

Synthesis And APR Of Data-Path Module In Sensor

Hub On 32nm/22nm Technology

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGG.

(VLSI DESIGN)

UNDER THE GUIDANCE OF

Mr. Purav K Bhatt

Submitted by

Khamar Tapaswi J.(10MECV24)

Department of Electronics & Communication Engineering

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,

AHMEDABAD 382481

Synthesis And APR Of Data-Path Module In Sensor

Hub On 32nm/22nm Technology

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGG.

(VLSI DESIGN)

UNDER THE GUIDANCE OF

Mr. Purav K Bhatt

Submitted by

Khamar Tapaswi J.(10MECV24)

Department of Electronics & Communication Engineering

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,

AHMEDABAD 382481

CERTIFICATE

This is to certify that the M.Tech Dissertation report entitled “Synthesis And APR Of

Data-Path Module Of Sensor Hub On 32nm/22nm technology” submitted by Khamar

Tapaswi J. (Roll no 10MECV24) towards the partial fulfillment of the requirements for

Master Of Technology (Electronics and Communication Engineering) in the field of VLSI

Design of Institute Of Technology,Nirma University, Ahmedabad at Intel Corporation,

Bangalore is the record of the work carried out by him under our supervision and guidance. The

work submitted has in our opinion reached a level required for being accepted for examination.

The results embodied in this Dissertation Project Work to the best of our knowledge have not

been submitted to any other University or Institute for award of any degree or diploma.

Date:

Project Guide

Mr. Purav Bhatt

Component Design Engineer,

Intel Corporation,

Bangalore, India.

Internal Project Guide

Dr. N.M. Devashrayee

Institute of Technology,

Nirma University,

Ahmedabad, India.

Project Manager

Mr. Srinivas Lingam

Engineering Manager,

Intel Corporation,

Bangalore, India.

Ashok S. Ranade

EE Department

Institute of Technology,

Nirma University,

Ahmedabad, India.

ACKNOWLEDGEMENT

First and foremost, I would like to express my hearty thanks and indebtedness to my guide

Mr.Purav Bhatt for his enormous help and encouragement throughout the course of this thesis,

who happens to be my role model, has always given me a real example of how a researcher

should be.

I express my soulful gratitude to Mr.Sumeet Aggarwal for their invaluable suggestion for my

training. I specially want to acknowledge Intel Corporation who gave me opportunity to do my

thesis work and provide all resources required for my project work. I also want to acknowledge

Mrs Usha Mehta, Prof. B.G. Upadhyay, Prof. H.A.Patel, Mr. Panayil Samuel, Mr. Nagendra

Gajjar, Mrs. Krupaxi Patel, Mr. Anuj Kumar Mevada, Mr Maulin Sheth, Prof. T Ram, Mr S.

Perumal and Dr. C.G. Patel without whom this project work could not have seen the daylight and

helping me with his constant involvement during my project tenure directly or indirectly.

I would like to express my sincere gratitude to Dr. N.M. Devashrayee (Program Co-Ordinator,

MTech VLSI design, Nirma University, Ahmedabad) for his continuous guidance, support and

enthusiasm.

I acknowledge gratefully the help and suggestion of colleagues at Intel Corporation, friends

mentors and each of them who in spite of their busy schedule and huge workload, were always

eager to help me with their warm attitude and technical knowledge.

Finally, Tons of word won’t be enougsh to express my deepest reverence to my family without

whom I wouldn’t have been able to reach at this position.

Khamar Tapaswi J.

10MECV24

Abstract

 The thesis produced here is the outcome of performing RTL to GDS operation of the

industry’s most talked digital circuit, i.e. Sensors. The thesis revolves around the entire SoC

design cycle. It explores the entire design cycle step by step starting from RTL coding to the

Sign-Off checks. The digital circuit presented here is essentially a datapath circuit which is

responsible for taking in the data from general purpose Inputs and giving out the data to

Outputs.

 The most important challenge faced by the industry is Power consumption. The thesis also

explores the optimization strategies that can be used to optimize the Power. Together with

the Power, TTM(Time To Market) is also an important aspect. The work done also focusses

on the optimizing the digital circuit so that the tool is having only the required data to handle

and thus the time of execution can be reduced.

 The Engineering Change Order script is developed to perform the ECO operation which can

be used by any tool. The script is a tcl utility which utilizes the result of performing FEV,

takes in the original netlist and the modified RTL. The script automatically changes the

netlist as per the modified RTL.

Contents

Sr. No.

Chapter Name

Page No.

1. Introduction & Background Of SoC Design 1

2. Synthesis Using Design Compiler Basics 10

3. Optimization Strategies 18

4. Synthesis Outputs 24

5. Automatic Place And Route 27

6. Results Of Sign-Off Checks 35

7. Conclusion 39

8. Bibliography 41

List of figures

Sr. No. Figure Description

Figure 1 Design Implementation Flow

Figure 2 Design Compiler Implementation Flow

Figure 3 Load/Driver Constraint Example

Figure 4 Timing Goal Example

Figure 5 Boundary Optimization

Figure 6 Automatic Place And Route Flow

Figure 7 Timing Sign Off Results

Figure 8 Power Sign Off Results

Figure 9 Functional Sign Off

Figure 10 Layout Versus Schematic Sign Off

Figure 11 Electrical Rule Check Sign Off

List Of Abbreviations

1. SoC – System On Chip

2. DC – Design Compiler

3. ICC – Integrated Circuit Compiler

4. CTS – Clock Tree Synthesis

5. PNR – Placement And Routing

6. APR – Automatic Place & Route

7. AU-BO – Automatic Ungrouping And Boundary Optimization

8. LVS – Layout Versus Schematic

9. ERC – Electrical Rule Check

10. LEC – Logic Equivalence Check

11. FEV – Functional/Formal Equivalence Verification

12. PD – Physical Design

13. SD – Structural Design

14. ECO – Engineering Change Order

15. SDC – Synopsys Design Constraints

16. TEs – Timing Exceptions

Synthesis And APR Of Datapath Module 2012

Page | 1

Introduction & Background of SoC

Design

Synthesis And APR Of Datapath Module 2012

Page | 2

1.1 Introduction

As deep sub-micron semiconductor geometries shrink, traditional methods of chip design have

become increasingly difficult. In addition, an increasing numbers of transistors are being packed

into the same die-size, making validation of the design extremely hard, if not impossible.

Furthermore, under critical “time-to-market” pressure the chip design cycle has remained the

same, or is constantly being reduced. To counteract these problems, new methods and tools have

evolved to facilitate the SOC design methodology.

The main function of this chapter is to bring to the forefront different stages involved in chip

design as we move deeper into the sub-micron realm. Various techniques that improve the design

flow are also discussed. Since the last edition of this book, Synopsys introduced another tool

called Physical Compiler. In the tool, synthesis and placement now are more tightly coupled.

Consequently, there is a dramatic change in the traditional design flow. This chapter stresses the

importance of the new techniques to the reader, and explains the necessity of these techniques in

the design flow to achieve the maximum benefit, by reducing the overall cycle time. Since the

tool is fairly new to the IC design world, and as yet, not embraced 100% by the SOC design

community, both the traditional and the new flows are discussed.

This chapter focuses on the entire synthesis based SOC design flow methodology, from RTL

coding to the final tape-out. Both the traditional and the Physical Compiler based flow are

discussed.

1.1.1 Traditional Design Flow

The traditional SOC design flow contains the steps outlined below. Flow chart relating to the

design flow described below. Subsequent chapters describe in detail synthesis related topics.

1. Architectural and electrical specification.

2. RTL coding in HDL.

3. DFT memory BIST insertion, for designs containing memory elements.

4. Exhaustive dynamic simulation of the design, in order to verify the functionality of the

design.

5. Design environment setting. This includes the technology library to be used, along with

other environmental attributes.

6. Constraining and synthesizing the design with scan insertion (and optional JTAG) using

Design Compiler.

7. Block level static timing analysis, using Design Compiler’s built-in static timing analysis

engine.

Synthesis And APR Of Datapath Module 2012

Page | 3

8. Formal verification of the design. RTL compared against the synthesized netlist, using

Formality.

9. Pre-layout static timing analysis on the full design through PrimeTime.

10. Forward annotation of timing constraints to the layout tool.

11. Initial floorplanning with timing driven placement of cells, clock tree insertion and global

routing

12. Transfer of clock tree to the original design (netlist) residing in Design Compiler.

13. In-place optimization of the design in Design Compiler.

14. Formal verification between the synthesized netlist and clock tree inserted netlist, using

Formality.

15. Extraction of estimated timing delays from the layout after the global routing step.

16. Back annotation of estimated timing data from the global routed design, to PrimeTime.

17. Static timing analysis in PrimeTime, using the estimated delays extracted after

performing global route.

18. Detailed routing of the design.

19. Extraction of real timing delays from the detailed routed design.

20. Back annotation of the real extracted timing data to PrimeTime.

21. Post-layout static timing analysis using PrimeTime.

22. Functional gate-level simulation of the design with post-layout timing (if desired).

23. Tape out after LVS and DRC verification.

The acronyms STA and CT represent static timing analysis and clock

tree respectively. DC represents Design Compiler.

1.1.1 Specification and RTL Coding

Chip design commences with the conception of an idea dictated by the market. These ideas are

then translated into architectural and electrical specifications. The architectural specifications

define the functionality and partitioning of the chip into several manageable blocks, while the

electrical specifications define the relationship between the blocks in terms of timing

information. The next phase involves the implementation of these specifications. In the past this

was achieved by manually drawing the schematics, utilizing the components found in a cell

library. This process was time consuming and was impractical for design reuse. To overcome

this problem, hardware description languages (HDL) were developed. As the name suggests, the

functionality of the design is coded using the HDL. There are two main HDLs in use today,

Verilog and VHDL. Both languages perform the same function, each having their own

advantages and disadvantages. There are three levels of abstraction that may be used to represent

the design; Behavioral, RTL (Register Transfer Level) and Structural. The Behavioral level code

is at a higher level of abstraction. It is used primarily for translating the architectural

Synthesis And APR Of Datapath Module 2012

Page | 4

specification, to a code that can be simulated. Behavioral coding is initially performed to explore

the authenticity and feasibility of the chosen implementation for the design. Conversely, the RTL

coding actually describes and infers the structural components and their connections. This type

of coding is used to describe the functionality of the design and is synthesizable to form a

structural netlist. This netlist comprises of the components from a target library and their

respective connections; very similar to the schematic based approach. The design is coded using

the RTL style, in either Verilog or VHDL, or both. It can also be partitioned if necessary, into a

number of smaller blocks to form a hierarchy, with a top-level block connecting all lower level

blocks. Synopsys recently introduced Behavior Compiler, capable of synthesizing Behavior

level style of coding. Since this is a major topic of discussion and is not relevant to this book,

only RTL related synthesis is covered in this book.

 1.1.2 Dynamic Simulation

The next step is to check the functionality of the design by simulating the RTL code. All

currently available simulators are capable of simulating the behavior level as well as RTL level

coding styles. In addition, they are also used to simulate the mapped gate-level design. The test

bench is normally written in behavior HDL while the actual design is coded in RTL. Usually the

simulators are language dependent (either Verilog or VHDL), although there are a few

simulators in the market, capable of simulating a mixed HDL design. The purpose of the test

bench is to provide necessary stimuli to the design. It is important to note that the coverage of the

design is totally dependent on the number of tests performed and the quality of the test bench.

This is the reason why a sound test bench is extremely critical to the design. During the

simulation of the RTL, the component (or gate) timing is not considered. Therefore, to minimize

the difference between the RTL simulation and the synthesized gate-level simulation at a later

stage, the delays are usually coded within the RTL source, usually for sequential elements.

1.1.3 Constraints, Synthesis and Scan Insertion

For a long time, the HDLs were used for logic verification. Designers would manually translate

the HDL into schematics and draw the interconnections between the components to produce a

gate-level netlist. With the advent of synthesis tools, this manual task has been rendered

obsolete. The tool has taken over and performs the task of reducing the RTL to the gate-level

netlist. This process is termed as synthesis. Synopsys's Design Compiler (from now on termed

as, DC) is the de-facto standard and by far the most popular synthesis tool in the SOC industry

today. Synthesizing a design is an iterative process and begins with defining timing constraints

for each block of the design. These timing constraints define the relationship of each signal with

respect to the clock input for a particular block. In addition to the constraints, a file defining the

synthesis environment is also needed. The environment file specifies the technology cell libraries

Synthesis And APR Of Datapath Module 2012

Page | 5

and other relevant information that DC uses during synthesis. DC reads the RTL code of the

design and using the timing constraints, synthesizes the code to structural level, thereby

producing a mapped gate level netlist. Usually, for small blocks of a design, DCs internal static

timing analysis is used for reporting the timing information of the synthesized design. DC tries to

optimize the design to meet the specified timing constraints. Further steps may be necessary if

timing requirements are not met. Most designs today, incorporate design-for-test (DFT) logic to

test their functionality, after the chip is fabricated. The DFT consists of logic and memory BIST

(built-in-self-test), scan logic and Boundary Scan logic (JTAG) etc. The logic and memory BIST

comprises of synthesizable RTL that is based upon controller logic and is incorporated in the

design before synthesis. There are tools available in the market that may be used to generate the

BIST controller and surrounding logic. Unfortunately, Synopsys does not provide this capability.

The scan insertion may be performed using the test ready compile feature of DC. This procedure

maps the RTL directly to scan-flops, before linking them in a scan-chain. An advantage of using

this feature is its ability to enable DC to take the scan-flop timing into account while

synthesizing. This technique is important since the scan-flops generally have different delays

associated with them as compared to their non-scan equivalent flops (or normal flops). JTAG or

boundary scan is primarily used for testing the board connections, without unplugging the chip

from the board. The JTAG controller and surrounding logic may also be generated directly by

DC.

1.1.4 Formal Verification

The concept of formal verification is fairly new to the SOC design community. Formal

verification techniques perform validation of a design using mathematical methods without the

need for technological considerations, such as timing and physical effects. They check for logical

functions of a design by comparing it against the reference design. A number of EDA tool

vendors have developed the formal verification tools. However, only recently, Synopsys also

introduced to the market its own formal verification tool called Formality. The main difference

between formal methods and dynamic simulation is that former technique verifies the design by

proving that the structure and functionality of two designs are logically equivalent. Dynamic

simulation methods can only probe certain paths of the design that are sensitized, thus may not

catch a problem present elsewhere. In addition, formal methods consume negligible amount of

time as compared to dynamic simulation. The purpose of the formal verification in the design

flow is to validate the RTL against RTL, gate-level netlist against the RTL code, or the

comparison between gate-level to gate-level netlists. The RTL to RTL verification is used to

validate the new RTL against the old functionally correct RTL. This is usually performed for

designs that are subject to frequent changes in order to accommodate additional features. When

these features are added to the source RTL, there is always a risk of breaking the old functionally

correct feature. To prevent this, formal verification may be performed between the old RTL and

the new RTL to check the validity of the old functionality. The RTL to gate-level verification is

Synthesis And APR Of Datapath Module 2012

Page | 6

used to ascertain that the logic has been synthesized accurately by DC. Since the RTL is

dynamically simulated to be functionally correct, the formal verification of the design between

the RTL and the scan inserted gate-level netlist assures us that the gate-level also has the same

functionality. In this instance if we were to use the dynamic simulation method to verify the

gate-level, it would have taken a long time (days and weeks, depending on the size of the design)

to verify the design. In comparison, the formal method would take a few hours to perform a

similar verification. The last part involves verifying the gate-level netlist against the gate-level

netlist. This too is a significant step for the verification process, since it is mainly used to verify

what has gone into the layout versus what has come out of the layout. What comes out of the

layout is obviously the clock tree inserted netlist (flat or hierarchical). This means that the

original netlist that goes into the layout tool is modified. The formal technique is used to verify

the logic equivalency of the modified netlist against the original netlist.

1.1.5 Static Timing Analysis using PrimeTime

As previously mentioned, the block level static timing analysis is done using DC. Although, the

chip-level static timing can be performed using the above approach, it is recommended that

PrimeTime, be used instead. PrimeTime is the Synopsys stand-alone sign-off quality static

timing analysis tool that is capable of performing extremely fast static timing analysis on full

chip-level designs. It provides a Tcl interface that provides a powerful environment for analysis

and debugging of designs. The static timing analysis, to some extent, is the most important step

in the whole SOC design process. This analysis allows the user to exhaustively analyze all

critical paths of the design and express it in an orderly report. Furthermore, the report can also

contain other debugging information like the fanout or capacitive loading of each net. The static

timing is performed both for the pre and post-layout gate-level netlist. In the pre-layout mode,

PrimeTime uses the wire load models specified in the library to estimate the net delays. During

this, the same timing constraints that were fed to DC previously are also fed to PrimeTime,

specifying the relationship between the primary I/O signals and the clock. If the timing for all

critical paths is acceptable, then a constraints file may be written out from PrimeTime or DC for

the purpose of forward annotation to the layout tool. This constraint file in SDF format specifies

the timing between each group of logic that the layout tool uses, in order to perform the timing

driven placement of cells. In the post-layout mode, the actual extracted delays are back annotated

to PrimeTime to provide realistic delay calculation. These delays consist of the net capacitances

and interconnect RC delays. Similar to synthesis, static timing analysis is also an iterative

process. It is closely linked with the placement and routing of the chip. This operation is usually

performed a number of times until the timing requirements are satisfied.

Synthesis And APR Of Datapath Module 2012

Page | 7

1.1.6 Placement, Routing and Verification

As the name suggests, the layout tool performs the placement and routing. There are a number of

methods in which this step could be performed. However, only issues related to synthesis are

discussed in this section. The quality of floorplan and placement is more critical than the actual

routing. Optimal cell placement location, not only speeds up the final routing, but also produces

superior results in terms of timing and reduced congestion. As explained previously, the

constraint file is used to perform timing driven placement. The timing driven placement method

forces the layout tool to place the cells according to the criticality of the timing between the cells.

After the placement of cells, the clock tree is inserted in the design by the layout tool. The clock

tree insertion is optional and depends solely on the design and users preference. Users may opt to

use more traditional methods of routing the clock network, for example, using fishbone/spine

structure for the clocks in order to reduce the total delay and skew of the clock. As technologies

shrink, the spine approach is getting more difficult to implement due to the increase in resistance

(thus, RC delays) of the interconnect wires. It is therefore the intent of this section (and the entire

book) to stress solely on the clock tree synthesis approach. At this stage an additional step is

necessary to complete the clock tree insertion. As mentioned above, the layout tool inserted the

clock tree in the design after the placement of cells. Therefore, the original netlist that was

generated from DC (and fed to the layout tool), lacks the clock tree information (essentially the

whole clock tree network, including buffers and nets). Therefore, the clock tree must be re-

inserted in the original netlist and formally verified. Some layout tools provide direct interface to

perform this step. For the sake of simplicity, assume that the clock tree insertion to the original

netlist has been performed. The layout tool generally performs routing in two phases: global

routing and detailed routing. After placement, the design is globally routed to determine the

quality of placement, and to provide estimated delays approximating the real delay values of the

post-routed (after detailed routing) design. If the cell placement is not optimal, the global routing

will take a longer time to complete, as compared to placing the cells. Bad placement also affects

the overall timing of the design. Therefore, to minimize the number of synthesis-layout iterations

and improve placement quality, the timing information is extracted from the layout, after the

global routing phase. Although, these delay numbers are not as accurate as the numbers extracted

after detailed routing, they do provide a fair idea of the post-routed timing. The estimated delays

are back annotated to PrimeTime for analysis, and only when the timing is considered

satisfactory, the remaining process is allowed to proceed. Detailed routing is the final step that is

performed by the layout tool. After detailed route is complete, the real timing delays of the chip

are extracted, and plugged into PrimeTime for analysis. These steps are iterative and depend on

the timing margins of the design. If the design fails timing requirements, post-layout

optimization is performed on the design before undergoing another iteration of layout. If the

design passes static timing analysis, it is ready to undergo LVS (layout versus schematic) and

DRC (design rule checking) before tape-out. It must be noted that all steps discussed above can

also be applied for hierarchical place and route. In other words, one can repeat these steps for

Synthesis And APR Of Datapath Module 2012

Page | 8

each sub-block of the design before placing the sub-blocks together in the final layout and

routing between the sub-blocks.

1.1.7 Engineering Change Order

This step is an exception to the normal design flow and should not be confused with the regular

design cycle. Therefore, this step will not be explained in subsequent chapters. Many designers

regard engineering change order (ECO) as the change required in the netlist at the very last stage

of the SOC design flow. For instance, ECO is performed when there is a hardware bug

encountered in the design at the very last stage (say, after tape-out), and it is necessary to

perform a metal mask change by re-routing a small portion of the design. As a result ECO is

performed on a small portion of the chip to prevent disturbing the placement and routing of the

rest of the chip, thereby preserving the rest of the chips timing. Only the part that is affected is

modified. This can be achieved, either by targeting the spare gates incorporated in the chip, or by

routing only some of the metal layers. This process is termed as metal mask change. Normally,

this procedure is executed for changes that require less than 10% modification of the whole chip

(or a block, if doing hierarchical place and route). If the bug fix requires more than 10% change

then it is best to repeat the whole procedure and re-route the chip (or the block). The latest

version of DC incorporates the ECO compiler. It makes use of the mathematical algorithms (also

used by the formal verification techniques), to automatically implement the required changes.

Making use of the ECO compiler provides designers an alternative to the tedium of manually

inserting the required changes in the netlist, thus minimizing the turn-around time of the chip.

Some layout tools have incorporated the ECO algorithm within their tool. The layout tool has a

built-in advantage that it does not suffer from the limitation of crossing the hierarchical

boundaries associated with a design. Also, the layout tool benefits from knowing the placement

location of the spare cells (normally included by the designers in the design), thus can target the

nearest location of spare cells in order to implement the required ECO changes and achieve

minimized routing.

1.2 Chapter Summary

In this chapter the SOC design flows incorporating the latest tools and technology for very deep

sub-micron (VDSM) technologies were reviewed. The flow started with the definition of

specification, and ended with physical layout. The significance was placed on logic and physical

synthesis related topics. Also introduced was a new concept of physical synthesis as applicable

to the design flow to shorten the design cycle of the chip. The need to perform physical synthesis

was emphasized to get a better estimation of delays and shorten the time-to-market. ween the

synthesis and the simulation environments. Other times, the control is needed simply to direct

DC to map to certain types of components; or for embedding the constraints and attributes

Synthesis And APR Of Datapath Module 2012

Page | 9

directly in the HDL source code. DC provides a number of compiler directives targeted

specifically for Verilog and VHDL design entry formats. These directives provide the means to

control the outcome of synthesis, directly from the HDL source code. The directives are

specified as comments in the HDL code, but have specific meaning for DC. These special

comments alter the synthesis process, but have no effect on the simulation.

Synthesis And APR Of Datapath Module 2012

Page | 10

Synthesis Basics

Synthesis And APR Of Datapath Module 2012

Page | 11

2. Synthesis Using Design Compiler Basics

This chapter provides basic information about Design Compiler functions. The chapter presents

both high-level and basic synthesis design flows. Standard user tasks, from design preparation

and library specification to compile strategies, optimization, and results analysis, are introduced

as part of the basic synthesis design flow presentation. This chapter includes the following

sections: The High-Level Design Flow Running Design Compiler Support for Multicore

Technology Support for Multicorner-Multimode Designs. Figure 2 Basic High-Level Design

Flow Using the design flow shown in Figure 2, you perform the following steps:

1. Start by writing an HDL description (Verilog or VHDL) of your design. Use good

coding practices to facilitate successful Design Compiler synthesis of the design.

2. Perform design exploration and functional simulation in parallel.

Figure 1

Synthesis And APR Of Datapath Module 2012

Page | 12

3. In design exploration,we use Design Compiler to

(a) Implement specific design goals (design rules and optimization constraints)

(b) Carry out a preliminary, default synthesis (using only the Design Compiler default options).

If design exploration fails to meet timing goals by more than 15 percent, modify your design

goals and constraints, or improve the HDL code. Then repeat both design exploration and

functional simulation. In functional simulation, determine whether the design performs the

desired functions by using an appropriate simulation tool. If the design does not function as

required, you must modify the HDL code and repeat both design exploration and functional

simulation. Continue performing design exploration and functional simulation until the design is

functioning correctly and is within 15 percent of the timing goals.

3. Perform design implementation synthesis by using Design Compiler to meet design

goals. After synthesizing the design into a gate-level netlist, verify that the design meets your

goals. If the design does not meet your goals, generate and analyze various reports to determine

the techniques you might use to correct the problems.

After the design meets functionality, timing, and other design goals, complete the physical

design (either in-house or by sending it to your semiconductor vendor). Analyze the physical

designs performance by using back-annotated data. If the results do not meet design goals, return

to step 3. If the results meet your design goals, you are finished with the design cycle.

[Please Turn Over For The Figure]

Synthesis And APR Of Datapath Module 2012

Page | 13

Following is the flow of the Design compiler which describes more:-

1. Develop HDL Files:- The input design files for Design Compiler are often written

using a hardware description language (HDL) such as Verilog or VHDL. These design

descriptions need to be written carefully to achieve the best synthesis results possible. When

writing HDL code, you need to consider design data management, design partitioning, and your

HDL coding style. Partitioning and coding style directly affect the synthesis and optimization

processes. Note: This step is included in the flow, but it is not actually a Design Compiler step.

You do not create HDL files with the Design Compiler tools.

 2. Specify Libraries:- You specify the link, target, symbol, and synthetic libraries for

Design Compiler by using the link_library, target_library, symbol_library, and synthetic_library

commands. The link and target libraries are technology libraries that define the semiconductor

vendors set of cells and related information, such as cell names, cell pin names, delay arcs, pin

loading, design rules, and operating conditions. The symbol library defines the symbols for

Can Be Invoked Through Script

Most Important Of All

Figure 2

Synthesis And APR Of Datapath Module 2012

Page | 14

schematic viewing of the design. You need this library if you intend to use the Design Vision

GUI. In addition, you must specify any specially licensed DesignWare libraries by using the

synthetic_library command. (You do not need to specify the standard DesignWare library.)

 3. Read Design Design Compiler can read both RTL designs and gate-level netlists.

Design Compiler uses HDL Compiler to read Verilog and VHDL RTL designs. It has a

specialized netlist reader for reading Verilog and VHDL gate-level netlists. The specialized

netlist reader reads netlists faster and uses less memory than HDL Compiler. Design Compiler

provides the following ways to read design files: The analyze and elaborate commands The

read_file command The read_vhdl and read_verilog commands. These commands are derived

from the read_file -format VHDL and read_file -format verilog commands. Define Design

Environment Design Compiler requires that you model the environment of the design to be

synthesized. This model comprises the external operating conditions (manufacturing process,

temperature, and voltage), loads, drives, fanouts, and wire load models.

4. Set Design Constraints Design Compiler uses design rules and optimization

constraints to control the synthesis of the design. Design rules are provided in the vendor

technology library to ensure that the product meets specifications and works as intended. Typical

design rules constrain transition times (set_max_transition), fanout loads (set_max_fanout), and

capacitances (set_max_capacitance). These rules specify technology requirements that you

cannot violate. (You can, however, specify stricter constraints.) Optimization constraints define

the design goals for timing (clocks, clock skews, input delays, and output delays) and area

(maximum area). In the optimization process, Design Compiler attempts to meet these goals, but

no design rules are violated by the process. You define these constraints by using commands

such as those listed under this step in Figure 2. To optimize a design correctly, you must set

realistic constraints. Note: Design constraint settings are influenced by the compile strategy you

choose.

Figure 3

Synthesis And APR Of Datapath Module 2012

Page | 15

5. Select Compile Strategy The two basic compile strategies that you can use to

optimize hierarchical designs are referred to as top down and bottom up. In the top-down

strategy, the top-level design and all its sub-designs are compiled together. All environment and

constraint settings are defined with respect to the top-level design. Although this strategy

automatically takes care of inter-block dependencies, the method is not practical for large

designs because all designs must reside in memory at the same time. In the bottom-up strategy,

individual subdesigns are constrained and compiled separately. After successful compilation, the

designs are assigned the dont_touch attribute to prevent further changes to them during

subsequent compile phases. Then the compiled subdesigns are assembled to compose the designs

of the next higher level of the hierarchy (any higher-level design can also incorporate unmapped

logic), and these designs are compiled. This compilation process is continued up through the

hierarchy until the top-level design is synthesized. This method lets you compile large designs

because Design Compiler does not need to load all the uncompiled subdesigns into memory at

the same time. At each stage, however, you must estimate the interblock constraints, and

typically you must iterate the compilations, improving these estimates, until all subdesign

interfaces are stable. Each strategy has its advantages and disadvantages, depending on your

particular designs and design goals. You can use either strategy to process the entire design, or

you can mix strategies, using the most appropriate strategy for each subdesign.

Note: The compile strategy you choose affects your choice of design constraints and the values

you set. To Optimize the Design You use the compile_ultra command or compile command to

invoke the Design Compiler synthesis and optimization processes. Several compile options are

available with both commands. In particular, the map_effort option of the compile command can

be set to medium or high. In a default compile, when you are performing design exploration, you

use the medium map_effort option of the compile command. Because this option is the default,

you do not need to specify map_effort in the compile command. In a final design implementation

compile, you might want to set map_effort to high. Often setting map_effort to medium is

sufficient. For designs that have significantly tight timing constraints, you can invoke a single

DC Ultra command, compile_ultra, for better quality of results (QoR). The command is a push-

button solution for timing-critical, high performance designs and encapsulates DC Ultra

strategies into a single command.

Figure 4

Synthesis And APR Of Datapath Module 2012

Page | 16

6. Analyze and Resolve Design Problems Design Compiler can generate numerous

reports on the results of a design synthesis and optimization, for example, area, constraint, and

timing reports. You use reports to analyze and resolve any design problems or to improve

synthesis results. You can use the check_design command to check the synthesized design for

consistency. Other check_ commands are available. To Save the Design Database You use the

write command to save the synthesized designs. Remember that Design Compiler does not

automatically save designs before exiting. You can also save in a script file the design attributes

and constraints used during synthesis. Script files are ideal for managing your design attributes

and constraints. The script contains comments that identify each of the steps in the flow. Some of

the script command options and arguments have not yet been explained in this manual.

Nevertheless, from the previous discussion of the basic synthesis flow, you can begin to

understand this example of a top-down compile.

Top-Down Compile Script Example

 /* specify the libraries */

set target_library my_lib.db

set symbol_library my_lib.sdb

set link_library [list "*" $target_library]

/* read the design */

read_verilog Adder16.v

/* define the design environment */

set_operating_conditions WCCOM

set_wire_load_model "10x10"

set_load 2.2 sout set_load 1.5 cout

set_driving_cell -lib_cell FD1 [all_inputs] set_drive 0 clk

/* set the optimization constraints */

create_clock clk -period 10

set_input_delay -max 1.35 -clock clk {ain bin}

set_input_delay -max 3.5 -clock clk cin

set_output_delay -max 2.4 -clock clk cout

set_max_area 0

/* map and optimize the design */

compile

/* analyze and debug the design */

report_constraint -all_violators report_area

/* save the design database */

write -format ddc -hierarchy -output Adder16.ddc

Synthesis And APR Of Datapath Module 2012

Page | 17

We can execute these commands in any of the following ways: Enter dc_shell and type each

command in the order shown in the example. Enter dc_shell and execute the script file, using the

source command. For example, if you are running Design Compiler and the script is in a file

called run.scr, you can execute the script file by entering the following command: dc_shell>

source run.tcl Run the script from the UNIX command line by using the -f option of the dc_shell

command.

2.2 Summary:-

From this chapter following are the take-aways:-

1. We should use the options of the DC judiciously, so that we don’t compromise the

compute intensiveness.

2. DC is able to optimize the Hardware on a specific constraint given to it.

3. DC takes in the RTL + Timing Constraints + Area Constraints to derive the synthesized

netlist for the design.

Synthesis And APR Of Datapath Module 2012

Page | 18

Optimization Strategies

Synthesis And APR Of Datapath Module 2012

Page | 19

3.1 Optimizing the Design

Optimization is the Design Compiler synthesis step that maps the design to an optimal

combination of specific target library cells, based on the design’s functional, speed, and area

requirements. You use the compile_ultra command or the compile command to compile a

design. Design Compiler provides options that enable you to customize and control optimization.

Several of the many factors affecting the optimization outcome are discussed in this chapter.

This chapter has the following sections:

• The Optimization Process

• Selecting and Using a Compile Strategy

• Resolving Multiple Instances of a Design Reference

• Preserving Subdesigns

• Understanding the Compile Cost Function

• Performing Design Exploration

• Performing Design Implementation

3.1.1 The Optimization Process

Design Compiler performs the following three levels of optimization:

• Architectural optimization

• Logic-level optimization

• Gate-level optimization

The following sections describe these processes.

3.1.1.1 Architectural Optimization

Architectural optimization works on the HDL description. It includes such high-level

synthesis tasks as

• Sharing common subexpressions

• Sharing resources

• Selecting DesignWare implementations

• Reordering operators

• Identifying arithmetic expressions for data-path synthesis (DC Ultra only).

Synthesis And APR Of Datapath Module 2012

Page | 20

Except for DesignWare implementations, these high-level synthesis tasks occur only during the

optimization of an unmapped design. DesignWare selection can recur after gate-level mapping.

High-level synthesis tasks are based on your constraints and your HDL coding style. After high-

level optimization, circuit function is represented by GTECH library parts, that is, by a generic,

technology-independent netlist.

3.1.1.2 Logic-Level Optimization

Logic-level optimization works on the GTECH netlist. It consists of the following two processes:

• Structuring

This process adds intermediate variables and logic structure to a design, which can result in

reduced design area. Structuring is constraint based. It is best applied to noncritical timing paths.

During structuring, Design Compiler searches for subfunctions that can be factored out

and evaluates these factors, based on the size of the factor and the number of times the factor

appears in the design. Design Compiler turns the subfunctions that most reduce the logic into

intermediate variables and factors them out of the design equations.

• Flattening

The goal of this process is to convert combinational logic paths of the design to a two-level, sum-

of-products representation. Flattening is carried out independently of constraints. It is useful for

speed optimization because it leads to just two levels of combinational logic. During flattening,

Design Compiler removes all intermediate variables, and therefore all its associated logic

structure, from a design.

3.1.1.3 Gate-Level Optimization

Gate-level optimization works on the generic netlist created by logic synthesis to produce a

technology-specific netlist. It includes the following processes:

• Mapping

This process uses gates (combinational and sequential) from the target technology libraries to

generate a gate-level implementation of the design whose goal is to meet timing and area goals.

You can use the various options of the compile_ultra command or the compile command to control

the mapping algorithms used by Design Compiler.

• Delay optimization

The process goal is to fix delay violations introduced in the mapping phase. Delay optimization

does not fix design rule violations or meet area constraints.

Synthesis And APR Of Datapath Module 2012

Page | 21

• Design rule fixing

The process goal is to correct design rule violations by inserting buffers or resizing existing

cells. Design Compiler tries to fix these violations without affecting timing and area results, but

if necessary, it does violate the optimization constraints.

• Area optimization

The process goal is to meet area constraints after the mapping, delay optimization, and design

rule fixing phases are completed. However, Design Compiler does not allow area recovery to

introduce design rule or delay constraint violations as a means of meeting the area constraints.

3.2 Understanding the Optimization Cost Function

The compile cost function consists of design rule costs and optimization costs. By default,

Design Compiler prioritizes costs in the following order:

1. Design rule costs

a. Connection class

b. Multiple port nets

c. Maximum transition time

d. Maximum fanout

e. Maximum capacitance

f. Cell degradation

2. Optimization costs

a. Maximum delay

b. Minimum delay

c. Maximum power

d. Maximum area

The compile cost function considers only those components that are active in your design.

Design Compiler evaluates each cost function component independently, in order of Importance.

When evaluating cost function components, Design Compiler considers only violators (positive

difference between actual value and constraint) and works to reduce the cost

function to zero. The goal of Design Compiler is to meet all constraints. However, by default, it

gives precedence to design rule constraints because design rule constraints are functional

requirements for designs. Using the default priority, Design Compiler fixes design rule violations

even at the expense of violating your delay or area constraints. You can change the priority of the

maximum design rule costs and the delay costs by using the set_cost_priority command to

specify the ordering. You must run the set_cost_priority command before running the compile

Synthesis And APR Of Datapath Module 2012

Page | 22

command. You can disable evaluation of the design rule cost function by using the -

no_design_rule option when running the compile_ultra command or compile command. You can

disable evaluation of the optimization cost function by using the -only_design_rule option when

running the compile_ultra command or compile command.

3.3 Performing Design Implementation

The default compile generates good results for most designs. If your design meets the

optimization goals after design exploration, you are finished. If not, try the techniques described

in the following sections:

• Optimizing High-Performance Designs

• Optimizing for Maximum Performance

• Optimizing for Minimum Area

• Optimizing Data Paths

3.3.1 Optimizing High-Performance Designs

For high-performance designs that have significantly tight timing constraints, you can invoke a

single DC Ultra command, compile_ultra, for better quality of results (QoR). This command

allows you to apply the best possible set of timing-centric variables or commands during ompile

for critical delay optimization as well as improvement in area QoR. Because compile_ultra

includes all compile options and starts the entire compile process, no separate compile command

is necessary. By default, if the dw_foundation.sldb library is not in the synthetic library list but

the DesignWare license has been successfully checked out, the dw_foundation.sldb library is

automatically added to the synthetic library list. This behavior applies to the current command

only. The user-specified synthetic library and link library lists are not affected. In addition, all

DesignWare hierarchies are, by default, unconditionally ungrouped in the second pass of the

compile. You can prevent this ungrouping by setting the compile_ultra_ungroup_dw variable to

false (the default is true).

3.3.2 Optimizing for Maximum Performance

If your design does not meet the timing constraints, you can try the following methods to

improve performance:

• Create path groups

• Fix heavily loaded nets

• Auto-ungroup hierarchies on the critical path

• Perform a high-effort incremental compile

• Perform a high-effort compile

Synthesis And APR Of Datapath Module 2012

Page | 23

3.3.3 Optimizing for Minimum Area

If your design has timing constraints, these constraints always take precedence over area

requirements. For area-critical designs, do not apply timing constraints before you compile.

If you want to view timing reports, you can apply timing constraints to the design after you

compile.

If your design does not meet the area constraints, you can try the following methods to

reduce the area:

• Disable total negative slack optimization

• Optimize across hierarchical boundaries

Figure 5

3.3.4 Optimizing Data Paths

Datapath design is commonly used in applications that contain extensive data manipulation, such

as 3-D, multimedia, and digital signal processing (DSP). Datapath extraction transforms

arithmetic operators (for example, addition, subtraction, and multiplication) into datapath blocks

to be implemented by a datapath generator. This transformation improves the QOR by utilizing

the carry-save arithmetic technique. Beginning with version W-2004.12, Design Compiler

provides an improved datapath generator and better arithmetic components for both DC Expert

and DC Ultra. To take advantage of these enhancements, make sure that the dw_foundation.sldb

library is listed in the synthetic library. If necessary, use the set synthetic_library

dw_foundation.sldb command. These enhancements require a DesignWare license. DC Ultra

enables datapath extraction and explores various datapath and resource-sharing options during

compile. DC Ultra datapath optimization provides the following benefits:

• Shares datapath operators

• Extracts the datapath

• Explores better solutions that might involve a different resource-sharing configuration

• Allows the tool to make better tradeoffs between resource sharing and datapath

Optimization.

Synthesis And APR Of Datapath Module 2012

Page | 24

Synthesis Outputs

Synthesis And APR Of Datapath Module 2012

Page | 25

4.1 Understanding Synthesis Outputs

Synthesis tool gives the Outputs in the following forms:-

1. Reports

2. Log

3. Output Netlist: In form Of ddc or Verilog

We present here the snaps of the reports which should be clean to proceed to the PNR step.

1. Reports

Report : qor

Design : c69p0snsflistopp

Version: D-2010.03-SP5

Date : Sun Oct 23 12:51:03 2011

 Timing Path Group 'flis_gated_clk'

 Levels of Logic: 2.00

 Critical Path Length: 536.79

 Critical Path Slack: 1242.90

 Critical Path Clk Period: 2500.00

 Total Negative Slack: 0.00

 No. of Violating Paths: 0.00

 Worst Hold Violation: 0.00

 Total Hold Violation: 0.00

 No. of Hold Violations: 0.00

 Timing Path Group 'default'

 Levels of Logic: 9.00

 Critical Path Length: 338.93

 Critical Path Slack: -38.93

 Critical Path Clk Period: Undef

 Total Negative Slack: -1099.06

 No. of Violating Paths: 32.00

 Worst Hold Violation: 0.00

 Total Hold Violation: 0.00

 No. of Hold Violations: 0.00

 Cell Count

 Hierarchical Cell Count: 1

 Hierarchical Port Count: 840

 Leaf Cell Count: 1980

 Buf/Inv Cell Count: 569

 CT Buf/Inv Cell Count: 0

 Area

 Combinational Area:

1999.669256

 Noncombinational Area:

1714.509687

 Net Area: 0.000000

 Cell Area: 3714.178943

 Design Area: 3714.178943

 Design Rules

 Total Number of Nets: 2339

 Nets With Violations: 385

 Max Trans Violations: 271

Synthesis And APR Of Datapath Module 2012

Page | 26

Design Data Synthesis Issue Summary

Warning: File reports/c69p0snsflistopp.cg_issues.syn.rpt could not be opened. Clock-

gate collapsing information unavailable.

/---\

| Clock-gate | Low | Unclocked | Clock | Reset | Gclatchen | Latch | Latch enables |

Combinational |

| collapsing | clock | Registers | logic | logic | logic | races | not driven by | feedthroughs

|

| | gates | | | | | | gclatchen | |

|------------+-------+-----------+-------+-------+-----------+-------+---------------+---------------|

| N/A | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 306 |

\---/

/--\

| Errors in | Bonus | Unloaded | Unregistered | Latched |

| logfile | cells | gclatchen | outputs | outputs |

| | | cells | | |

|-----------+-------+-----------+--------------+---------|

| 0 | 0 | 0 | 32 | 0 |

\--/

/---\

| Timing loops | Netlist syntax issues |

|---------------+---------------------------------------|

| RTL | Netlist | Slashes | 1'b0/1'b1 | assigns | wands |

|-----+---------+---------+-----------+---------+-------|

| 0 | 0 | 0 | 458 | 5 | |

\---/

Design Summary: MOST IMPORTANT OF ALL

===============

 Total Cell Count : 1980

 Total Area : 3714.17894400004

 Total Gate Count : 3714.17894400004 / 0.645888 = 5750.50

 Total PWidth Zp : 0.00

 Total NWidth Zn : 0.00

 Total Width Z=Zp+Zn : 0.00

 Total Cell leakage power : 481.35

Synthesis And APR Of Datapath Module 2012

Page | 27

Automatic Place And Route Flow

Synthesis And APR Of Datapath Module 2012

Page | 28

5. 1 IC Compiler Basic Design Flow

The IC Compiler design flow includes design planning, placement and optimization, clock tree

synthesis and optimization, this flow produces GSDII output.For most designs, the placement

and optimization, clock tree synthesis and optimization, and routing and postroute optimization

steps are preset for optimal results.

The following sections describe the basic design flow:

5.1.1 Overview of the IC Compiler Design Flow

5.1.2 Design Planning and Power Planning

5.1.3 Placement and Optimization

5.1.4 Clock Tree Synthesis and Optimization

5.1.5 Routing and Postroute Optimization

Figure 6

Synthesis And APR Of Datapath Module 2012

Page | 29

5.1.1 Overview of the IC Compiler Design Flow

As illustrated in Figure, the IC Compiler design flow is a single-pass flow with design planning

and three basic steps for placement and optimization, clock tree synthesis and optimization, and

routing and postroute optimization. Depending on the package of the IC Compiler tool you are

using, this flow either includes routing and optimization or it outputs the design for routing by a

routing tool not made by Synopsys. “Chip Finishing and Design for Manufacturing.”

5.1.2 Design Planning and Power Planning

After you have set up your design in IC Compiler, you can create a floorplan to determine the

size of the design cell, create the boundary and core area, create site rows for placement of

standard cells, set up the I/O pads, and create a power plan. To do these functions, you first need

to read in the I/O constraints and initialize the floorplan.

5.1.3 Placement and Optimization

IC Compiler placement and optimization addresses and resolves timing closure for your design.

This iterative process uses enhanced placement and synthesis technologies to generate a

legalized placement for leaf cells and an optimized design. You can supplement this functionality

by optimizing for power, recovering area for placement, minimizing congestion, and minimizing

timing and design rule violations. The following sections explain how to set up and perform

these placement functions:

 Prerequisites for Placement and Optimization

• Setting Up for Placement and Optimization

• Running Placement and Optimization

5.1.3.1 Prerequisites for Placement and Optimization

For the best results, the placement and optimization process requires the following:

• The design has a realistic floorplan that includes

- Placed macros that are fixed in their locations

- Power and ground nets

- Standard cell utilization that is between 50 and 80 percent

• The design must be routable

This is necessary for timing convergence during placement and optimization.

5.1.3.2 Setting Up for Placement and Optimization

Placement and optimization is already set up to provide optimal results for most designs. If

necessary, you can augment this by preventing IC Compiler from automatically buffering high-

fanout nets. You can also perform incremental placement functions.

Synthesis And APR Of Datapath Module 2012

Page | 30

5.1.3.3 Running Placement and Optimization

1. Choose Placement > Core Placement and Optimization.

The Core Placement and Optimization dialog box appears.

2. Specify the placement and optimization settings you need. Table lists the ways you can change

the placement and optimization settings in the Core Placement and Optimization dialog box.

TABLE 1

Synthesis And APR Of Datapath Module 2012

Page | 31

Power optimizations (select “Power optimization”). This activates all the power optimizations

already enabled. By default, leakage power optimization is enabled. Alternatively, you can use

the place_opt command.

Run clock tree synthesis and optimization with placement and optimization. Clock tree synthesis

and optimization (select “Clock compilation, optimization and routing”). Typically, this is used

for the quick flow for designs that do not need extensive clock tree synthesis and optimization

work. If you run clock tree synthesis with placement and optimization, you do not need to run

clock tree synthesis after this step. Instead, you can run routing and postroute optimization.

5.1.3.4 Analyzing Placement and Optimization

After you complete placement and optimization, you can analyze the design, as explained in

“Analyzing Placement”. Optimize leakage power, dynamic power, perform power-aware

placement, or a combination of the optimizations already enabled.

Run clock tree synthesis and optimization with placement and optimization. Typically, this is

used for the quick flow for designs not requiring extensive clock tree synthesis and optimization

work.

Clock tree synthesis. -cts

Use additional CPUs. -num_cpus number

Reorder scan chains. -optimize_dft

Minimize congestion. -congestion

5.2 Performing Clock Tree Synthesis
The following sections explain how you can set up and perform these clock tree synthesis

functions:

• Prerequisites for Clock Tree Synthesis

• Defining the Clock Trees

• Running Clock Tree Synthesis and Optimization

5.2.1 Prerequisites for Clock Tree Synthesis

The clock tree synthesis and optimization process has the following prerequisites:

• The design must be placed, optimized, and legalized.If congestion issues are not resolved

during placement and optimization, the addition of clock trees can increase congestion. If the

design is congested, you can rerun place_opt with the -congestion and -effort high options, but

the runtime can be long.

If the design is not legalized, clock tree synthesis might have runtime and QoR issues. To

legalize the design, run the legalize_placement command.

• Clock references in the logical library should not have dont_use or dont_touch attributes.

Synthesis And APR Of Datapath Module 2012

Page | 32

If these attributes exist, remove them.

• The physical library should include

- All clock buffers and inverters

- Routing information, which includes layer information and nondefault rules

• TLUPlus models must exist.

Extraction requires these models to estimate the net resistance and capacitance.

5.2.2 Defining the Clock Trees

By default, IC Compiler uses the clock sources defined by the create_clock command as the

clock roots and derives the clock endpoints by tracing through all cells in the transitive fanout of

the clock root. The types of pins that become default clock sinks include

• Clock pins of sequential cells (latches or flip-flops)

• Clock pins of macro cells

When synthesizing the clock tree, the default set of clock tree references includes all of the

buffers and inverters defined in your logic library. You can change this default behavior to meet

the special needs of your design by changing the clock tree options, exceptions, and

references.

5.2.3 Running Clock Tree Synthesis and Optimization

When you use IC Compiler to perform clock tree synthesis and embedded clock tree

optimization, it does the following:

• Clock tree synthesis

During clock tree synthesis, IC Compiler builds clock trees that meet the clock tree design rule

constraints while balancing the loads and minimizing the clock skew.

• Clock tree optimization

During clock tree optimization, IC Compiler fixes the placement of the clock sinks, performs

incremental logic and placement optimization, and fixes the placement of both the buffers and

registers on the clock tree. You can also choose to fix hold time violations and perform

interclock delay balancing.

• Clock routing

• Preroute RC estimation

• Placement and timing optimization based on the propagated clock arrival times

To perform clock tree synthesis and embedded clock tree optimization,

1. Choose CTS > Core CTS and Optimization.

The Core CTS and Optimization dialog box appears.

2. Select hold time fixing, interclock delay balancing, and updating

Synthesis And APR Of Datapath Module 2012

Page | 33

of clock latency values, if desired.

3. Click OK or Apply.

Alternatively, you can use the clock_opt command. For example,

icc_shell> clock_opt -fix_hold -inter_clock_balance

5.3 Routing and Postroute Optimization

As part of routing and postroute optimization, IC Compiler performs global routing, track

assignment, detail routing, search and repair, topological optimization, and engineering change

order (ECO) routing. For most designs, the default routing and postroute optimization setup

produces optimal results. If necessary, you can supplement this functionality by optimizing

routing patterns and reducing crosstalk or by customizing the routing and postroute optimization

functions for special needs

• Prerequisites for Routing and Postroute Optimization

• Running Routing and Postroute Optimization

• Analyzing Routing and Postroute Optimization

5.3.1 Prerequisites for Routing and Postroute Optimization

Before you can perform routing and postroute optimization, your design must meet the following

conditions:

• Clock tree synthesis and optimization have been performed.

• There are no (or almost no) timing violations based on the estimated delays.

• There are no maximum capacitance or maximum transition time violations based on the

estimated values.

• Estimated congestion is acceptable.

Routing and postroute optimization is already set up to provide optimal results for most designs.

If necessary, you can modify the setup for routing and postroute optimization (Route > Core

Routing and Postroute Optimization or route_opt).

Routing and postroute optimization does the following:

• Performs one or more of the following routing stages:

- Global routing

Assigns nets to specific metal layers and global routing cells while minimizing detours as it

avoids congested global routing cells, power and ground nets, and routing blockages.

Synthesis And APR Of Datapath Module 2012

Page | 34

- Track assignment

Assigns each net in the design to a specific track and lays down the actual metal traces, which it

attempts to make long and straight with the minimum number of vias.

- Detail routing

Attempts to fix all DRC violations after track assignment for each portion (defined by a switch

box) of the design. Because the switch box size is fixed, detail routing might not fix all DRC

violations.

- Search and repair

Fixes the remaining DRC violations through multiple iterations using progressively larger switch

box sizes.

• Performs a topological optimization and incrementally reroutes the design to close timing,

signal integrity, and routing violations.

• Performs postroute RC extraction.

By default, IC Compiler is already set up to provide optimal routing results for most designs, but

you can customize this setup when you are debugging the design.

To perform routing and postroute optimization,

1. Choose Route > Core Routing and Optimization.

The Core Routing and Optimization dialog box appears.

2. If you need to customize the setup for debugging or special

Conditions.

3. Click OK or Apply.

 The output of all the above steps is a routed design. The design has to undergo several

checks once is routed. For example Layout versus Schematic Checks, Design Rule

Checks, FEV etc..

 The following chapters are restricted to the results earned by all these steps and the

detailed explanation of all these is out of scope of this thesis.

Synthesis And APR Of Datapath Module 2012

Page | 35

Results Of Sign-Off

Synthesis And APR Of Datapath Module 2012

Page | 36

This chapter summarizes all the results of the datapath block in the form of snapshots. All the

snapshots are self-explainatory and so no written explaination is done. However, the

Highlighting is used to focus on some key points. Following are the Sign-Off Checks Done on

the block :

1. Timing Sign-Off

2. Power Sign-Off

3. Functional Sign-Off

4. Layout vs Schematic Sign-Off

5. Electrical Rule Checks

Snapshots Of Results:

1. Timing Sign-Off Results:-

This sign off check is done using Prime Time Tool. Without this check getting clean, The design

is not assured to be working.

Figure 7

Synthesis And APR Of Datapath Module 2012

Page | 37

2. Power Sign-Off Results

Early in the design cycle the Target Power numbers are given to the designer. If this

power numbers are not satisfied, the design can not be signed off for the Fabrication. The

power numbers are distributed over the blocks on the basis of the expected gate counts.

The target Power number given for this block was 5mW which was met with a good

margin of about 200uW.

Figure 8

3. Functional Sign-Off (LEC)

This check is must for design to be functionally correct. This is the check which is done

on each step of Physical design. Before taping in the design this check has to go through.

Figure 9

Synthesis And APR Of Datapath Module 2012

Page | 38

4. Layout vs Schematic Checks

This check is done whether the circuit on the Silicon canvas is equivalent to the

Schematic of the circuit built. This check is critical as it can spot any error the PNR tool

has done in converting the circuit from netlist to the silicon level. Also shorts, Opens and

other checks are being done.

Figure 10

5. Electrical Rule Checks

This check is done to confirm that IOs, Nets and every other component complies the

required electrical characteristics. These include Diode checks, Net Length check etc..

Synthesis And APR Of Datapath Module 2012

Page | 39

Concusion

Synthesis And APR Of Datapath Module 2012

Page | 40

After completion of all the above mentioned tasks, It can be concluded that :

1. SOC Design Cycle Consists Of Below Steps:-

a) RTL Coding

b) RTL Verification

c) Synthesis

d) Floor Planning

e) CTS

f) APR

g) Functional Equivalence Verification

h) Layout Versus Schematic Verification

i) Density Verification

j) Diode Checks.

2. In the Design Cycle there may arise a need of doing a small change if bug is spot in

the mid of the Design Cycle. There is generally no need to re-spin the design but, we

can go over for a process called Engineering Change Order, which eradicates the

need of Design Re-Spin.

3. Time To Market is an essential thing to hit. Due to which the product may fail or

flourish in the market. Performing the ECO is therefore very crucial and the

necessary step in the SoC Design cycle.

Synthesis And APR Of Datapath Module 2012

Page | 41

Bibliography

[1] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of

MOS SRAM cells,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 748-754, Oct.

1987.

[2] A. J. Bhavnagarwala, T. Xinghai, and J. D. Meindl, “The impact of

intrinsic device fluctuations on CMOS SRAM cell stability,” IEEE J. Solid-State

Circuits, vol. 36, pp. 658-665, Apr. 2001.

[3] M. Yamaoka, “0.4-V Logic-Library-Friendly SRAM array using

rectangular-diffusion cell and delta-boosted-array voltage scheme,” IEEE J. Solid-

State Circuits, vol. 39, pp. 934-940, June 2004.

[4] A. Hardi, B. Bhaumik, P. Pradhan, R. Varambally, “ A Low Power 256 KB

SRAM Design,”

 [5] A. Turier, L. Ben Ammar, A. Amara, “ Static Power Consumption

Management in CMOS memories,” © 2001 IEEE.

[6] M. Lee, Wing-II Sze, Chii-ming M. Wu, “Static noise margin and soft-error

rate simulations for thin film transistor cell stability in a 4 Mbit SRAM Design,” ©

1995 IEEE.

 [8] ST internal site

 [9] Neil H. E. Weste, Kamran Eshraghian, the system perspective PRINCIPLES

OF CMOS VLSI DESIGN, Second Edition.

[10] John F. Wakerly, Digital Design Principles & Practices, Third Edition.

[11] Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits

Analysis & Design, Third Edition..

[12] Hazapis, O.G.; Manolakos, E.S.Scalable FRM-SSA SoC Design for the Simulation of

Networks in Real Time

[13] Design Compiler User Guide, Synopsys Inc.

[14] Integrated Circuit Compiler User Guide.

