.0138, 0.0089 and 0.0151 respectively. Ultimate stress observed in percentage comparing between S2R0 to S2R1, S2R1 to S2R2 and S2R2 to S2R3 are 17 %, - 5 % and 6 % varying respectively.

Figure 5.22: Double layer with different corner radius

5.6 Corner Radius Effect

Table 5.21 shows the mean value of the compressive strength of the 3 specimens and the corresponding strength gain of confined concrete f_{cc}/f_{co} . [7]

Where,

 \mathbf{f}_{cc} = Mean compressive strength of GFRP confined concrete columns

```
= ultimate load / Area
= (486.67 \times 1000) / 15432 From Table 5.1 for S1R1
= 31.54 \text{ N/mm}^2
```

$$= 20.57 \text{ N/mm}^2 \qquad \qquad \text{From Table 4.2}$$

 $\mathbf{r} = \mathbf{Corner}$ radius

b = Width of section

Maximum values of f_{cc}/f_{co} for single layer and two layers GFRP confined specimens 1.85 and 2.22 respectively.

Notation	Corner	b	Corner radius ratio	Unconfined	Confi	ned f _{cc}	f _{cc} / f _{co}
	radius		2r/b	f _{co}	1 layer	2 layers	
S1R0	0	125	0.00	20.57	28.63	-	1.39
S1R1	15	125	0.24	20.57	31.54	-	1.53
S1R2	25	125	0.40	20.57	38.00	-	1.85
S1R3	35	125	0.56	20.57	37.97	-	1.85
S2R0	0	125	0.00	20.57	-	38.24	1.86
S2R1	15	125	0.24	20.57	-	40.39	1.96
\$2R2	25	125	0.40	20.57	-	50.15	2.44
S2R3	35	125	0.56	20.57	-	45.75	2.22

Table 5.21: Mean compressive strengths and corresponding $\mathrm{f}_{cc}/\mathrm{f}_{co}$

Figure 5.23 shows graph of the strength gain of confined concrete f_{cc} / f_{co} versus corner radius ratio 2r/b. From the graph, it is clearly seen that the strength gain of the confined specimen is in direct proportion to the corner radius ratio.

Figure 5.23: Strength gain of confined concrete vs. corner radius ratio

5.7 Failure Modes

Failure modes for unwrapped and wrapped column specimens are presented in this section. Cracks propagation, are visible before occurring the crushing of the unconfined RC member. Glass fibre wrapped specimens typically failed by a fracture of GFRP composite near the corner of the specimens due to the stress concentration in those regions. During the loading, clicking sounds used to heard, signifying the tearing of the FRP sheet and the cracking of the epoxy resin. The final failure occurred suddenly with an explosive sound.

Figure 5.24 (a) shows the failure of S0R0 specimen from quarter height. Failure occurs between two ties, it means the confinement is lacking at the region therefore the concrete fails at that region. Figure 5.24 (b), Figure 5.24 (c) and Figure 5.24 (d) shows the failure of specimen by buckling of the longitudinal steel reinforcing bars.

(a)

(b)

Figure 5.24: Control specimen S0R0

Figure 5.25 shows failure of specimen S1R0, FRP fails at edges which shows that in sharp edges specimen stress concentration is very high at the edges. At the compressed side, near the mid height of the specimen, due to vertical shrinkage of the specimen are visible wrinkles in the FRP confined specimen. This wrinkles features the debonding of the FRP material from the concrete substrate in the end on this areas came the failure of the GFRP sheet.

(a)

Figure 5.25: Specimens - S1R0

Figure 5.26 shows the failure of specimen S2R0, failure occurs at corner due to the stress concentration at the corner. Figure 5.26 (b), Figure 5.26 (c) and Figure 5.26 (d) shows evidently the rupture of FRP at the corner of specimen.

(a)

Figure 5.26: Specimen - S2R0

Figure 5.27 shows failure of specimen S1R1, from these three specimens one specimen fails due to premature failure which causes lesser ultimate failure load than other two specimens. Figure 5.27 (b) shows premature failure of column.

(a)

(b)

(d)

Figure 5.27: Specimen - S1R1

Figure 5.28 shows the failure of specimen S2R1, all the specimens fails from the center of column length. Figure 5.28 (b) shows bend form middle of column which occur due slenderness.

(a)

Figure 5.28: Specimen - S2R1

Figure 5.29 shows the failure of specimen S1R2, except one column other two are fails from the center of length. Figure 5.29 (b) shows the premature failure of the specimen. From Figure 5.29 (b), Figure 5.29 (c) and Figure 5.29 (d) shows that rupture zone shifting from corner to mid portion of sides.

(a)

Figure 5.29: Specimen - S1R2

Figure 5.30 shows the failure of specimen S2R2, specimen fails from top due to premature failure. Figure 5.30 (b) and Figure 5.30 (d) shows the premature failure of specimen and reinforcement bar can be easily seen in Figure 5.30 (d).

(a)

(b)

Figure 5.30: Specimen - S2R2

Figure 5.31 shows failure of specimen S1R3, in these columns also the premature failure observed. Figure 5.31 (d) shows rupture of FRP from the midpoint on side which shows ideal condition as the radius of specimen increased.

(a)

(b)

Figure 5.31: Specimen - S1R3

Figure 5.32 shows failure of specimen S2R3, specimen observed in this category also fails with premature failure. Figure 5.32 (b), Figure 5.32 (c) and Figure 5.32 (d) shows that rupture zone shifting from corner to mid face side.

(a)

(b)

Figure 5.32: Specimen - S2R3

5.8 Experimental and Analytical Results

Percentage variation in experimental result with analytical result for specimens are S0R0, S1R0, S2R0, S1R1, S2R1, S1R2, S2R2, S1R3 and S2R3 are 26.74 %, 120.53 %, 139.24 %, 122.05 %, 119.54 %, 148.92 %, 145.10 %, 134.66 % and 107.14 % respectively as shown in Table 5.22.

Notation	Analytical Results	Experimental Results	% Increment w.r.t
	ACI code (kN)	(kN)	Analytical results
S0R0	239.34	303.33	26.74
S1R0	202.54	446.67	120.53
S2R0	249.40	596.67	139.24
S1R1	219.17	486.67	122.05
S2R1	283.92	623.33	119.54
S1R2	230.32	573.33	148.92
S2R2	308.73	756.67	145.10
S1R3	235.80	553.33	134.66
S2R3	321.84	666.67	107.14

Table 5.22: Comparison for experimental results to analytical results

In Analytical calculation the formula ϕP_n for calculating axial load in confined condition, contains reduction factor, $\phi = 0.70$ that reduce the axial load carrying capacity. Therefore analytical results are conservative and showing less value than experimental results.

Chapter 6

Summary and Conclusion

6.1 Summary

A total of 27 RC columns are tested under axial loading. Three columns are unwrapped and have been designated as control specimens. Three columns each with corner radius equivalent to less than cover, equal to cover, greater than cover, are GFRP wrapped with one and two layers, respectively. The main purpose is to investigate the effect of corner radius on the effective confinement that is provided by GFRP sheet for RC columns. The test variables included the different corner radius and number of GFRP layers. The values of Ultimate failure load, displacement and lateral strain of columns are recorded. The test results indicate that corner radius is of great importance in relation to the level of confinement. Experimental test results are compared with value calculated from the IS 456: 2000, ACI 318M - 08 and ACI 440.2R - 08 code provisions.

6.2 Conclusions

Based on the analysis of experimental results and the performed analytical verification, the following conclusions can be drawn:

- The experimental results clearly demonstrate that GFRP wrapping can enhance the structural performance of RC columns under axial loading, in terms of both maximum strength and strain.
- Amongst all retrofitting techniques wrapping technique increasing axial strength by providing addition confinement without increasing the size.
- Percentage increment in ultimate failure load is ranging from 8.10 % to 149.45
 % for all wrapped columns as compared to that of control columns.
- Ultimate load carrying capacity of specimens S1R0, S2R0, S1R1, S2R1, S1R2, S2R2, S1R3 and S2R3 is increased by 47.25 %, 96.70 %, 60.44 %, 130.77 %, 89.01 %, 149.45 %, 82.42 % and 119.78 %, respectively compared to specimen S0R0.
- The strength gain of confined concrete columns, f_{cc}/f_{co} , is in direct proportion to the corner radius ratio except in case 35 mm corner radius.
- Increasing the number of GFRP layers increases the axial compressive strengths of specimens, but the strength increase is not in linear relation with the number of GFRP layers.
- The specimen having corner radius of 25 mm performed best compare to corner radius of 0 mm, 15 mm and 35 mm.
- GFRP wrapped column goes under higher axial displacement in order to gain higher compressive strength over control column.
- Lateral strain is more at the mid side of specimen and then reduces at starting of curvature to center of curvature.
- The axial strength and displacement of specimens are increases with increase in number of GFRP layers.

- The final failure of GFRP wrapped specimen occurred suddenly with an explosive sound.
- From the failure of specimen it is clearly shown that the rupture of GFRP sheet transfers from edges (zone 1) to mid of side face (zone 2) of specimen.

6.3 Future Scope

The present study is limited to effect of corner radius and confinement layers on behaviour of RC column under axial compressive load. The study can be extended to include following aspects.

- Experimental work can be extended further by selecting different wrapping patterns of GFRP.
- Similar study can be carried out on column using different wrapping material and different loading condition.
- Comparative performance of different material like GFRP, CFRP etc. can be studied.
- Experimental work also can be done on rectangular column with different aspect ratios.

References

- Riad Benzaid at el., "Study of The Compressive Behavior of Short Concrete Columns Confined by Fiber Reinforced Composite", *The Arabian Journal for Science and Engineering*, Volume 34, Number 1B, (2009), pp. 15-26.
- [2] Manuel A.G. Silva, "Behavior of square and circular columns strengthened with aramidic or carbon fibers", *Construction and Building Material* 25(2011), pp. 3222-3228.
- [3] Raafat El-Hacha and Mohammad A. Mashrik, "Effect of SFRP confinement on circular and square concrete columns", *Engineering Structures* 36 (2012), pp. 379-393.
- [4] Yousef A. Al-Salloum, "Influence of Edge Sharpness on The Strength of Square Concrete Columns Confined with FRP Composite Laminates", *Composites: Part* B 38 (2007), pp. 640-650.
- [5] M. Reza Esfahani and M. Reza Kianoush, "Axial Compressive Strength of Reinforced Concrete Columns Wrapped with Fibre Reinforced Polymers (FRP)", *International Journal of Engineering Transactions B: Applications*, Vol. 18, No.1 (2005), pp. 9-19.
- [6] Yung-Chih Wang and K. Hsu, "Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying capacity", *Composite Structures*, 82 (2008), pp. 132-139.

- [7] Lei-Ming Wang and Yu-Fei Wu, "Effect of corner radius on the performance of CFRP-confined square concrete columns: Test", *Engineering Structures*, 30 (2008), pp. 493-505.
- [8] Riad Benzaid et al., "Behaviour of Square Concrete Column Confined with GFRP Composite Warp", Journal of Civil Engineering and Management, 14(2), (2008), pp. 115-120.
- [9] Yu-Fei Wu and You-Yi Wei, "Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", *Engineering Structures* 32 (2010), pp. 32-45.
- [10] H. Toutanji et al., "Behavior of Large-Scale Rectangular Columns Confined with FRP Composites", Journal of Composites for Construction - ASCE (2010), pp.62-71.
- [11] Antonio De Luca at el., "Structural Evaluation of Full-Scale FRP-Confined Reinforced Concrete Columns", Journal of Composites for Construction - ASCE (2011), pp.112-123.
- [12] IS 456:2000, "Plain and Reinforced Concrete Code of Practice", Bureau of Indian Standards, New Delhi, 2000.
- [13] ACI 318M-08, "Building Code Requirements for Structural Concrete and Commentary", ACI Committee 318, U.S.A., 2008.
- [14] ACI 440.2R-08, "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures", ACI Committee 440, U.S.A., 2008.

Appendix A

Readings in Tabular form

This appendix A includes all readings of 27 columns individually: axial load, displacement, axial stress, axial strain and lateral strain for columns S0R0, S1R0, S2R0, S1R1, S2R1, S1R2, S2R2, S1R3 and S2R3, respectively.

Specimen 1					
Load	Deflection				
(kN)	(mm)				
0	0.00				
10	0.01				
20	0.03				
30	0.05				
40	0.06				
50	0.08				
60	0.10				
70	0.12				
80	0.14				
90	0.16				
100	0.17				
110	0.20				
120	0.23				
130	0.25				
140	0.26				
150	0.27				
160	0.30				
170	0.31				
180	0.33				
190	0.36				
200	0.37				
210	0.38				
220	0.40				
230	0.43				
240	0.45				
250	0.47				
260	0.50				
270	0.52				
280	0.56				
290	0.58				
300	0.60				
310	0.63				

Table A.1: Displacement of specimen S0R0

Specimen 2

Load (kN)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250 260

270

280

290

300

310

Deflection

(mm)

0.00

0.01

0.04

0.05

0.06

0.07

0.09

0.13

0.16

0.19

0.21

0.23

0.26

0.27

0.27

0.29

0.31

0.31

0.31

0.33

0.34

0.36

0.37

0.39

0.40

0.44

0.50

0.52

0.54

0.61

0.82

Sp	ecimen 3			
Load	Deflection			
(kN)	(mm)			
0	0.00			
10	0.02			
20	0.06			
30	0.08			
40	0.10			
50	0.11			
60	0.13			
70	0.16			
80	0.18			
90	0.21			
100	0.25			
110	0.26			
120	0.28			
130	0.31			
140	0.35			
150	0.37			
160	0.40			
170	0.44			
180	0.47			
190	0.48			
200	0.50			
210	0.53			
220	0.57			
230	0.61			
240	0.64			
250	0.67			
260	0.69			
270	0.72			
280	0.75			
290	0.78			
Specimen 1				
------------	------------	------	------------	--
Load	Deflection	Load	Deflection	
(kN)	(mm)	(kN)	(mm)	
0	0.00	320	0.47	
10	0.04	330	0.52	
20	0.04	340	0.60	
30	0.04	350	0.65	
40	0.04	360	0.75	
50	0.04	370	0.82	
60	0.04	380	0.92	
70	0.04	390	1.02	
80	0.04	400	1.10	
90	0.04	410	1.20	
100	0.05	420	1.73	
110	0.05	410	1.49	
120	0.05	400	1.92	
130	0.06	410	1.74	
140	0.07	420	2.16	
150	0.08	430	2.34	
160	0.09	430	3.46	
170	0.10	440	4.11	
180	0.11	450	6.24	
190	0.13	440	7.50	
200	0.13	430	7.60	
210	0.15	420	7.72	
220	0.16	420	7.88	
230	0.18	430	7.96	
240	0.20	440	8.08	
250	0.21	450	8.26	
260	0.23	430	9.28	
270	0.26	440	9.36	
280	0.29	450	9.67	
290	0.32	460	9.87	
300	0.37	440	12.28	
310	0.41			

Table A.2: Displacement of specimen S1R0

_

Specimen 2				
Load	Deflection	Load	Deflection	
(kN)	(mm)	(kN)	(mm)	
0	0.00	300	1.42	
10	0.11	310	1.50	
20	0.12	320	1.57	
30	0.16	330	1.64	
40	0.20	340	1.71	
50	0.22	350	1.78	
60	0.25	360	1.87	
70	0.28	370	2.01	
80	0.31	380	2.11	
90	0.35	390	2.33	
100	0.38	400	2.75	
110	0.42	390	3.42	
120	0.46	380	3.49	
130	0.50	370	3.61	
140	0.54	380	3.68	
150	0.60	390	3.76	
160	0.64	400	3.95	
170	0.69	410	4.85	
180	0.74	420	6.48	
190	0.80	410	6.65	
200	0.86	400	6.76	
210	0.91	410	6.87	
220	0.96	420	7.09	
230	1.01	400	8.33	
240	1.07	410	8.37	
250	1.12	420	8.51	
260	1.18	430	8.70	
270	1.24	440	9.67	
280	1.31	440	13.66	
290	1.36			

Specimen 3					
Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)		
0	0.00	260	0.74		
10	0.04	270	0.76		
20	0.14	280	0.78		
30	0.23	290	0.80		
40	0.27	300	0.83		
50	0.29	310	0.85		
60	0.33	320	0.88		
70	0.36	330	0.90		
80	0.40	340	0.94		
90	0.42	350	0.97		
100	0.44	360	1.03		
110	0.46	370	1.10		
120	0.47	380	1.17		
130	0.49	390	1.25		
140	0.51	400	1.31		
150	0.53	410	1.40		
160	0.54	420	2.94		
170	0.57	430	3.51		
180	0.58	420	4.04		
190	0.61	410	4.29		
200	0.64	420	5.91		
210	0.65	430	6.93		
220	0.67	440	7.79		
230	0.68	430	8.40		
240	0.69	420	9.01		
250	0.72	430	10.95		

_

	Specimen 1				
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	360	1.56	580	9.35
10	0.04	370	1.63	570	9.44
20	0.09	380	1.69	560	9.66
30	0.17	390	1.75	550	9.74
40	0.19	400	1.84	560	9.83
50	0.20	410	1.92	570	9.98
60	0.21	420	2.05	580	10.11
70	0.24	430	2.15	590	10.31
80	0.26	440	2.23	580	11.47
90	0.30	450	2.31	570	11.46
100	0.33	460	2.39	560	11.69
110	0.36	470	2.48	550	11.86
120	0.39	480	2.54	560	11.95
130	0.42	490	2.80	570	12.29
140	0.45	500	2.89	580	12.47
150	0.48	510	3.08	590	12.69
160	0.53	520	3.40		
170	0.54	530	3.73		
180	0.58	540	4.09		
190	0.62	550	4.27		
200	0.67	560	5.02		
210	0.70	570	5.95		
220	0.74	560	6.11		
230	0.78	550	5.19		
240	0.83	540	6.34		
250	0.87	550	6.54		
260	0.92	560	6.69		
270	0.96	570	6.93		
280	1.02	580	7.27		
290	1.12	570	7.41		
300	1.14	560	7.65		
310	1.19	550	7.77		
320	1.26	560	7.94		
330	1.33	570	8.08]	
340	1.41	580	8.39]	
350	1.50	590	9.17]	

Table A.3: Displacement of specimen S2R0

		Sp	pecimen 2		
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.0	360	0.7	560	7.8
10	0.0	370	0.7	570	8.3
20	0.0	380	0.8	560	8.6
30	0.0	390	0.8	550	8.8
40	0.0	400	0.9		
50	0.1	410	0.9		
60	0.1	420	1.0		
70	0.1	430	1.1		
80	0.1	440	1.2]	
90	0.1	450	1.2]	
100	0.1	460	1.3]	
110	0.1	470	1.4]	
120	0.2	480	1.7]	
130	0.2	490	1.9		
140	0.2	500	2.0		
150	0.2	510	2.2		
160	0.2	520	2.5]	
170	0.2	530	2.9]	
180	0.2	540	3.2]	
190	0.2	550	3.9]	
200	0.2	540	4.3]	
210	0.3	530	4.4]	
220	0.3	520	4.5]	
230	0.3	530	4.7]	
240	0.3	540	4.8]	
250	0.3	550	4.9	1	
260	0.3	560	5.5	1	
270	0.4	550	5.7	1	
280	0.4	540	5.8	1	
290	0.4	530	5.9]	
300	0.5	540	6.0]	
310	0.5	550	6.1]	
320	0.5	560	6.3]	
330	0.6	550	7.5]	
340	0.6	540	7.6]	
350	0.6	550	7.7	1	

		Sp	oecimen 3		
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	360	1.38	600	10.99
10	0.01	370	1.45	610	11.19
20	0.01	380	1.48	620	11.33
30	0.01	390	1.52	630	11.53
40	0.05	400	1.58	620	12.29
50	0.09	410	1.69	610	12.38
60	0.15	420	1.74	620	12.62
70	0.18	430	1.80	630	12.92
80	0.22	440	1.86		
90	0.25	450	1.92	1	
100	0.29	460	2.13	1	
110	0.34	470	2.18	1	
120	0.37	480	2.27	1	
130	0.41	490	2.39]	
140	0.44	500	2.57]	
150	0.49	510	2.75]	
160	0.54	520	2.95]	
170	0.58	530	3.06	1	
180	0.63	540	3.31]	
190	0.66	550	3.50]	
200	0.72	560	3.96]	
210	0.79	570	4.25]	
220	0.85	580	4.59	1	
230	0.88	590	5.15]	
240	0.92	580	5.65	1	
250	0.97	590	5.81	1	
260	1.01	600	5.97	1	
270	1.05	610	7.03	1	
280	1.10	620	8.69	1	
290	1.14	610	9.02	1	
300	1.18	600	9.15	1	
310	1.20	610	9.39	1	
320	1.22	620	9.67	1	
330	1.29	630	10.16	1	
340	1.30	620	10.74	1	
350	1.35	610	10.85	1	

Specimen 1					
Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)		
0	0.00	360	2.16		
10	0.00	370	2.32		
20	0.01	380	2.52		
30	0.04	390	2.72		
40	0.07	400	3.03		
50	0.07	410	3.33		
60	0.09	420	3.90		
70	0.12	430	4.31		
80	0.17	440	4.74		
90	0.21	450	5.35		
100	0.30	460	6.33		
110	0.33	450	6.42		
120	0.37	440	6.42		
130	0.42	430	6.50		
140	0.47	440	6.57		
150	0.51	450	6.65		
160	0.55	460	6.84		
170	0.60	470	7.09		
180	0.64	480	8.13		
190	0.66	470	8.37		
200	0.71	460	8.54		
210	0.75	450	8.58		
220	0.79	460	8.68		
230	0.84	470	8.78		
240	0.90	480	8.93		
250	0.96	490	9.19		
260	1.02				
270	1.09				
280	1.18				
290	1.27				
300	1.35				
310	1.48				
320	1.70				
330	1.80				
340	1.89				
350	2.01				

Table A.4: Displacement of specimen S1R1

	Specimen 2				
Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)		
0	0.00	360	2.15		
10	0.01	370	2.36		
20	0.03	380	2.53		
30	0.05	390	2.66		
40	0.10	400	2.76		
50	0.11	410	2.90		
60	0.16	420	3.02		
70	0.22	430	3.36		
80	0.26	440	3.44		
90	0.31	450	3.58		
100	0.36	440	3.89		
110	0.39	430	3.93		
120	0.41	440	4.17		
130	0.43	450	4.81		
140	0.42	460	5.00		
150	0.42	450	5.92		
160	0.46				
170	0.49]			
180	0.52]			
190	0.54				
200	0.56				
210	0.61				
220	0.64				
230	0.68				
240	0.72				
250	0.76				
260	0.80				
270	0.84				
280	0.91]			
290	0.98				
300	1.05]			
310	1.23				
320	1.40]			
330	1.56				
340	1.70]			
350	1.90]			

	Specimen 3					
Load	Deflection	Load	Deflection			
(kN)	(mm)	(kN)	(mm)			
0	0.00	360	2.31			
10	0.05	370	2.44			
20	0.12	380	2.54			
30	0.22	390	2.67			
40	0.24	400	2.80			
50	0.32	410	2.92			
60	0.35	420	3.06			
70	0.45	430	3.21			
80	0.53	440	3.34			
90	0.59	450	3.70			
100	0.65	460	3.99			
110	0.69	470	4.19			
120	0.74	480	4.55			
130	0.78	490	4.96			
140	0.81	500	5.90			
150	0.85	490	5.96			
160	0.89	480	6.16			
170	0.94	470	6.22			
180	0.98	480	6.34			
190	1.05	490	6.45			
200	1.10	500	6.60			
210	1.16	510	6.89			
220	1.23					
230	1.30]				
240	1.35]				
250	1.42]				
260	1.48]				
270	1.59]				
280	1.65]				
290	1.70]				
300	1.78]				
310	1.86]				
320	1.94]				
330	2.03]				
340	2.11]				
350	2.21]				

	Specimen 1					
Load	Deflection	Load	Deflection			
(kN)	(mm)	(kN)	(mm)			
0 Ó	0.00	360	5.18			
10	0.20	370	5.45			
20	0.38	380	5.68			
30	0.49	390	5.86			
40	0.58	400	6.09			
50	0.63	410	6.23			
60	0.71	420	6.43			
70	0.86	430	6.53			
80	0.93	440	6.65			
90	1.01	450	6.82			
100	1.13	440	6.82			
110	1.24	430	6.82			
120	1.34	440	6.87			
130	1.46	450	6.87			
140	1.54	460	6.92			
150	1.63	470	6.93			
160	1.78	450	6.93			
170	1.88	440	6.93			
180	1.96					
190	2.04					
200	2.19]				
210	2.29]				
220	2.38					
230	2.53					
240	2.67]				
250	2.87]				
260	3.09					
270	3.30					
280	3.47					
290	3.61					
300	3.71					
310	4.00					
320	4.17					
330	4.27					
340	4.64					
350	4.82					

Table A.5:	Displacement	of specimen	S2R1

	Specimen 2				
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	360	1.24	680	10.15
10	0.00	370	1.33	690	10.43
20	0.02	380	1.38	680	10.93
30	0.06	390	1.45	670	11.03
40	0.08	400	1.54	680	11.16
50	0.10	410	1.61	690	11.29
60	0.13	420	1.73	700	11.79
70	0.15	430	1.84	710	12.50
80	0.17	440	1.92	720	12.85
90	0.19	450	2.02	730	13.43
100	0.23	460	2.17	720	13.61
110	0.25	470	2.29	710	13.70
120	0.28	480	2.42	700	13.79
130	0.31	490	2.58	690	13.88
140	0.35	500	2.79	700	14.05
150	0.37	510	2.99	710	14.21
160	0.41	520	3.11	720	14.47
170	0.45	530	3.23	730	14.72
180	0.48	540	3.43		
190	0.50	550	3.64		
200	0.54	560	4.00]	
210	0.57	570	4.45		
220	0.61	580	4.83		
230	0.64	590	5.01		
240	0.67	600	5.47]	
250	0.70	610	5.95]	
260	0.74	620	6.71]	
270	0.79	610	6.81]	
280	0.84	600	6.90]	
290	0.88	610	7.04		
300	0.92	620	7.16		
310	0.97	630	7.26]	
320	1.02	640	7.38		
330	1.08	650	7.87		
340	1.11	660	9.08		
350	1.17	670	9.61]	

		Sj	pecimen 3		
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	360	1.27	600	8.85
10	0.08	370	1.34	610	8.99
20	0.16	380	1.40	620	9.05
30	0.20	390	1.48	630	9.15
40	0.22	400	1.57	640	9.33
50	0.24	410	1.63	650	9.56
60	0.26	420	1.74	640	9.69
70	0.28	430	1.84	630	9.72
80	0.31	440	1.93	620	9.78
90	0.34	450	2.04	610	9.79
100	0.36	460	2.29	620	9.92
110	0.38	470	2.44	630	10.02
120	0.41	480	2.60	640	10.11
130	0.43	490	2.69	650	10.34
140	0.44	500	2.96	660	10.65
150	0.46	510	3.18	650	10.74
160	0.48	520	3.45	660	10.80
170	0.50	530	3.81	670	10.99
180	0.52	540	4.16	660	11.22
190	0.55	550	4.31	650	11.34
200	0.58	560	4.47		
210	0.61	570	4.80		
220	0.64	580	5.15		
230	0.67	590	5.42		
240	0.70	600	5.82		
250	0.73	610	6.83		
260	0.78	620	7.31		
270	0.81	610	7.46		
280	0.85	600	7.51		
290	0.89	610	7.77		
300	0.94	620	7.94		
310	0.98	630	8.22		
320	1.04	640	8.59		
330	1.09	630	8.67		
340	1.15	620	8.72		
350	1.20	610	8.75		

	Specimen 1				
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	360	0.64	620	5.30
10	0.01	370	0.66	610	5.33
20	0.02	380	0.69	600	5.37
30	0.03	390	0.71	610	5.45
40	0.03	400	0.74	620	5.51
50	0.04	410	0.76	630	5.64
60	0.06	420	0.79	610	6 .07
70	0.08	430	0.81	600	6.27
80	0.08	440	0.83		
90	0.09	450	0.84	1	
100	0.10	460	0.86]	
110	0.11	470	0.88]	
120	0.13	480	0.91	1	
130	0.16	490	0.94]	
140	0.18	500	0.96		
150	0.19	510	0.98]	
160	0.20	520	1.01]	
170	0.21	530	1.04]	
180	0.22	540	1.37]	
190	0.24	550	1.62]	
200	0.26	560	2.13]	
210	0.28	550	2.63		
220	0.30	540	2.67]	
230	0.32	530	2.73]	
240	0.34	520	2.74]	
250	0.36	530	2.81		
260	0.39	540	2.84]	
270	0.41	550	2.89]	
280	0.43	560	2.98		
290	0.46	570	3.10		
300	0.49	580	3.25		
310	0.51	590	3.51		
320	0.53	600	3.90		
330	0.55	610	4.35]	
340	0.58	620	4.69]	
350	0.62	630	4.96]	

Table A.6: Displacement of specimen S1R2

Specimen 2					
Load	Deflection	Load	Deflection		
(kN)	(mm)	(kN)	(mm)		
0	0.00	360	3.84		
10	0.03	370	4.10		
20	0.05	380	4.42		
30	0.07	390	4.87		
40	0.11	400	5.17		
50	0.13	410	5.80		
60	0.17	420	6.24		
70	0.21	430	6.70		
80	0.27	440	7.43		
90	0.33	450	8.01		
100	0.40	460	8.49		
110	0.46	470	9.09		
120	0.52	480	9.41		
130	0.60	490	9.97		
140	0.69	500	10.62		
150	0.76	510	11.09		
160	0.89	520	11.29		
170	0.97	530	11.70		
180	1.10	540	12.07		
190	1.27				
200	1.40				
210	1.54				
220	1.63				
230	1.77				
240	1.90				
250	2.03				
260	2.18				
270	2.30				
280	2.46				
290	2.60				
300	2.75				
310	3.00				
320	3.14				
330	3.32				
340	3.48				
350	3.64				

	Specimen 3					
Load	Deflection	Load	Deflection			
(kN)	(mm)	(kN)	(mm)			
0	0.00	360	2.07			
10	0.04	370	2.27			
20	0.07	380	2.40			
30	0.12	390	2.58			
40	0.14	400	2.77			
50	0.14	410	2.90			
60	0.15	420	3.14			
70	0.18	430	3.32			
80	0.21	440	3.89			
90	0.25	450	4.31			
100	0.31	460	4.56			
110	0.36	470	5.12			
120	0.41	480	5.57			
130	0.45	490	6.12			
140	0.50	500	6.82			
150	0.57	510	8.01			
160	0.62	520	9.05			
170	0.67	530	9.49			
180	0.72	540	9.98			
190	0.76	550	11.28			
200	0.82	540	11.42			
210	0.86	530	11.47			
220	0.90	520	11.51			
230	0.95	530	11.66			
240	1.00	540	11.81			
250	1.05	550	12.07			
260	1.11					
270	1.17					
280	1.28					
290	1.34					
300	1.40					
310	1.48					
320	1.57					
330	1.66					
340	1.78					
350	1.92					

	Specimen 1				
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	360	2.10	700	12.95
10	0.00	370	2.16	710	13.28
20	0.00	380	2.26	720	13.71
30	0.01	390	2.33	730	14.00
40	0.01	400	2.55	740	14.55
50	0.03	410	2.74	750	16.25
60	0.05	420	2.89	760	17.13
70	0.08	430	3.07	750	17.52
80	0.10	440	3.11	740	17.66
90	0.13	450	3.19	730	17.84
100	0.16	460	3.24	720	17.98
110	0.20	470	3.37	710	18.24
120	0.23	480	3.51	700	18.26
130	0.27	490	3.62	710	18.35
140	0.31	500	3.91	720	18.62
150	0.35	510	4.13	730	18.64
160	0.40	520	4.34	740	18.81
170	0.42	530	4.74	750	18.96
180	0.47	540	4.88	760	19.13
190	0.51	550	5.18	770	19.42
200	0.59	560	5.58	780	19.83
210	0.66	570	5.94	790	20.66
220	0.70	580	5.99	800	21.38
230	0.77	590	6.23		
240	0.84	600	6.62]	
250	0.90	610	7.22]	
260	1.00	620	7.58		
270	1.06	630	7.93]	
280	1.16	640	8.19]	
290	1.23	650	8.70		
300	1.33	660	9.47]	
310	1.45	670	10.23		
320	1.56	680	10.42]	
330	1.67	690	10.62]	
340	1.75	700	11.48]	
350	1.83	710	12.70]	

Table A.7: Displacement of specimen S2R2

	Specimen 2				
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	260	1.30	520	4.09
10	0.08	270	1.37	530	4.26
20	0.19	280	1.43	540	4.48
30	0.33	290	1.50	550	4.77
40	0.42	300	1.58	560	5.07
50	0.51	310	1.65	570	5.26
60	0.57	320	1.70	580	5.45
70	0.61	330	1.77	590	5.78
80	0.66	340	1.80	600	6.46
90	0.68	350	1.87	610	6.52
100	0.70	360	1.97	620	6.56
110	0.72	370	2.04	630	6.77
120	0.75	380	2.14	640	7.23
130	0.79	390	2.22	650	7.88
140	0.82	400	2.33	660	8.15
150	0.84	410	2.42	670	8.69
160	0.87	420	2.53	680	8.91
170	0.91	430	2.62	690	9.23
180	0.96	440	2.76	700	9.82
190	0.99	450	2.91	690	10.11
200	1.06	460	3.01	680	10.19
210	1.10	470	3.15	690	10.35
220	1.15	480	3.27	700	10.43
230	1.17	490	3.46	710	10.70
240	1.20	500	3.67	720	10.91
250	1.25	510	3.89	730	11.18

	Specimen 3				
Load	Deflection	Load	Deflection	Load	Deflection
(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0	0.00	290	1.04	580	6.22
10	0.00	300	1.10	590	6.52
20	0.01	310	1.17	600	6.84
30	0.01	320	1.24	610	7.10
40	0.01	330	1.29	620	7.41
50	0.01	340	1.36	630	7.76
60	0.02	350	1.45	640	8.08
70	0.02	360	1.56	650	8.55
80	0.03	370	1.66	660	8.84
90	0.06	380	1.72	670	9.17
100	0.10	390	1.78	680	9.32
110	0.13	400	1.86	690	9.52
120	0.16	410	1.96	700	9.92
130	0.19	420	2.05	690	9.96
140	0.23	430	2.19	680	9.99
150	0.29	440	2.38	670	10.03
160	0.33	450	2.60	680	10.18
170	0.38	460	2.85	690	10.25
180	0.42	470	2.98	700	10.35
190	0.46	480	3.21	710	10.59
200	0.52	490	3.48	720	11.01
210	0.55	500	3.66	730	11.11
220	0.61	510	3.92	740	11.39
230	0.67	520	4.22	730	11.42
240	0.72	530	4.51	720	11.44
250	0.77	540	4.76	710	11.53
260	0.84	550	5.05	700	14.22
270	0.94	560	5.41		
280	0.97	570	5.80		

Specimen 1					
Load	Displacement	Load	Displacement		
(kN)	(mm)	(kN)	(mm)		
0	0.00	310	0.99		
10	0.02	320	1.05		
20	0.04	330	1.09		
30	0.06	340	1.16		
40	0.07	350	1.21		
50	0.08	360	1.25		
60	0.09	370	1.29		
70	0.11	380	1.36		
80	0.12	390	1.41		
90	0.14	400	1.47		
100	0.16	410	1.52		
110	0.19	420	1.60		
120	0.21	430	1.66		
130	0.23	440	1.75		
140	0.26	450	1.87		
150	0.29	460	2.15		
160	0.33	470	2.33		
170	0.37	480	2.51		
180	0.42	490	2.81		
190	0.46	500	2.89		
200	0.50	510	2.92		
210	0.55	520	2.91		
220	0.60	530	2.87		
230	0.64	540	2.57		
240	0.67	550	3.28		
250	0.72	560	3.52		
260	0.76				
270	0.80				
280	0.86				
290	0.89				
300	0.93				

Table A.8: Displacement of specimen S1R3

Specimen 2				
Load	Displacement	Load	Displacement	
(kN)	(mm)	(kN)	(mm)	
0	0.00	330	0.77	
10	0.02	340	0.81	
20	0.04	350	0.86	
30	0.05	360	0.92	
40	0.06	370	0.98	
50	0.07	380	1.06	
60	0.09	390	1.15	
70	0.12	400	1.24	
80	0.14	410	1.36	
90	0.16	420	1.47	
100	0.17	430	1.68	
110	0.19	440	1.81	
120	0.21	450	1.90	
130	0.23	460	1.97	
140	0.26	470	2.18	
150	0.28	480	2.33	
160	0.30	490	2.66	
170	0.32	500	2.75	
180	0.34	510	2.83	
190	0.37	520	2.94	
200	0.39	530	3.01	
210	0.42	540	3.14	
220	0.44	550	3.29	
230	0.47	560	3.39	
240	0.49	570	3.53	
250	0.51	580	3.87	
260	0.54	590	4.01	
270	0.57	600	4.35	
280	0.61	590	4.52	
290	0.65	580	4.74	
300	0.67	570	5.07	
310	0.70	580	5.48	
320	0.73	590	6.58	

Specimen 3					
Load	Displacement	Load	Displacement		
(kN)	(mm)	(kN)	(mm)		
0	0.00	260	0.55		
10	0.00	270	0.69		
20	0.01	280	0.72		
30	0.02	290	0.77		
40	0.03	300	0.86		
50	0.05	310	0.93		
60	0.07	320	1.01		
70	0.09	330	1.09		
80	0.11	340	1.19		
90	0.14	350	1.31		
100	0.17	360	1.42		
110	0.19	370	1.51		
120	0.21	380	1.67		
130	0.23	390	1.85		
140	0.26	400	1.97		
150	0.28	410	2.13		
160	0.31	420	2.20		
170	0.34	430	2.42		
180	0.37	440	2.52		
190	0.39	450	2.72		
200	0.41	460	2.94		
210	0.43	470	3.09		
220	0.46	480	3.90		
230	0.48	490	4.45		
240	0.51	500	5.29		
250	0.53				

Specimen 1				
Load	Displacement	Load	Displacement	
(kN)	(mm)	(kN)	(mm)	
0	0.00	350	1.43	
10	0.02	360	1.52	
20	0.02	370	1.62	
30	0.08	380	1.71	
40	0.10	390	1.81	
50	0.11	400	1.95	
60	0.15	410	2.11	
70	0.19	420	2.30	
80	0.25	430	2.47	
90	0.30	440	2.60	
100	0.36	450	2.85	
110	0.41	460	3.20	
120	0.46	470	3.34	
130	0.48	480	3.62	
140	0.50	490	3.90	
150	0.53	500	4.18	
160	0.56	510	4.42	
170	0.60	520	4.84	
180	0.61	530	5.10	
190	0.66	540	5.31	
200	0.67	550	5.61	
210	0.68	560	5.87	
220	0.69	570	6.08	
230	0.73	580	6.71	
240	0.75	590	6.82	
250	0.79	600	7.26	
260	0.84	610	7.53	
270	0.88	620	7.87	
280	0.91	630	8.47	
290	0.94	640	8.68	
300	1.01	650	9.08	
310	1.07	660	9.80	
320	1.15	670	10.32	
330	1.24	680	10.76	
340	1.32			

Table A.9: Displacement of specimen S2R3

Specimen 2				
Load	Displacement	Load	Displacement	
(kN)	(mm)	(kN)	(mm)	
0	0.00	380	2.58	
10	0.08	390	2.70	
20	0.20	400	2.83	
30	0.26	410	3.00	
40	0.29	420	3.12	
50	0.33	430	3.22	
60	0.37	440	3.35	
70	0.41	450	3.53	
80	0.48	460	3.75	
90	0.52	470	3.91	
100	0.59	480	3.97	
110	0.64	490	4.17	
120	0.69	500	4.44	
130	0.74	510	4.77	
140	0.79	520	4.98	
150	0.86	530	5.22	
160	0.92	540	5.59	
170	0.95	550	5.85	
180	1.02	560	6.25	
190	1.05	570	6.68	
200	1.13	580	7.01	
210	1.19	590	7.69	
220	1.24	600	8.09	
230	1.31	610	8.40	
240	1.37	620	9.03	
250	1.46	630	9.61	
260	1.55	640	10.04	
270	1.63	650	11.70	
280	1.69	660	12.04	
290	1.76	670	12.41	
300	1.86	680	13.14	
310	1.92	670	13.56	
320	2.00	660	13.60	
330	2.02	650	13.64	
340	2.11	660	13.85	
350	2.23	670	14.42	
360	2.34	680	16.59	
370	2.47	670	17.64	

	Specimen 3										
Load	Displacement	Load	Displacement								
(kN)	(mm)	(kN)	(mm)								
0	0.00	360	2.83								
10	0.04	370	2.98								
20	0.13	380	3.08								
30	0.23	390	3.24								
40	0.27	400	3.51								
50	0.33	410	3.89								
60	0.38	420	4.09								
70	0.45	430	4.32								
80	0.52	440	4.59								
90	0.58	450	4.98								
100	0.66	460	5.40								
110	0.71	470	6.00								
120	0.77	480	6.45								
130	0.84	490	6.86								
140	0.88	500	7.44								
150	0.94	510	8.01								
160	1.01	520	8.60								
170	1.08	530	9.13								
180	1.13	540	10.19								
190	1.19	550	10.58								
200	1.28	560	11.34								
210	1.34	570	11.97								
220	1.39	580	12.30								
230	1.46	590	13.22								
240	1.54	600	14.18								
250	1.62	590	14.40								
260	1.70	580	14.43								
270	1.80	590	14.73								
280	1.90	600	14.89								
290	1.98	610	15.49								
300	2.08	620	15.98								
310	2.18	630	16.46								
320	2.30	620	17.17								
330	2.43	610	17.36								
340	2.56	620	17.52								
350	2.67	630	17.70								

Load		Str	Averas	ge strain		
(kN)			1		Ma	Come
	Mid 1	Mid 2	Corner 1	Corner 2	Ivind	Corner
0	0.00000	0.00001	0.00000	-0.00001	0.00001	-0.00001
10	-0.00001	0.00022	-0.00005	0.00015	0.00011	0.00005
20	0.00000	0.00030	-0.00007	0.00024	0.00015	0.00009
30	0.00000	0.00032	-0.00007	0.00025	0.00016	0.00009
40	-0.00002	0.00031	-0.00008	0.00022	0.00015	0.00007
50	0.00001	0.00035	-0.00008	0.00026	0.00018	0.00009
60	0.00001	0.00038	-0.00009	0.00030	0.00020	0.00011
70	0.00006	0.00043	-0.00009	0.00035	0.00025	0.00013
80	0.00012	0.00046	-0.00010	0.00040	0.00029	0.00015
90	0.00019	0.00048	-0.00010	0.00044	0.00034	0.00017
100	0.00023	0.00052	-0.00010	0.00049	0.00038	0.00020
110	0.00025	0.00054	-0.00010	0.00052	0.00040	0.00021
120	0.00027	0.00055	-0.00010	0.00058	0.00041	0.00024
130	0.00029	0.00057	-0.00010	0.00063	0.00043	0.00027
140	0.00028	0.00059	-0.00009	0.00069	0.00044	0.00030
150	0.00029	0.00063	-0.00007	0.00077	0.00046	0.00035
160	0.00032	0.00066	-0.00004	0.00084	0.00049	0.00040
170	0.00034	0.00069	-0.00002	0.00089	0.00052	0.00044
180	0.00036	0.00074	0.00001	0.00096	0.00055	0.00049
190	0.00033	0.00077	0.00007	0.00104	0.00055	0.00056
200	0.00030	0.00081	0.00012	0.00112	0.00056	0.00062
210	0.00029	0.00085	0.00017	0.00116	0.00057	0.00067
220	0.00025	0.00083	0.00023	0.00125	0.00054	0.00074
230	0.00023	0.00096	0.00028	0.00136	0.00060	0.00082
240	0.00022	0.00111	0.00032	0.00149	0.00067	0.00091
250	0.00020	0.00186	0.00040	0.00154	0.00103	0.00097
260	0.00022	0.00222	0.00049	0.00164	0.00122	0.00107
270	0.00028	0.00234	0.00065	0.00167	0.00131	0.00116
280	0.00035	0.00245	0.00084	0.00165	0.00140	0.00125
290	0.00057	0.00264	0.00133	0.00159	0.00161	0.00146
300	0.00072	0.00294	0.00206	0.00152	0.00183	0.00179
310	0.00110	0.00595	0.00292	0.00141	0.00353	0.00217

Table A.10: Lateral strain of specimen S0R0

Load		str		Average strain		
(kN)		2	2		Mid	Corner
	Mid 1	Mid 2	Corner 1	Corner 2	IVIN	conter
0	-0.00001	-0.00001	0.00000	0.00000	-0.00001	0.00000
10	-0.00001	0.00000	0.00000	0.00001	-0.00001	0.00001
20	-0.00001	0.00001	-0.00001	0.00002	0.00000	0.00001
30	0.00000	0.00001	0.00000	0.00002	0.00001	0.00001
40	0.00000	0.00001	0.00000	0.00001	0.00001	0.00001
50	0.00000	-0.00001	0.00000	0.00001	-0.00001	0.00001
60	0.00000	-0.00001	0.00000	0.00001	-0.00001	0.00001
70	0.00001	0.00000	0.00001	0.00002	0.00001	0.00002
80	0.00002	0.00001	0.00000	0.00003	0.00002	0.00002
90	0.00003	0.00002	0.00000	0.00003	0.00003	0.00002
100	0.00004	0.00003	0.00000	0.00003	0.00004	0.00002
110	0.00005	0.00003	0.00001	0.00004	0.00004	0.00003
120	0.00005	0.00003	0.00001	0.00004	0.00004	0.00003
130	0.00006	0.00004	0.00000	0.00005	0.00005	0.00003
140	0.00008	0.00005	0.00000	0.00006	0.00007	0.00003
150	0.00009	0.00006	0.00001	0.00006	0.00008	0.00004
160	0.00011	0.00006	0.00000	0.00007	0.00009	0.00004
170	0.00012	0.00005	0.00001	0.00008	0.00009	0.00005
180	0.00012	0.00006	0.00001	0.00008	0.00009	0.00005
190	0.00014	0.00006	0.00001	0.00009	0.00010	0.00005
200	0.00015	0.00006	0.00002	0.00011	0.00011	0.00007
210	0.00015	0.00006	0.00003	0.00011	0.00011	0.00007
220	0.00016	0.00008	0.00004	0.00012	0.00012	0.00008
230	0.00018	0.00010	0.00004	0.00014	0.00014	0.00009
240	0.00018	0.00011	0.00004	0.00015	0.00015	0.00010
250	0.00020	0.00012	0.00005	0.00018	0.00016	0.00012
260	0.00022	0.00015	0.00004	0.00022	0.00019	0.00013
270	0.00023	0.00016	-0.00001	0.00026	0.00020	0.00013
280	0.00025	0.00018	-0.00252	0.00032	0.00022	-0.00110
290	0.00025	0.00019	-0.00366	0.00035	0.00022	-0.00166
300	0.00027	0.00026	-0.00452	0.00041	0.00027	-0.00206
310	0.00028	0.00027	-0.00578	0.00052	0.00028	-0.00263

Load		Stra		Average strain		
(kN)		3			Mid	Corner
	Mid 1	Mid 2	Corner 1	Corner 2	IVINI	Conter
0	-0.00001	0.00001	0.00000	-0.00003	0.00000	-0.00002
10	-0.00001	0.00001	0.00000	-0.00003	0.00000	-0.00002
20	-0.00002	0.00000	-0.00001	-0.00004	-0.00001	-0.00003
30	-0.00002	0.00000	0.00000	-0.00005	-0.00001	-0.00003
40	-0.00002	0.00000	0.00000	-0.00005	-0.00001	-0.00003
50	-0.00002	-0.00001	0.00000	-0.00006	-0.00002	-0.00003
60	-0.00003	-0.00002	0.00000	-0.00007	-0.00003	-0.00004
70	-0.00005	-0.00005	0.00001	-0.00009	-0.00005	-0.00004
80	-0.00006	-0.00006	0.00000	-0.00009	-0.00006	-0.00005
90	-0.00006	-0.00007	0.00000	-0.00010	-0.00007	-0.00005
100	-0.00006	-0.00007	0.00000	-0.00010	-0.00007	-0.00005
110	-0.00009	-0.00012	0.00001	-0.00011	-0.00011	-0.00005
120	-0.00009	-0.00012	0.00001	-0.00010	-0.00011	-0.00005
130	-0.00008	-0.00012	0.00000	-0.00010	-0.00010	-0.00005
140	-0.00008	-0.00012	0.00000	-0.00009	-0.00010	-0.00005
150	-0.00008	-0.00012	0.00001	-0.00009	-0.00010	-0.00004
160	-0.00008	-0.00013	0.00000	-0.00009	-0.00011	-0.00005
170	-0.00008	-0.00013	0.00001	-0.00008	-0.00011	-0.00004
180	-0.00007	-0.00013	0.00001	-0.00007	-0.00010	-0.00003
190	-0.00007	-0.00013	0.00001	-0.00006	-0.00010	-0.00003
200	-0.00006	-0.00013	0.00002	-0.00004	-0.00010	-0.00001
210	-0.00006	-0.00013	0.00003	-0.00004	-0.00010	-0.00001
220	-0.00005	-0.00013	0.00004	-0.00003	-0.00009	0.00001
230	-0.00005	-0.00013	0.00004	-0.00001	-0.00009	0.00002
240	-0.00004	-0.00013	0.00004	0.00001	-0.00009	0.00003
250	-0.00003	-0.00013	0.00005	0.00004	-0.00008	0.00005
260	-0.00003	-0.00013	0.00004	0.00006	-0.00008	0.00005
270	-0.00002	-0.00013	-0.00001	0.00009	-0.00008	0.00004
280	0.00000	-0.00012	-0.00002	0.00015	-0.00006	0.00007
290	0.00002	-0.00011	-0.00006	0.00024	-0.00005	0.00009

Load		Stress		Str	ain		Average	e strain
(kN)	Area	N/mm ²		1	1		1.04	
			Mid 1	Mid 2	Comer 1	Comer 2	DHID	Comer
0	15604	0.00	0.00000	-0.00001	-0.00003	-0.00001	-0.00001	-0.00002
10	15604	0.64	0.00000	0.00001	-0.00005	0.00000	0.00001	-0.00003
20	15604	1.28	-0.00001	0.00002	-0.00010	0.00001	0.00001	-0.00005
30	15604	1.92	0.00000	0.00003	-0.00012	0.00000	0.00002	-0.00006
40	15604	2.56	0.00001	0.00003	-0.00015	0.00000	0.00002	-0.00008
50	15604	3.20	0.00000	0.00003	-0.00019	0.00001	0.00002	-0.00009
60	15604	3.85	0.00000	0.00003	-0.00022	0.00000	0.00002	-0.00011
70	15604	4.49	0.00001	0.00003	-0.00024	0.00000	0.00002	-0.00012
80	15604	5.13	0.00000	0.00003	-0.00026	0.00001	0.00002	-0.00013
90	15604	5.77	0.00001	0.00003	-0.00028	0.00000	0.00002	-0.00014
100	15604	6.41	0.00000	0.00004	-0.00030	0.00001	0.00002	-0.00015
110	15604	7.05	0.00001	0.00004	-0.00032	0.00001	0.00003	-0.00016
120	15604	7.69	0.00001	0.00003	-0.00037	0.00001	0.00002	-0.00018
130	15604	8.33	0.00001	0.00003	-0.00038	0.00002	0.00002	-0.00018
140	15604	8.97	0.00001	0.00004	-0.00038	0.00000	0.00003	-0.00019
150	15604	9.61	0.00001	0.00004	-0.00040	0.00001	0.00003	-0.00020
160	15604	10.25	0.00001	0.00005	-0.00042	0.00002	0.00003	-0.00020
170	15604	10.89	0.00001	0.00006	-0.00042	0.00002	0.00004	-0.00020
180	15604	11.54	0.00002	0.00006	-0.00043	0.00002	0.00004	-0.00021
190	15604	12.18	0.00001	0.00008	-0.00044	0.00002	0.00005	-0.00021
200	15604	12.82	0.00002	0.00008	-0.00045	0.00002	0.00005	-0.00022
210	15604	13.46	0.00003	0.00009	-0.00045	0.00001	0.00006	-0.00022
220	15604	14.10	0.00002	0.00010	-0.00046	0.00001	0.00006	-0.00023
230	15604	14.74	0.00002	0.00009	-0.00047	0.00003	0.00006	-0.00022
240	15604	15.38	0.00002	0.00011	-0.00047	0.00003	0.00007	-0.00022
250	15604	16.02	0.00003	0.00011	-0.00047	0.00002	0.00007	-0.00023
260	15604	16.66	0.00003	0.00013	-0.00051	0.00003	0.00008	-0.00024
270	15604	17.30	0.00004	0.00013	-0.00055	0.00002	0.00009	-0.00027
280	15604	17.94	0.00003	0.00015	-0.00059	0.00004	0.00009	-0.00028
290	15604	18.58	0.00003	0.00017	-0.00061	0.00004	0.00010	-0.00029
300	15604	19.23	0.00004	0.00019	-0.00063	0.00005	0.00012	-0.00029
310	15604	19.87	0.00004	0.00022	-0.00064	0.00004	0.00013	-0.00030
320	15604	20.51	0.00005	0.00023	-0.00066	0.00004	0.00014	-0.00031
330	15604	21.15	0.00005	0.00026	-0.00066	0.00005	0.00016	-0.00031
340	15604	21.79	0.00006	0.00028	-0.00064	0.00005	0.00017	-0.00030
350	15604	22.43	0.00006	0.00031	-0.00063	0.00006	0.00019	-0.00029
360	15604	23.07	0.00005	0.00036	-0.00066	0.00008	0.00021	-0.00029
370	15604	23.71	0.00006	0.00040	-0.00066	0.00008	0.00023	-0.00029

Table A.11: Lateral strain of specimen S1R0

Load		Stress		Str	Average strain			
(kN)	Area	N/mm ²		1	1		Ma	Come
			Mid 1	Mid 2	Corner 1	Corner 2	ININ	Collier
380	15604	24.35	0.00007	0.00046	-0.00064	0.00008	0.00027	-0.00028
390	15604	24.99	0.00008	0.00043	-0.00062	0.00010	0.00026	-0.00026
400	15604	25.63	0.00008	0.00046	-0.00055	0.00010	0.00027	-0.00023
410	15604	26.28	0.00010	0.00050	-0.00046	0.00010	0.00030	-0.00018
420	15604	26.92	0.00010	0.00054	-0.00024	0.00012	0.00032	-0.00006
410	15604	26.28	0.00010	0.00059	0.00000	0.00012	0.00035	0.00006
400	15604	25.63	0.00011	0.00046	0.00012	0.00011	0.00029	0.00012
410	15604	26.28	0.00011	0.00050	0.00027	0.00011	0.00031	0.00019
420	15604	26.92	0.00011	0.00055	0.00026	0.00011	0.00033	0.00019
430	15604	27.56	0.00010	0.00069	0.00032	0.00010	0.00040	0.00021
430	15604	27.56	0.00010	0.00080	0.00059	0.00009	0.00045	0.00034
440	15604	28.20	0.00010	0.00062	0.00009	0.00007	0.00036	0.00008
450	15604	28.84	0.00012	0.00166	-0.00092	0.00005	0.00089	-0.00044
440	15604	28.20	0.00012	0.00157	-0.00116	0.00005	0.00085	-0.00056
430	15604	27.56	0.00012	0.00152	-0.00143	0.00005	0.00082	-0.00069
420	15604	26.92	0.00012	0.00156	-0.00163	0.00006	0.00084	-0.00079
420	15604	26.92	0.00012	0.00167	-0.00144	0.00007	0.00090	-0.00069
430	15604	27.56	0.00013	0.00192	-0.00142	0.00006	0.00103	-0.00068
440	15604	28.20	0.00012	0.00244	-0.00148	0.00006	0.00128	-0.00071
450	15604	28.84	0.00015	0.00444	-0.00305	0.00005	0.00230	-0.00150
430	15604	27.56	0.00016	0.00452	-0.00303	0.00006	0.00234	-0.00149
440	15604	28.20	0.00016	0.00485	-0.00302	0.00006	0.00251	-0.00148
450	15604	28.84	0.00020	0.00549	-0.00275	0.00004	0.00285	-0.00136
460	15604	29.48	0.00030	0.00818	-0.00217	0.00004	0.00424	-0.00107
440	15604	28.20	0.00031	0.00822	-0.00211	0.00003	0.00427	-0.00104

Load		Stress		Str	Average strain			
(kN)	Area	N/mm ²	2				104	0
			Mid 1	Mid 2	Corner 1	Corner 2	Mid	Comer
0	15604	0.00	0.00000	0.00000	0.00002	-0.00004	0.00000	-0.00001
10	15604	0.64	-0.00001	0.00000	0.00002	0.00000	-0.00001	0.00001
20	15604	1.28	0.00000	0.00000	0.00004	0.00001	0.00000	0.00003
30	15604	1.92	0.00000	0.00000	0.00003	0.00002	0.00000	0.00003
40	15604	2.56	0.00000	0.00000	0.00003	0.00001	0.00000	0.00002
50	15604	3.20	0.00000	0.00000	0.00004	0.00001	0.00000	0.00003
60	15604	3.85	0.00000	-0.00001	0.00004	0.00001	-0.00001	0.00003
70	15604	4.49	0.00001	-0.00001	0.00005	0.00001	0.00000	0.00003
80	15604	5.13	0.00002	0.00000	0.00005	0.00002	0.00001	0.00004
90	15604	5.77	0.00003	0.00000	0.00005	0.00003	0.00002	0.00004
100	15604	6.41	0.00003	0.00001	0.00006	0.00004	0.00002	0.00005
110	15604	7.05	0.00004	0.00001	0.00006	0.00004	0.00003	0.00005
120	15604	7.69	0.00004	0.00001	0.00007	0.00005	0.00003	0.00006
130	15604	8.33	0.00004	0.00002	0.00008	0.00007	0.00003	0.00008
140	15604	8.97	0.00005	0.00002	0.00009	0.00008	0.00004	0.00009
150	15604	9.61	0.00006	0.00002	0.00009	0.00010	0.00004	0.00010
160	15604	10.25	0.00006	0.00003	0.00009	0.00012	0.00005	0.00011
170	15604	10.89	0.00007	0.00004	0.00010	0.00013	0.00006	0.00012
180	15604	11.54	0.00008	0.00004	0.00010	0.00015	0.00006	0.00013
190	15604	12.18	0.00009	0.00005	0.00011	0.00017	0.00007	0.00014
200	15604	12.82	0.00011	0.00006	0.00012	0.00018	0.00009	0.00015
210	15604	13.46	0.00012	0.00006	0.00013	0.00019	0.00009	0.00016
220	15604	14.10	0.00013	0.00008	0.00013	0.00021	0.00011	0.00017
230	15604	14.74	0.00016	0.00009	0.00014	0.00023	0.00013	0.00019
240	15604	15.38	0.00018	0.00011	0.00015	0.00024	0.00015	0.00020
250	15604	16.02	0.00020	0.00012	0.00017	0.00026	0.00016	0.00022
260	15604	16.66	0.00023	0.00014	0.00017	0.00028	0.00019	0.00023
270	15604	17.30	0.00026	0.00017	0.00018	0.00029	0.00022	0.00024
280	15604	17.94	0.00032	0.00021	0.00019	0.00032	0.00027	0.00026
290	15604	18.58	0.00038	0.00026	0.00020	0.00034	0.00032	0.00027
300	15604	19.23	0.00046	0.00031	0.00021	0.00036	0.00039	0.00029
310	15604	19.87	0.00054	0.00037	0.00022	0.00038	0.00046	0.00030
320	15604	20.51	0.00067	0.00046	0.00024	0.00040	0.00057	0.00032
330	15604	21.15	0.00081	0.00056	0.00025	0.00042	0.00069	0.00034
340	15604	21.79	0.00096	0.00066	0.00027	0.00044	0.00081	0.00036
350	15604	22.43	0.00120	0.00080	0.00028	0.00045	0.00100	0.00037
360	15604	23.07	0.00147	0.00096	0.00030	0.00046	0.00122	0.00038
370	15604	23.71	0.00188	0.00122	0.00031	0.00048	0.00155	0.00040
380	15604	24.35	0.00218	0.00138	0.00032	0.00049	0.00178	0.00041

Load		Stress		Str		Average strain		
(kN)	Area	N/mm ²		2	MGA	Come		
			Mid 1	Mid 2	Corner 1	Corner 2	INHU	Come
390	15604	24.99	0.00287	0.00182	0.00034	0.00050	0.00235	0.00042
400	15604	25.63	0.00470	0.00259	0.00034	0.00054	0.00365	0.00044
390	15604	24.99	0.00589	0.00253	0.00034	0.00059	0.00421	0.00047
380	15604	24.35	0.00560	0.00231	0.00033	0.00058	0.00396	0.00046
370	15604	23.71	0.00449	0.00192	0.00032	0.00053	0.00321	0.00043
380	15604	24.35	0.00452	0.00194	0.00033	0.00053	0.00323	0.00043
390	15604	24.99	0.00471	0.00203	0.00034	0.00055	0.00337	0.00045
400	15604	25.63	0.00525	0.00220	0.00035	0.00056	0.00373	0.00046
410	15604	26.28	0.01021	0.00635	0.00038	0.00051	0.00828	0.00045
420	15604	26.92	0.00688	0.00731	0.00043	0.00059	0.00710	0.00051
410	15604	26.28	0.00790	0.00684	0.00043	0.00061	0.00737	0.00052
400	15604	25.63	0.04503	0.00601	0.00042	0.00062	0.02552	0.00052
410	15604	26.28	0.04414	0.00606	0.00043	0.00063	0.02510	0.00053
420	15604	26.92	0.04611	0.00617	0.00043	0.00064	0.02614	0.00054
400	15604	25.63	-	0.00562	0.00045	0.00072	-	0.00059
410	15604	26.28	-	0.00559	0.00045	0.00072	-	0.00059
420	15604	26.92	-	0.00564	0.00045	0.00073	-	0.00059
430	15604	27.56	-	0.00580	0.00046	0.00074	-	0.00060
440	15604	28.20	-	0.00645	0.00046	0.00080	-	0.00063
440	15604	28.20	-	0.00682	0.00040	0.00012	-	0.00026

Load		Stress		St	Average strain			
(kN)	Area	N/mm ²	3			MGA	Come	
			Mid 1	Mid 2	Corner 1	Corner 2	INIG	Comer
0	15604	0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
10	15604	0.64	0.00000	0.00001	0.00002	0.00000	0.00001	0.00001
20	15604	1.28	0.00001	0.00002	0.00003	0.00001	0.00002	0.00002
30	15604	1.92	0.00002	0.00003	0.00004	0.00002	0.00003	0.00003
40	15604	2.56	0.00002	0.00004	0.00005	0.00002	0.00003	0.00004
50	15604	3.20	0.00002	0.00004	0.00005	0.00002	0.00003	0.00004
60	15604	3.85	0.00002	0.00005	0.00006	0.00003	0.00004	0.00005
70	15604	4.49	0.00002	0.00006	0.00007	0.00003	0.00004	0.00005
80	15604	5.13	0.00003	0.00007	0.00008	0.00004	0.00005	0.00006
90	15604	5.77	0.00003	0.00008	0.00009	0.00005	0.00006	0.00007
100	15604	6.41	0.00003	0.00009	0.00009	0.00006	0.00006	0.00008
110	15604	7.05	0.00004	0.00010	0.00010	0.00007	0.00007	0.00009
120	15604	7.69	0.00004	0.00011	0.00011	0.00007	0.00008	0.00009
130	15604	8.33	0.00004	0.00012	0.00011	0.00008	0.00008	0.00010
140	15604	8.97	0.00005	0.00013	0.00012	0.00009	0.00009	0.00011
150	15604	9.61	0.00005	0.00014	0.00013	0.00010	0.00010	0.00012
160	15604	10.25	0.00006	0.00015	0.00014	0.00011	0.00011	0.00013
170	15604	10.89	0.00006	0.00016	0.00015	0.00012	0.00011	0.00014
180	15604	11.54	0.00007	0.00017	0.00015	0.00013	0.00012	0.00014
190	15604	12.18	0.00007	0.00017	0.00017	0.00014	0.00012	0.00016
200	15604	12.82	0.00008	0.00018	0.00018	0.00016	0.00013	0.00017
210	15604	13.46	0.00008	0.00020	0.00018	0.00017	0.00014	0.00018
220	15604	14.10	0.00009	0.00020	0.00019	0.00018	0.00015	0.00019
230	15604	14.74	0.00009	0.00021	0.00020	0.00019	0.00015	0.00020
240	15604	15.38	0.00010	0.00022	0.00021	0.00021	0.00016	0.00021
250	15604	16.02	0.00010	0.00023	0.00022	0.00022	0.00017	0.00022
260	15604	16.66	0.00011	0.00024	0.00023	0.00024	0.00018	0.00024
270	15604	17.30	0.00012	0.00026	0.00024	0.00026	0.00019	0.00025
280	15604	17.94	0.00013	0.00029	0.00025	0.00031	0.00021	0.00028
290	15604	18.58	0.00013	0.00029	0.00025	0.00031	0.00021	0.00028
300	15604	19.23	0.00014	0.00031	0.00026	0.00033	0.00023	0.00030
310	15604	19.87	0.00015	0.00033	0.00027	0.00035	0.00024	0.00031
320	15604	20.51	0.00015	0.00035	0.00027	0.00037	0.00025	0.00032
330	15604	21.15	0.00017	0.00038	0.00028	0.00040	0.00028	0.00034
340	15604	21.79	0.00019	0.00042	0.00029	0.00043	0.00031	0.00036
350	15604	22.43	0.00021	0.00051	0.00030	0.00050	0.00036	0.00040
360	15604	23.07	0.00023	0.00056	0.00031	0.00054	0.00040	0.00043
370	15604	23.71	0.00026	0.00063	0.00032	0.00058	0.00045	0.00045

Load		Stress		St		Averag	e strain	
(kN)	Area	N/mm²			MGA	Comor		
			Mid 1	Mid 2	Comer 1	Comer 2	MIN	Collie
380	15604	24.35	0.00030	0.00071	0.00033	0.00063	0.00051	0.00048
390	15604	24.99	0.00034	0.00081	0.00034	0.00070	0.00058	0.00052
400	15604	25.63	0.00044	0.00105	0.00035	0.00082	0.00075	0.00059
410	15604	26.28	0.00050	0.00122	0.00036	0.00090	0.00086	0.00063
420	15604	26.92	0.00064	0.00162	0.00038	0.00102	0.00113	0.00070
430	15604	27.56	0.00085	0.00217	0.00040	0.00116	0.00151	0.00078
420	15604	26.92	0.00086	0.00220	0.00039	0.00117	0.00153	0.00078
410	15604	26.28	0.00086	0.00221	0.00040	0.00117	0.00154	0.00079
420	15604	26.92	0.00090	0.00232	0.00041	0.00122	0.00161	0.00082
430	15604	27.56	0.00107	0.00257	0.00045	0.00132	0.00182	0.00089
440	15604	28.20	0.00143	0.00351	0.00052	0.00166	0.00247	0.00109
430	15604	27.56	0.00148	0.00366	0.00052	0.00169	0.00257	0.00111
420	15604	26.92	0.00134	0.00374	0.00052	0.00170	0.00254	0.00111
430	15604	27.56	0.00142	0.00400	0.00053	0.00177	0.00271	0.00115

Load		Stress		Str	Average strain			
(kN)	Area	N/mm ²			1		10.4	Comme
			Mid 1	Mid 2	Corner 1	Corner 2	Mid	Corner
0	15604	0.00	-0.00002	0.00000	0.00000	-0.00013	-0.00001	-0.00007
10	15604	0.64	-0.00003	0.00000	0.00000	-0.00037	-0.00002	-0.00019
20	15604	1.28	-0.00004	-0.00001	0.00001	-0.00042	-0.00003	-0.00021
30	15604	1.92	-0.00003	0.00000	0.00001	-0.00051	-0.00002	-0.00025
40	15604	2.56	-0.00001	0.00000	0.00001	-0.00059	-0.00001	-0.00029
50	15604	3.20	0.00000	0.00000	0.00001	-0.00061	0.00000	-0.00030
60	15604	3.85	-0.00002	-0.00001	0.00000	-0.00085	-0.00002	-0.00043
70	15604	4.49	-0.00003	-0.00001	0.00001	-0.00088	-0.00002	-0.00044
80	15604	5.13	-0.00004	-0.00001	0.00002	-0.00085	-0.00003	-0.00042
90	15604	5.77	-0.00004	-0.00001	0.00002	-0.00081	-0.00003	-0.00040
100	15604	6.41	-0.00003	-0.00001	0.00001	-0.00074	-0.00002	-0.00037
110	15604	7.05	-0.00006	-0.00001	0.00002	-0.00061	-0.00004	-0.00030
120	15604	7.69	-0.00004	-0.00001	0.00002	-0.00058	-0.00003	-0.00028
130	15604	8.33	-0.00004	-0.00001	0.00003	-0.00026	-0.00003	-0.00012
140	15604	8.97	-0.00010	-0.00001	0.00003	-0.00005	-0.00006	-0.00001
150	15604	9.61	-0.00010	-0.00001	0.00003	0.00012	-0.00006	0.00008
160	15604	10.25	-0.00006	-0.00001	0.00003	0.00039	-0.00004	0.00021
170	15604	10.89	-0.00003	-0.00001	0.00002	0.00056	-0.00002	0.00029
180	15604	11.54	-0.00010	-0.00001	0.00004	0.00080	-0.00006	0.00042
190	15604	12.18	-0.00004	-0.00001	0.00004	0.00136	-0.00003	0.00070
200	15604	12.82	-0.00004	-0.00001	0.00004	0.00194	-0.00003	0.00099
210	15604	13.46	-0.00005	-0.00001	0.00004	0.00237	-0.00003	0.00121
220	15604	14.10	-0.00003	-0.00001	0.00004	0.00296	-0.00002	0.00150
230	15604	14.74	-0.00002	-0.00001	0.00004	0.00370	-0.00002	0.00187
240	15604	15.38	-0.00003	-0.00002	0.00005	0.00470	-0.00003	0.00238
250	15604	16.02	-0.00003	-0.00001	0.00006	0.00552	-0.00002	0.00279
260	15604	16.66	-0.00002	-0.00001	0.00006	0.00661	-0.00002	0.00334
270	15604	17.30	-0.00004	-0.00002	0.00005	0.00752	-0.00003	0.00379
280	15604	17.94	-0.00004	-0.00001	0.00007	0.00909	-0.00003	0.00458
290	15604	18.58	-0.00001	-0.00002	0.00006	0.01057	-0.00002	0.00532
300	15604	19.23	-0.00005	-0.00001	0.00008	0.01161	-0.00003	0.00585
310	15604	19.87	-0.00005	-0.00001	0.00008	0.01297	-0.00003	0.00653
320	15604	20.51	-0.00003	-0.00001	0.00009	0.01444	-0.00002	0.00727
330	15604	21.15	-0.00001	-0.00002	0.00009	0.01464	-0.00002	0.00737
340	15604	21.79	-0.00001	-0.00001	0.00009	0.01489	-0.00001	0.00749
350	15604	22.43	-0.00001	-0.00002	0.00010	0.01467	-0.00002	0.00739
360	15604	23.07	-0.00001	-0.00001	0.00011	0.01504	-0.00001	0.00758
370	15604	23.71	-0.00001	-0.00001	0.00011	0.01550	-0.00001	0.00781
380	15604	24.35	0.00000	-0.00001	0.00014	0.01622	-0.00001	0.00818
390	15604	24.99	0.00003	0.00000	0.00014	0.01702	0.00002	0.00858
400	15604	25.63	0.00001	-0.00001	0.00015	0.01757	0.00000	0.00886

Table A.12: Lateral strain of specimen S2R0

_

Load		Stress		Sta	Average strain			
(kN)	Area	N/mm^2	1		101	~		
			Mid 1	Mid 2	Corner 1	Corner 2	Mid	Corner
410	15604	26.28	0.00003	0.00000	0.00016	0.01709	0.00002	0.00863
420	15604	26.92	0.00006	0.00000	0.00018	0.01566	0.00003	0.00792
430	15604	27.56	0.00007	-0.00001	0.00018	0.01479	0.00003	0.00749
440	15604	28.20	0.00007	0.00000	0.00020	0.01437	0.00004	0.00729
450	15604	28.84	0.00011	0.00000	0.00021	0.01342	0.00006	0.00682
460	15604	29.48	0.00015	0.00001	0.00022	0.01252	0.00008	0.00637
470	15604	30.12	0.00017	0.00001	0.00023	0.01239	0.00009	0.00631
480	15604	30.76	0.00019	0.00001	0.00024	0.01268	0.00010	0.00646
490	15604	31.40	0.00023	0.00001	0.00026	0.01428	0.00012	0.00727
500	15604	32.04	0.00024	0.00001	0.00027	0.01397	0.00013	0.00712
510	15604	32.68	0.00036	0.00002	0.00030	0.01207	0.00019	0.00619
520	15604	33.32	0.00050	0.00003	0.00034	0.01048	0.00027	0.00541
530	15604	33.97	0.00073	0.00005	0.00033	0.01226	0.00039	0.00630
540	15604	34.61	0.00083	0.00005	0.00031	0.02142	0.00044	0.01087
550	15604	35.25	0.00094	0.00006	0.00033	0.02649	0.00050	0.01341
560	15604	35.89	0.00102	0.00007	0.00031	0.03118	0.00055	0.01575
570	15604	36.53	0.00113	0.00009	0.00037	0.03833	0.00061	0.01935
560	15604	35.89	0.00120	0.00011	0.00047	0.05135	0.00066	0.02591
550	15604	35.25	0.00117	0.00009	0.00051	0.05218	0.00063	0.02635
540	15604	34.61	0.00109	0.00009	0.00052	0.05271	0.00059	0.02662
550	15604	35.25	0.00108	0.00008	0.00050	0.05537	0.00058	0.02794
560	15604	35.89	0.00107	0.00008	0.00053	0.05772	0.00058	0.02913
570	15604	36.53	0.00111	0.00009	0.00055	0.05723	0.00060	0.02889
580	15604	37.17	0.00112	0.00010	0.00062	0.05707	0.00061	0.02885
570	15604	36.53	0.00117	0.00012	0.00073	0.05544	0.00065	0.02809
560	15604	35.89	0.00119	0.00012	0.00075	0.05416	0.00066	0.02746
550	15604	35.25	0.00115	0.00011	0.00072	0.05304	0.00063	0.02688
560	15604	35.89	0.00113	0.00010	0.00070	0.05218	0.00062	0.02644
570	15604	36.53	0.00108	0.00010	0.00071	0.05170	0.00059	0.02621
580	15604	37.17	0.00117	0.00011	0.00076	0.05145	0.00064	0.02611
590	15604	37.81	0.00119	0.00013	0.00091	0.05085	0.00066	0.02588
580	15604	37.17	0.00128	0.00016	0.00122	0.04921	0.00072	0.02522
570	15604	36.53	0.00125	0.00016	0.00116	0.04865	0.00071	0.02491
560	15604	35.89	0.00124	0.00014	0.00110	0.04852	0.00069	0.02481
550	15604	35.25	0.00119	0.00013	0.00096	0.04812	0.00066	0.02454
560	15604	35.89	0.00115	0.00013	0.00088	0.04803	0.00064	0.02446
570	15604	36.53	0.00115	0.00013	0.00087	0.04802	0.00064	0.02445
580	15604	37.17	0.00119	0.00014	0.00090	0.04801	0.00067	0.02446
590	15604	37.81	0.00121	0.00015	0.00095	0.04811	0.00068	0.02453
580	15604	37.17	0.00125	0.00016	0.00102	0.04854	0.00071	0.02478
570	15604	36.53	0.00126	0.00018	0.00099	0.05342	0.00072	0.02721

Load		Stress	Strain				Average strain	
(kN)	Area	N/mm^2	1			Mid	Corner	
			Mid 1	Mid 2	Corner 1	Corner 2	Mild	Comer
560	15604	35.89	0.00122	0.00018	0.00067	0.05216	0.00070	0.02642
550	15604	35.25	0.00119	0.00017	0.00059	0.05128	0.00068	0.02594
560	15604	35.89	0.00114	0.00015	0.00046	0.05217	0.00065	0.02632
570	15604	36.53	0.00112	0.00016	0.00047	0.05296	0.00064	0.02672
580	15604	37.17	0.00116	0.00017	0.00049	0.05476	0.00067	0.02763
590	15604	37.81	0.00120	0.00019	0.00054	0.05855	0.00070	0.02955
Load		Stress		Str		Averag	e strain	
------	-------	-------------------	----------	----------	----------	----------	----------	----------
(kN)	Area	N/mm ²		2	2		101	~
			Mid 1	Mid 2	Corner 1	Corner 2	Mid	Corner
0	15604	0.00	0.00000	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001
10	15604	0.64	0.00000	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001
20	15604	1.28	0.00000	-0.00001	0.00000	-0.00001	-0.00001	-0.00001
30	15604	1.92	0.00000	-0.00001	0.00000	-0.00001	-0.00001	-0.00001
40	15604	2.56	0.00000	-0.00001	0.00001	-0.00001	-0.00001	0.00000
50	15604	3.20	-0.00001	-0.00001	0.00001	-0.00001	-0.00001	0.00000
60	15604	3.85	-0.00004	-0.00005	-0.00002	0.00001	-0.00005	-0.00001
70	15604	4.49	-0.00004	-0.00006	-0.00002	0.00001	-0.00005	-0.00001
80	15604	5.13	-0.00004	-0.00006	-0.00001	0.00002	-0.00005	0.00001
90	15604	5.77	-0.00004	-0.00006	0.00000	0.00002	-0.00005	0.00001
100	15604	6.41	-0.00003	-0.00005	0.00000	0.00002	-0.00004	0.00001
110	15604	7.05	-0.00003	-0.00006	0.00001	0.00002	-0.00005	0.00002
120	15604	7.69	-0.00003	-0.00005	0.00002	0.00003	-0.00004	0.00003
130	15604	8.33	-0.00003	-0.00005	0.00002	0.00003	-0.00004	0.00003
140	15604	8.97	-0.00003	-0.00005	-0.00002	0.00003	-0.00004	0.00001
150	15604	9.61	-0.00002	-0.00005	-0.00008	0.00004	-0.00004	-0.00002
160	15604	10.25	-0.00002	-0.00004	-0.00011	0.00004	-0.00003	-0.00004
170	15604	10.89	-0.00002	-0.00004	-0.00012	0.00004	-0.00003	-0.00004
180	15604	11.54	-0.00002	-0.00003	-0.00013	0.00005	-0.00003	-0.00004
190	15604	12.18	-0.00001	-0.00003	-0.00013	0.00005	-0.00002	-0.00004
200	15604	12.82	-0.00001	-0.00002	-0.00013	0.00006	-0.00002	-0.00004
210	15604	13.46	-0.00001	-0.00001	-0.00012	0.00006	-0.00001	-0.00003
220	15604	14.10	-0.00001	0.00000	-0.00011	0.00007	-0.00001	-0.00002
230	15604	14.74	-0.00001	0.00000	-0.00009	0.00007	-0.00001	-0.00001
240	15604	15.38	0.00000	0.00001	-0.00007	0.00007	0.00001	0.00000
250	15604	16.02	0.00000	0.00002	-0.00006	0.00008	0.00001	0.00001
260	15604	16.66	0.00000	0.00003	-0.00002	0.00009	0.00002	0.00004
270	15604	17.30	0.00000	0.00003	0.00002	0.00009	0.00002	0.00006
280	15604	17.94	0.00001	0.00005	0.00009	0.00010	0.00003	0.00010
290	15604	18.58	0.00001	0.00005	0.00014	0.00010	0.00003	0.00012
300	15604	19.23	0.00001	0.00007	0.00022	0.00011	0.00004	0.00017
310	15604	19.87	0.00002	0.00008	0.00028	0.00012	0.00005	0.00020
320	15604	20.51	0.00002	0.00010	0.00032	0.00012	0.00006	0.00022
330	15604	21.15	0.00003	0.00011	0.00041	0.00012	0.00007	0.00027
340	15604	21.79	0.00003	0.00013	0.00048	0.00013	0.00008	0.00031
350	15604	22.43	0.00004	0.00014	0.00054	0.00013	0.00009	0.00034
360	15604	23.07	0.00004	0.00016	0.00063	0.00014	0.00010	0.00039
370	15604	23.71	0.00005	0.00018	0.00063	0.00014	0.00012	0.00039
380	15604	24.35	0.00006	0.00022	0.00062	0.00015	0.00014	0.00039
390	15604	24.99	0.00006	0.00025	0.00062	0.00016	0.00016	0.00039
400	15604	25.63	0.00007	0.00029	0.00066	0.00017	0.00018	0.00042

Load		Stress	Strain				Averag	e strain
(kN)	Area	N/mm ²		2	2		Mea	Come
			Mid 1	Mid 2	Corner 1	Corner 2	INHO	Corner
410	15604	26.28	0.00007	0.00033	0.00075	0.00019	0.00020	0.00047
420	15604	26.92	0.00008	0.00037	-0.00196	0.00021	0.00023	-0.00088
430	15604	27.56	0.00009	0.00047	-0.00855	0.00024	0.00028	-0.00416
440	15604	28.20	0.00009	0.00052	-0.00985	0.00026	0.00031	-0.00480
450	15604	28.84	0.00009	0.00061	-0.01065	0.00030	0.00035	-0.00518
460	15604	29.48	0.00010	0.00068	-0.01103	0.00033	0.00039	-0.00535
470	15604	30.12	0.00010	0.00081	-0.01194	0.00039	0.00046	-0.00578
480	15604	30.76	0.00011	0.00109	-0.01382	0.00051	0.00060	-0.00666
490	15604	31.40	0.00011	0.00125	-0.01425	0.00059	0.00068	-0.00683
500	15604	32.04	0.00011	0.00138	-0.01463	0.00066	0.00075	-0.00699
510	15604	32.68	0.00011	0.00153	-0.01473	0.00072	0.00082	-0.00701
520	15604	33.32	0.00012	0.00179	-0.01544	0.00084	0.00096	-0.00730
530	15604	33.97	0.00013	0.00202	-0.01808	0.00096	0.00108	-0.00856
540	15604	34.61	0.00016	0.00226	-0.02335	0.00111	0.00121	-0.01112
550	15604	35.25	0.00021	0.00260	-0.02601	0.00136	0.00141	-0.01233
540	15604	34.61	0.00021	0.00263	-0.02600	0.00132	0.00142	-0.01234
530	15604	33.97	0.00020	0.00261	-0.02588	0.00129	0.00141	-0.01230
520	15604	33.32	0.00020	0.00259	-0.02593	0.00125	0.00140	-0.01234
530	15604	33.97	0.00020	0.00265	-0.02586	0.00128	0.00143	-0.01229
540	15604	34.61	0.00021	0.00274	-0.02568	0.00135	0.00148	-0.01217
550	15604	35.25	0.00022	0.00279	-0.02533	0.00140	0.00151	-0.01197
560	15604	35.89	0.00023	0.00288	-0.02487	0.00148	0.00156	-0.01170
550	15604	35.25	0.00025	0.00309	-0.02539	0.00170	0.00167	-0.01185
540	15604	34.61	0.00025	0.00311	-0.02462	0.00173	0.00168	-0.01145
530	15604	33.97	0.00025	0.00310	-0.02291	0.00172	0.00168	-0.01060
540	15604	34.61	0.00024	0.00309	-0.01827	0.00169	0.00167	-0.00829
550	15604	35.25	0.00025	0.00314	-0.01851	0.00174	0.00170	-0.00839
560	15604	35.89	0.00025	0.00315	-0.01850	0.00176	0.00170	-0.00837
550	15604	35.25	0.00025	0.00321	-0.01864	0.00182	0.00173	-0.00841
540	15604	34.61	0.00026	0.00327	-0.01892	0.00188	0.00177	-0.00852
550	15604	35.25	0.00029	0.00339	-0.01784	0.00211	0.00184	-0.00787
560	15604	35.89	0.00027	0.00335	-0.02024	0.00207	0.00181	-0.00909
570	15604	36.53	0.00028	0.00342	-0.01968	0.00216	0.00185	-0.00876
560	15604	35.89	0.00028	0.00348	-0.01998	0.00225	0.00188	-0.00887
550	15604	35.25	0.00030	0.00358	-0.02118	0.00245	0.00194	-0.00937

Load		Stress		Str	ain		Average	e strain
(kN)	Area	N/mm²		:	3		Med	Corros
			Mid 1	Mid 2	Corner 1	Corner 2	IVIIG	comer
0	15604	0.00	0.00001	0.00002	-0.00001	-0.00001	0.00002	-0.00001
10	15604	0.64	-0.00001	0.00000	-0.00002	-0.00001	-0.00001	-0.00002
20	15604	1.28	-0.00001	0.00002	0.00001	0.00000	0.00001	0.00001
30	15604	1.92	0.00003	0.00004	-0.00002	0.00000	0.00004	-0.00001
40	15604	2.56	-0.00001	0.00002	0.00001	0.00001	0.00001	0.00001
50	15604	3.20	0.00002	0.00002	-0.00001	0.00001	0.00002	0.00000
60	15604	3.85	-0.00001	0.00002	-0.00029	-0.00002	0.00001	-0.00016
70	15604	4.49	0.00003	0.00004	-0.00036	-0.00002	0.00004	-0.00019
80	15604	5.13	-0.00001	0.00003	-0.00036	-0.00001	0.00001	-0.00019
90	15604	5.77	-0.00001	0.00007	-0.00038	0.00000	0.00003	-0.00019
100	15604	6.41	0.00000	0.00008	-0.00039	0.00000	0.00004	-0.00020
110	15604	7.05	0.00003	0.00007	-0.00041	0.00001	0.00005	-0.00020
120	15604	7.69	0.00003	0.00009	-0.00037	0.00002	0.00006	-0.00018
130	15604	8.33	0.00004	0.00008	-0.00026	0.00002	0.00006	-0.00012
140	15604	8.97	0.00000	0.00007	-0.00011	-0.00002	0.00004	-0.00007
150	15604	9.61	0.00004	0.00009	0.00007	-0.00008	0.00007	-0.00001
160	15604	10.25	0.00004	0.00012	0.00021	-0.00011	0.00008	0.00005
170	15604	10.89	0.00001	0.00008	0.00026	-0.00012	0.00005	0.00007
180	15604	11.54	0.00005	0.00009	0.00027	-0.00013	0.00007	0.00007
190	15604	12.18	0.00005	0.00012	0.00033	-0.00013	0.00009	0.00010
200	15604	12.82	0.00003	0.00010	0.00035	-0.00013	0.00007	0.00011
210	15604	13.46	0.00004	0.00010	0.00039	-0.00013	0.00007	0.00013
220	15604	14.10	0.00003	0.00011	0.00043	-0.00037	0.00007	0.00003
230	15604	14.74	0.00008	0.00014	0.00043	-0.00042	0.00011	0.00001
240	15604	15.38	0.00009	0.00013	0.00045	-0.00051	0.00011	-0.00003
250	15604	16.02	0.00005	0.00014	0.00052	-0.00059	0.00010	-0.00004
260	15604	16.66	0.00007	0.00016	0.00057	-0.00061	0.00012	-0.00002
270	15604	17.30	0.00008	0.00018	0.00061	-0.00085	0.00013	-0.00012
280	15604	17.94	0.00011	0.00018	0.00062	-0.00088	0.00015	-0.00013
290	15604	18.58	0.00011	0.00019	0.00066	-0.00085	0.00015	-0.00010
300	15604	19.23	0.00009	0.00020	0.00074	-0.00081	0.00015	-0.00004
310	15604	19.87	0.00012	0.00021	0.00075	-0.00074	0.00017	0.00000
320	15604	20.51	0.00009	0.00021	0.00082	-0.00061	0.00015	0.00011
330	15604	21.15	0.00010	0.00023	0.00058	-0.00058	0.00017	0.00000
340	15604	21.79	0.00010	0.00022	0.00045	-0.00026	0.00016	0.00010
350	15604	22.43	0.00012	0.00023	0.00040	-0.00005	0.00018	0.00018
360	15604	23.07	0.00012	0.00024	0.00056	0.00012	0.00018	0.00034
370	15604	23.71	0.00015	0.00029	0.00098	0.00039	0.00022	0.00069
380	15604	24.35	0.00014	0.00029	0.00110	0.00056	0.00022	0.00083
390	15604	24.99	0.00017	0.00031	0.00114	0.00080	0.00024	0.00097
400	15604	25.63	0.00019	0.00031	0.00116	0.00084	0.00025	0.00100

Load		Stress		Str	ain		Average	e strain
(kN)	Area	N/mm ²			3			
			Mid 1	Mid 2	Corner 1	Corner 2	MIG	Corner
410	15604	26.28	0.00018	0.00032	0.00126	0.00096	0.00025	0.00111
420	15604	26.92	0.00020	0.00030	0.00128	0.00111	0.00025	0.00120
430	15604	27.56	0.00020	0.00036	0.00113	0.00136	0.00028	0.00125
440	15604	28.20	0.00019	0.00035	0.00090	0.00132	0.00027	0.00111
450	15604	28.84	0.00020	0.00035	0.00063	0.00129	0.00028	0.00096
460	15604	29.48	0.00028	0.00042	0.00059	0.00125	0.00035	0.00092
470	15604	30.12	0.00025	0.00044	0.00065	0.00128	0.00035	0.00097
480	15604	30.76	0.00027	0.00046	0.00077	0.00135	0.00037	0.00106
490	15604	31.40	0.00034	0.00047	0.00108	0.00140	0.00041	0.00124
500	15604	32.04	0.00037	0.00054	0.00190	0.00148	0.00046	0.00169
510	15604	32.68	0.00038	0.00057	0.00202	0.00170	0.00048	0.00186
520	15604	33.32	0.00043	0.00061	0.00173	0.00173	0.00052	0.00173
530	15604	33.97	0.00050	0.00067	0.00186	0.00172	0.00059	0.00179
540	15604	34.61	0.00055	0.00074	0.00233	0.00169	0.00065	0.00201
550	15604	35.25	0.00059	0.00084	0.00177	0.00174	0.00072	0.00176
560	15604	35.89	0.00073	0.00101	0.00193	0.00176	0.00087	0.00185
570	15604	36.53	0.00076	0.00111	0.00299	0.00182	0.00094	0.00241
580	15604	37.17	0.00089	0.00126	0.00225	0.00188	0.00108	0.00207
590	15604	37.81	0.00096	0.00144	-0.00090	0.00211	0.00120	0.00061
580	15604	37.17	0.00108	0.00164	-0.00084	0.00207	0.00136	0.00062
590	15604	37.81	0.00108	0.00168	-0.00050	0.00216	0.00138	0.00083
600	15604	38.45	0.00112	0.00173	0.00019	0.00225	0.00143	0.00122
610	15604	39.09	0.00129	0.00213	0.00032	0.00245	0.00171	0.00139
620	15604	39.73	0.00171	0.00248	-0.00330	0.00260	0.00210	-0.00035
610	15604	39.09	0.00182	0.00202	-0.00413	0.00263	0.00192	-0.00075
600	15604	38.45	0.00180	0.00177	-0.00496	0.00261	0.00179	-0.00118
610	15604	39.09	0.00188	0.00164	-0.00563	0.00259	0.00176	-0.00152
620	15604	39.73	0.00200	0.00164	-0.00683	0.00265	0.00182	-0.00209
630	15604	40.37	0.00219	0.00173	-0.00831	0.00274	0.00196	-0.00279
620	15604	39.73	0.00270	0.00160	-0.01300	0.00279	0.00215	-0.00511
610	15604	39.09	0.00283	0.00145	-0.01471	0.00288	0.00214	-0.00592
600	15604	38.45	0.00283	0.00122	-0.01601	0.00309	0.00203	-0.00646
610	15604	39.09	0.00297	0.00121	-0.01807	0.00311	0.00209	-0.00748
620	15604	39.73	0.00304	0.00122	-0.01952	0.00310	0.00213	-0.00821
630	15604	40.37	0.00320	0.00095	-0.02041	0.00309	0.00208	-0.00866
620	15604	39.73	0.00382	-0.00289	-0.02392	0.00314	0.00047	-0.01039
610	15604	39.09	0.00382	-0.00452	-0.02500	0.00315	-0.00035	-0.01093
620	15604	39.73	0.00393	-0.00644	-0.02549	0.00321	-0.00126	-0.01114
630	15604	40.37	0.00409	-0.00748	-0.02679	0.00327	-0.00170	-0.01176

Load	Area	Stress	Strain						
(kN)	mm ²	N/mm ²			1				
			Mid	Left	Center	Right			
0	15432	0.00	0.00000	0.00000	0.00000	0.00000			
10	15432	0.65	0.00000	-0.00001	-0.00001	-0.00001			
20	15432	1.30	0.00000	-0.00001	-0.00001	-0.00001			
30	15432	1.94	-0.00001	-0.00001	-0.00002	-0.00002			
40	15432	2.59	-0.00001	-0.00002	0.00000	-0.00002			
50	15432	3.24	-0.00001	-0.00001	-0.00001	-0.00002			
60	15432	3.89	0.00000	-0.00001	-0.00001	-0.00001			
70	15432	4.54	0.00000	-0.00002	0.00000	-0.00001			
80	15432	5.18	0.00000	-0.00001	-0.00001	-0.00002			
90	15432	5.83	0.00000	0.00000	-0.00002	-0.00003			
100	15432	6.48	0.00000	-0.00001	-0.00002	-0.00003			
110	15432	7.13	0.00000	-0.00001	-0.00003	-0.00005			
120	15432	7.78	0.00000	-0.00001	-0.00004	-0.00005			
130	15432	8.42	0.00000	-0.00001	-0.00004	-0.00005			
140	15432	9.07	0.00000	0.00000	-0.00004	-0.00005			
150	15432	9.72	0.00001	-0.00001	-0.00003	-0.00005			
160	15432	10.37	0.00001	0.00001	-0.00003	-0.00005			
170	15432	11.02	0.00002	0.00002	-0.00003	-0.00004			
180	15432	11.66	0.00002	0.00003	-0.00002	-0.00003			
190	15432	12.31	0.00003	0.00003	-0.00002	-0.00003			
200	15432	12.96	0.00003	0.00004	-0.00001	-0.00002			
210	15432	13.61	0.00004	0.00005	-0.00001	-0.00001			
220	15432	14.26	0.00004	0.00006	0.00000	0.00000			
230	15432	14.90	0.00005	0.00007	0.00002	0.00002			
240	15432	15.55	0.00006	0.00007	0.00003	0.00004			
250	15432	16.20	0.00007	0.00010	0.00003	0.00006			
260	15432	16.85	0.00008	0.00010	0.00004	0.00007			
270	15432	17.50	0.00008	0.00012	0.00005	0.00009			
280	15432	18.14	0.00010	0.00014	0.00006	0.00011			
290	15432	18.79	0.00011	0.00016	0.00007	0.00013			
300	15432	19.44	0.00013	0.00018	0.00008	0.00015			
310	15432	20.09	0.00015	0.00021	0.00011	0.00018			
320	15432	20.74	0.00019	0.00027	0.00012	0.00023			
330	15432	21.38	0.00021	0.00031	0.00013	0.00026			
340	15432	22.03	0.00024	0.00035	0.00015	0.00030			
350	15432	22.68	0.00028	0.00040	0.00017	0.00035			

Table A.13: Lateral strain of specimen S1R1

Load	Area	Stress	Strain							
(kN)	mm²	N/mm ²			1					
			Mid	Left	Center	Right				
360	15432	23.33	0.00032	0.00047	0.00019	0.00041				
370	15432	23.98	0.00038	0.00056	0.00022	0.00049				
380	15432	24.62	0.00047	0.00069	0.00026	0.00061				
390	15432	25.27	0.00056	0.00083	0.00030	0.00074				
400	15432	25.92	0.00069	0.00104	0.00036	0.00095				
410	15432	26.57	0.00079	0.00120	0.00041	0.00111				
420	15432	27.22	0.00100	0.00138	0.00047	0.00133				
430	15432	27.86	0.00125	0.00146	0.00050	0.00152				
440	15432	28.51	0.00148	0.00159	0.00055	0.00179				
450	15432	29.16	0.00181	0.00185	0.00065	0.00230				
460	15432	29.81	0.00175	0.00234	0.00088	0.00309				
450	15432	29.16	0.00171	0.00235	0.00088	0.00308				
440	15432	28.51	0.00165	0.00234	0.00087	0.00304				
430	15432	27.86	0.00159	0.00232	0.00086	0.00300				
440	15432	28.51	0.00158	0.00233	0.00087	0.00302				
450	15432	29.16	0.00162	0.00237	0.00089	0.00308				
460	15432	29.81	0.00169	0.00245	0.00092	0.00319				
470	15432	30.46	0.00176	0.00254	0.00095	0.00332				
480	15432	31.10	0.00195	0.00286	0.00101	0.00336				
470	15432	30.46	0.00192	0.00289	0.00101	0.00333				
460	15432	29.81	0.00186	0.00288	0.00098	0.00326				
450	15432	29.16	0.00184	0.00287	0.00097	0.00324				
460	15432	29.81	0.00186	0.00290	0.00098	0.00327				
470	15432	30.46	0.00189	0.00292	0.00099	0.00329				
480	15432	31.10	0.00193	0.00295	0.00099	0.00332				
490	15432	31.75	0.00198	0.00302	0.00100	0.00335				

Load		Stress	Strain						
(kN)	Area	N/mm²		2	2				
			Mid	Left	Center	Right			
0	15432	0.00	-0.00001	0.00000	-0.00002	0.00000			
10	15432	0.65	-0.00002	-0.00001	0.00000	-0.00001			
20	15432	1.30	-0.00002	-0.00001	-0.00001	-0.00002			
30	15432	1.94	-0.00003	-0.00001	-0.00002	-0.00002			
40	15432	2.59	-0.00001	-0.00001	-0.00001	-0.00003			
50	15432	3.24	-0.00002	-0.00001	-0.00002	-0.00004			
60	15432	3.89	-0.00002	-0.00001	-0.00002	-0.00004			
70	15432	4.54	-0.00003	-0.00002	-0.00002	-0.00003			
80	15432	5.18	-0.00002	-0.00001	-0.00002	-0.00005			
90	15432	5.83	-0.00003	-0.00002	-0.00002	-0.00005			
100	15432	6.48	-0.00004	-0.00002	-0.00002	-0.00004			
110	15432	7.13	-0.00004	-0.00002	-0.00003	-0.00004			
120	15432	7.78	-0.00004	-0.00001	-0.00002	-0.00003			
130	15432	8.42	-0.00003	-0.00001	-0.00003	-0.00002			
140	15432	9.07	-0.00003	-0.00001	-0.00003	-0.00001			
150	15432	9.72	-0.00004	0.00000	-0.00003	0.00000			
160	15432	10.37	-0.00004	0.00000	-0.00003	0.00003			
170	15432	11.02	-0.00003	0.00001	-0.00003	0.00005			
180	15432	11.66	-0.00004	0.00000	-0.00002	0.00007			
190	15432	12.31	-0.00003	0.00000	-0.00002	0.00009			
200	15432	12.96	-0.00002	0.00001	-0.00002	0.00011			
210	15432	13.61	-0.00002	0.00001	-0.00002	0.00012			
220	15432	14.26	-0.00004	0.00001	-0.00003	0.00016			
230	15432	14.90	-0.00003	0.00002	-0.00003	0.00018			
240	15432	15.55	-0.00003	0.00002	-0.00003	0.00020			
250	15432	16.20	-0.00004	0.00002	-0.00003	0.00024			
260	15432	16.85	-0.00004	0.00002	-0.00002	0.00029			
270	15432	17.50	-0.00003	0.00002	-0.00002	0.00031			
280	15432	18.14	-0.00004	0.00002	-0.00003	0.00037			
290	15432	18.79	-0.00004	0.00002	-0.00003	0.00043			
300	15432	19.44	-0.00004	0.00003	-0.00003	0.00048			
310	15432	20.09	-0.00004	0.00004	-0.00004	0.00055			
320	15432	20.74	-0.00004	0.00004	-0.00002	0.00060			
330	15432	21.38	-0.00003	0.00005	-0.00004	0.00067			
340	15432	22.03	-0.00004	0.00005	-0.00003	0.00074			
350	15432	22.68	-0.00003	0.00006	-0.00002	0.00089			
360	15432	23.33	-0.00002	0.00008	-0.00002	0.00096			
370	15432	23.98	-0.00003	0.00009	-0.00002	0.00110			
380	15432	24.62	-0.00003	0.00012	-0.00002	0.00125			
390	15432	25.27	-0.00003	0.00012	-0.00001	0.00137			
400	15432	25.92	-0.00002	0.00016	0.00002	0.00167			

Load		Stress		Str	ain			
(kN)	Area	N/mm²	2					
			Mid	Left	Center	Right		
410	15432	26.57	-0.00001	0.00019	0.00003	0.00185		
420	15432	27.22	-0.00001	0.00022	0.00005	0.00199		
430	15432	27.86	0.00000	0.00025	0.00008	0.00217		
440	15432	28.51	0.00000	0.00031	0.00008	0.00212		
450	15432	29.16	-0.00001	0.00034	0.00008	0.00216		
440	15432	28.51	-0.00001	0.00033	0.00008	0.00198		
430	15432	27.86	-0.00003	0.00032	0.00008	0.00183		
440	15432	28.51	-0.00002	0.00033	0.00008	0.00177		
450	15432	29.16	-0.00003	0.00035	0.00008	0.00181		
460	15432	29.81	-0.00004	0.00037	0.00009	0.00194		
450	15432	29.16	-0.00012	0.00038	0.00011	0.00159		

Load		Stress	Strain					
(kN)	Area	N/mm²			3			
			Mid	Left	Center	Right		
0	15432	0.00	-0.00003	0.00000	0.00000	0.00000		
10	15432	0.65	-0.00004	0.00002	-0.00001	-0.00001		
20	15432	1.30	-0.00005	0.00003	-0.00001	-0.00001		
30	15432	1.94	-0.00005	0.00003	-0.00001	-0.00001		
40	15432	2.59	-0.00005	0.00003	-0.00001	-0.00001		
50	15432	3.24	-0.00005	0.00004	-0.00001	-0.00001		
60	15432	3.89	-0.00006	0.00004	-0.00002	-0.00001		
70	15432	4.54	-0.00006	0.00005	-0.00003	-0.00001		
80	15432	5.18	-0.00006	0.00005	-0.00004	-0.00001		
90	15432	5.83	-0.00006	0.00005	-0.00004	-0.00001		
100	15432	6.48	-0.00006	0.00005	-0.00005	-0.00001		
110	15432	7.13	-0.00006	0.00007	-0.00005	-0.00001		
120	15432	7.78	-0.00005	0.00007	-0.00007	-0.00001		
130	15432	8.42	-0.00005	0.00007	-0.00007	-0.00001		
140	15432	9.07	-0.00005	0.00008	-0.00008	-0.00001		
150	15432	9.72	-0.00005	0.00008	-0.00008	-0.00001		
1.60	15432	10.37	-0.00005	0.00009	-0.00008	-0.00001		
170	15432	11.02	-0.00005	0.00010	-0.00008	0.00000		
180	15432	11.66	-0.00004	0.00010	-0.00009	0.00000		
190	15432	12.31	-0.00004	0.00011	-0.00010	0.00001		
2:00	15432	12.96	-0.00004	0.00012	-0.00010	0.00001		
210	15432	13.61	-0.00004	0.00013	-0.00011	0.00001		
220	15432	14.26	-0.00003	0.00014	-0.00011	0.00002		
230	15432	14.90	-0.00002	0.00015	-0.00012	0.00002		
240	15432	15.55	-0.00002	0.00016	-0.00013	0.00002		
250	15432	16.20	-0.00001	0.00018	-0.00013	0.00003		
260	15432	16.85	-0.00001	0.00019	-0.00014	0.00003		
270	15432	17.50	0.00000	0.00022	-0.00015	0.00004		
280	15432	18.14	0.00001	0.00023	-0.00016	0.00005		
290	15432	18.79	0.00002	0.00025	-0.00016	0.00005		
300	15432	19.44	0.00003	0.00028	-0.00017	0.00006		
310	15432	20.09	0.00004	0.00030	-0.00018	0.00006		
320	15432	20.74	0.00005	0.00033	-0.00019	0.00007		
330	15432	21.38	0.00007	0.00037	-0.00020	0.00008		
340	15432	22.03	0.00008	0.00041	-0.00021	0.00008		
350	15432	22.68	0.00010	0.00046	-0.00022	0.00009		
360	15432	23.33	0.00011	0.00050	-0.00022	0.00011		
370	15432	23.98	0.00013	0.00058	-0.00022	0.00012		
380	15432	24.62	0.00015	0.00065	-0.00022	0.00014		
390	15432	25.27	0.00016	0.00074	-0.00020	0.00016		
400	15432	25.92	0.00017	0.00085	-0.00017	0.00019		

Load		Stress		St	rain	
(kN)	Area	N/mm²			3	
			Mid	Left	Center	Right
410	15432	26.57	0.00019	0.00094	-0.00015	0.00021
420	15432	27.22	0.00023	0.00106	-0.00011	0.00025
430	15432	27.86	0.00028	0.00120	-0.00007	0.00029
440	15432	28.51	0.00032	0.00133	-0.00003	0.00033
450	15432	29.16	0.00041	0.00166	0.00008	0.00046
460	15432	29.81	0.00046	0.00197	0.00019	0.00055
470	15432	30.46	0.00052	0.00225	0.00031	0.00062
480	15432	31.10	0.00061	0.00276	0.00060	0.00076
490	15432	31.75	0.00069	0.00310	0.00091	0.00096
500	15432	32.40	0.00090	0.00460	0.00154	0.00175
490	15432	31.75	0.00088	0.00492	0.00160	0.00181
480	15432	31.10	0.00084	0.00516	0.00158	0.00179
470	15432	30.46	0.00082	0.00531	0.00156	0.00175
480	15432	31.10	0.00085	0.00520	0.00158	0.00182
490	15432	31.75	0.00087	0.00499	0.00161	0.00187
500	15432	32.40	0.00094	0.00502	0.00170	0.00200
510	15432	33.05	0.00104	0.00520	0.00184	0.00220

Load		Stress	Strain					
(kN)	Area	N/mm²		1	L			
			Mid	Left	Center	Right		
0	15432	0.00	0.00000	0.00000	-0.00001	-0.00001		
10	15432	0.65	-0.00002	0.00000	-0.00001	-0.00001		
20	15432	1.30	0.00001	0.00001	-0.00002	-0.00001		
30	15432	1.94	0.00000	0.00001	0.00000	0.00001		
40	15432	2.59	0.00000	0.00004	0.00000	0.00003		
50	15432	3.24	-0.00002	0.00003	-0.00001	-0.00001		
60	15432	3.89	-0.00007	0.00002	-0.00003	-0.00001		
70	15432	4.54	-0.00011	0.00002	-0.00004	-0.00001		
80	15432	5.18	-0.00012	0.00002	-0.00004	-0.00001		
90	15432	5.83	-0.00015	0.00006	-0.00003	0.00000		
100	15432	6.48	-0.00038	0.00008	-0.00004	-0.00002		
110	15432	7.13	-0.00049	0.00010	-0.00002	0.00001		
120	15432	7.78	-0.00072	0.00011	0.00000	0.00003		
130	15432	8.42	-0.00093	0.00014	0.00000	0.00003		
140	15432	9.07	-0.00102	0.00017	0.00001	0.00007		
150	15432	9.72	-0.00112	0.00021	0.00002	0.00009		
160	15432	10.37	-0.00107	0.00025	0.00005	0.00012		
170	15432	11.02	-0.00096	0.00029	0.00005	0.00014		
180	15432	11.66	-0.00089	0.00034	0.00006	0.00018		
190	15432	12.31	-0.00088	0.00038	0.00007	0.00020		
200	15432	12.96	-0.00077	0.00042	0.00008	0.00023		
210	15432	13.61	-0.00067	0.00045	0.00009	0.00027		
220	15432	14.26	-0.00031	0.00016	0.00011	0.00030		
230	15432	14.90	-0.00012	-0.00247	0.00013	0.00032		
240	15432	15.55	-0.00007	-0.01031	0.00016	0.00036		
250	15432	16.20	0.00020	-0.01569	0.00016	0.00040		
260	15432	16.85	0.00064	-0.02192	0.00019	0.00047		
270	15432	17.50	0.00100	-0.02372	0.00021	0.00050		
280	15432	18.14	0.00152	-0.01389	0.00024	0.00057		
290	15432	18.79	0.00211	-0.00101	0.00027	0.00065		
300	15432	19.44	0.00290	-0.01292	0.00033	0.00074		
310	15432	20.09	0.00385	-0.02611	0.00040	0.00094		
320	15432	20.74	0.00378	-0.03513	0.00044	0.00109		
330	15432	21.38	0.00936	-0.04357	0.00054	0.00133		
340	15432	22.03	0.01332	-0.07322	0.00062	0.00158		
350	15432	22.68	0.01646	-0.08543	0.00070	0.00071		
360	15432	23.33	0.02098	-0.09228	0.00086	0.00089		
370	15432	23.98	0.02368	-0.09894	0.00101	0.00097		
380	15432	24.62	0.02449	-0.10058	0.00107	0.00102		
390	15432	25.27	0.02887	-0.10092	0.00124	0.00114		

Table A.14: Lateral strain of specimen S2R1

_

Load		Stress		Str	ain	
(kN)	Area	N/mm²	1			
			Mid	Left	Center	Right
400	15432	25.92	0.04014	-0.09311	0.00135	0.00124
410	15432	26.57	0.04657	-0.09841	0.00160	0.00142
420	15432	27.22	0.04670	-0.10466	0.00193	0.00159
430	15432	27.86	0.04691	-0.10603	0.00224	0.00180
440	15432	28.51	0.04703	-0.10646	0.00240	0.00191
450	15432	29.16	0.03296	-0.10791	0.00272	0.00212
440	15432	28.51	0.03141	-0.10654	0.00267	0.00209
430	15432	27.86	0.03062	-0.10871	0.00265	0.00208
440	15432	28.51	0.02974	-0.11536	0.00269	0.00213
450	15432	29.16	0.02981	-0.11691	0.00282	0.00221
460	15432	29.81	0.02904	-0.11598	-0.00070	0.00446
470	15432	30.46	0.02405	-0.09670	-0.00137	0.00538
450	15432	29.16	0.02143	-0.02488	-0.00281	0.00521
440	15432	28.51	0.02131	-0.02234	-0.00284	0.00519

Load		Stress		Str	ain	
(kN)	Area	N/mm²		:	2	
			Mid	Left	Center	Right
0	15432	0.00	0.00000	0.00000	0.00001	0.00000
10	15432	0.65	0.00002	0.00002	0.00002	0.00001
20	15432	1.30	0.00003	0.00003	0.00003	0.00002
30	15432	1.94	0.00005	0.00004	0.00004	0.00003
40	15432	2.59	0.00006	0.00005	0.00005	0.00003
50	15432	3.24	0.00008	0.00007	0.00006	0.00004
60	15432	3.89	0.00010	0.00008	0.00007	0.00006
70	15432	4.54	0.00011	0.00010	0.00009	0.00006
80	15432	5.18	0.00013	0.00011	0.00009	0.00007
90	15432	5.83	0.00014	0.00012	0.00010	0.00008
100	15432	6.48	0.00017	0.00014	0.00011	0.00010
110	15432	7.13	0.00019	0.00016	0.00012	0.00011
120	15432	7.78	0.00020	0.00017	0.00013	0.00011
130	15432	8.42	0.00022	0.00018	0.00014	0.00013
140	15432	9.07	0.00024	0.00020	0.00015	0.00013
150	15432	9.72	0.00025	0.00021	0.00016	0.00014
160	15432	10.37	0.00027	0.00023	0.00017	0.00015
170	15432	11.02	0.00029	0.00024	0.00018	0.00016
180	15432	11.66	0.00030	0.00026	0.00019	0.00017
190	15432	12.31	0.00032	0.00026	0.00019	0.00017
200	15432	12.96	0.00034	0.00028	0.00020	0.00019
210	15432	13.61	0.00035	0.00029	0.00021	0.00019
220	15432	14.26	0.00037	0.00031	0.00023	0.00020
230	15432	14.90	0.00038	0.00032	0.00023	0.00021
240	15432	15.55	0.00040	0.00033	0.00024	0.00022
250	15432	16.20	0.00042	0.00035	0.00025	0.00023
260	15432	16.85	0.00044	0.00036	0.00026	0.00024
270	15432	17.50	0.00046	0.00037	0.00027	0.00024
280	15432	18.14	0.00049	0.00039	0.00028	0.00025
290	15432	18.79	0.00051	0.00041	0.00029	0.00027
300	15432	19.44	0.00053	0.00042	0.00030	0.00028
310	15432	20.09	0.00055	0.00044	0.00031	0.00029
320	15432	20.74	0.00057	0.00046	0.00032	0.00030
330	15432	21.38	0.00060	0.00049	0.00033	0.00031
340	15432	22.03	0.00063	0.00049	0.00034	0.00032
350	15432	22.68	0.00066	0.00052	0.00035	0.00034
360	15432	23.33	0.00070	0.00055	0.00037	0.00036
370	15432	23.98	0.00073	0.00058	0.00038	0.00038
380	15432	24.62	0.00076	0.00061	0.00039	0.00039
390	15432	25.27	0.00079	0.00062	0.00041	0.00041
400	15432	25.92	0.00084	0.00066	0.00043	0.00043

Load		Stress	Strain					
(kN)	Area	N/mm²		:	2			
			Mid	Left	Center	Right		
410	15432	26.57	0.00087	0.00069	0.00045	0.00045		
420	15432	27.22	0.00093	0.00073	0.00047	0.00047		
430	15432	27.86	0.00097	0.00077	0.00049	0.00050		
440	15432	28.51	0.00102	0.00081	0.00051	0.00053		
450	15432	29.16	0.00107	0.00085	0.00053	0.00056		
460	15432	29.81	0.00117	0.00092	0.00057	0.00061		
470	15432	30.46	0.00122	0.00096	0.00060	0.00065		
480	15432	31.10	0.00129	0.00102	0.00063	0.00069		
490	15432	31.75	0.00138	0.00109	0.00067	0.00073		
500	15432	32.40	0.00149	0.00118	0.00073	0.00080		
510	15432	33.05	0.00160	0.00128	0.00079	0.00087		
520	15432	33.70	0.00166	0.00132	0.00083	0.00092		
530	15432	34.34	0.00173	0.00138	0.00086	0.00096		
540	15432	34.99	0.00180	0.00145	0.00091	0.00102		
550	15432	35.64	0.00188	0.00153	0.00096	0.00109		
560	15432	36.29	0.00201	0.00168	0.00106	0.00121		
570	15432	36.94	0.00210	0.00187	0.00119	0.00134		
580	15432	37.58	0.00205	0.00203	0.00130	0.00146		
590	15432	38.23	0.00206	0.00215	0.00137	0.00155		
600	15432	38.88	0.00216	0.00244	0.00154	0.00175		
610	15432	39.53	0.00233	0.00278	0.00176	0.00202		
620	15432	40.18	0.00260	0.00329	0.00212	0.00244		
610	15432	39.53	0.00265	0.00334	0.00218	0.00250		
600	15432	38.88	0.00266	0.00336	0.00220	0.00253		
610	15432	39.53	0.00271	0.00343	0.00226	0.00260		
620	15432	40.18	0.00276	0.00352	0.00232	0.00266		
630	15432	40.82	0.00280	0.00359	0.00236	0.00272		
640	15432	41.47	0.00284	0.00365	0.00240	0.00277		
650	15432	42.12	0.00304	0.00393	0.00260	0.00303		
660	15432	42.77	0.00348	0.00457	0.00308	0.00363		
670	15432	43.42	0.00365	0.00476	0.00325	0.00385		
680	15432	44.06	0.00382	0.00485	0.00343	0.00408		
690	15432	44.71	0.00391	0.00491	0.00351	0.00418		
680	15432	44.06	0.00404	0.00492	0.00365	0.00436		
670	15432	43.42	0.00405	0.00487	0.00367	0.00439		
680	15432	44.06	0.00408	0.00491	0.00370	0.00443		
690	15432	44.71	0.00412	0.00493	0.00374	0.00448		
700	15432	45.36	0.00427	0.00492	0.00389	0.00465		
710	15432	46.01	0.00442	0.00487	0.00409	0.00490		
720	15432	46.66	0.00450	0.00488	0.00418	0.00500		
730	15432	47.30	0.00467	0.00482	0.00435	0.00521		

-	Load		Stress		Str	ain	
	(kN)	Area	N/mm²	2			
				Mid	Left	Center	Right
	720	15432	46.66	0.00470	0.00476	0.00439	0.00525
	710	15432	46.01	0.00470	0.00472	0.00441	0.00527
	700	15432	45.36	0.00469	0.00466	0.00443	0.00529
	690	15432	44.71	0.00467	0.00460	0.00444	0.00530
	700	15432	45.36	0.00470	0.00461	0.00447	0.00533
	710	15432	46.01	0.00473	0.00462	0.00451	0.00537
	720	15432	46.66	0.00480	0.00463	0.00457	0.00545
	730	15432	47.30	0.00487	0.00463	0.00463	0.00551

١	Lord		Street		C+-		
	LOad		Stress		ou	am	
	(KN)	Area	N/mm ⁺			3	
				Mid	Left	Center	Right
	0	15432	0.00	-0.00002	0.00000	0.00000	-0.00001
	10	15432	0.65	-0.00002	0.00002	0.00001	-0.00001
	20	15432	1.30	-0.00001	0.00003	0.00002	0.00000
	30	15432	1.94	-0.00001	0.00005	0.00004	0.00003
	40	15432	2.59	-0.00001	0.00005	0.00004	0.00004
	50	15432	3.24	-0.00001	0.00006	0.00004	0.00005
	60	15432	3.89	-0.00001	0.00007	0.00005	0.00009
	70	15432	4.54	-0.00001	0.00007	0.00005	0.00017
	80	15432	5.18	-0.00001	0.00009	0.00006	0.00021
	90	15432	5.83	-0.00001	0.00010	0.00007	0.00028
	100	15432	6.48	-0.00001	0.00011	0.00007	0.00041
	110	15432	7.13	0.00000	0.00012	0.00008	0.00050
	120	15432	7.78	0.00000	0.00014	0.00009	0.00062
	130	15432	8.42	0.00000	0.00014	0.00009	0.00071
	140	15432	9.07	0.00001	0.00015	0.00010	0.00076
	150	15432	9.72	0.00001	0.00016	0.00010	0.00084
	160	15432	10.37	0.00001	0.00017	0.00011	0.00092
	170	15432	11.02	0.00002	0.00018	0.00012	0.00102
	180	15432	11.66	0.00003	0.00020	0.00012	0.00112
	190	15432	12.31	0.00004	0.00022	0.00014	0.00121
	200	15432	12.96	0.00004	0.00023	0.00014	0.00133
	210	15432	13.61	0.00005	0.00025	0.00015	0.00139
	220	15432	14.26	0.00005	0.00026	0.00016	0.00139
	230	15432	14.90	0.00006	0.00028	0.00017	0.00139
	240	15432	15.55	0.00007	0.00030	0.00017	0.00146
	250	15432	16.20	0.00008	0.00032	0.00018	0.00153
	260	15432	16.85	0.00009	0.00034	0.00019	0.00166
	270	15432	17.50	0.00010	0.00036	0.00020	0.00159
	280	15432	18.14	0.00012	0.00039	0.00021	0.00156
	290	15432	18.79	0.00014	0.00042	0.00022	0.00159
	300	15432	19.44	0.00016	0.00044	0.00024	0.00155
	310	15432	20.09	0.00018	0.00049	0.00025	0.00123
	320	15432	20.74	0.00020	0.00053	0.00026	0.00106
	330	15432	21.38	0.00023	0.00057	0.00028	0.00100
	340	15432	22.03	0.00027	0.00062	0.00030	0.00101
	350	15432	22.68	0.00030	0.00067	0.00032	0.00105
	360	15432	23.33	0.00035	0.00074	0.00034	0.00095
	370	15432	23.98	0.00041	0.00082	0.00038	0.00066
	380	15432	24.62	0.00047	0.00089	0.00040	0.00037
	390	15432	25.27	0.00056	0.00101	0.00045	0.00011
	400	15432	25.92	0.00068	0.00112	0.00049	-0.00011

Load		Stress	Strain					
(kN)	Area	N/mm²		3	3			
			Mid	Left	Center	Right		
410	15432	26.57	0.00074	0.00119	0.00051	-0.00008		
420	15432	27.22	0.00087	0.00133	0.00057	0.00008		
430	15432	27.86	0.00097	0.00143	0.00062	0.00035		
440	15432	28.51	0.00105	0.00154	0.00066	0.00073		
450	15432	29.16	0.00119	0.00168	0.00073	0.00148		
460	15432	29.81	0.00145	0.00192	0.00084	0.00291		
470	15432	30.46	0.00165	0.00212	0.00094	0.00455		
480	15432	31.10	0.00185	0.00233	0.00104	0.00195		
490	15432	31.75	0.00194	0.00244	0.00110	0.00143		
500	15432	32.40	0.00225	0.00274	0.00131	-0.00113		
510	15432	33.05	0.00248	0.00305	0.00147	-0.00361		
520	15432	33.70	0.00277	0.00336	0.00169	-0.00678		
530	15432	34.34	0.00303	0.00364	0.00194	-0.01058		
540	15432	34.99	0.00332	0.00404	0.00221	-0.01215		
550	15432	35.64	0.00347	0.00430	0.00234	-0.01214		
560	15432	36.29	0.00364	0.00448	0.00247	-0.01268		
570	15432	36.94	0.00396	0.00479	0.00276	-0.01355		
580	15432	37.58	0.00440	0.00520	0.00312	-0.01384		
590	15432	38.23	0.00466	0.00533	0.00338	-0.01410		
600	15432	38.88	0.00496	0.00615	0.00376	-0.01416		
610	15432	39.53	-0.00405	0.00625	0.00453	-0.01520		
620	15432	40.18	-0.00704	0.00602	0.00499	-0.01537		
610	15432	39.53	0.00307	0.00584	0.00506	-0.01528		
600	15432	38.88	0.00603	0.00575	0.00507	-0.01520		
610	15432	39.53	0.00629	0.00556	0.00523	-0.01505		
620	15432	40.18	0.00655	0.00464	0.00542	-0.01451		
630	15432	40.82	0.00683	0.00568	0.00568	-0.01420		
640	15432	41.47	0.00698	0.00412	0.00603	-0.01373		
630	15432	40.82	0.00251	0.00418	0.00602	-0.01335		
620	15432	40.18	0.00147	0.00429	0.00601	-0.01327		
610	15432	39.53	0.00132	0.00439	0.00600	-0.01319		
600	15432	38.88	0.00670	0.00462	0.00599	-0.01308		
610	15432	39.53	0.00714	0.00543	0.00604	-0.01281		
620	15432	40.18	0.00731	0.00585	0.00615	-0.01265		
630	15432	40.82	0.00757	0.00587	0.00628	-0.01240		
640	15432	41.47	0.00771	0.00603	0.00648	-0.01241		
650	15432	42.12	0.00778	0.00634	0.00678	-0.01225		
640	15432	41.47	0.00782	0.00624	0.00681	-0.01224		
630	15432	40.82	0.00336	0.00616	0.00679	-0.01226		
620	15432	40.18	0.00157	0.00612	0.00678	-0.01226		
610	15432	39.53	0.00053	0.00606	0.00675	-0.01224		

Load		Stress	Strain 3					
(kN)	Area	N/mm²						
			Mid	Left	Center	Right		
620	15432	40.18	-0.00267	0.00590	0.00678	-0.01230		
630	15432	40.82	-0.00319	0.00592	0.00685	-0.01225		
640	15432	41.47	-0.00242	0.00595	0.00694	-0.01217		
650	15432	42.12	0.00384	0.00598	0.00716	-0.01181		
660	15432	42.77	0.00276	0.00597	0.00743	-0.01150		
650	15432	42.12	-0.00235	0.00578	0.00742	-0.01132		
660	15432	42.77	-0.00269	0.00569	0.00758	-0.01081		
670	15432	43.42	-0.00502	0.00559	0.00784	-0.01053		
660	15432	42.77	-0.01367	0.00478	0.00799	-0.00991		
650	15432	42.12	-0.02314	0.00494	0.00818	-0.00966		

Load		Stress	Strain					
(kN)	Area	N/mm²		1	L			
			Mid	Left	Center	Right		
0	15089	0.00	-0.00001	-0.00002	-0.00005	-0.00003		
10	15089	0.66	0.00000	-0.00003	-0.00006	-0.00005		
20	15089	1.33	0.00000	-0.00003	-0.00007	-0.00006		
30	15089	1.99	0.00000	-0.00003	-0.00007	-0.00006		
40	15089	2.65	0.00001	-0.00004	-0.00008	-0.00005		
50	15089	3.31	0.00000	-0.00003	-0.00008	-0.00006		
60	15089	3.98	0.00001	-0.00005	-0.00010	-0.00008		
70	15089	4.64	0.00001	-0.00006	-0.00011	-0.00011		
80	15089	5.30	0.00002	-0.00008	-0.00014	-0.00011		
90	15089	5.96	0.00002	-0.00007	-0.00014	-0.00012		
100	15089	6.63	0.00003	-0.00008	-0.00014	-0.00012		
110	15089	7.29	0.00004	-0.00007	-0.00014	-0.00012		
120	15089	7.95	0.00005	-0.00008	-0.00014	-0.00012		
130	15089	8.62	0.00007	-0.00007	-0.00014	-0.00010		
140	15089	9.28	0.00008	-0.00008	-0.00014	-0.00011		
150	15089	9.94	0.00008	-0.00007	-0.00013	-0.00012		
160	15089	10.60	0.00011	-0.00008	-0.00014	-0.00010		
170	15089	11.27	0.00012	-0.00008	-0.00013	-0.00010		
180	15089	11.93	0.00013	-0.00007	-0.00013	-0.00010		
190	15089	12.59	0.00015	-0.00007	-0.00013	-0.00009		
200	15089	13.25	0.00017	-0.00007	-0.00012	-0.00009		
210	15089	13.92	0.00018	-0.00008	-0.00013	-0.00008		
220	15089	14.58	0.00018	-0.00007	-0.00013	-0.00008		
230	15089	15.24	0.00021	-0.00007	-0.00012	-0.00008		
240	15089	15.91	0.00023	-0.00007	-0.00012	-0.00007		
250	15089	16.57	0.00025	-0.00006	-0.00012	-0.00005		
260	15089	17.23	0.00028	-0.00006	-0.00011	-0.00004		
270	15089	17.89	0.00030	-0.00005	-0.00010	-0.00004		
280	15089	18.56	0.00032	-0.00004	-0.00009	-0.00002		
290	15089	19.22	0.00035	-0.00003	-0.00008	-0.00001		
300	15089	19.88	0.00039	-0.00002	-0.00007	0.00002		
310	15089	20.54	0.00040	-0.00002	-0.00006	0.00001		
320	15089	21.21	0.00044	-0.00001	-0.00004	0.00003		
330	15089	21.87	0.00049	0.00001	-0.00003	0.00006		
340	15089	22.53	0.00054	0.00003	-0.00001	0.00007		
350	15089	23.20	0.00055	0.00005	0.00000	0.00006		
360	15089	23.86	0.00059	0.00006	0.00002	0.00008		
370	15089	24.52	0.00065	0.00007	0.00004	0.00010		
380	15089	25.18	0.00069	0.00010	0.00007	0.00012		
390	15089	25.85	0.00076	0.00013	0.00012	0.00016		

Table A.15: Lateral strain of specimen S1R2

Load		Stress		Str	ain	
(kN)	Area	N/mm²		1	1	
			Mid	Left	Center	Right
400	15089	26.51	0.00083	0.00014	0.00015	0.00019
410	15089	27.17	0.00090	0.00018	0.00019	0.00022
420	15089	27.83	0.00095	0.00021	0.00023	0.00025
430	15089	28.50	0.00101	0.00024	0.00028	0.00029
440	15089	29.16	0.00084	0.00029	0.00035	0.00033
450	15089	29.82	0.00100	0.00035	0.00041	0.00037
460	15089	30.49	0.00110	0.00041	0.00047	0.00043
470	15089	31.15	0.00124	0.00047	0.00056	0.00051
480	15089	31.81	0.00136	0.00055	0.00068	0.00059
490	15089	32.47	0.00153	0.00062	0.00079	0.00069
500	15089	33.14	0.00209	0.00072	0.00108	0.00086
510	15089	33.80	0.00183	0.00081	0.00132	0.00096
520	15089	34.46	0.00202	0.00131	0.00171	0.00110
530	15089	35.12	0.00150	0.00145	0.00202	0.00120
540	15089	35.79	0.00172	0.00169	0.00254	0.00123
550	15089	36.45	0.00182	0.00182	0.00283	0.00126
560	15089	37.11	0.00197	0.00204	0.00333	0.00131
550	15089	36.45	0.00191	0.00200	0.00360	0.00131
540	15089	35.79	0.00185	0.00186	0.00349	0.00122
530	15089	35.12	0.00181	0.00166	0.00333	0.00112
520	15089	34.46	0.00180	0.00159	0.00326	0.00108
530	15089	35.12	0.00179	0.00154	0.00317	0.00104
540	15089	35.79	0.00181	0.00156	0.00319	0.00105
550	15089	36.45	0.00183	0.00158	0.00323	0.00107
560	15089	37.11	0.00187	0.00164	0.00330	0.00110
570	15089	37.78	0.00194	0.00172	0.00342	0.00115
580	15089	38.44	0.00200	0.00182	0.00358	0.00122
590	15089	39.10	0.00211	0.00201	0.00392	0.00137
600	15089	39.76	0.00223	0.00223	0.00448	0.00155
610	15089	40.43	0.00242	0.00248	0.00511	0.00177
620	15089	41.09	0.00257	0.00267	0.00568	0.00206
630	15089	41.75	0.00265	0.00270	0.00595	0.00220
620	15089	41.09	0.00275	0.00276	0.00633	0.00226
610	15089	40.43	0.00271	0.00266	0.00627	0.00220
600	15089	39.76	0.00266	0.00256	0.00617	0.00220
610	15089	40.43	0.00271	0.00256	0.00611	0.00228
620	15089	41.09	0.00274	0.00263	0.00618	0.00236
630	15089	41.75	0.00281	0.00274	0.00633	0.00246
610	15089	40.43	0.00289	0.00260	0.00611	0.00234
600	15089	39.76	0.00284	0.00248	0.00597	0.00226

Load		Stress	Strain				
(kN)	Area	N/mm²		2	2		
			Mid	Left	Center	Right	
0	15089	0.00	-0.00001	-0.00001	-0.00001	-0.00001	
10	15089	0.66	-0.00003	0.00000	-0.00003	-0.00003	
20	15089	1.33	-0.00005	0.00000	-0.00003	-0.00004	
30	15089	1.99	-0.00006	0.00001	-0.00004	-0.00004	
40	15089	2.65	-0.00007	0.00001	-0.00003	-0.00005	
50	15089	3.31	-0.00007	0.00002	-0.00003	-0.00005	
60	15089	3.98	-0.00007	0.00002	-0.00004	-0.00006	
70	15089	4.64	-0.00008	0.00002	-0.00005	-0.00007	
80	15089	5.30	-0.00007	0.00002	-0.00005	-0.00007	
90	15089	5.96	-0.00007	0.00003	-0.00005	-0.00007	
100	15089	6.63	-0.00006	0.00004	-0.00005	-0.00007	
110	15089	7.29	-0.00006	0.00003	-0.00005	-0.00007	
120	15089	7.95	-0.00006	0.00004	-0.00004	-0.00007	
130	15089	8.62	-0.00005	0.00005	-0.00004	-0.00007	
140	15089	9.28	-0.00004	0.00006	-0.00003	-0.00005	
150	15089	9.94	-0.00003	0.00006	-0.00002	-0.00006	
160	15089	10.60	-0.00001	0.00008	-0.00001	-0.00005	
170	15089	11.27	-0.00001	0.00009	-0.00001	-0.00005	
180	15089	11.93	0.00000	0.00010	-0.00001	-0.00004	
190	15089	12.59	0.00001	0.00010	-0.00001	-0.00004	
200	15089	13.25	0.00001	0.00012	0.00000	-0.00003	
210	15089	13.92	0.00002	0.00013	0.00002	-0.00002	
220	15089	14.58	0.00004	0.00015	0.00003	-0.00001	
230	15089	15.24	0.00006	0.00016	0.00005	0.00000	
240	15089	15.91	0.00007	0.00018	0.00007	0.00001	
250	15089	16.57	0.00009	0.00019	0.00009	0.00004	
260	15089	17.23	0.00011	0.00022	0.00011	0.00006	
270	15089	17.89	0.00014	0.00023	0.00013	0.00008	
280	15089	18.56	0.00017	0.00026	0.00016	0.00011	
290	15089	19.22	0.00020	0.00029	0.00019	0.00013	
300	15089	19.88	0.00024	0.00032	0.00023	0.00017	
310	15089	20.54	0.00030	0.00037	0.00030	0.00023	
320	15089	21.21	0.00035	0.00040	0.00035	0.00027	
330	15089	21.87	0.00042	0.00044	0.00042	0.00034	
340	15089	22.53	0.00048	0.00047	0.00050	0.00041	
350	15089	23.20	0.00055	0.00050	0.00056	0.00047	
360	15089	23.86	0.00065	0.00051	0.00066	0.00057	
370	15089	24.52	0.00078	0.00055	0.00083	0.00071	
380	15089	25.18	0.00096	0.00054	0.00096	0.00087	
390	15089	25.85	0.00120	0.00047	0.00106	0.00104	
400	15089	26.51	0.00140	0.00043	0.00115	0.00118	

Load		Stress	Strain					
(kN)	Area	N/mm²	2					
			Mid	Left	Center	Right		
410	15089	27.17	0.00175	-0.00718	0.00132	0.00140		
420	15089	27.83	0.00208	-0.00694	0.00148	0.00161		
430	15089	28.50	0.00248	-0.00236	0.00169	0.00184		
440	15089	29.16	0.00331	-0.00836	0.00201	0.00158		
450	15089	29.82	0.00415	-0.02167	0.00232	-0.00018		
460	15089	30.49	0.00486	-0.02689	0.00267	-0.00307		
470	15089	31.15	0.00594	-0.02899	0.00303	-0.00508		
480	15089	31.81	0.00639	-0.03035	0.00332	-0.00186		
490	15089	32.47	0.00716	-0.03233	0.00377	-0.00318		
500	15089	33.14	0.00825	-0.03368	0.00421	-0.00191		
510	15089	33.80	0.00921	-0.03391	0.00466	-0.00041		
520	15089	34.46	0.00968	-0.03390	0.00490	-0.00013		
530	15089	35.12	0.01031	-0.03393	0.00551	0.00046		
540	15089	35.79	0.01098	-0.03396	0.00638	-0.00100		

Load		Stress	s Strain				
(kN)	Area	N/mm²		3			
			Mid	Left	Center	Right	
0	15089	0.00	0.00000	-0.00001	-0.00001	0.00000	
10	15089	0.66	0.00000	-0.00003	0.00001	0.00008	
20	15089	1.33	0.00000	-0.00005	0.00001	0.00013	
30	15089	1.99	-0.00001	-0.00008	0.00004	0.00020	
40	15089	2.65	-0.00001	-0.00010	0.00005	0.00023	
50	15089	3.31	-0.00001	-0.00015	0.00007	0.00030	
60	15089	3.98	-0.00001	-0.00019	0.00009	0.00035	
70	15089	4.64	-0.00001	-0.00026	0.00012	0.00044	
80	15089	5.30	-0.00001	-0.00031	0.00015	0.00053	
90	15089	5.96	-0.00001	-0.00034	0.00016	0.00061	
100	15089	6.63	0.00000	-0.00044	0.00021	0.00074	
110	15089	7.29	0.00000	-0.00051	0.00024	0.00081	
120	15089	7.95	0.00000	-0.00057	0.00026	0.00086	
130	15089	8.62	0.00000	-0.00060	0.00028	0.00090	
140	15089	9.28	0.00000	-0.00062	0.00031	0.00093	
150	15089	9.94	0.00001	-0.00063	0.00035	0.00096	
160	15089	10.60	0.00001	-0.00064	0.00040	0.00096	
170	15089	11.27	0.00002	-0.00066	0.00044	0.00098	
180	15089	11.93	0.00003	-0.00065	0.00051	0.00102	
190	15089	12.59	0.00003	-0.00063	0.00062	0.00104	
200	15089	13.25	0.00004	-0.00060	0.00073	0.00109	
210	15089	13.92	0.00004	-0.00061	0.00081	0.00112	
220	15089	14.58	0.00006	-0.00061	0.00090	0.00116	
230	15089	15.24	0.00007	-0.00061	0.00100	0.00121	
240	15089	15.91	0.00008	-0.00060	0.00112	0.00129	
250	15089	16.57	0.00010	-0.00058	0.00123	0.00137	
260	15089	17.23	0.00013	-0.00054	0.00133	0.00145	
270	15089	17.89	0.00016	-0.00050	0.00142	0.00153	
280	15089	18.56	0.00021	-0.00030	0.00153	0.00168	
290	15089	19.22	0.00025	-0.00009	0.00157	0.00178	
300	15089	19.88	0.00030	0.00001	0.00163	0.00190	
310	15089	20.54	0.00033	0.00006	0.00168	0.00201	
320	15089	21.21	0.00040	0.00011	0.00176	0.00217	
330	15089	21.87	0.00048	0.00015	0.00183	0.00235	
340	15089	22.53	0.00061	0.00025	0.00191	0.00255	
350	15089	23.20	0.00081	0.00049	0.00201	0.00279	
360	15089	23.86	0.00101	0.00047	0.00211	0.00302	
370	15089	24.52	0.00121	0.00055	-0.00099	0.00328	
380	15089	25.18	0.00135	0.00064	0.00007	0.00346	
390	15089	25.85	0.00152	0.00068	0.00228	0.00361	
400	15089	26.51	0.00165	0.00068	-0.00244	0.00390	

	1					
Load		Stress		Stra	in	
(kN)	Area	N/mm²		3		
			Mid	Left	Center	Right
410	15089	27.17	0.00174	0.00069	-0.00656	0.00406
420	15089	27.83	0.00212	0.00045	-0.00821	0.00453
430	15089	28.50	0.00242	0.00031	-0.00575	0.00451
440	15089	29.16	0.00342	0.00104	-0.00967	0.00663
450	15089	29.82	0.00423	0.00117	-0.01883	0.00664
460	15089	30.49	0.00487	0.00010	-0.02428	0.00714
470	15089	31.15	0.00591	-0.00204	-0.02176	0.00772
480	15089	31.81	0.00658	-0.00201	-0.03150	0.00866
490	15089	32.47	0.00769	-0.00079	-0.05127	0.00941
500	15089	33.14	0.00820	-0.00173	-0.07718	0.00958
510	15089	33.80	0.01093	-0.00451	-0.05652	0.00770
520	15089	34.46	0.01311	0.00741	-0.05067	0.00762
530	15089	35.12	0.01039	0.05784	-0.04775	0.00746
540	15089	35.79	0.01362	0.05811	-0.03659	0.00840
550	15089	36.45	0.01376	0.05875	-0.01836	0.01051
540	15089	35.79	0.01341	0.05890	-0.00872	0.01038
530	15089	35.12	0.01312	0.05434	-0.00133	0.01010
520	15089	34.46	0.01285	0.05054	0.01224	0.01007
530	15089	35.12	0.01271	0.05954	0.01885	0.00983
540	15089	35.79	0.01270	0.05955	0.01886	0.00983
550	15089	36.45	0.01211	0.05965	0.01927	0.01016

Load		Stress	Strain				
(kN)	Area	N/mm²	1				
			Mid	Left	Center	Right	
0	15089	0.00	0.00001	-0.00001	-0.00001	0.00000	
10	15089	0.66	0.00002	-0.00003	-0.00001	0.00000	
20	15089	1.33	0.00003	-0.00002	0.00001	0.00000	
30	15089	1.99	0.00006	-0.00001	0.00001	0.00000	
40	15089	2.65	0.00010	-0.00001	0.00002	0.00000	
50	15089	3.31	0.00010	-0.00002	0.00003	-0.00001	
60	15089	3.98	0.00011	-0.00005	0.00001	-0.00001	
70	15089	4.64	0.00013	-0.00005	0.00001	-0.00001	
80	15089	5.30	0.00014	-0.00005	0.00001	-0.00001	
90	15089	5.96	0.00017	-0.00004	-0.00001	-0.00002	
100	15089	6.63	0.00021	-0.00006	-0.00001	-0.00001	
110	15089	7.29	0.00022	-0.00008	-0.00003	-0.00002	
120	15089	7.95	0.00025	-0.00009	-0.00004	-0.00003	
130	15089	8.62	0.00028	-0.00008	0.00000	-0.00002	
140	15089	9.28	0.00029	-0.00008	-0.00002	-0.00002	
150	15089	9.94	0.00031	-0.00010	0.00000	-0.00001	
160	15089	10.60	0.00033	-0.00015	0.00002	-0.00001	
170	15089	11.27	0.00038	-0.00015	0.00004	-0.00001	
180	15089	11.93	0.00042	-0.00014	0.00005	-0.00001	
190	15089	12.59	0.00045	-0.00014	0.00006	-0.00001	
200	15089	13.25	0.00047	-0.00014	0.00003	0.00000	
210	15089	13.92	0.00051	-0.00020	0.00005	0.00000	
220	15089	14.58	0.00051	-0.00021	0.00005	0.00000	
230	15089	15.24	0.00056	-0.00028	0.00006	0.00001	
240	15089	15.91	0.00058	-0.00033	0.00006	0.00002	
250	15089	16.57	0.00061	-0.00037	0.00006	0.00001	
260	15089	17.23	0.00065	-0.00042	0.00006	0.00001	
270	15089	17.89	0.00069	-0.00044	0.00010	0.00002	
280	15089	18.56	0.00075	-0.00043	0.00011	0.00004	
290	15089	19.22	0.00078	-0.00043	0.00014	0.00006	
300	15089	19.88	0.00084	-0.00040	0.00016	0.00007	
310	15089	20.54	0.00091	-0.00034	0.00020	0.00008	
320	15089	21.21	0.00096	-0.00027	0.00022	0.00010	
330	15089	21.87	0.00103	-0.00011	0.00023	0.00011	
340	15089	22.53	0.00106	-0.00008	0.00024	0.00013	
350	15089	23.20	0.00112	-0.00009	0.00026	0.00013	
360	15089	23.86	0.00120	0.00005	0.00028	0.00013	
370	15089	24.52	0.00123	0.00020	0.00030	0.00015	
380	15089	25.18	0.00127	0.00038	0.00032	0.00016	
390	15089	25.85	0.00132	0.00045	0.00034	0.00016	

Table A.16: Lateral strain of specimen S2R2

Load		Stress	Strain				
(kN)	Area	N/mm²	1				
			Mid	Left	Center	Right	
400	15089	26.51	0.00141	0.00067	0.00038	0.00019	
410	15089	27.17	0.00146	0.00079	0.00040	0.00020	
420	15089	27.83	0.00153	0.00098	0.00040	0.00021	
430	15089	28.50	0.00161	0.00121	0.00046	0.00023	
440	15089	29.16	0.00160	0.00166	0.00044	0.00020	
450	15089	29.82	0.00165	0.00160	0.00047	0.00022	
460	15089	30.49	0.00168	0.00146	0.00049	0.00023	
470	15089	31.15	0.00174	0.00101	0.00052	0.00025	
480	15089	31.81	0.00180	0.00078	0.00056	0.00027	
490	15089	32.47	0.00187	0.00062	0.00063	0.00031	
500	15089	33.14	0.00201	0.00193	0.00072	0.00034	
510	15089	33.80	0.00212	0.00503	0.00081	0.00014	
520	15089	34.46	0.00224	0.00623	0.00088	0.00001	
530	15089	35.12	0.00240	0.00770	0.00101	-0.00006	
540	15089	35.79	0.00248	0.00869	0.00108	-0.00006	
550	15089	36.45	0.00266	0.00991	0.00121	-0.00005	
560	15089	37.11	0.00280	0.01393	0.00133	-0.00002	
570	15089	37.78	0.00297	0.01438	0.00138	0.00000	
580	15089	38.44	0.00311	0.01776	0.00142	-0.00057	
590	15089	39.10	0.00329	0.02076	0.00152	0.00006	
600	15089	39.76	0.00358	0.02655	0.00168	-0.00136	
610	15089	40.43	0.00395	0.02609	0.00179	-0.00148	
620	15089	41.09	0.00424	0.02591	0.00188	-0.00623	
630	15089	41.75	0.00449	0.02282	0.00195	-0.00896	
640	15089	42.42	0.00471	0.02049	0.00205	-0.01027	
650	15089	43.08	0.00518	0.01480	0.00207	-0.01070	
660	15089	43.74	0.00549	0.01032	0.00217	-0.01434	
670	15089	44.40	0.00576	0.00858	0.00221	-0.01320	
680	15089	45.07	0.00587	0.00906	0.00228	-0.01254	
690	15089	45.73	0.00607	0.00988	-0.00060	-0.01233	
700	15089	46.39	0.00662	0.01391	-0.00748	-0.01129	
710	15089	47.05	0.00706	0.02101	0.00144	-0.01097	
700	15089	46.39	0.00711	0.02269	0.00132	-0.01119	
710	15089	47.05	0.00732	0.02618	-0.00118	-0.01331	
720	15089	47.72	0.00769	0.02842	-0.01609	-0.01487	
730	15089	48.38	0.00844	0.03103	-0.00923	-0.01872	
740	15089	49.04	0.00801	0.02934	-0.01065	-0.01923	
750	15089	49.71	0.00524	0.01659	-0.01474	-0.03140	
760	15089	50.37	0.00531	0.02108	-0.01462	-0.02921	
750	15089	49.71	0.00517	0.01924	-0.03217	-0.03009	

Load		Stress	Strain				
(kN)	Area	N/mm²	1				
			Mid	Left	Center	Right	
740	15089	49.04	0.00511	0.01900	-0.03408	-0.03027	
730	15089	48.38	0.00490	0.01854	-0.03700	-0.03100	
720	15089	47.72	0.00470	0.01745	-0.04025	-0.03279	
710	15089	47.05	0.00418	0.01583	-0.04264	-0.03978	
700	15089	46.39	0.00413	0.01569	-0.04348	-0.04021	
710	15089	47.05	0.00414	0.01554	-0.04457	-0.04030	
720	15089	47.72	0.00403	0.01441	-0.05410	-0.04055	
730	15089	48.38	0.00403	0.01389	-0.06028	-0.04078	
740	15089	49.04	0.00406	0.01376	-0.06407	-0.04095	
750	15089	49.71	0.00408	0.01374	-0.06569	-0.04081	
760	15089	50.37	0.00412	0.01361	-0.06922	-0.03973	
770	15089	51.03	0.00418	0.01256	-0.07363	-0.03646	
780	15089	51.69	0.00427	0.01168	-0.07085	-0.03314	
790	15089	52.36	0.00407	0.01233	-0.07230	-0.03701	
800	15089	53.02	0.00432	0.00910	-0.05951	-0.03888	

Load		Stress	Strain				
(kN)	Area	N/mm²			2		
			Mid	Left	Center	Right	
0	15089	0.00	0.00000	0.00000	0.00000	0.00000	
10	15089	0.66	0.00001	0.00000	0.00000	-0.00001	
20	15089	1.33	0.00003	0.00001	0.00000	-0.00001	
30	15089	1.99	0.00005	0.00001	0.00001	-0.00001	
40	15089	2.65	0.00006	0.00002	0.00001	-0.00001	
50	15089	3.31	0.00007	0.00002	0.00001	-0.00001	
60	15089	3.98	0.00008	0.00002	0.00000	-0.00002	
70	15089	4.64	0.00009	0.00002	0.00000	-0.00002	
80	15089	5.30	0.00010	0.00002	0.00000	-0.00003	
90	15089	5.96	0.00011	0.00002	0.00000	-0.00003	
100	15089	6.63	0.00012	0.00002	0.00000	-0.00004	
110	15089	7.29	0.00013	0.00003	0.00000	-0.00004	
120	15089	7.95	0.00014	0.00003	0.00000	-0.00005	
130	15089	8.62	0.00016	0.00003	0.00000	-0.00004	
140	15089	9.28	0.00017	0.00004	0.00001	-0.00005	
150	15089	9.94	0.00018	0.00004	0.00001	-0.00004	
160	15089	10.60	0.00020	0.00004	0.00001	-0.00004	
170	15089	11.27	0.00022	0.00005	0.00002	-0.00004	
180	15089	11.93	0.00024	0.00006	0.00002	-0.00003	
190	15089	12.59	0.00025	0.00007	0.00002	-0.00003	
200	15089	13.25	0.00028	0.00007	0.00003	-0.00002	
210	15089	13.92	0.00030	0.00008	0.00004	-0.00001	
220	15089	14.58	0.00032	0.00009	0.00004	-0.00001	
230	15089	15.24	0.00034	0.00010	0.00005	0.00001	
240	15089	15.91	0.00037	0.00012	0.00006	0.00001	
250	15089	16.57	0.00040	0.00013	0.00007	0.00002	
260	15089	17.23	0.00043	0.00014	0.00008	0.00004	
270	15089	17.89	0.00047	0.00015	0.00009	0.00005	
280	15089	18.56	0.00051	0.00017	0.00011	0.00007	
290	15089	19.22	0.00056	0.00018	0.00012	0.00008	
300	15089	19.88	0.00061	0.00021	0.00014	0.00011	
310	15089	20.54	0.00065	0.00023	0.00016	0.00012	
320	15089	21.21	0.00069	0.00024	0.00017	0.00014	
330	15089	21.87	0.00073	0.00027	0.00019	0.00017	
340	15089	22.53	0.00078	0.00029	0.00021	0.00019	
350	15089	23.20	0.00083	0.00033	0.00023	0.00023	
360	15089	23.86	0.00089	0.00036	0.00026	0.00028	
370	15089	24.52	0.00094	0.00039	0.00029	0.00032	
380	15089	25.18	0.00101	0.00044	0.00032	0.00038	
390	15089	25.85	0.00105	0.00047	0.00035	0.00043	
400	15089	26.51	0.00112	0.00051	0.00040	0.00051	

Load		Stress	Strain				
(kN)	Area	N/mm²	2				
			Mid	Left	Center	Right	
410	15089	27.17	0.00118	0.00055	0.00043	0.00057	
420	15089	27.83	0.00126	0.00061	0.00048	0.00066	
430	15089	28.50	0.00132	0.00066	0.00052	0.00075	
440	15089	29.16	0.00140	0.00072	0.00058	0.00087	
450	15089	29.82	0.00149	0.00079	0.00064	0.00099	
460	15089	30.49	0.00160	0.00086	0.00070	0.00112	
470	15089	31.15	0.00170	0.00093	0.00075	0.00123	
480	15089	31.81	0.00180	0.00098	0.00079	0.00133	
490	15089	32.47	0.00204	0.00107	0.00087	0.00152	
500	15089	33.14	0.00223	0.00119	0.00097	0.00179	
510	15089	33.80	0.00241	0.00132	0.00107	0.00207	
520	15089	34.46	0.00258	0.00146	0.00117	0.00236	
530	15089	35.12	0.00269	0.00154	0.00124	0.00255	
540	15089	35.79	0.00286	0.00168	0.00133	0.00282	
550	15089	36.45	0.00314	0.00185	0.00145	0.00318	
560	15089	37.11	0.00340	0.00204	0.00159	0.00346	
570	15089	37.78	0.00358	0.00217	0.00169	0.00369	
580	15089	38.44	0.00376	0.00229	0.00178	0.00393	
590	15089	39.10	0.00398	0.00247	0.00187	0.00425	
600	15089	39.76	0.00424	0.00268	0.00200	0.00462	
610	15089	40.43	0.00440	0.00282	0.00194	0.00488	
620	15089	41.09	0.00454	0.00292	0.00174	0.00506	
630	15089	41.75	0.00470	0.00304	0.00172	0.00527	
640	15089	42.42	0.00500	0.00326	0.00163	0.00566	
650	15089	43.08	0.00533	0.00351	0.00163	0.00611	
660	15089	43.74	0.00550	0.00362	0.00134	0.00629	
670	15089	44.40	0.00578	0.00378	0.00139	0.00657	
680	15089	45.07	0.00587	0.00384	0.00133	0.00668	
690	15089	45.73	0.00604	0.00394	0.00173	0.00684	
700	15089	46.39	0.00623	0.00405	0.00177	0.00700	
690	15089	45.73	0.00624	0.00407	0.00164	0.00701	
680	15089	45.07	0.00620	0.00405	0.00149	0.00697	
690	15089	45.73	0.00624	0.00408	0.00152	0.00703	
700	15089	46.39	0.00627	0.00409	0.00152	0.00705	
710	15089	47.05	0.00635	0.00413	0.00149	0.00711	
720	15089	47.72	0.00643	0.00416	0.00156	0.00716	
730	15089	48.38	0.00656	0.00420	0.00158	0.00720	

Load		Stress	Strain				
(kN)	Area	N/mm²		3	3		
			Mid	Left	Center	Right	
0	15089	0.00	0.00001	0.00000	0.00000	0.00000	
10	15089	0.66	0.00005	0.00001	0.00003	0.00003	
20	15089	1.33	0.00007	0.00002	0.00005	0.00005	
30	15089	1.99	0.00010	0.00003	0.00006	0.00006	
40	15089	2.65	0.00012	0.00003	0.00007	0.00007	
50	15089	3.31	0.00018	0.00003	0.00008	0.00008	
60	15089	3.98	0.00022	0.00004	0.00009	0.00009	
70	15089	4.64	0.00025	0.00004	0.00011	0.00011	
80	15089	5.30	0.00027	0.00006	0.00013	0.00013	
90	15089	5.96	0.00031	0.00006	0.00015	0.00015	
100	15089	6.63	0.00036	0.00007	0.00017	0.00017	
110	15089	7.29	0.00042	0.00008	0.00018	0.00018	
120	15089	7.95	0.00048	0.00010	0.00021	0.00020	
130	15089	8.62	0.00056	0.00010	0.00022	0.00022	
140	15089	9.28	0.00061	0.00011	0.00024	0.00023	
150	15089	9.94	0.00072	0.00012	0.00027	0.00026	
160	15089	10.60	0.00084	0.00014	0.00030	0.00028	
170	15089	11.27	0.00091	0.00015	0.00032	0.00030	
180	15089	11.93	0.00100	0.00016	0.00034	0.00033	
190	15089	12.59	0.00108	0.00018	0.00037	0.00035	
200	15089	13.25	0.00121	0.00019	0.00042	0.00039	
210	15089	13.92	0.00132	0.00021	0.00045	0.00041	
220	15089	14.58	0.00145	0.00022	0.00048	0.00044	
230	15089	15.24	0.00162	0.00024	0.00052	0.00048	
240	15089	15.91	0.00177	0.00026	0.00056	0.00050	
250	15089	16.57	0.00195	0.00029	0.00062	0.00054	
260	15089	17.23	0.00221	0.00030	0.00067	0.00059	
270	15089	17.89	0.00244	0.00033	0.00072	0.00063	
280	15089	18.56	0.00268	0.00035	0.00078	0.00068	
290	15089	19.22	0.00304	0.00038	0.00086	0.00074	
300	15089	19.88	0.00329	0.00041	0.00093	0.00080	
310	15089	20.54	0.00373	0.00045	0.00102	0.00087	
320	15089	21.21	0.00411	0.00048	0.00110	0.00093	
330	15089	21.87	0.00464	0.00052	0.00120	0.00101	
340	15089	22.53	0.00511	0.00056	0.00130	0.00110	
350	15089	23.20	0.00585	0.00061	0.00141	0.00119	
360	15089	23.86	0.00695	0.00065	0.00155	0.00131	
370	15089	24.52	0.00824	0.00070	0.00169	0.00143	
380	15089	25.18	0.00922	0.00074	0.00180	0.00153	
390	15089	25.85	0.01026	0.00078	0.00193	0.00163	
400	15089	26.51	0.01182	0.00083	0.00207	0.00175	

Load		Stress	Strain				
(kN)	Area	N/mm²	3				
			Mid	Left	Center	Right	
410	15089	27.17	0.01346	0.00088	0.00221	0.00188	
420	15089	27.83	0.01460	0.00094	0.00235	0.00199	
430	15089	28.50	0.01713	0.00101	0.00254	0.00215	
440	15089	29.16	0.01984	0.00106	0.00284	0.00242	
450	15089	29.82	0.02176	0.00115	0.00314	0.00268	
460	15089	30.49	0.02248	0.00128	0.00345	0.00296	
470	15089	31.15	0.02256	0.00132	0.00364	0.00311	
480	15089	31.81	0.02317	0.00137	0.00393	0.00336	
490	15089	32.47	0.02447	0.00152	0.00427	0.00366	
500	15089	33.14	0.02576	0.00170	0.00455	0.00388	
510	15089	33.80	0.02807	0.00187	0.00487	0.00415	
520	15089	34.46	0.02886	0.00201	0.00526	0.00447	
530	15089	35.12	0.02979	0.00213	0.00567	0.00478	
540	15089	35.79	0.03324	0.00220	0.00598	0.00505	
550	15089	36.45	0.03753	0.00220	0.00635	0.00534	
560	15089	37.11	0.04161	0.00233	0.00680	0.00569	
570	15089	37.78	0.04285	0.00248	0.00729	0.00609	
580	15089	38.44	0.04472	0.00262	0.00778	0.00646	
590	15089	39.10	0.04589	0.00283	0.00820	0.00678	
600	15089	39.76	0.04615	0.00282	0.00860	0.00697	
610	15089	40.43	0.04631	0.00275	0.00886	0.00718	
620	15089	41.09	0.04655	0.00281	0.00927	0.00746	
630	15089	41.75	0.04678	0.00299	0.00971	-	
640	15089	42.42	0.04696	0.00308	0.01029	-	
650	15089	43.08	0.04737	0.00345	0.01120	-	
660	15089	43.74	0.04764	0.00373	0.01178	-	
670	15089	44.40	0.04795	0.00394	0.01242	-	
680	15089	45.07	0.04812	0.00415	0.01277	-	
690	15089	45.73	0.04833	0.00457	0.01310	-	
700	15089	46.39	0.04877	0.00504	0.01390	-	
690	15089	45.73	0.04879	0.00513	0.01389	-	
680	15089	45.07	0.04878	0.00529	0.01381	-	
670	15089	44.40	0.04876	0.00564	0.01370	-	
680	15089	45.07	0.04882	0.00576	0.01380	-	
690	15089	45.73	0.04886	0.00579	0.01389	-	
700	15089	46.39	0.04896	0.00591	0.01405	-	
710	15089	47.05	0.04919	0.00616	0.01454	-	
720	15089	47.72	0.04946	0.00684	0.01522	-	
730	15089	48.38	0.04957	0.00702	0.01552	-	
740	15089	49.04	0.04984	0.00734	0.01617	-	
730	15089	48.38	0.04982	0.00737	0.01604	-	

Load		Stress	Strain 3			
(kN)	Area	N/mm²				
			Mid	Left	Center	Right
720	15089	47.72	0.04978	0.00730	0.01587	-
710	15089	47.05	0.04964	0.00716	0.01550	-
700	15089	46.39	0.04954	0.00719	0.01553	-

Load		Stress	Strain				
(kN)	Area	N/mm²		1	1		
			Mid	Left	Center	Right	
0	14573	0.00	-0.00001	-0.00001	-0.00001	-0.00001	
10	14573	0.69	-0.00001	0.00000	0.00000	0.00001	
20	14573	1.37	-0.00002	0.00001	0.00000	0.00000	
30	14573	2.06	-0.00002	0.00001	0.00001	0.00000	
40	14573	2.74	-0.00003	0.00001	0.00001	0.00000	
50	14573	3.43	-0.00003	0.00001	0.00001	0.00000	
60	14573	4.12	-0.00004	0.00001	0.00001	0.00000	
70	14573	4.80	-0.00005	0.00000	0.00001	0.00000	
80	14573	5.49	-0.00005	0.00001	0.00002	-0.00001	
90	14573	6.18	-0.00006	0.00001	0.00001	0.00001	
100	14573	6.86	-0.00006	0.00001	0.00002	-0.00001	
110	14573	7.55	-0.00007	0.00001	0.00002	0.00001	
120	14573	8.23	-0.00008	0.00001	0.00002	0.00000	
130	14573	8.92	-0.00008	0.00001	0.00002	0.00001	
140	14573	9.61	-0.00009	0.00002	0.00002	0.00001	
150	14573	10.29	-0.00009	0.00002	0.00004	-0.00001	
160	14573	10.98	-0.00009	0.00002	0.00003	0.00000	
170	14573	11.67	-0.00010	0.00002	0.00003	0.00000	
180	14573	12.35	-0.00011	0.00003	0.00004	0.00000	
190	14573	13.04	-0.00011	0.00003	0.00004	0.00000	
200	14573	13.72	-0.00012	0.00004	0.00005	0.00001	
210	14573	14.41	-0.00013	0.00005	0.00005	0.00001	
220	14573	15.10	-0.00013	0.00005	0.00006	0.00000	
230	14573	15.78	-0.00012	0.00006	0.00006	0.00001	
240	14573	16.47	-0.00013	0.00007	0.00007	0.00001	
250	14573	17.16	-0.00012	0.00007	0.00008	0.00002	
260	14573	17.84	-0.00012	0.00009	0.00009	0.00003	
270	14573	18.53	-0.00012	0.00011	0.00009	0.00004	
280	14573	19.21	-0.00010	0.00012	0.00011	0.00004	
290	14573	19.90	-0.00010	0.00013	0.00011	0.00005	
300	14573	20.59	-0.00009	0.00014	0.00011	0.00006	
310	14573	21.27	-0.00008	0.00015	0.00013	0.00008	
320	14573	21.96	-0.00007	0.00017	0.00013	0.00010	
330	14573	22.64	-0.00007	0.00018	0.00014	0.00012	
340	14573	23.33	-0.00005	0.00020	0.00016	0.00014	
350	14573	24.02	-0.00003	0.00022	0.00018	0.00016	
360	14573	24.70	-0.00001	0.00025	0.00019	0.00019	
370	14573	25.39	0.00002	0.00027	0.00020	0.00022	
380	14573	26.08	0.00007	0.00030	0.00023	0.00027	
390	14573	26.76	0.00009	0.00033	0.00025	0.00031	

Table A.17: Lateral strain of specimen S1R3

Load		Stress	Strain				
(kN)	Area	N/mm²	1				
			Mid	Left	Center	Right	
400	14573	27.45	0.00013	0.00036	0.00027	0.00031	
410	14573	28.13	0.00018	0.00039	0.00030	0.00034	
420	14573	28.82	0.00022	0.00041	0.00032	0.00038	
430	14573	29.51	0.00028	0.00047	0.00035	0.00044	
440	14573	30.19	0.00036	0.00053	0.00040	0.00049	
450	14573	30.88	0.00055	0.00068	0.00050	0.00063	
460	14573	31.57	0.00088	0.00088	0.00067	0.00086	
470	14573	32.25	0.00107	0.00104	0.00080	0.00106	
480	14573	32.94	0.00123	0.00118	0.00091	0.00127	
490	14573	33.62	0.00116	0.00112	0.00097	0.00147	
500	14573	34.31	0.00122	0.00120	0.00102	0.00161	
510	14573	35.00	0.00135	0.00128	0.00110	0.00178	
520	14573	35.68	0.00142	0.00133	0.00114	0.00190	
530	14573	36.37	0.00152	0.00138	0.00120	0.00204	
540	14573	37.05	0.00147	0.00132	0.00120	0.00220	
550	14573	37.74	0.00151	0.00132	0.00120	0.00231	
560	14573	38.43	0.00148	0.00124	0.00116	0.00246	

Load		Stress	Strain				
(kN)	Area	N/mm²		2			
			Mid	Left	Center	Right	
0	14573	0.00	-0.00001	0.00000	0.00001	0.00006	
10	14573	0.69	-0.00001	0.00000	0.00000	0.00009	
20	14573	1.37	-0.00001	0.00000	-0.00001	0.00013	
30	14573	2.06	-0.00001	0.00000	0.00000	0.00021	
40	14573	2.74	-0.00002	-0.00001	-0.00001	0.00024	
50	14573	3.43	-0.00002	0.00000	0.00000	0.00026	
60	14573	4.12	-0.00005	-0.00002	-0.00002	0.00077	
70	14573	4.80	-0.00005	-0.00002	-0.00002	0.00089	
80	14573	5.49	-0.00006	-0.00002	-0.00002	0.00095	
90	14573	6.18	-0.00007	-0.00002	-0.00003	0.00102	
100	14573	6.86	-0.00008	-0.00002	-0.00003	0.00110	
110	14573	7.55	-0.00008	-0.00001	-0.00003	0.00115	
120	14573	8.23	-0.00008	-0.00001	-0.00002	0.00120	
130	14573	8.92	-0.00008	0.00000	-0.00002	0.00122	
140	14573	9.61	-0.00008	0.00000	-0.00001	0.00126	
150	14573	10.29	-0.00007	0.00000	-0.00001	0.00130	
160	14573	10.98	-0.00007	0.00000	-0.00001	0.00135	
170	14573	11.67	-0.00007	0.00000	-0.00002	0.00141	
180	14573	12.35	-0.00007	0.00001	-0.00001	0.00146	
190	14573	13.04	-0.00007	0.00001	0.00000	0.00150	
200	14573	13.72	-0.00006	0.00001	-0.00001	0.00156	
210	14573	14.41	-0.00007	0.00001	-0.00001	0.00163	
220	14573	15.10	-0.00006	0.00001	-0.00001	0.00163	
230	14573	15.78	-0.00007	0.00002	0.00000	0.00164	
240	14573	16.47	-0.00006	0.00001	-0.00001	0.00168	
250	14573	17.16	-0.00006	0.00002	0.00000	0.00168	
260	14573	17.84	-0.00005	0.00002	0.00000	0.00171	
270	14573	18.53	-0.00005	0.00002	0.00001	0.00169	
280	14573	19.21	-0.00005	0.00003	0.00001	0.00170	
290	14573	19.90	-0.00004	0.00003	0.00001	0.00170	
300	14573	20.59	-0.00004	0.00004	0.00002	0.00174	
310	14573	21.27	-0.00004	0.00005	0.00002	0.00176	
320	14573	21.96	-0.00002	0.00005	0.00002	0.00178	
330	14573	22.64	-0.00002	0.00005	0.00003	0.00181	
340	14573	23.33	-0.00002	0.00006	0.00004	0.00183	
350	14573	24.02	-0.00001	0.00007	0.00005	0.00190	
360	14573	24.70	0.00000	0.00008	0.00005	0.00193	
370	14573	25.39	0.00002	0.00009	0.00007	0.00193	
380	14573	26.08	0.00003	0.00010	0.00008	0.00195	
390	14573	26.76	0.00004	0.00011	0.00010	0.00189	
400	14573	27.45	0.00007	0.00013	0.00012	0.00190	

Load		Stress		Stra	ain		
(kN)	Area	N/mm²		2			
			Mid	Left	Center	Right	
410	14573	28.13	0.00009	0.00015	0.00014	0.00186	
420	14573	28.82	0.00011	0.00019	0.00017	0.00190	
430	14573	29.51	0.00014	0.00021	0.00020	0.00194	
440	14573	30.19	0.00019	0.00025	0.00025	0.00199	
450	14573	30.88	0.00023	0.00029	0.00032	0.00203	
460	14573	31.57	0.00029	0.00035	0.00042	0.00208	
470	14573	32.25	0.00038	0.00040	0.00054	0.00220	
480	14573	32.94	0.00045	0.00046	0.00066	0.00226	
490	14573	33.62	0.00054	0.00053	0.00081	0.00250	
500	14573	34.31	0.00069	0.00061	0.00111	0.00267	
510	14573	35.00	0.00084	0.00067	0.00133	0.00263	
520	14573	35.68	0.00101	0.00060	0.00155	0.00270	
530	14573	36.37	0.00108	0.00031	0.00161	0.00266	
540	14573	37.05	0.00124	0.00013	0.00194	0.00291	
550	14573	37.74	0.00133	0.00004	0.00205	0.00295	
560	14573	38.43	0.00150	0.00001	0.00225	0.00308	
570	14573	39.11	0.00143	0.00000	0.00237	0.00316	
580	14573	39.80	0.00127	-0.00004	0.00257	0.00355	
590	14573	40.49	0.00124	-0.00019	0.00262	0.00469	
600	14573	41.17	0.00131	-0.00017	0.00292	0.00700	
590	14573	40.49	0.00107	0.00003	0.00275	0.00898	
580	14573	39.80	0.00100	-0.00001	0.00264	0.00957	
570	14573	39.11	0.00091	-0.00004	0.00252	0.01020	
580	14573	39.80	0.00091	-0.00003	0.00254	0.01022	
590	14573	40.49	0.00091	-0.00002	0.00255	0.01021	
Load		Stress	Strain				
------	-------	--------	---------	---------	---------	---------	--
(kN)	Area	N/mm²	3				
			Mid	Left	Center	Right	
0	14573	0.00	0.00000	0.00000	0.00000	0.00000	
10	14573	0.69	0.00001	0.00002	0.00002	0.00003	
20	14573	1.37	0.00002	0.00003	0.00003	0.00006	
30	14573	2.06	0.00004	0.00004	0.00004	0.00009	
40	14573	2.74	0.00005	0.00005	0.00005	0.00012	
50	14573	3.43	0.00006	0.00006	0.00006	0.00013	
60	14573	4.12	0.00005	0.00007	0.00006	0.00014	
70	14573	4.80	0.00006	0.00008	0.00007	0.00017	
80	14573	5.49	0.00007	0.00008	0.00008	0.00020	
90	14573	6.18	0.00007	0.00009	0.00009	0.00021	
100	14573	6.86	0.00008	0.00010	0.00010	0.00023	
110	14573	7.55	0.00008	0.00011	0.00010	0.00025	
120	14573	8.23	0.00009	0.00011	0.00011	0.00027	
130	14573	8.92	0.00010	0.00012	0.00012	0.00030	
140	14573	9.61	0.00011	0.00013	0.00013	0.00032	
150	14573	10.29	0.00012	0.00014	0.00014	0.00035	
160	14573	10.98	0.00013	0.00015	0.00015	0.00037	
170	14573	11.67	0.00014	0.00016	0.00016	0.00039	
180	14573	12.35	0.00015	0.00017	0.00017	0.00042	
190	14573	13.04	0.00016	0.00018	0.00017	0.00043	
200	14573	13.72	0.00017	0.00019	0.00018	0.00045	
210	14573	14.41	0.00018	0.00019	0.00019	0.00047	
220	14573	15.10	0.00019	0.00020	0.00019	0.00049	
230	14573	15.78	0.00021	0.00020	0.00020	0.00051	
240	14573	16.47	0.00022	0.00021	0.00020	0.00052	
250	14573	17.16	0.00024	0.00022	0.00021	0.00056	
260	14573	17.84	0.00026	0.00022	0.00021	0.00057	
270	14573	18.53	0.00030	0.00024	0.00022	0.00061	
280	14573	19.21	0.00033	0.00025	0.00024	0.00065	
290	14573	19.90	0.00039	0.00029	0.00024	0.00071	
300	14573	20.59	0.00045	0.00031	0.00026	0.00076	
310	14573	21.27	0.00051	0.00034	0.00027	0.00082	
320	14573	21.96	0.00073	0.00042	0.00031	0.00104	
330	14573	22.64	0.00072	0.00043	0.00031	0.00104	
340	14573	23.33	0.00085	0.00047	0.00035	0.00117	
350	14573	24.02	0.00095	0.00051	0.00037	0.00130	
360	14573	24.70	0.00113	0.00061	0.00041	0.00164	
370	14573	25.39	0.00125	0.00068	0.00045	0.00188	
380	14573	26.08	0.00143	0.00080	0.00051	0.00232	
390	14573	26.76	0.00157	0.00090	0.00056	0.00271	
400	14573	27.45	0.00176	0.00102	0.00062	0.00318	

Load		Stress	Strain 3				
(kN)	Area	N/mm²					
			Mid	Left	Center	Right	
410	14573	28.13	0.00214	0.00128	0.00072	0.00417	
420	14573	28.82	0.00240	0.00147	0.00080	0.00479	
430	14573	29.51	0.00254	0.00172	0.00091	0.00540	
440	14573	30.19	0.00274	0.00189	0.00104	0.00599	
450	14573	30.88	0.00334	0.00242	0.00143	0.00761	
460	14573	31.57	0.00430	0.00320	0.00206	0.00964	
470	14573	32.25	0.00499	0.00288	0.00245	0.01097	
480	14573	32.94	0.00550	0.00320	0.00277	0.01192	
490	14573	33.62	0.00608	0.00356	0.00323	0.01297	
500	14573	34.31	0.00697	0.00413	0.00398	0.01472	

Load		Stress	Strain					
(kN)	Area	N/mm²	1					
			Mid	Left	Center	Right		
0	14573	0.00	0.00000	-0.00001	0.00000	0.00000		
10	14573	0.69	0.00001	-0.00001	0.00000	0.00000		
20	14573	1.37	0.00002	-0.00001	0.00000	0.00000		
30	14573	2.06	0.00004	-0.00002	0.00001	0.00000		
40	14573	2.74	0.00004	-0.00002	0.00001	0.00000		
50	14573	3.43	0.00005	-0.00002	0.00001	0.00000		
60	14573	4.12	0.00004	-0.00005	0.00000	0.00000		
70	14573	4.80	0.00003	-0.00007	-0.00002	-0.00001		
80	14573	5.49	0.00005	-0.00008	-0.00002	-0.00001		
90	14573	6.18	0.00005	-0.00008	-0.00002	-0.00001		
100	14573	6.86	0.00007	-0.00008	-0.00002	-0.00001		
110	14573	7.55	0.00009	-0.00008	-0.00002	-0.00001		
120	14573	8.23	0.00010	-0.00009	-0.00001	-0.00001		
130	14573	8.92	0.00012	-0.00010	-0.00001	-0.00001		
140	14573	9.61	0.00012	-0.00011	-0.00002	-0.00001		
150	14573	10.29	0.00013	-0.00011	-0.00001	-0.00001		
160	14573	10.98	0.00015	-0.00012	-0.00001	0.00000		
170	14573	11.67	0.00017	-0.00012	0.00000	0.00000		
180	14573	12.35	0.00019	-0.00013	0.00000	0.00000		
190	14573	13.04	0.00020	-0.00014	0.00001	0.00000		
200	14573	13.72	0.00016	-0.00019	0.00004	0.01283		
210	14573	14.41	0.00017	-0.00020	0.00004	0.01304		
220	14573	15.10	0.00019	-0.00021	0.00005	0.01302		
230	14573	15.78	0.00022	-0.00022	0.00006	0.01292		
240	14573	16.47	0.00024	-0.00023	0.00007	0.01283		
250	14573	17.16	0.00027	-0.00025	0.00008	0.01268		
260	14573	17.84	0.00033	-0.00026	0.00009	0.01239		
270	14573	18.53	0.00038	-0.00028	0.00011	0.01218		
280	14573	19.21	0.00042	-0.00030	0.00012	0.01204		
290	14573	19.90	0.00047	-0.00031	0.00013	0.01194		
300	14573	20.59	0.00054	-0.00033	0.00015	0.01184		
310	14573	21.27	0.00061	-0.00035	0.00017	0.01174		
320	14573	21.96	0.00068	-0.00036	0.00019	0.01168		
330	14573	22.64	0.00080	-0.00038	0.00021	0.01163		
340	14573	23.33	0.00089	-0.00040	0.00023	0.01153		
350	14573	24.02	0.00102	-0.00042	0.00027	0.01149		
360	14573	24.70	0.00112	-0.00043	0.00030	0.01146		
370	14573	25.39	0.00123	-0.00044	0.00032	0.01146		
380	14573	26.08	0.00135	-0.00045	0.00035	0.01145		
390	14573	26.76	0.00153	-0.00047	0.00039	0.01142		

Table A.18: Lateral strain of specimen S2R3

-

Load		Stress	Strain					
(kN)	Area	N/mm²		1				
			Mid	Left	Center	Right		
400	14573	27.45	0.00172	-0.00049	0.00042	0.01142		
410	14573	28.13	0.00205	-0.00049	0.00045	0.01137		
420	14573	28.82	0.00249	-0.00050	0.00050	0.01137		
430	14573	29.51	0.00282	-0.00049	0.00052	0.01138		
440	14573	30.19	0.00306	-0.00048	0.00054	0.01138		
450	14573	30.88	0.00351	-0.00048	0.00058	0.01140		
460	14573	31.57	0.00406	-0.00048	0.00064	0.01142		
470	14573	32.25	0.00423	-0.00076	0.00068	0.01144		
480	14573	32.94	0.00443	-0.00248	0.00074	0.01148		
490	14573	33.62	0.00468	-0.00097	0.00082	0.01153		
500	14573	34.31	0.00506	-0.00199	0.00088	0.01156		
510	14573	35.00	0.00537	-0.00141	0.00093	0.01161		
520	14573	35.68	0.00536	-0.00131	0.00097	0.01159		
530	14573	36.37	0.00564	-0.00123	0.00101	0.01163		
540	14573	37.05	0.00593	-0.00119	0.00103	0.01165		
550	14573	37.74	0.00612	-0.00116	0.00105	0.01166		
560	14573	38.43	0.00648	-0.00087	0.00107	0.01167		
570	14573	39.11	0.00592	-0.00137	0.00108	0.01165		
580	14573	39.80	0.00546	-0.00982	0.00111	0.01152		
590	14573	40.49	0.00551	-0.01012	0.00111	0.01148		
600	14573	41.17	0.00575	-0.00312	0.00112	0.01137		
610	14573	41.86	0.00586	0.00084	0.00110	0.01129		
620	14573	42.54	0.00562	0.00105	0.00108	0.01127		
630	14573	43.23	0.00533	0.00146	0.00101	0.01123		
640	14573	43.92	0.00517	0.00165	0.00098	0.01125		
650	14573	44.60	0.00539	0.00209	0.00090	0.01136		
660	14573	45.29	0.00560	0.00315	0.00076	-		
670	14573	45.98	0.00557	0.00476	0.00062	-		
680	14573	46.66	0.00536	0.00647	0.00060	0.18546		

Load		Stress	Strain					
(kN)	Area	N/mm²	2					
			Mid	Left	Center	Right		
0	14573	0.00	0.00000	0.00000	0.00000	0.00000		
10	14573	0.69	0.00001	0.00000	-0.00003	-0.00002		
20	14573	1.37	0.00001	0.00000	-0.00003	-0.00002		
30	14573	2.06	0.00001	0.00000	-0.00003	-0.00003		
40	14573	2.74	0.00002	0.00000	-0.00003	-0.00004		
50	14573	3.43	0.00002	0.00000	-0.00003	-0.00008		
60	14573	4.12	0.00003	0.00001	-0.00004	-0.00010		
70	14573	4.80	0.00003	0.00002	-0.00004	-0.00011		
80	14573	5.49	0.00004	0.00002	-0.00004	-0.00013		
90	14573	6.18	0.00005	0.00002	-0.00003	-0.00011		
100	14573	6.86	0.00006	0.00002	-0.00003	-0.00004		
110	14573	7.55	0.00006	0.00003	-0.00003	0.00006		
120	14573	8.23	0.00007	0.00003	-0.00003	0.00019		
130	14573	8.92	0.00008	0.00004	-0.00003	0.00039		
140	14573	9.61	0.00009	0.00003	-0.00003	0.00059		
150	14573	10.29	0.00011	0.00004	-0.00003	0.00093		
160	14573	10.98	0.00012	0.00005	-0.00003	0.00114		
170	14573	11.67	0.00013	0.00005	-0.00002	0.00132		
180	14573	12.35	0.00014	0.00006	-0.00002	0.00156		
190	14573	13.04	0.00015	0.00006	-0.00002	0.00172		
200	14573	13.72	0.00017	0.00007	-0.00001	0.00217		
210	14573	14.41	0.00019	0.00008	-0.00001	0.00250		
220	14573	15.10	0.00020	0.00008	-0.00001	0.00269		
230	14573	15.78	0.00022	0.00009	-0.00001	0.00275		
240	14573	16.47	0.00023	0.00010	-0.00001	0.00281		
250	14573	17.16	0.00025	0.00011	0.00000	0.00288		
260	14573	17.84	0.00027	0.00012	0.00000	0.00309		
270	14573	18.53	0.00029	0.00012	0.00000	0.00318		
280	14573	19.21	0.00031	0.00013	0.00000	0.00324		
290	14573	19.90	0.00033	0.00015	0.00001	0.00333		
300	14573	20.59	0.00035	0.00016	0.00001	0.00345		
310	14573	21.27	0.00038	0.00017	0.00002	0.00352		
320	14573	21.96	0.00040	0.00018	0.00002	0.00356		
330	14573	22.64	0.00042	0.00019	0.00003	0.00362		
340	14573	23.33	0.00046	0.00022	0.00004	0.00371		
350	14573	24.02	0.00050	0.00024	0.00005	0.00381		
360	14573	24.70	0.00054	0.00026	0.00006	0.00388		
370	14573	25.39	0.00058	0.00028	0.00006	0.00395		
380	14573	26.08	0.00063	0.00030	0.00008	0.00403		
390	14573	26.76	0.00066	0.00032	0.00009	0.00408		
400	14573	27.45	0.00071	0.00036	0.00010	0.00417		

Load		Stress	Strain					
(kN)	Area	N/mm²		2				
			Mid	Left	Center	Right		
410	14573	28.13	0.00076	0.00039	0.00012	0.00414		
420	14573	28.82	0.00082	0.00042	0.00014	0.00275		
430	14573	29.51	0.00086	0.00045	0.00016	0.00338		
440	14573	30.19	0.00091	0.00048	0.00017	0.00244		
450	14573	30.88	0.00099	0.00051	0.00020	0.00356		
460	14573	31.57	0.00110	0.00057	0.00023	0.00353		
470	14573	32.25	0.00121	0.00062	0.00025	0.00288		
480	14573	32.94	0.00133	0.00068	0.00028	0.00189		
490	14573	33.62	0.00145	0.00075	0.00033	0.00170		
500	14573	34.31	0.00162	0.00085	0.00042	0.00036		
510	14573	35.00	0.00182	0.00096	0.00055	0.00097		
520	14573	35.68	0.00198	0.00104	0.00066	0.00095		
530	14573	36.37	0.00217	0.00114	0.00081	0.00040		
540	14573	37.05	0.00245	0.00129	0.00097	0.00048		
550	14573	37.74	0.00270	0.00142	0.00110	-0.00076		
560	14573	38.43	0.00293	0.00154	0.00123	-0.00164		
570	14573	39.11	0.00315	0.00166	0.00136	-0.00038		
580	14573	39.80	0.00337	0.00177	0.00148	-0.00057		
590	14573	40.49	0.00365	0.00190	0.00161	-0.00222		
600	14573	41.17	0.00385	0.00198	0.00169	0.00017		
610	14573	41.86	0.00401	0.00204	0.00175	0.00018		
620	14573	42.54	0.00424	0.00213	0.00185	0.00130		
630	14573	43.23	0.00443	0.00220	0.00193	-0.00077		
640	14573	43.92	0.00457	0.00225	0.00199	-0.00125		
650	14573	44.60	0.00486	0.00239	0.00214	0.00135		
660	14573	45.29	0.00493	0.00241	0.00217	0.00150		
670	14573	45.98	0.00500	0.00244	0.00219	0.00173		
680	14573	46.66	0.00511	0.00249	0.00224	0.00204		
670	14573	45.98	0.00508	0.00248	0.00223	0.00174		
660	14573	45.29	0.00507	0.00248	0.00223	0.00174		
650	14573	44.60	0.00505	0.00248	0.00223	0.00142		
660	14573	45.29	0.00507	0.00249	0.00224	0.00118		
670	14573	45.98	0.00510	0.00250	0.00225	0.00119		
680	14573	46.66	0.00514	0.00251	0.00226	-0.00030		
670	14573	45.98	0.00512	0.00252	0.00226	-0.00012		

Load		Stress		Str	ain		
(kN)	Area	N/mm ²	3				
			Mid	Left	Center	Right	
0	14573	0.00	0.00000	0.00000	0.00000	0.00000	
10	14573	0.69	0.00001	0.00000	0.00001	0.00002	
20	14573	1.37	0.00002	0.00001	0.00001	0.00003	
30	14573	2.06	0.00003	0.00002	0.00002	0.00005	
40	14573	2.74	0.00003	0.00002	0.00002	0.00006	
50	14573	3.43	0.00004	0.00003	0.00002	0.00007	
60	14573	4.12	0.00005	0.00004	0.00003	0.00008	
70	14573	4.80	0.00006	0.00004	0.00004	0.00009	
80	14573	5.49	0.00007	0.00005	0.00005	0.00011	
90	14573	6.18	0.00008	0.00006	0.00006	0.00012	
100	14573	6.86	0.00009	0.00008	0.00007	0.00014	
110	14573	7.55	0.00010	0.00009	0.00008	0.00017	
120	14573	8.23	0.00011	0.00010	0.00010	0.00018	
130	14573	8.92	0.00013	0.00012	0.00011	0.00020	
140	14573	9.61	0.00014	0.00013	0.00012	0.00022	
150	14573	10.29	0.00015	0.00015	0.00015	0.00024	
160	14573	10.98	0.00018	0.00017	0.00017	0.00026	
170	14573	11.67	0.00019	0.00019	0.00020	0.00029	
180	14573	12.35	0.00021	0.00021	0.00022	0.00031	
190	14573	13.04	0.00023	0.00023	0.00024	0.00034	
200	14573	13.72	0.00026	0.00026	0.00028	0.00038	
210	14573	14.41	0.00028	0.00029	0.00031	0.00041	
220	14573	15.10	0.00030	0.00032	0.00034	0.00045	
230	14573	15.78	0.00032	0.00035	0.00037	0.00048	
240	14573	16.47	0.00035	0.00038	0.00042	0.00053	
250	14573	17.16	0.00039	0.00043	0.00047	0.00058	
260	14573	17.84	0.00041	0.00047	0.00051	0.00062	
270	14573	18.53	0.00046	0.00053	0.00057	0.00070	
280	14573	19.21	0.00050	0.00059	0.00062	0.00077	
290	14573	19.90	0.00052	0.00063	0.00067	0.00082	
300	14573	20.59	0.00055	0.00069	0.00072	0.00089	
310	14573	21.27	0.00059	0.00075	0.00079	0.00096	
320	14573	21.96	0.00063	0.00082	0.00086	0.00105	
330	14573	22.64	0.00069	0.00091	0.00094	0.00115	
340	14573	23.33	0.00073	0.00098	0.00100	0.00123	
350	14573	24.02	0.00077	0.00104	0.00106	0.00132	
360	14573	24.70	0.00082	0.00113	0.00114	0.00142	
370	14573	25.39	0.00088	0.00125	0.00122	0.00153	
380	14573	26.08	0.00092	0.00132	0.00126	0.00163	
390	14573	26.76	0.00098	0.00142	0.00135	0.00178	
400	14573	27.45	0.00111	0.00164	0.00154	0.00205	

Load		Stress	Strain					
(kN)	Area	N/mm²			3			
			Mid	Left	Center	Right		
410	14573	28.13	0.00128	0.00190	0.00174	0.00239		
420	14573	28.82	0.00137	0.00204	0.00186	0.00258		
430	14573	29.51	0.00147	0.00219	0.00197	0.00279		
440	14573	30.19	0.00159	0.00237	0.00212	0.00304		
450	14573	30.88	0.00177	0.00261	0.00229	0.00335		
460	14573	31.57	0.00195	0.00285	0.00247	0.00369		
470	14573	32.25	0.00219	0.00314	0.00281	0.00359		
480	14573	32.94	0.00236	0.00341	0.00302	0.00410		
490	14573	33.62	0.00248	0.00364	0.00320	0.00405		
500	14573	34.31	0.00262	0.00405	0.00348	0.00253		
510	14573	35.00	0.00275	0.00450	0.00376	0.00373		
520	14573	35.68	0.00292	0.00494	0.00410	0.00536		
530	14573	36.37	0.00308	0.00533	0.00452	0.00282		
540	14573	37.05	0.00333	0.00610	0.00517	0.00410		
550	14573	37.74	0.00345	0.00638	0.00542	0.00320		
560	14573	38.43	0.00365	0.00697	0.00592	0.00672		
570	14573	39.11	0.00381	0.00737	0.00631	0.00747		
580	14573	39.80	0.00393	0.00759	0.00655	0.00774		
590	14573	40.49	0.00388	0.00792	0.00702	0.00737		
600	14573	41.17	0.00409	0.00861	0.00756	0.00599		
590	14573	40.49	0.00407	0.00849	0.00797	0.00533		
580	14573	39.80	0.00407	0.00843	0.00818	0.00518		
590	14573	40.49	0.00412	0.00786	0.00862	0.00479		
600	14573	41.17	0.00418	0.00791	0.00878	0.00481		
610	14573	41.86	0.00435	0.00805	0.00927	0.00479		
620	14573	42.54	0.00452	0.00817	0.00953	0.00360		
630	14573	43.23	0.00467	0.00842	0.00974	0.00457		
620	14573	42.54	0.00482	0.00822	0.00778	0.00702		
610	14573	41.86	0.00484	0.00803	0.00749	0.00745		
620	14573	42.54	0.00502	0.00692	0.00618	0.00884		
630	14573	43.23	0.00513	0.00701	0.00584	0.00945		

Appendix B

List of Papers Communicated

- Sushil S. Sharma, Dr. Urmil V. Dave and Shri Himat Solanki, "FRP wrapping for RC columns with varying corner radius", 8th Biennial Conference (SEC), SVNIT, Surat, India, 19-21 December 2012. (Abstract Communicated)
- Sushil S. Sharma, Dr. Urmil V. Dave and Shri Himat Solanki, "Effect of corner radius on the behaviour of GFRP-confined square RC columns", 3rd International Con- ference, NUiCONE - 2012, Departmet of Civil Engineering, Nirma University, Ahmedabad, 6 - 8 December 2012. (Abstract Communicated)