
i

Analysis And Usage Of Formal
Equivalence Check On SoC

By

Vaibhav Chavan

Roll No: 10MECV02

Department of Electronics and Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382481

May 2012

Analysis And Usage Of Formal
Equivalence Check On SoC

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

In

Electronics And Communication Engineering

(VLSI Design)

By

Vaibhav Chavan

(10MECV02)

Under the Guidance of

Mr. MadanMohan Gowda

Intel Technology India Pvt. Ltd.

Department of Electronics and Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382481

May 2012

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technology

in VLSI Design at Nirma University and has not been submitted elsewhere for a

degree.

ii) Due acknowledgement has been made in the text to all other material used.

Vaibhav Chavan

iv

Certificate

This is to certify that the Major Project entitled ” Analysis And Usage Of Formal

Equivalence Check On SoC” submitted by Vaibhav Chavan (10MECV02),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in VLSI Design of Nirma University of Science and Technology,

Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Date: Place: Ahmedabad

External Guide HOD

Mr. Madan Mohan K. M. Prof. A. S. Ranade

Intel Technology India Pvt. Ltd. Professor, EC, NU

Director Internal Guide

Dr.K.R.Kotecha Mrs. Usha Mehta

IT, NU Professor (VLSI Design)

Nirma University

v

Acknowledgements

First and foremost, Sincere thanks to Mr. Saish Amonkar, Manager, Intel India

Technology PVT LTD. I enjoyed his vast knowledge and owe him lots of gratitude

for having a profound impact on this report. I would like to thank my Mentor,

Mr. Kadabagala Mallappa Gowda MadanMohan, Verification lead, Intel India

Technology PVT LTD For valuable guidance. Throughout the training, he gave me

valuable advice on project work. Without him, this project work would never have

been completed. I would like to thank buddy, Ms. Khyati Bhatt, Component

Design Engineer, Intel India Technology PVT LTD, for giving valuable help in FEV

ramp-up and solving my all FEV related query. I would like to thank buddy, S.

K. Phaniraj, Verification Engineer, Intel India Technology PVT LTD, for educating

me about Open Verification Methodology and solving my OVM related queries which

helped me a lot while working on actual project. I would also like to thank Dr.

K. R. Kotecha, Director, Institute of Technology, Nirma University, for providing

me with an opportunity to get an internship at Intel India Technology PVT LTD,

Bangalore. I would also Thank to my project coordinator, Dr. N.M. Devashrayee,

Professor, VLSI Design, Institute of Technology, Nirma University, for giving valuable

support for project work. I would like to thank my all faculty members for providing

encouragement, exchanging knowledge during my post-graduate program. I also owe

my colleagues in the Intel, special thanks for helping me on this path and for making

project at Intel more enjoyable.

- Vaibhav Chavan

10MECV02

vi

Abstract

Ever-growing complexity in System on Chip (SOC) is forcing logic design to move

above the register transfer level (RTL). For example, functional specifications are

being written in software. These specifications are written for clarity, and are not

optimized or intended for synthesis. The Logic Synthesis as a process is prone to

Bugs. There are too many transformations happening in logic synthesis which can

alter the netlist in a wrong manner and make it infer functionality other than what

was intended in the original RTL. These bugs are not intentional but happen by

accident during synthesis tool development. So Functional Equivalence Verification

(FEV) between the software specification and the implementation is needed.

This report introduces the Functional Equivalence Verification approach for SOC.

It describes the method for functional equivalence verification. It also introduces the

algorithm by which the FEV tool runs. This report imposes upon the importance of

the Formal Equivalence Verification in VLSI design flow.

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

List of Figures ix

1 Introduction to SoC 1

2 Introduction to Formal Verification 1
2.1 Contents . 2
2.2 Uses . 2
2.3 Formal Equivalence Verification . 2
2.4 Formal Property Verification . 3
2.5 Formal Protocol Modeling and Verification 3

3 Formal Equivalence Verification 4
3.1 Why Formal Equivalence is needed? 4
3.2 Formal Equivalence Verification at the center 5
3.3 Equivalence Checking FLow . 6
3.4 Main Elements of Equivalence checking tool 7
3.5 DUV partitioning . 8
3.6 Mapping . 9
3.7 State matching FEV . 10

4 Cadence Conformal LEC 13
4.1 Conformal usage model . 13
4.2 Mapping Key Points . 14
4.3 LEC Do file . 14
4.4 Steps for FEV run . 15
4.5 Inputs for FEV run . 15

vii

CONTENTS viii

4.6 Conformal GUI . 16
4.7 Debugging mapping points and compare points 17
4.8 Analyzing non-equivalent compare points 18
4.9 Frequently seen issues . 18
4.10 Debug tips . 18

5 Results of FEV 20

6 Introduction to Open Verification Methodology 21
6.1 Contents . 21
6.2 OVM Test bench and Environments 22
6.3 OVC Overview . 23

6.3.1 Data Item (Transaction) . 23
6.3.2 Driver (BFM) . 24
6.3.3 Sequencer . 24
6.3.4 Monitor . 24
6.3.5 Agent . 25
6.3.6 Environment . 26

6.4 The System Verilog OVM Class Library 27
6.5 Other OVM Facilities . 27

6.5.1 OVM Factory . 28
6.5.2 Transaction Level Modelling 29

7 Contributions and Conclusion 30
7.1 Contributions . 30
7.2 Conclusion . 30

References 32

List of Figures

3.1 Importance of FEV at each stage . 5
3.2 The Basic Logic Equivalence Checking Flow 6
3.3 Simplification of the general equivalence checking problem to logic

equivalence . 7
3.4 The Horizontal Partitioning Approach to equivalence Checking 8
3.5 The Vertical Partitioning Approach to Equivalence Checking 9
3.6 Mapping points . 10
3.7 Partitioning and Mapping for equivalence checking 10
3.8 Example of Equivalent Design . 11
3.9 Mapping Key Points . 11
3.10 Building Equations for the design . 12
3.11 Example of Non-Equivalent Design 12

4.1 Conformal GUI showing compared points 16
4.2 Identifying and debugging mismatches by conformal -lec mapping man-

ager . 17

6.1 Verification Environment Example 22
6.2 Typical OVM Environment . 26

ix

Chapter 1

Introduction to SoC

A system on a chip or system on chip (SoC or SOC) is an Integrated circuit(IC) that

integrates all components of a computer or other electronic system into a single chip.

It may contain digital, analog or mixed - signal and often radio-frequency functions-

all on a single chip substrate. The VLSI manufacturing technology advances has made

possible to put millions of transistors on a single die. This enables designers to put

systems on a single chip thus moving everything from board to single chip resulting to

growth of system on chip (SOC) technology.SOC design includes efforts to integrate

heterogeneous or different types of silicon IPs (intellectual properties) on to the same

chip, like memory, microprocessor, random logics, and analog circuitry. SOC often

incorporates analog components, and can also include opto/microelectronic mechan-

ical system components in the future. An SOC design provide significant advantages

in terms of speed , area ,reliability ,security and power however suffers from high

system complexity , fabrication costs and increase verification requirements. How-

ever increasing reusability of IP and highly sophisticated tools (hardware/software)

are making the SOC designs an extremely favorable and exciting option for modern

applications.

1

Chapter 2

Introduction to Formal Verification

Formal Verification (FV) is a general set of methods that mathematically prove as-

pects of a design, in contrast to dynamic validation / simulation (which just checks

specific values). Thus Formal Verification is a way of creating evidence suggesting

that a system either does or does not have some property by comparing a formal

model of the system to a formal specification of the property Using logical inference

to prove that the model does or doesn’t meet the specifications.

Note that formal verification does not guarantee that a real system has an intended

property. It only provides suggestive evidence about the real system - the proof is

about a formal model. The distinction is important because the evidence may be

mistaken for several reasons: the formal model may not accurately describe the real

system; the formal spec may not accurately describe the intended property; the logical

inference system may not be sound; and the purported proof may not actually follow

the rules of inference in the logic. All of these have happened in practice. Thus it is

important to also test the real system.

Formal verification is different from dynamic validation (testing by simulation)

in that formal verification is complete within some formally defined domain. Dy-

namic validation may use formal inference, but isn’t complete within a well-defined

domain.A hybrid verification method combines formal verification and simulation-

based methods.

1

CHAPTER 2. INTRODUCTION TO FORMAL VERIFICATION 2

2.1 Contents

• Uses

• Formal Equivalence Verification (FEV)

• Formal Property Verification (FPV) -RTL Level

• Formal Protocol Modeling and Verification

• Methods

• Formal Verification tools and languages

2.2 Uses

Formal verification is used, among other things, to show that different schematics

are logically equivalent or not(this is called formal equivalence verification, or FEV).

It also shows that the RTL models implement micro architectural or architectural

specifications (this is sometimes called formal property verification, or FPV), that

microcode implements architecture specifications, that software implements abstract

algorithms, and that protocols and other abstract algorithms satisfy even more ab-

stract properties.

2.3 Formal Equivalence Verification

Formal Equivalence Verification (FEV) is the use of formal verification to show that

two models are equivalent (under some set of assumptions). Its most common uses are

showing equivalence between schematics and RTL models, between different versions

of a schematic, and between different versions of an RTL model. The current tools

for equivalence verification are Seqver and Clever. Similar tools are available from a

variety of external vendors.

CHAPTER 2. INTRODUCTION TO FORMAL VERIFICATION 3

2.4 Formal Property Verification

Formal Property Verification (FPV) is the use of formal verification to show that

an RTL model satisfies some property or properties, such as implementing a micro

architecture specifications or maintaining an invariant. Formal property verification

is similar to simulation-based dynamic validation in that both are used to find bugs

in RTL models, but FPV is different in that it uses formal verification methods. FPV

is distinguished from formal equivalence verification (FEV) in that it verifies more

general properties than equivalence. In recent years FPV has become more accessible

to non-specialists, through the Assertion Based Verification methodologies. These

enable RTL authors to add assertions to their code, and use powerful formal methods

to prove them.

2.5 Formal Protocol Modeling and Verification

Another important aspect of formal verification is modeling and verification of pro-

tocols above the RTL level. This is done with different languages and tools.

Chapter 3

Formal Equivalence Verification

Formal Equivalence Verification is a formal verification method used for proving that

two models are equivalent. This can be used to prove, for example, that a circuit

implementation works identically to the RTL it is implementing. It is a method

of proving the equivalence of two different view of the same logic design. It uses

mathematical technique to verify equivalence of a referenced design and a modified

design. These tools can be used to verify the equivalence of RTL-RTL, RTL-gate,

and gate-gate implementations. Since equivalence checking tools compare the target

design with the reference design, it is critical that the reference design is functionally

correct.

3.1 Why Formal Equivalence is needed?

Logic Synthesis as a process is prone to Bugs. There are too many transformations

happening in logic synthesis which can alter the netlist in a wrong manner and make it

infer functionality other than what was intended in the original RTL. These bugs are

not intentional but happen by accident during synthesis tool development. They can

happen mostly during the elaboration stage as new verilog/VHDL constructs start

showing up from time to time in new language standards. It takes time to build a

robust Language analysis/elaboration engine as a front end to synthesis engine. Sim-

4

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 5

ulation is not a robust proof of correctness as it was never intended to be exhaustive.

However we can run the same functional vectors and check our netlist to see if we

are lucky to catch a problem in gates. This is never a full proof verification strategy.

Equivalence checking comes to the rescue. And it is fool proof. EC mathematically

proves that the RTL and Netlist are equivalent and does not need functional vectors.

Advantages of Formal Equivalence Verification:

• Verifies 100

• Faster than performing an exhaustive simulation.

Limitation:

• It does not verify the timing of the design.

3.2 Formal Equivalence Verification at the center

Figure 3.1: Importance of FEV at each stage

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 6

FEV is required to compare RTL netlist versus synthesized netlist, Synthesized

netlist versus optimized synthesized netlist, optimized synthesized netlist versus Post

Auto place and Routed netlist, Post Auto place and Routed netlist versus Fabrication

(final) netlist Fabrication (final) netlist versus RTL netlist. Thus it is very important

step of VLSI flow.

3.3 Equivalence Checking FLow

Figure 3.2: The Basic Logic Equivalence Checking Flow

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 7

3.4 Main Elements of Equivalence checking tool

The figure shows the simplification of the general equivalence checking problem to

logic equivalence. In addition to the inputs, now the state vectors are held to the

exact same value at all times. With a second XOR condition, the next-state vectors

B1+ and B2+ are checked for equality at all times as well. The checker tool proves

combinational Boolean equivalence if E1 and E2 are 0 at all times. Even after this

drastic simplification of the original problem, the tool allows the exhaustive com-

parison of the two state machines with the same set of states and the same initial

state.

Figure 3.3: Simplification of the general equivalence checking problem to logic equiv-
alence

The application in terms of the methodology flow described above, means that

the state vectors and the state encoding of the DUV stay constant after the definition

of RTL. This restriction is reasonable for most practical applications because many

tool driven design transformation and optimizations change the combinational part

of the DUV only.

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 8

3.5 DUV partitioning

The DUV partitioning attempts to divide the DUV into smaller pieces for which the

EC algorithms prove equivalence individually. The partition can be done vertically,

horizontally or combination of both. The equivalence checkers take outputs from

either model and compare only the logic that specifically drives these outputs. In

this example, the comparison occurs between the pairs of logic partitions A1, A2, B1,

B2 and C1, C2. The equivalence checker successively picks a pair of inputs, one per

DUV model for check. It iterates over all DUV outputs. For each iteration step, the

tool eliminates all the logic that does not directly drive the given outputs

Figure 3.4: The Horizontal Partitioning Approach to equivalence Checking

Horizontal partitioning works only if the equivalence checker indeed prove that

the cut points are Boolean equivalent Vertical partitioning selects intermediate points

inside the logic of either DUV model. This cuts the depth of the logic cones compared

at each step as well as number of inputs and amount of logic covered by cone. The

figure shows the illustration of this principle: C1, C2, C3 are the cut points for

which the checker must prove equivalence for the partitioning to succeed. Either the

user specifies the cut points manually or the EC tool has heuristics to find these

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 9

automatically.

Figure 3.5: The Vertical Partitioning Approach to Equivalence Checking

Vertical partitioning using cut points C1, C2 and C3 allows the comparison process

to prove equivalence for smaller subcones with less number of inputs and logic. The

XOR check now takes not only the model output to compare pair-wise but also the

signals that represent the cut point in each model.

3.6 Mapping

Pairing correspond golden and revised key points. Key points are the points to map.

So while doing FEV, the key points of golden design should be mapped with the

revised design.

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 10

Figure 3.6: Mapping points

3.7 State matching FEV

FEV works on state matching algorithm. It does the partition of the whole circuit

into many cones. And then compares the key points. Lets us take an example.

Question: Are the following two figures equivalent?

Figure 3.7: Partitioning and Mapping for equivalence checking

Answer: yes, but again the question is how the tool will understand that both

the figures are equivalent. So the tool does this comparison by using state matching

algorithm. First of all it maps the key point. Once the key points are mapped then

the comparison can be done. The design is converted into groups of cones. And the

cones inputs and outputs are compared by mathematical equation.

The steps are given below.

Step 1: Map the key Points.

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 11

Check whether inputs of both the circuits are mapped? Check whether outputs of

both the circuits are mapped? Check whether states of both the circuits are mapped?

i.e. f1–f3, f2–f4

Step 2: build equations. What if there is an error? Now compare the equations.

Figure 3.8: Example of Equivalent Design

Figure 3.9: Mapping Key Points

The Example of equivalent design is shown in figure 3.8. It can be seen that the

two designs have identical output equations. Tool does this comparison by the steps

described above which is shown in the figures. figure 3.9 shows the mapping of key

points in both of the designs. then the equations are build and compared, which is

shown in figure 3.10.

CHAPTER 3. FORMAL EQUIVALENCE VERIFICATION 12

Figure 3.10: Building Equations for the design

Figure 3.11: Example of Non-Equivalent Design

The Example of Non-equivalent design is shown in figure 3.11. It can be seen that

the output equations of these two designs does not matches, so the mathematical

equation or the logic in both the design is not same. and this is how the tool does

the comparison by mathematical equations.

Chapter 4

Cadence Conformal LEC

What is cadence conformal LEC?

Formerly known as Verplex LEC, this is a vendor FEV tool in use by many chipset

and miscellaneous ASIC teams, as well as for occasional specialized tasks by processor

teams. It is much more user-friendly and its engine is optimized for combinational

cones with large amounts of logic designs.

4.1 Conformal usage model

• Based on command console

- Capable of taking general tcl scripts

• ”help” available for any command

- Example: ”help read design”

- Full manuals in /pkgs/cadence6/CONFRML71/doc

• ”set gui on” / ”set gui off” can be done any time

• ”dofile filename.do” to execute script

13

CHAPTER 4. CADENCE CONFORMAL LEC 14

4.2 Mapping Key Points

• LEC has good automapper

- Can guess many mappings

- But sometimes fails to map properly

• View mapping as ”renaming”

- Temporarily rename RTL sig to match netlist

- ”add renaming rule” to specify mappings

4.3 LEC Do file

• set log file lec.log -replace

• read library - file path

• read design -systemverilog/verilog -golden -f myrtl.filelist

• read design -systemverilog/verilog -revised -f mynetlist.filelist

• add renaming rule r1 foo bar -golden

• add blackbox -module name -cell name - golden/revised/both

• add pin direction - in/out/IO - pin name - module name

• abstract logic -module name - all -golden/revised

• add notranslate filepaths filepath names -library/design -both/golden/revised

• add pin constraints 0/1 primary pin -module module name

• set sys mode lec

• report unmapped points add compare points -all compare

• report compare data

CHAPTER 4. CADENCE CONFORMAL LEC 15

4.4 Steps for FEV run

• Create work area for the design on which FEV is to be performed.

• Copy the necessary files i.e. golden and revised netlist and libraries into their

corresponding path in the work area.

• Run command for FEV. This command will give the result for key points and

compared points

• Debug the key points and diagnose the not mapped key points.

• Make local copy of the input files and make changes in that file in order to solve

not mapped points

• Report the key point

• Debug the compared points. Diagnose the non-equivalent points

• Make changes in local copy in order to solve the non-equivalent points i. Report

the compared points, if they are the major issues

• Prepare Lec.do file which will automatically run the script to make FEV clean

4.5 Inputs for FEV run

• RTL/BMOD

• Schematic netlist (With correct tagging info)

• Standard Cell Library Files

CHAPTER 4. CADENCE CONFORMAL LEC 16

4.6 Conformal GUI

Conformal Graphical User Interface can be useful for analysing the FEV key points

and compared points. It helps for debugging the errors. The Conformal GUI is shown

here.

Figure 4.1: Conformal GUI showing compared points

CHAPTER 4. CADENCE CONFORMAL LEC 17

4.7 Debugging mapping points and compare points

• Extra : this indicates that key point exists only in the golden design or only in

the revised design, but does not affect the circuit functionality.

• Unreachable: this indicates that key point that is not propagated to any ob-

servable point

• Not mapped: this indicates that key point that has no correspondence on either

side, may be resolved with the renaming rules.

sectionDebugging Mismatches

The GUI shows the different compare points by different colors. The Compared

points can be categorized as shown below

Figure 4.2: Identifying and debugging mismatches by conformal -lec mapping man-
ager

• Equivalent: refers to the key points proven to be equivalent. (green filled circle)

• Inverted Equivalent: refers to the key points proven to be complementary equiv-

alent to the key point. (divide green filled circle)

CHAPTER 4. CADENCE CONFORMAL LEC 18

• Non Equivalent: refers to the key points proven to be different. (red filled circle)

• Abort: refers to the key points not yet proven equivalent or non equivalent due

to time-out or other system parameter (yellow filled circle)

• Not-compared: refers to the key points not yet compared.

4.8 Analyzing non-equivalent compare points

There are different ways to analyze and debug the non-equivalent points

• Diagnosis manager: it will tell the corresponding point.

• Schematic viewer: viewing the schematic of both Golden and Revised design.

• Source code: by viewing the source code of Golden and Revised design.

4.9 Frequently seen issues

• Top level and black box pin name mismatches.

• Extra components in either schematic or RTL.

• Incorrect logic gates used in feeding compare points.

• Lots of cells not listed in initial black box lists can’t be extract and need to be

manually black boxed during the run.

4.10 Debug tips

• Black box any known analog components provided by the circuit and RTL owner

• Extract the remaining components using the ’abstract logic’ command.

• Any components that fail to extract need manual transistor direction assignment

CHAPTER 4. CADENCE CONFORMAL LEC 19

• Check the schematic and assign all bi-directional transistors the correct direction

using the ’add mos direction’ command.

• Check the schematic and assign the direction to the some of the pins of the

revised module (if applicable) using ’ass pin direction’.

• Check the spelling non-equivalent points; sometimes the points are not equal

because of the mismatch in spelling or incorrectly written.

• Visually examine using the conformal schematic viewer. If the logic is still not

extracted after assigning the transistor direction the component must be black

boxed.

• Once the simulation runs with no errors, check the primary inputs and outputs

for the HDL and schematics to ensure they all match.

• Look for any unmapped points. All these points must be debugged or ignored

before proceeding.

• Debug all the failing compare points.

Chapter 5

Results of FEV

The Cadence Conformal Tool shows the results in terms of mapped points and com-

pared points. The following is the results obtained while performing FEV on different

modules of our project.

Table I: FEV Results
No Module name Error Fix Fix Working?

1 SPI pin direction mismatch Assign pin direction yes
2 TAP Pins missing Pins spelled correctly yes
3 ADC Floating pin in golden Mapped that Pin in RTL yes
4 DMA Unmapped DFFs Remodel -seq merge yes
5 GPIO Unmapped DLATS Remodel-seq merge yes

20

Chapter 6

Introduction to Open Verification

Methodology

OVM provides the best framework to achieve coverage-driven verification (CDV).

CDV combines automatic test generation, self-checking testbenches, and coverage

metrics to significantly reduce the time spent verifying a design. The purpose of

CDV is to:

• Eliminate the effort and time spent creating hundreds of tests.

• Ensure thorough verification using up-front goal setting.

• Receive early error notifications and deploy run-time checking and error analy-

sis.

6.1 Contents

This Chapter includes the following contents which can be helpful to understand the

basic concepts of OVM.

• OVM Test bench and Environments

• OVC Overview

21

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY22

• Syestem Verilog Class Library

6.2 OVM Test bench and Environments

An OVM testbench is composed of reusable verification environments called OVM

verification components (OVCs). An OVC is an encapsulated, ready-to-use, config-

urable verification environment for an interface protocol, a design sub module, or a

full system. Each OVC follows a consistent architecture and consists of a complete

set of elements for stimulating, checking, and collecting coverage information for a

specific protocol or design. The OVC is applied to the device under test (DUT)

to verify your implementation of the protocol or design architecture. OVCs expe-

dite creation of efficient testbenches for your DUT and are structured to work with

any hardware description language (HDL) and high-level verification language (HVL)

including Verilog, VHDL, e, SystemVerilog, and SystemC.

Figure 6.1: Verification Environment Example

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY23

Figure 6.1 shows an example of a verification environment with three interface

OVCs. These OVCs might be stored in a company repository and reused for multiple

verification environments. The interface OVC is instantiated and configured for a de-

sired operational mode. The verification environment also contains a multi-channel

sequence mechanism (that is, virtual sequencer) which synchronizes the timing and

the data between the different interfaces and allows fine control of the test environ-

ment for a particular test.

6.3 OVC Overview

The following subsections describe the components of an OVC.

• Data Item (Transaction)

• Driver

• Sequencer

• Monitor

• Agent

• Environment

6.3.1 Data Item (Transaction)

Data items represent the input to the DUT. Examples include networking packets,

bus transactions, and instructions. The fields and attributes of a data item are derived

from the data item’s specification. For example, the Ethernet protocol specification

defines valid values and attributes for an Ethernet data packet. In a typical test,

many data items are generated and sent to the DUT. By intelligently randomizing

data item fields using SystemVerilog constraints, you can create a large number of

meaningful tests and maximize coverage.

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY24

6.3.2 Driver (BFM)

A driver is an active entity that emulates logic that drives the DUT. A typical driver

repeatedly receives a data item and drives it to the DUT by sampling and driving

the DUT signals. For example, a driver controls the read/write signal, address bus,

and data bus for a number of clocks cycles to perform a write transfer.

6.3.3 Sequencer

A sequencer is an advanced stimulus generator that controls the items that are pro-

vided to the driver for execution. By default, a sequencer behaves similarly to a sim-

ple stimulus generator and returns a random data item upon request from the driver.

This default behavior allows you to add constraints to the data item class in order

to control the distribution of randomized values. Unlike generators that randomize

arrays of transactions or one transaction at a time, a sequencer captures important

randomization requirements out-of-the box. A partial list of the sequencer’s built-in

capabilities includes:

• Ability to react to the current state of the DUT for every data item generated.

• Captures the order between data items in user-defined sequences, which forms

a more structured and meaningful stimulus pattern.

• Enables time modeling in reusable scenarios.

• Supports declarative and procedural constraints for the same scenario.

• Allows system-level synchronization and control of multiple interfaces.

6.3.4 Monitor

A monitor is a passive entity that samples DUT signals but does not drive them.

Monitors collect coverage information and perform checking. Even though reusable

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY25

drivers and sequencers drive bus traffic, they are not used for coverage and checking.

Monitors are used instead. A monitor:

• Collects transactions (data items). A monitor extracts signal information from a

bus and translates the information into a transaction that can be made available

to other components and to the test writer.

• Extracts events. The monitor detects the availability of information (such as a

transaction), structures the data, and emits an event to notify other components

of the availability of the transaction. A monitor also captures status information

so it is available to other components and to the test writer.

• Performs checking. Checking typically consists of protocol and data checkers to

verify that the DUT output meets the protocol specification.

• Perform Coverage. Coverage also is collected in the monitor..

6.3.5 Agent

Sequencers, drivers, and monitors can be reused independently, but this requires

the environment integrator to learn the names, roles, configuration, and hookup of

each of these entities. To reduce the amount of work and knowledge required by

the test writer, OVM recommends that environment developers create a more ab-

stract container called an agent. Agents can emulate and verify DUT devices. They

encapsulate a driver, Sequencer, and monitor. OVCs can contain more than one

agent. Some agents (for example, master or transmit agents) initiate transactions to

the DUT, while other agents (slave or receive agents) react to transaction requests.

Agents should be configurable so that they can be either active or passive. Active

agents emulate devices and drive transactions according to test directives. Passive

agents only monitor DUT activity.

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY26

6.3.6 Environment

The environment (env) is the top-level component of the OVC. It contains one or

more agents, as well as other components such as a bus monitor. The env contains

configuration properties that enable you to customize the topology and behavior and

make it reusable. For example, active agents can be changed into passive agents when

the verification environment is reused in system verification. Figure 6.2 illustrates the

structure of a reusable verification environment. Notice that an OVC may contain an

environment-level monitor. This bus-level monitor performs checking and coverage

for activities that are not necessarily related to a single agent. An agent’s monitors

can leverage data and events collected by the global monitor.

Figure 6.2: Typical OVM Environment

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY27

The environment class (ovm env) is architected to provide a flexible, reusable, and

extendable verification component. The main function of the environment class is to

model behavior by generating constrained-random traffic, monitoring DUT responses,

checking the validity of the protocol activity, and collecting coverage.

6.4 The System Verilog OVM Class Library

The SystemVerilog OVM Class Library provides all the building blocks you need to

quickly develop well-constructed, reusable, verification components and test environ-

ments. The library consists of base classes, utilities, and macros. Components may

be encapsulated and instantiated hierarchically and are controlled through an extend-

able set of phases to initialize, run, and complete each test. These phases are defined

in the base class library but can be extended to meet specific project needs.

The advantages of using the SystemVerilog OVM Class Library include:

• A robust set of built-in features-The SystemVerilog OVM Class Library provides

many features that are required for verification, including complete implemen-

tation of printing, copying, test phases, factory methods, and more.

• Correctly-implemented OVM concepts-Each component in the block diagram in

Figure 6.2 is derived from a corresponding SystemVerilog OVM Class Library

component.

6.5 Other OVM Facilities

The SystemVerilog OVM Class Library also provides various utilities to simplify the

development and use of verification environments. These utilities support debugging

by providing a user-controllable messaging utility. They support development by

providing a standard communication infrastructure between verification components

(TLM) and flexible verification environment construction (OVM factory).

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY28

The SystemVerilog OVM Class Library provides global messaging facilities that

can be used for failure reporting and general reporting purposes. Both messages and

reporting are important aspects of ease of use. This section includes the following:

6.5.1 OVM Factory

The factory method is a classic software design pattern that is used to create generic

code, deferring to run time the exact specification of the object that will be created. In

functional verification, introducing class variations is frequently needed. For example,

in many tests you might want to derive from the generic data item definition and add

more constraints or fields to it; or you might want to use the new derived class in

the entire environment or only in a single interface; or perhaps you must modify the

way data is sent to the DUT by deriving a new driver. The factory allows you to

substitute the verification component without having to provide a derived version of

the parent component as well.

The SystemVerilog OVM Class Library provides a built-in central factory that

allows:

• Controlling object allocation in the entire environment or for specific objects.

• Modifying stimulus data items as well as infrastructure components (for exam-

ple, a driver).

Use of the OVM built-in factory reduces the effort of creating an advanced factory

or implementing factory methods in class definitions. It facilitates reuse and adjust-

ment of predefined verification IP in the end-user’s environment. One of the biggest

advantages of the factory is that it is transparent to the test writer and reduces the

object-oriented expertise required from both developers and users.

CHAPTER 6. INTRODUCTION TOOPEN VERIFICATIONMETHODOLOGY29

6.5.2 Transaction Level Modelling

OVM components communicate via standard TLM interfaces, which improves reuse.

Using a SystemVerilog implementation of TLM in OVM, a component may com-

municate via its interface to any other component that implements that Interface.

Each TLM interface consists of one or more methods used to transport data. TLM

specifies the required behavior (semantic) of each method but does not define their

implementation. Classes inheriting a TLM interface must provide an implementation

that meets the specified semantic. Thus, one component may be connected at the

transaction level to others that are implemented at multiple levels of abstraction. The

common semantics of TLM communication permit components to be swapped in and

out without affecting the rest of the environment.

Chapter 7

Contributions and Conclusion

7.1 Contributions

Addressing the formal equivalence Verification of specification vs. Implementations

of system on chip, I have contributed for making FEV clean for some of the modules

in our project. I also checked the top level connectivity for the SOC and made FEV

clean for Full Chip.

I contributed to my team members by helping them to integrate OVM Compliant

JTAG Bus Functional Model in our project.

7.2 Conclusion

Formal Equivalence Verification is very useful and important for VLSI design flow.

It is also helpful for verification of ECO (Engineering Change Order) design with

exhaustive verification. It is the easiest way to check the top level connectivity by

FCFEV (Full Chip FEV).

From the Work done on Open Verification Methodology, I can conclude that,

The OVM provides a library of base classes that allow users to create modular,

reusable verification environments in which components talk to each other via stan-

dard transaction-level modeling (TLM) interfaces. This methodology enables an un-

30

CHAPTER 7. CONTRIBUTIONS AND CONCLUSION 31

precedented level of flexibility, customization, and reuse.

References

[1] http://verificationacademy.com/verification-methodology

[2] http://www.testbench.in/

[3] http://systemverilog.in/

[4] http://www.cerc.utexas.edu/ jaa/ee382m-verif/lectures/5-2.pdf

32

	Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	Introduction to SoC
	Introduction to Formal Verification
	Contents
	Uses
	Formal Equivalence Verification
	Formal Property Verification
	Formal Protocol Modeling and Verification

	Formal Equivalence Verification
	Why Formal Equivalence is needed?
	Formal Equivalence Verification at the center
	Equivalence Checking FLow
	Main Elements of Equivalence checking tool
	DUV partitioning
	Mapping
	State matching FEV

	Cadence Conformal LEC
	Conformal usage model
	Mapping Key Points
	LEC Do file
	Steps for FEV run
	Inputs for FEV run
	Conformal GUI
	Debugging mapping points and compare points
	Analyzing non-equivalent compare points
	Frequently seen issues
	Debug tips

	Results of FEV
	Introduction to Open Verification Methodology
	Contents
	OVM Test bench and Environments
	OVC Overview
	Data Item (Transaction)
	Driver (BFM)
	Sequencer
	Monitor
	Agent
	Environment

	The System Verilog OVM Class Library
	Other OVM Facilities
	OVM Factory
	Transaction Level Modelling

	Contributions and Conclusion
	Contributions
	Conclusion

	References

