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Abstract

Manual design can occur with small number of transistors. As number of transis-

tors increase through VLSI design, the amount of evaluation and decision making has

become overwhelming. Computer-aided Design (CAD) tool automates this whole

process, hence it reduces TTM (Time To Market). CAD tools allow large and com-

plex problems to be solved. CreateChipIOLogic (CCIOL) is a CAD tool, which is

used to generate padring, insert BSR (Boundary Scan Cell) at RTL level and gen-

erate IO Muxing logic. Output file of this tool is a Verilog file. As per the required

specifications of the different projects at STMicroelectronics, new functionalities are

added in the tool. Hence, Regression Testing plays important role to check whether

the previously tested tool code runs correctly or not and the added functionality has

not negatively impacted any functionality that it offered previously. Regression test-

ing steps (I) Make test plans and create test cases for CreateChipIOLogic tool (II)

Check generated output logic corresponding different inputs. (III) Check syntax of

generated Verilog file using ncsim (Cadence) tool. (IV) Check equality of different

hierarchy structures by using Formality (Synopsys) tool. (V) Check generated code

is synthesizable or not by using Design compiler (Synopsys) and Spyglass tool.
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Chapter 1

Introduction

• Application-specific integrated circuit (ASIC) design is based on a design flow

that uses hardware description language (HDL). Most electronic design au-

tomation (EDA) tools used for ASIC flow are compatible with both Verilog

and very high speed integrated circuit hardware description language (VHDL).

In this flow, the design and implementation of a logic circuit are coded in either

Verilog or VHDL. Simulation is performed to check its functionality. This is

followed by synthesis. Synthesis is a process of converting HDL to logic gates.

After synthesis, the next step is APR (auto-place-route).

• Manual (Human)design can occur with small no of transistors. As no of tran-

sistor increase through SSI and VLSI, the amount of evaluation and decision

making would become overwhelming (Trade-offs). So Computer-aided Design

(CAD) Tool automate this whole process. CAD tools allow large problem to

be solved.

• List of CAD tools made internally by ST

– Sqirrel

– CreateChipIOLogic

– Tortoise

1
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– SDC Promotion

– Spirit2regbank

– UGN BIST assembler

– FEKit

• CAD Tool provide several advantages:

– Ability to evaluate complex conditions in which solving one problem cre-

ates other problems.

– Use analytical method to access the cost of decision.

– Use synthesis method to help provide a solution.

– Allow the process of proposing and analyzing a solution to occur at same

time.

– It reduces TTM.

• CreateChipIOLogic (CCIOL) tool is useful to generate padring, insert BSR

(Boundary Scan Cell), and generate IO Muxing logic. The Output of Create-

ChipIOLogic tool is verilog file. This tool can reduce human error by increasing

automation and also reduce the TTM.

• Any SOC, there are only two real physical constraints that dictate how much

functionality can be incorporated: Package pin out and a fixed amount of

die area. Bigger packages with more IO cost, more money, consume more

board area, and can require costly socket. So there is an always motivation to

pack as much functionality as possible into the small package. Thus providing

great deal of power and flexibility to the customers. So IO Multiplex Pads are

required.

• Any CAD tool code change can cause existing functionality to break. Changes

to a tool code component could impact dependent components.
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• It is commonly observed that a tool code fix could cause other bugs.

All this affects the quality and reliability of the system. Hence Regression

Testing, since it aims to verify all this, is very important.
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IO Cells

2.1 What are I/O’s?

• I/O is the specially designed element which interfaces to core signal to off chip

environment.

4
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Figure 2.1: Silicon View at Chip Level

2.2 Why do I/O’s need special attention? Why

are they important?

• Any input signal which comes from off chip device has to be checked by the

I/O for any discrepancy in its behavior other than the defined for the core and

if it finds any characteristic of the signal which can damage the core, it either

modifies the signal or simply rejects it. It also checks the signal going from

core to the outside world. So I/Os are responsible for proper functioning of

the entire chip. Thus however efficient the core design may be, it is the I/Os

which determine the efficiency of the chip.

• It is necessary for the designer to analyze the designed I/O under the practical

conditions to verify the deriving strength of the chip, delay in signal, power etc

as they all are heavily dependent on the I/O irrespective of whether the core

is compliant with the specifications or not. Because even a minor difference in

the performance of the I/O than the desired one can damage the whole circuit

or even can cause problems to the off chip circuit it? It is the responsibility of

the I/O to limit the outgoing signaling in all respect like amplitude, frequency,
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delay etc, under the specified one, for proper functioning.

2.3 A Typical I/O Buffer Contains...

• A typical bidirectional I/O consist of predrivers, slew rate controller, output

stage, Receiver section, ESD protection circuit and I/O pad .All these blocks

are very critical for proper functioning of the chip and off chip connected

components and so they require special attention while designing.

2.4 Electrostatic Discharge

• Electrostatic Discharge, in short ESD, protection is very important to save

the chip from unwanted voltages which gets developed at the pin due to some

source coming in contact with the pin. These large accumulated charges can

destroy the transistor, so a mechanism is needed which can effectively and

quickly discharge this unwanted accumulated charge. And here again the

importance of metal rings come into picture as they discharge accumulated

charges and protects the chip. Care should be taken that there are no acute

angles in the metal layers as they could be a potential areas of “hotspots”.

2.5 Power Supplies

• Power supply is required to bias the circuit and, as the circuit consists of both

the I/O and the core, therefore we have different power supply for these two.

The primary goal of having different rails is to minimize the effect of the noisy

output buffers. The power supply for core should be clean i.e.it should not

contain any noise. I/O section is connected to the outside world where the

signal is more prone to get diluted with noise; therefore the separation for the

two power supply is must in those chips where even a slight amount of noise
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can degrade the performance of core to a greater extent. In some chips, where

the noise has little or no effect on the performance of the core, both I/Os and

core can have the same power supply.

2.6 Place & Route Cells (Fillers and Corner Cells)

• In a packaged chip, all the I/Os are abutted to one another. Th metal power

ring continuity is automatically ensured by abutment. But if there are free

spaces between I/Os, filler cells must be used to fill up these empty areas.

There are filler cells with different width which can be used to fill up the

different sizes. It is advised to start the filler cell placement by the widest cell

possible and then continue with decreasing sizes until the gaps are completely

filled. Filler cells only contain the geometrical information of the metal rings

at each level of metal.

• As the I/Os are not placed at the corner edges of the cell and in spite of

having filled the gaps between I/Os, complete continuity of metal rings is not

achieved unless and until the corner edges are filled by corner cells. They

also have only the geometrical information of the metal rings. Both filler and

corner cell serves the same purpose but they are placed at different positions

in the packaged chip.

• So in short the purpose of filler cell and corner cell is to have:

– Continuity of metal power rings which is responsible for Uniform Distri-

bution of Power.

– Electrostatic Discharge protection.

– Nwell closing to prevent latch up.
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2.7 PADS

• Pads are basically a sandwich of various metal layers used in the design. The

pads consist of pins and metal connection on all sides to provide the power

connection to both the Core and the I/O elements. Multiple power pads are

often used to reduce the noise. The internal elements of the I/O circuit being

connected to one power pad while the external elements , the circuit part which

will have interface with the off chip elements being connected to a different

power pad . All the power pads are finally shorted by a metal layer at the

bonding pad. The noisier power pads, the one connected to the output tran-

sistor, are separated from the substrate to prevent the noise coupling through

the substrate.

• Basic power pads used inside a chip are:

– Input Power Pad

– Output Power Pad

– Tristate and Bidirectional pad

2.8 Types of I/Os & Specific Functions

• 3 different types of an I/O

– Input

– Output

– Bi-directional

• Specific functions:

– Pull-up,Pull-down

– Hysteresis
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– Analog

– Supplies
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IEEE 1149.1/JTAG Boundary

Scan Standard

• In 1985, a group of European companies formed Joint European Test Action

Group (JETAG).

• In 1990, the Institute of Electrical and Electronic Engineers (IEEE) refined

the concept and created the 1149.1 standard, known as IEEE Standard Test

Access Port and Boundary Scan Architecture

3.1 History

• 1985

– Joint European Test Action Group (JETAG, Philips)

• 1986

– VHSIC Element-Test & Maintenance (ETM) bus standard (IBM et al.)

– VHSIC Test & Maintenance (TM) Bus structure (IBM et al.)

• 1988

10
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– Joint Test Action Group (JTAG) proposed Boundary Scan Standard

• 1990

– Boundary Scan approved as IEEE Std. 1149.1-1990

– Boundary Scan Description Language (BSDL) proposed by HP

• 1993

– 1149.1a-1993 approved to replace 1149.1-1990

• 1994

– 1149.1b BSDL approved

• 1995

– 1149.5 approved

3.2 Overview of 1149 Family

Table 3.1: Overview of 1149 Family
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3.3 Purpose of Standard

• This standard defines test logic that can be included in an integrated circuit

to provide standardized approaches to

– testing the interconnections between integrated circuits once they have

been assembled onto a printed circuit board or other substrate

– testing the integrated circuit itself and

– Observing or modifying circuit activity during the component’s normal

operation.

• The test logic consists of a boundary-scan register and other building blocks

and is accessed through a Test Access Port (TAP).

3.4 Basic Chip Architecture for 1149.1

Figure 3.1: Basic Chip Architecture for 1149.1

• The top level schematic of the test logic defined by IEEE Std 1149.1 includes

three key blocks:
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– The TAP Controller:

∗ This responds to the control sequences supplied through the test ac-

cess port (TAP) and generates the clock and control signals required

for correct operation of the other circuit blocks.

– The Instruction Register:

∗ This shift register-based circuit is serially loaded with the instruction

that selects an operation to be performed.

– The Data Registers:

∗ These are a bank of shift register based circuits. The stimuli required

by an operation are serially loaded into the data registers selected by

the current instruction. Following execution of the operation, results

can be shifted out for examination. There are three data registers.

I. The Device ID Register (DIR) reads-out an identification

number which is hardwired into the chip.

II. The Bypass Register (BR) is a 1-cell pass-through register

which connects the TDI to the TDO with a 1-clock delay to give

test equipment easy access to another device in the test chain on the

same board.

III. The Boundary Scan Register (BSR), intercepts all the sig-

nals between the core-logic and the pins.

3.5 Boundary Scan Cell



CHAPTER 3. IEEE 1149.1/JTAG BOUNDARY SCAN STANDARD 14

Figure 3.2: Boundary Scan Cell

3.6 Boundary Scan Cell: Operation Modes

1. Normal: Mode Control=0

• PI -> PO

2. Scan: ShiftDR=1, ClockDR

• TDI -> ... -> SI -> SO -> ... -> TDO

3. Capture: ShiftDR=0, ClcokDR

• PI -> QA, OUT driven by PI or QB

4. Update: Mode Control=1, UpdateDR

• QA -> PO

3.7 TAP Controller
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Figure 3.3: TAP Controller

3.8 TAP Controller: Signals

• Test Clock Input (TCK): Clock for test logic

• Test Mode Select (TMS): Switches system from functional to test mode.

• Test Data Input (TDI): Accepts serial test data and instructions used to

shift in vectors or one of many test instructions.

• Test Data Output (TDO): Serially shifts out test results captured in bound-

ary scan chain.

• Test Reset (TRST*): Optional asynchronous TAP controller reset.

• The other signals, Reset, Select and Enable are distributed as follows:

– Reset is distributed to the Instruction register and to the target Data

Register.

– Select is distributed to the output multiplexer.

– Enable is distributed to the output driver amplifier.
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3.9 TAP Controller: Distribution of Signals

Figure 3.4: Distribution of Signals

3.10 TAP Controller: State Diagram

Figure 3.5: State Diagram of TAP Controller
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3.11 TAP Controller: State Description

• Test-Logic-Reset: normal mode

• Run-Test/Idle: wait for internal test such as BIST

• Select-DR-Scan: initiate a data-scan sequence

• Capture-DR: load test data in parallel

• Shift-DR: load test data in series

• Exit1-DR: finish phase-1 shifting of data

• Pause-DR: temporarily hold the scan operation (allow the bus master to

reload data)

• Exit2-DR: finish phase-2 shifting of data

• Update-DR: parallel load from associated shift registers

3.12 IEEE 1149.1 Standards: Instruction Set

• EXTEST:

– Test interconnection between chips of board

• SAMPLE/PRELOAD:

– Sample and shift out data or shift in data only

• BYPASS:

– Bypass data through a chip

• Optional:

– INTEST, RUNBIST, CLAMP, IDCODE, USERCODE, HIGH-Z, etc.
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3.13 Boundary Scan Description Language (IEEE

1149.1b)

• Purpose:

– This provides a standard language for Boundary Scan device.

– To simplify a design work for Boundary Scan

∗ Automatic synthesis is possible

– To promote consistency throughout ASIC designers, device manufactur-

ers, foundries, test developers and ATE manufacturers

– For easy incorporation into software tools for test generation, analysis,

and failure diagnosis

– To reduce possibility of human error when employing boundary scan in

a design.

• Features of BSDL:

– Describes the testability features of boundary scan devices which are

compatible with 1149.1

– It’s a subset of VHDL

– Elements of a design which are absolutely mandatory for the 1149.1 and

system-logic are included in the language

∗ Example -BYPASS register, TAP controller, etc.

– BSDL may be used in a full or a partial VHDL environment
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CreateChipIOLogic Tool

Figure 4.1: Generic Architecture of Chip

4.1 Purpose and Scope

• Generation of padring netlist

• Generation of Muxing & Demuxing logic on the output and input path respec-

tively

19
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• Insert of Boundary Scan Register

• Generation of BSDL view

• Glue insertion

• PSL based assertion to test the Muxing logic

• IPXACT view generation

4.2 CreateChipIOLogic: Flow

Figure 4.2: CreateChipIOLogic Flow

4.3 CreateChipIOLogic: Input Files

4.3.1 I/O and BSR Verilog File

• Can be obtained from libraries or manually created.
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4.3.2 Excel Workbook

• Macro enabled environment provided with the tool to assist the designer in

creation of input excel file.

I have Added new functionality for finding duplicate ports in De-

muxing sheet of Input Excel Workbook by using VBA language.

4.4 CreateChipIOLogic: Generation Mechanism

• Generation mechanism can be sub-divided into

– Tool configuration

– Pad Ring generation

– Output Muxing

– Input Muxing

– BSR insertion

– Controlling Pad and BSR control signals

– BSDL (Boundary Scan Description Language) generation

– PSL generation

– Hierarchy structure

4.5 CreateChipIOLogic: Output Files

4.5.1 Verilog File

• CreateChipIOLogic generate Verilog files for each hierarchy defined in sheet.

CreateChipIOLogic also generate separate Verilog file for BSR and Top module

to instantiate all other hierarchy and BSR module.



CHAPTER 4. CREATECHIPIOLOGIC TOOL 22

4.5.2 PSL Views

• Property Specification Language (PSL) is a language developed by Accellera

for specifying properties or assertions about hardware designs. The properties

can then be simulated or formally verified. Since September 2004 the stan-

dardization on the language has been done in IEEE 1850 working group. In

September 2005, the IEEE 1850 Standard for Property Specification Language

(PSL) was announced.

• Property Specification Language aims to be used with multiple electronic sys-

tem design languages such as:

– VHDL (IEEE 1076),

– Verilog (IEEE 1364),

– System Verilog (IEEE 1800), and

– SystemC (IEEE 1666) by OSCI.

• PSL is a language for the formal specification of hardware. It is used to

describe properties that are required to hold in the design under verification.

PSL provides a means to write specifications that are both easy to read and

mathematically precise. It is intended to be used for functional specification on

the one hand and as input to functional verification tools on the other. Thus,

a PSL specification is an executable documentation of a hardware design.

4.5.3 BSDL (IEEE 1149.1b) Views

• The BSDL (Boundary Scan Description Language) language allows description

of the testability features in IEEE Std. 1149.1-1990 compliant devices. This

language can be used by tools that make use of those testability features.

Such tools include testability analysis, test generation and failure diagnosis.

Note that BSDL itself is not a general purpose hardware description language.
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With a BSDL description of a device and knowledge of the standard, it is

possible for tools to completely understand the data transport characteristics

of the device. With additional capabilities provided by VHDL, it is possible to

perform simulation, verification, compliance analysis, and synthesis functions.

Support for these functions is beyond the scope of BSDL alone.

4.5.4 Log File

• CreateChipIoLogic generates a log file. Log file contains information about

errors and warnings.

4.6 Advantages of CreateChipIoLogic vs. BSR

insertion by DC

• Ease of use

– Insertion of customized JTAG is easier as compared to usage of default

JTAG.

• Limitations are easy to control at RTL level

– For example some timing problems are easy to handle at RTL level while

inserting BSR.

• Architecture Control

– Full control on type of cell, structure and hierarchy.

• Reduced Effort

– No need to specify the IO specification again to DC as single sheet handles

Muxing, padring and BSR insertion.
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– No need to wait till synthesis of core for BSR insertion as Muxing, padring

and BSR insertion can be handled in parallel even if core is not complete.

4.7 Configurable Muxing Architecture

• CreateChipIOLogic implements simple NxN priority Muxing for modes.

• There is three type of Muxing structure is supported as shown below.

4.7.1 Simple Muxing Structure

Figure 4.3: Simple Muxing Structure

• There is only one Mux between any port of pad and Core in simple Muxing

structure as shown in Fig. 4.3

4.7.2 Muxing Chain
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Figure 4.4: Muxing Chain

• There are more than one Muxes between any port of pad and Core in Muxing

Chain structure as shown in Fig. 4.4 and also Multiple Mux can be added to

Select lines of Mux.

4.8 Supported Features

4.8.1 BSR insertion at RTL level

Figure 4.5: BSR Chain

• User defined BSR cells in Excel Customizable chain order.
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• BSR cell is inserted in between PAD cell and Mux/Demux/Core where pad

inputs and output ports getting connected with Mux/Demux/Core are con-

nected on the boundary of BSR register.

4.8.2 Dedicated excel based control for pad special signals

Figure 4.6: Pad Special Signal

• Enables better pin to pin control for pad signals.

• Pad ports can also be tied globally, as well as in groups.

4.8.3 Glue insertion and IPXACT component view genera-

tion

• Supported for insertion of combinational glues directly from excel sheet.

• Act a good container for last minutes changes.
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Figure 4.7: Glue Insertion

4.8.4 Multiple Logical Hierarchy

• CreateChipIOLogic support three type of hierarchy structures.

4.8.4.1 Hierarchy Type I

• CreateChipIOLogic tool generate only single Verilog file for IO ring and IO

Muxing logic in Hierarchy Type I. If BSR is inserted, it generate separate BSR

Verilog file.

4.8.4.2 Hierarchy Type II

• CreateChipIOLogic tool generate one Verilog file for IO ring and it generate

Verilog files for each Mux Mode in Hierarchy Type II. If BSR is inserted, it

generate separate BSR Verilog file.

4.8.4.3 Hierarchy Type III

• CreateChipIOLogic tool generate one Verilog file for IO ring and it generate

Verilog files for each Mux Mode and that all Mux Modes module is define in
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one Verilog file in Hierarchy Type III. If BSR is inserted, it generate separate

BSR Verilog file.

4.8.5 Support to STM Projects

• I provided support to different division for different projects in IO ring gener-

ation activity.
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Regression Testing

5.1 What is Regression Testing?

• If a piece of CAD tool code is modified for any reason testing needs to be done

to ensure that it works as specified and that it has not negatively impacted any

functionality that it offered previously. This is known as Regression Testing.

• Regression Testing attempts to verify:

– That the application works as specified even after the changes/additions

/modification was made to it.

– The original functionality continues to work as specified even after changes

/additions/modification to the CAD tool application.

– The changes/additions/modification to the CAD tool application has not

introduced any new bugs.

5.2 When is Regression Testing necessary?

• Regression Testing plays an important role in any Scenario where a change has

been made to a previously tested tool code. Regression Testing is hence an

29
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important aspect in various Software Methodologies where tool code changes

enhancements occur frequently.

• Any CAD tool Development Project is invariably faced with requests for

changing Design, code, features or all of them.

• Some Development Methodologies embrace change.

• For example ’Extreme Programming’ Methodology advocates applying small

incremental changes to the system based on the end user feedback.

• Each change implies more Regression Testing needs to be done to ensure that

the System meets the Project Goals.

5.3 Why is Regression Testing important?

• Any tool code change can cause existing functionality to break. Changes to a

tool component could impact dependent Components.

• It is commonly observed that a tool code fix could cause other bugs.

• All this affects the quality and reliability of the system. Hence Regression

Testing, since it aims to verify all this, is very important

5.4 Regression Testing - What to Test?

• Since Regression Testing tends to verify the tool application after a change has

been made everything that may be impacted by the change should be tested

during Regression Testing. Generally the following areas are covered during

Regression Testing:

– Any functionality that was addressed by the change

– Original Functionality of the tool
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– Performance of the tool after the change was introduced

5.5 Regression Testing - How to Test?

• Like any other Testing Regression Testing Needs proper planning. For an

Effective Regression Testing to be done the following ingredients are necessary.

5.5.1 Create a Regression Test Plan

– Test Plan identified Focus Areas, Strategy, Test Entry and Exit Criteria.

It can also outline Testing Prerequisites, Responsibilities, etc.

5.5.2 Create Test Cases

Figure 5.1: Test Case Flow

– Test Cases that cover all the necessary areas are important. They de-

scribe what to Test, Steps needed to test, Inputs and Expected Outputs.

Test Cases used for Regression Testing should specifically cover the func-

tionality addressed by the change and all components affected by the
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change. The Regression Test case may also include the testing of the

performance of the components and the application after the change(s)

were done.

5.5.3 Error Tracking

– As in all other Testing Levels and Types it is important Errors are tracked

systematically, otherwise it undermines the Testing Effort. Error tracking

is done by ncsim, Formality and Design Compiler tool.

5.5.3.1 Ncsim (Cadence):

∗ Check syntax of verilog file (generated by CreateChipIOLogic) by

using ncsim (Cadence tool).

5.5.3.2 Formality (Synopsys):

∗ Formality is an application that uses formal techniques to prove or

disprove the functional equivalence of two designs or two technology

libraries. For example, you can use Formality to compare a gate-level

netlist to its register transfer level (RTL) source or to a modified ver-

sion of that gate-level netlist. After the comparison, Formality re-

ports whether the two designs or technology libraries are functionally

equivalent. The Formality tool can significantly reduce your design

cycle by providing an alternative to simulation for regression testing.

∗ The techniques Formality uses are static and do not require simula-

tion vectors. Consequently, for design verification you only need to

provide a functionally correct, or “golden,” design (called the refer-

ence design) and a modified version of the design (called the imple-

mentation design). By comparing the implementation design against

the reference design, you can determine whether they are functionally
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equivalent to each other. Technology library verification is similar ex-

cept that each cell in the implementation library is compared against

each cell in the reference library one cell at a time.

∗ Todays design methodology requires regression testing at several

points in the design process. Currently, traditional simulation tools,

such as event-driven and cycle-based simulators, handle this regres-

sion testing. However, as designs become larger and more complex

and require more simulation vectors, regression testing with tradi-

tional simulation tools becomes a bottleneck in the design flow. The

bottleneck is caused by these factors:

· Large numbers of simulation vectors are needed to provide con-

fidence that the design meets the required specifications.

· Logic simulators must process more events for each stimulus vec-

tor because of increased design size and complexity.

· More vectors and larger design sizes cause increased memory

swapping, slowing down performance.

∗ Formality fits well within established electronic design automation

(EDA) methodologies used to create large-scale designs, because it

can replace the traditional simulation tools used for regression test-

ing. This replacement, combined with the continued use of static

timing analysis tools, gives you two distinct advantages: significantly

reduced verification times and complete verification.

∗ Reduced verification times occur because Formality requires no input

vectors. Reducing gate-level simulation time means you can spend

more time verifying the initial golden RTL design to get better func-

tional coverage. Formality maintains that coverage through all sub-

sequent regressions.

∗ Complete verification, the second advantage, means 100 percent equiv-
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alence over the entire vector space. Complete verification is signifi-

cant because you no longer have to compromise the subset of vectors

for gate-level simulation.

∗ The following list summarizes the Formality features:

· Proves two designs or technology libraries are functionally equiv-

alent, faster than verification using event-driven simulators

· Provides complete verification (not vector-dependent).

· Performs RTL to RTL, RTL to gate, and gate to gate design

verifications.

· Performs automatic hierarchical verification.

· Verifies a wide range of design transforms or modifications, in-

cluding pipeline retiming and reencoded finite state machines.

· Offers schematic views and isolated cone of logic views that sup-

port location of design discrepancies.

5.5.3.3 Design Compiler (Synopsys):

∗ The Design Compiler tool is the core of the Synopsys synthesis prod-

ucts. Design Compiler optimizes designs to provide the smallest

and fastest logical representation of a given function. It comprises

tools that synthesize your HDL designs into optimized technology-

dependent, gate-level designs. It supports a wide range of flat and

hierarchical design styles and can optimize both combinational and

sequential designs for speed, area, and power.The resulting gate-level

netlist is a completely structural description with only standard cells

at the leaves of the design. Internally, a synthesis tool performs

many steps including high-level RTL optimizations, RTL to unop-

timized boolean logic, technology independent optimizations, and

finally technology mapping to the available standard cells.
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∗ Synopsys provides a library called Design Ware which includes highly

optimized RTL for arithmetic building blocks. For example, the

Design Ware libraries contain adders, multipliers, comparators, and

shifters. DC can automatically determine when to use Design Ware

components and it can then efficiently synthesize these components

into gate-level implementations.

∗ Design Compiler is used for logic synthesis, which is the process of

converting a design description written in a hardware description

language such as Verilog or VHDL into an optimized gate-level netlist

mapped to a specific technology library.
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Conclusion

Manual (Human) design can occur with small no of transistors. As no of transistor

increase through SSI and VLSI, the amount of evaluation and decision making would

become overwhelming. So, Computer-aided Design (CAD) Tool automates this

whole process and it reduce TTM. CAD tools allow large problem to be solved.

After modifying any CAD tool code, it can cause existing functionality to break.

Changes to a tool component could impact dependent components. It is commonly

observed that a tool code fix could cause bugs, so regression testing is necessary.

Regression testing of CreateChipIOLogic tool needs to be done to ensure that (i)

there are no any syntax errors in generated Verilog file. (ii) Generated output logic

is correct or not according to their inputs. (iii) Generated RTL code is synthesizable

or not.
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