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Abstract

Static Timing Analysis (also referred as STA) is one of the many techniques available

to verify the timing of a digital design. An alternate approach used to verify the timing

is the timing simulation which can verify the functionality as well as the timing of

the design. The term timing analysis is used to refer to either of these two methods -

static timing analysis, or the timing simulation. Thus, timing analysis simply refers

to the analysis of the design for timing issues.

The STA is static since the analysis of the design is carried out statically and

does not depend upon the data values being applied at the input pins. This is in

contrast to simulation based timing analysis where a stimulus is applied on input

signals, resulting behavior is observed and verified, then time is advanced with new

input stimulus applied, and the new behavior is observed and verified and so on. The

purpose of static timing analysis is to validate if the design can operate at the rated

speed. To simulate and verify all timing conditions of a design with 10-100 million

gates is very slow and the timing cannot be verified completely. Thus, it is very

difficult to do exhaustive verification through simulation.

In this project Timing Analysis is done to identify and diagnose the violation in

complex design, learn to perform synthesis for the giver RTL using synopsys tool

DC(DESIGN COMPILER), STA using synopsys tool PT(PRIMETIME) tool, which

Setup and hold violations in complex design. Formal verification is done by the

synopsys tool called formality.



Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

List of Figures ix

1 Introduction 1

2 Background Theory 3
2.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Ad-hoc Method . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Structured Method . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Fault classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Traditional ASIC design flow . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Types of Checking performed . . . . . . . . . . . . . . . . . . 18
2.6.2 Timing Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3 Delay Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.4 Constraints Checking . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.5 Timing Exceptions . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Setup and Hold Checking for Latches . . . . . . . . . . . . . . . . . . 22
2.7.1 Timing Exceptions . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Setup and Hold Checks . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8.1 Path Delay Tracing for Setup and Hold Checks . . . . . . . . 26
2.8.2 Setup Timing Check for Worst-Case Conditions . . . . . . . . 27
2.8.3 Hold Timing Check for Best-Case Conditions . . . . . . . . . 27
2.8.4 Simultaneous Best-Case/Worst-Case Conditions . . . . . . . . 28

2.9 Clock Reconvergence Pessimism Removal . . . . . . . . . . . . . . . . 29

vii



CONTENTS viii

2.9.1 Reconvergent Logic Example . . . . . . . . . . . . . . . . . . . 30
2.9.2 Minimum Pulse Width Checking Example . . . . . . . . . . . 30

2.10 DFT(scan) Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11 DFT compression (codec insertion) . . . . . . . . . . . . . . . . . . . 34

2.11.1 Scan Compression working . . . . . . . . . . . . . . . . . . . . 35
2.11.2 Hierarchical Adaptive Scan Synthesis ( HASS ) . . . . . . . . 36

2.12 Defining the Operating Conditions . . . . . . . . . . . . . . . . . . . 37

3 Methodology 39
3.1 To convert RTL into Gate level netlist . . . . . . . . . . . . . . . . . 39
3.2 To convert RTL into Gate level netlist . . . . . . . . . . . . . . . . . 40
3.3 DFT (scan) insertion and stitching . . . . . . . . . . . . . . . . . . . 41
3.4 Parasitic Interconnect Corners . . . . . . . . . . . . . . . . . . . . . . 42

4 Result Analysis 44

References 50



List of Figures

2.1 Ad-hoc method - Test point insertion . . . . . . . . . . . . . . . . . . 4
2.2 MUX based Scan cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Clocked scan cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Level sensitive scan design . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Basic Synthesis flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Formal verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Timing paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Setup and Hold checks . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Latch-Based Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Time Borrowing in Latch-Based Paths . . . . . . . . . . . . . . . . . 24
2.12 Hold Checks in Latch-Based Paths . . . . . . . . . . . . . . . . . . . 25
2.13 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 Setup Check Using Worst-Case Conditions . . . . . . . . . . . . . . . 27
2.15 Hold Check Using Best-Case Conditions . . . . . . . . . . . . . . . . 28
2.16 Clock Reconvergence Pessimism Example . . . . . . . . . . . . . . . . 29
2.17 Reconvergent Logic in a Clock Network . . . . . . . . . . . . . . . . . 30
2.18 Scan shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.19 Scan capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.20 DFT insertion flow chart . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.21 Compressor and decompressor logic added to scan chains . . . . . . . 35
2.22 Adaptive scan compression . . . . . . . . . . . . . . . . . . . . . . . . 36
2.23 Hierarchical Adaptive Scan Synthesis Architecture . . . . . . . . . . . 37

4.1 Worst Negative Slack(WNS)/Critical Path Path for Setup and Hold . 44
4.2 worst path/critical path for the setup . . . . . . . . . . . . . . . . . . 45
4.3 worst path/critical path for the hold . . . . . . . . . . . . . . . . . . 46
4.4 worst path/critical path for the setup and hold for CMAX-0C corner 47
4.5 worst path/critical path for the setup and hold for CMAX-125C corner 47

ix



Chapter 1

Introduction

Static Timing Analysis (also referred as STA) is one of the many techniques avail-

able to verify the timing of a digital design. An alternate approach used to verify

the timing is the timing simulation which can verify the functionality as well as the

timing of the design. The term timing analysis is used to refer to either of these

two methods - static timing analysis, or the timing simulation. Thus, timing analysis

simply refers to the analysis of the design for timing issues. The STA is static since

the analysis of the design is carried out statically and does not depend upon the data

values being applied at the input pins. This is in contrast to simulation based timing

analysis where a stimulus is applied on input signals, resulting behavior is observed

and verified, then time is advanced with new input stimulus applied, and the new

behavior is observed and verified and so on.

Given a design along with a set of input clock definitions and the definition of the

external environment of the design, the purpose of static timing analysis is to validate

if the design can operate at the rated speed. That is, the design can operate safely

at the specified frequency of the clocks without any timing violations. The more im-

portant aspect of static timing analysis is that the entire design is analyzed once and

the required timing checks are performed for all possible paths and scenarios of the

design. Thus, STA is a complete and exhaustive method for verifying the timing of a

design. Static timing analysis is a complete and exhaustive verification of all timing

1



CHAPTER 1. INTRODUCTION 2

checks of a design. Other timing analysis methods such as simulation can only verify

the portions of the design that get exercised by stimulus. Verification through timing

simulation is only as exhaustive as the test vectors used. To simulate and verify all

timing conditions of a design with 10-100 million gates is very slow and the timing

cannot be verified completely. Thus, it is very difficult to do exhaustive verification

through simulation.

In this project Timing Analysis is done to identify and diagnose the violation in

complex design, learn to perform synthesis for the giver RTL using synopsys tool

DC(DESIGN COMPILER), STA using synopsys tool PT(PRIMETIME) tool, which

Setup and hold violations in complex design. Formal verification is done by the syn-

opsys tool called formality.

The objective of this project is to implement the DFT technique for Design Under

Test ( DUT ) to increase the test coverage without increasing the test cost during

testing of chip at gate level. This DFT technique includes scan insertion and com-

pression for DUT. Further Static Timing Analysis ( STA ) is done for DFT inserted

DUT to fix all timing violations. Formal verification is done between two versions of

design (RTL-RTL, RTL-Netlist, Netlist-Netlist) for logical equivalence check. After

the DFT check is done for DUT, we will get a design which is 100



Chapter 2

Background Theory

This chapter includes the Background theory of DFT which explains different types of

DFT techniques in detail. Next contains different kinds of faults that may present in

DUT. Next explains the traditional ASIC chip design flow and theory related to the

methodology used in this project. Finally it concludes with some literature reviews.

2.1 Background Theory

DFT is an extra design effort implemented for Design Under Test (DUT) to locate and

diagnose the faults present in DUT by increasing controllability and observability of

the internal nodes of design without affecting the test cost. DFT refers to the design

techniques that make the task of subsequent testing easier. There is definitely no

single methodology that solves all embedded system-testing problems. There also is

no single DFT technique, which is effective for all kinds of circuits. DFT techniques

can classified into two categories

2.1.1 Ad-hoc Method

In this method large designs are partioned to small design to reduce the test cost and

test points are added manually to the designs to increase testability and observability.

3
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The controllable points (cp) are active points and observable points (op) are passive

ones. Fig.2.1 shows controllability points (CP) and observability points (OP) which

are added manually in ad-hoc method.

Figure 2.1: Ad-hoc method - Test point insertion

Disadvantages

• Experts are needed and test generation is often manual

• No guarantee of result ( poor fault coverage)

• Increase design iterations, hence not suitable for large designs

2.1.2 Structured Method

Structured method is highly automated DFT technique which provides good control-

lability and observability of internal state variables for testing by serial shifting of

data. This method includes

• Scan technique

In this method all the normal flops in the design are replaced by scan flops

• Scan design requirements

– One ( more ) test control ports are required at PI and PO, which are called

as scan-in and scan-out port respectively
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– Test structure ( hardware ) is added for DUT

– Normal Flip flops are converted to Scan Flip flops ( Scan cells ) and are

connected so that they behave as a shift register in test mode. Scan Flip

Flop is a flop with extra logic

– Combinational ATPG is used to obtain tests for all testable faults in the

combinational logic

– Shift registers tests are applied and ATPG are converted into scan se-

quences for use in manufacturing test.

• Different types of Scan cells used for scan design

a. Mux based scan cells

In this approach MUX is inserted at the input side of flip flop. MUX’s

select line is connected to scan enable, which decides the operating mode

of the design. This MUX is added to increase controllability at input side

of each flip flop. Two types of inputs, Data and Scan input are connected

to D0 and D1 pins of MUX respectively. Based on scan enable signal,

corresponding input is fed to flop. Fig.2.2 shows a basic mux based scan

cell.

Figure 2.2: MUX based Scan cell
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b. Clocked Scan cells

In clocked scan cells, input selection is conducted using two Independent

clocks. In normal/capture mode, the data clock is used to capture the

contents present on the data input into the clocked scan cell. In shift

mode, the shift clock is used to shift the new data from scan input to

clocked scan cell, while the content of clocked scan cell is being shifted

out.Fig shows a basic Clocked scan cell.

Figure 2.3: Clocked scan cell

• LSSD

LSSD stands for level sensitive scan design. It is a latch based design which

guarantees race-free and hazard-free system operation as well as testing. It is

insensitive to component timing variations such as rise time, fall time and delay.

It uses two latches (one for normal operation and another for scan) and three

clocks. LSSD requires that the circuit to be level sensitive. Fig. 2.4 shows

LSSD.

– Normal mode : A-clk = B-clk = 0, sys-clk =0 —- 1

– Test (scan) mode: sys-clk =0, A-clk,B-clk = 10 —- 01 to shift scan data

through Latch
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Figure 2.4: Level sensitive scan design

Advantages

– FSM is reduced to combinational logic as for as testing is concerned, Haz-

ards and Races are eliminated, which simplifies test generation and fault

simulation

Disdvantages

– Complex design rules are imposed on the designers

– Asynchronous designs are not allowed in this approach

– Sequential routing of latches can introduce irregular structure

– Test application becomes very slow process and not good for memory in-

tensive designs

• Boundary Scan

JTAG or Boundary scan is primarily used for testing board connections, with-

out unplugging the chip from the board. Boundary scan is accessed through 5

pins, TCK, TMS, TRST, TDI and TDO. It builds capability of observing and

controlling pins into each chip to make board test easier. Chips with internal

scan chains can access the chains through boundary scan for unified test strat-

egy. Fig.2.5 shows Boundary scan method in which scan chains are built for

boundary scan cells for different chips.
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Figure 2.5: Boundary Scan

2.2 Fault classification

Fault is basically the physical defect in the circuit. Fault classification mainly explains

the different kinds of faults that may present in Design under Test. It includes,

a. Permanent Faults

These kinds of faults will be present permanently in the design. It has four

types

• Stuck-at fault: Fault in the logic gate results in one of its input or output

node is fixed at either logic 0 or logic 1. In general for m number of inputs,

there will be 2(m+1) number of stuck-at faults will be present.
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• Delay fault: It includes transition and path delay faults. Transition delay

fault model includes single node slow-to-rise and slow-to-fall faults. Path

delay faults tests and categorizes critical timing paths in the design.

• IDDQ fault: IDDQ fault model assumes that the circuit defect will cause

excessive current drain due to internal short circuit from node to ground

or to power supply

• Bridging fault : Two or more signal lines are connected accidentally in the

logic circuit

b. Temporary Faults

It includes Intermittent and Transient faults. Intermittent faults are recurring

faults which will reappear on regular basics. Transient faults are non recurring

and non repairable faults, because there is no physical damage to the hardware.

c. Equivalent Faults

Two faults are said to be equivalent if every test for one fault also detects the

other.

d. Redundant Faults

Faults are said to be redundant/latent its effect does not results on the output

logic.

2.3 Traditional ASIC design flow

Chip design commences from the concept of idea dictated by the market. These ideas

are then translated into architectural and electrical specification. The Architectural

specification will define the functionality and partioning of chip. The electrical speci-

fication will define the inter connection of these blocks in terms of timing information.

Next step is to implement these design specifications. In past, early days, these speci-

fications are implemented manually by drawing schematics and layouts, which is very
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time consuming and impractical for design reuse. To overcome these problems Hard-

ware description language (HDL) were developed. Most commonly used are Verilog

and VHDL. Fig.2.6 shows the flow chart of ASIC chip designing and my project part

lies in the marked block.
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Initially, RTL code is developed according to design specification by Verilog or

VHDL. To check the functionality of the design RTL code is simulated using test

bench. If the code meets all the design specifications, then synthesis is carried out.

Synthesis is done by a Synopsis tool called Design Compiler (DC). DC translates the

RTL design into a gate level optimized mapped netlist. These RTL and netlist are

formally verified for logical equivalence by a formality tool.
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Static Timing Analysis (STA) will allow the user to analyze all the critical path

in the design. Prime Time (PT) is used for timing analysis. In pre-layout STA PT

uses wire load model specified in the library to estimate the delays. The timing

constraints are fed to PT by providing the relation between primary IOs and clocks.

If the timing for all the critical path is satisfactory, a constraint file is developed for

forward annotation to layout tools. This standard constraint file is Standard Delay

Format (SDF).

If timing in pre-layout STA is satisfied, Then Placement and routing is done. It

consists of five steps; Initial floor planning, Cell placement, Clock tree (CT) insertion,

Global and then detailed routing. CT insertion is done to check the quality of cell

placements. The netlist generated during synthesis lacks from CT information. Hence

CT is re-routed to netlist and formally verified for CT inserted netlist and Original

netlist. Global routing will estimates the actual delays. If timings are met, detailed

routing is done where real delays are estimated. In next step, Post layout STA the

extracted delays are back-annoted until timing requirements are satisfied. Before

Tape out of the design, if there is any hardware bug encounters in the design, this

bug can be removed by Engineering Change Order (ECO) instead of redesigning.

DFT insertion can be done directly if design under test ( DUT ) is in netlist

(gate level) format. If the DUT is in RTL format, initially synthesis is performed to

translate RTL design into a netlist and formal verification is done to check logical

equivalence of RTL and netlist design. Once formality check is succeeded, then DFT

insertion is done. Further Timing Analysis is done for delay check and TetraMAX is

run to increase test coverage and to validate the scan chains.

2.4 Synthesis

Synthesis is a process to translate the RTL designs into a gate-level, optimized,

mapped netlist. Fig.2.7 shows the synthesis flow which is used to convert RTL designs

into gate level netlist.
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• Develop HDL files

Usually the input files for synthesis are written in Verilog or VHDL. When

writing the HDL files, designers had to follow design partioning and coding

guidelines to achieve the best synthesis result possible. This is given by the

RTL designers. This step is not included in synthesis.
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Figure 2.6: Basic Synthesis flow

• Specify libraries

Initially, all the libraries required for synthesis are stored in .synopsys dc.setup

file, which includes Link library, Target library, GTECH library and Design

ware library. This setup file will automatically links during synthesis in the

design environment.

Ex:

Set link library /sw/unicad/CLOCK65LPHVT/5.1/libs/ CORE65LPHVT wc

1.10V 125C 10y.db /sw/unicad/CORE65LPLVT/5.1/libs/ CORE65LPHVT wc
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1.10V 125C 10y.db /sw/unicad/CORE65LPHVT/5.1/libs/ CORE65LPHVT

wc 1.10V 125C 10y.db

Set target library /sw/unicad/CORE65LPSVT/5.1/libs/CORE65LPSVT wc

1.10V 125C 10y.db

• Read design

Analyze and elaborate commands are used to read Verilog/VHDL design into

dc shell Environment. Analyze command will stores the current design in an

intermediate format in the specified library. Elaborate will builds the design

from this intermediate format.

Ex: analyze -format verilog/vhdl ¡ .v/.vhd file ¿ elaborate ¡ top design name ¿

• Define design environment

In this step we will specify the operating condition (wire load or Zero wire load)

of the design.

• Set design Constraints

The design constraints like clock latency, clock transition, clock uncertainty, IO

delays etc... are added to the design environment.

Ex: create clock -name ¡ clk name ¿ -period 10 -waveform 0 5 [get ports ¡ port

ame¿] set clock latency -max 1 [get clocks clk name] set clock uncertainty -setup

0.47 [get clocks clk name] set clock uncertainty -hold 0.25 [get clocks clk name]

set input delay 5.0 min/max -clock ¡ clk name¿ [ get ports ¡ port name¿ ]

• Select Compile Strategy

There are two types of compiling the design, Top down and Bottom up. In top

down type, the entire design is compiled at a time where as in bottom up type,

the entire design is broken into subdesigns and compiled.

• Optimize the design
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In this stage, optimization and mapping is done by compiling the design. Fur-

ther compile -scan will do scan replacement in addition to optimization and

mapping.

Ex: compile -scan

• Analyze and Resolve Design problems

In this stage, the design problems are fixed by changing the constraints until

the design requirements are met.

• Write stage

The translated RTL design into the netlist is saved in the form of .v/.ddc file

by using write command

Ex: write -format verilog -hierarchy -output ¡ outputfile.v ¿

2.5 Formal Verification

Formal verification is a technique that performs the validation of the design using

Mathematical methods. Formal verification is an alternate to verification through

simulation. The main advantage is, verification is done by mathematical methods

without using test vectors. Two versions of design ( RTL-RTL, RTL-Netlist, Netlist-

Netlist ) are logically checked for logical equivalence. To perform this equivalence

checking, formality tool (synopsys EDA tool) is used.

Equivalence checkers prove or disprove that one design representation is logically

equivalent to another. That is to say, they are used to prove that two circuits will

exhibit the same exact behavior under all conditions despite different representations.

Fig.2.8 shows the basic idea of Formal verification setup in which Design A and Design

B are reference and implementation design respectively.
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Figure 2.7: Formal verification

The Reference (golden) design and implementation design is loaded to fm shell

and setup is performed. Formality tool automatically generates compare points in

both versions of the design for matching. The compare points are:

• Primary outputs ( Pos)

• Internal registers (sequential elements)

• Input pins of black boxes and

• Nets driven by multiple drivers.

The tool performs matching in five steps;

• Exact - name matching

• Name filtering

• Topological Equivalence

• Signature Analysis

• Compare point matching based on net names

If all the compare points of Design A and Design B are matched, Equivalence

check is done successfully
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2.6 Timing Analysis

Timing analysis is performed by a synopsys tool called primetime (PT). PrimeTime is

a full-chip, gate-level static timing analysis tool that is an essential part of the design

and analysis flow for today’s large chip designs. PrimeTime exhaustively validates the

timing performance of a design by checking all possible paths for timing violations,

without using logic simulation or test vectors.

2.6.1 Types of Checking performed

PrimeTime performs the following types of design checking:

• Setup, hold, recovery, and removal constraints

• User-specified data-to-data timing constraints

• Clock-gating setup and hold constraints

• Minimum period and minimum pulse width for clocks

• Design rules (minimum/maximum transition time, capacitance, and fan-out)

Static timing analysis is a method of validating the timing performance of a design

by checking all possible paths for timing violations. PrimeTime checks for violations

in the same way that we would do it manually, but with much greater speed and

accuracy. To check a design for violations, PrimeTime breaks the design down into

a set of timing paths, calculates the signal propagation delay along each path, and

checks for violations of timing constraints inside the design and at the input/output

interface.

2.6.2 Timing Paths

The first step performed by PrimeTime for timing analysis is to break the design

down into a set of timing paths. Each path has a start point and an endpoint. The
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start point is a place in the design where data is launched by a clock edge. The

data is propagated through combinational logic in the path and then captured at

the endpoint by another clock edge. The start point of a path is a clock pin of a

sequential element, or possibly an input port of the design (because the input data

can be launched from some external source). The endpoint of a path is a data input

pin of a sequential element, or possibly an output port of the design (Because the

output data can be captured by some external sink). Fig.2.16 shows different timing

paths. Path 1 is path between input port to reg, path 2 is reg to reg path, path 3 is

path between reg to output port and path 4 is path between input to output port.
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Figure 2.8: Timing paths

2.6.3 Delay Calculation

After breaking down a design into a set of timing paths, PrimeTime calculates the

delay along each path. The total delay of a path is the sum of all cell and net delays

in the path. Cell delay is the amount of delay from input to output of a logic gate

in a path. PrimeTime calculates the cell delay from delay tables provided in the

technology library for the cell. Net delay is the amount of delay from the output

of a cell to the input of the next cell in a timing path. This delay is caused by the

parasitic capacitance of the interconnection between the two cells, combined with net

resistance and the limited drive strength of the cell driving the net

Total delay = Cell delay + Net delay

2.6.4 Constraints Checking

After PrimeTime determines the timing paths and calculates the path delays, it can

check for violations of timing constraints, such as setup and hold constraints. A setup

constraint specifies how much time is necessary for data to be available at the input
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of a sequential device before the clock edge that captures the data in the device. This

constraint enforces a maximum delay on the data path relative to the clock path.

A hold constraint specifies how much time is necessary for data to be stable at the

input of a sequential device after the clock edge that captures the data in the device.

This constraint enforces a minimum delay on the data path relative to the clock path.

In addition to setup and hold constraints, PrimeTime can also check recovery/removal

constraints, data-to-data constraints, clock-gating setup/hold constraints, and min-

imum pulse width for clock signals. The amount of time by which a violation is

avoided is called the slack. For example, for a setup constraint, if a signal must reach

a cell input at no later than 8 ns and is determined to arrive at 5 ns, the slack is 3

ns. A slack of 0 means that the constraint is just barely satisfied. A negative slack

indicates a timing violation. Fig.2.17 shows block diagram of data path and clock

path which is required to calculate setup/hold time and timing diagram of setup and

hold check.
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Figure 2.9: Setup and Hold checks

2.6.5 Timing Exceptions

When certain paths are not intended to operate according to the default setup/hold

behavior assumed by PrimeTime, we should specify those paths (false paths, multi

cycle paths etc...) as timing exceptions. Otherwise, PrimeTime might incorrectly

report those paths as having timing violations.

2.7 Setup and Hold Checking for Latches

Latch-based designs typically use two-phase, non-overlapping clocks to control suc-

cessive registers in a data path. In these cases, PrimeTime can use time borrowing

to lessen the constraints on successive paths.

For example, consider the two-phase, latch-based path shown in figure. All three

latches are level-sensitive, with the gate active when the G input is high. L1 and
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L3 are controlled by PH1, and L2 is controlled by PH2. A rising edge launches data

from the latch output, and a falling edge captures data at the latch input. For this

example, consider the latch setup and delay times to be zero.

Figure 2.10: Latch-Based Paths

Figure shows how PrimeTime performs setup checks between these latches. For

the path from L1 to L2, the rising edge of PH1 launches the data. The data must

arrive at L2 before the closing edge of PH2 at time=20. This timing requirement is

labeled Setup 1. Depending on the amount of delay between L1 and L2, the data

might arrive either before or after the opening edge of PH2 (at time=10), as indicated

by the dashed-line arrows in the timing diagram. Arrival after time=20 would be a

timing violation.

If the data arrives at L2 before the opening edge of PH2 at time=10, the data for

the next path from L2 to L3 gets launched by the opening edge of PH2 at time=10,

just as a synchronous flip-flop would operate. This timing requirement is labeled

Setup 2a.

If the data arrives after the opening edge of PH2, the first path (from L1 to L2)

borrows time from the second path (from L2 to L3). In that case, the launch of data

for the second path occurs not at the opening edge, but at the data arrival time at L2,

at some time between the opening and closing edges of PH2. This timing requirement

is labeled Setup 2b. When borrowing occurs, the path originates at the D pin rather

than the G pin of L2.
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Figure 2.11: Time Borrowing in Latch-Based Paths

For the first path (from L1 to L2), PrimeTime reports the setup slack as zero if

borrowing occurs. The slack is positive if the data arrives before the opening edge

at time=10, or negative (a violation) if the data arrives after the closing edge at

time=20.

To perform hold checking, PrimeTime considers the launch and capture edges

relative to the setup check. It verifies that data launched at the startpoint does not

reach the endpoint too quickly, thereby ensuring that data launched in the previous

cycle is latched and not overwritten by the new data. This is depicted in Figure.
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Figure 2.12: Hold Checks in Latch-Based Paths

2.7.1 Timing Exceptions

When certain paths are not intended to operate according to the default setup/hold

behavior assumed by PrimeTime, you should specify those paths as timing excep-

tions. Otherwise, PrimeTime might incorrectly report those paths as having timing

violations.

PrimeTime lets you specify the following types of timing exceptions:

• False path - A path that is never sensitized due to the logic configuration,

expected data sequence, or operating mode.

• Multicycle path - A path designed to take more than one clock cycle from launch

to capture.

• Minimum/maximum delay path - A path that must meet a delay constraint

that you specify explicitly as a time value.
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2.8 Setup and Hold Checks

This section provides examples of how setup and hold timing checks are done for a sin-

gle operating condition, for simultaneous best-case/worst-case operating conditions,

and for onchip variation.

2.8.1 Path Delay Tracing for Setup and Hold Checks

Figure shows how setup and hold checks are done in PrimeTime.

Figure 2.13: Design Example

• The setup timing check from pin DL2/ck to DL2/d considers

– Maximum delay for clock-path1

– Maximum delay for data path (data-path-max)

– Minimum delay for clock-path2

• The hold timing check from pin DL2/ck to DL2/d considers

– Minimum delay for clock-path1

– Minimum delay for data path (data-path-min)

– Maximum delay for clock-path2
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The data-path-min and data-path-max values can be different due to multiple

topological paths in the combinational logic that connects DL1/q to DL2/d.

2.8.2 Setup Timing Check for Worst-Case Conditions

Figure shows how cell delays are computed for worst-case conditions. To simplify the

example, the net delays are ignored.

Figure 2.14: Setup Check Using Worst-Case Conditions

PrimeTime checks for a setup violation as follows:

clockpath1 +datapathmax - clockpath2 +setup !LnE! clockperiod

In the equation,

clockpath1 = 0.8 + 0.6 = 1.4

datapathmax = 3.8

clockpath2 = 0.8 + 0.65 = 1.45

setup = 0.2

The clock period must be at least 1.4 + 3.8 1.45 + 0.2 = 3.95.

2.8.3 Hold Timing Check for Best-Case Conditions

Figure shows how cell delays are computed for best-case conditions. Note that the

cell delays are different from the delays in Figure.
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Figure 2.15: Hold Check Using Best-Case Conditions

PrimeTime checks for a hold violation as follows:

clockpath1+datapathmin-clockpath2 - hold !GnE! 0

In the equation,

clockpath1 = 0.5 + 0.3 = 0.8

datapathmin = 1.6

clockpath2 = 0.5 + 0.35 = 0.85

hold = 0.1

No hold violation exists because 0.8 + 1.6 0.85 0.1 = 1.45, which is greater than

0.

2.8.4 Simultaneous Best-Case/Worst-Case Conditions

PrimeTime can operate in a mode that computes delays simultaneously for best-case

and worst-case conditions for hold and setup checks, enabling you to check both

conditions in one timing analysis run. In terms of path delay tracing, PrimeTime

uses worst-case conditions for setup checks and best-case conditions for hold checks.

The timing reports for setup and hold checks are the same as for Figure and Figure.

In simultaneous mode, PrimeTime does not compare data arrival at worst-case

conditions to clock arrival at best-case conditions. In this mode, the timing reports

show delays computed in the same operating condition (worst case for setup or best

case for hold).
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2.9 Clock Reconvergence Pessimism Removal

Clock reconvergence pessimism is an accuracy limitation that occurs when two dif-

ferent clock paths partially share a common physical path segment and the shared

segment is assumed to have a minimum delay for one path and a maximum delay

for the other path. This condition can occur any time that launch and capture clock

paths use different delays, most commonly with on-chip variation analysis. Auto-

mated correction of this inaccuracy is called clock reconvergence pessimism removal

(CRPR).

PrimeTime performs CRPR, when enabled, at the same time as regular timing

analysis. You need to enable CRPR before you do timing analysis. For informa-

tion about enabling CRPR. The following examples demonstrate how the pessimism

removal works.

Figure 2.16: Clock Reconvergence Pessimism Example

Figure shows how the analysis is done. Each delay (considered equal for rising and

falling transitions to simplify this example) has a minimum value and a maximum

value computed for the minimum and maximum operating conditions.

The setup check at LD2/CP considers the clock path to the source latch (CLK

to LD1/CP) at 100 percent worst case, and the clock path to the destination latch

(CLK to LD2/CP) at 80 percent worst case.
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Although this is a valid approach, the test is pessimistic because clock path1 (CLK

to LD1/ CP) and clock path2 (CLK to LD2/CP) share the clock tree until the output

of U1. The shared segment is called the common portion, consisting of just cell U1 in

this example. The last cell output in the shared clock segment is called the common

point, which is the output of U1 in this case.

The setup check considers that cell U1 simultaneously has two different delays,

0.64 and 0.80, resulting in a pessimistic analysis in the amount of 0.16. This amount,

obtained by subtracting the earliest arrival time from the latest arrival time at the

common point, is called the clock reconvergence pessimism.

This inaccuracy also occurs in an analogous way for the hold test at the LD2 latch.

2.9.1 Reconvergent Logic Example

Figure shows a situation where clock reconvergence can occur, even in the absence of

on-chip variation analysis. In this example, there is reconvergent logic in the clock

network. The two clock paths that feed into the multiplexer cannot be active at the

same time, but an analysis could consider both the shorter and longer paths for one

setup or hold check.

Figure 2.17: Reconvergent Logic in a Clock Network

2.9.2 Minimum Pulse Width Checking Example

The report-constraint command checks for minimum pulse width violations in clock

networks (as specified by the set-min-pulse-width command) and at cell inputs (as
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specified in the technology library). CRPR, when enabled, can increase the accuracy

of minimum pulse width checking. For information about enabling CRPR.

For example, consider the circuit shown in Figure. The external clock source has

early and late source latency set on it. In addition, the two buffers in the path have

minimum and maximum rise and fall delay values defined.

The report-constraint command checks the pulse width of the clock signal in the

clock network and upon reaching the flip-flop. For level-high pulse width checking,

PrimeTime considers maximum delay for the rising edge and minimum delay for the

falling edge of the clock (and conversely for level-low pulse width checking).

For the example shown in, in the absence of CRPR, the worst-case pulse width

is very small and violates the pulse width constraint of the flip-flop. However, this

analysis is pessimistic because it assumes simultaneous worst-case delays for rising

and falling edges. In a real circuit, rising-edge and falling-edge delays are at least

somewhat correlated. For example, for the delay from the external clock source to

the CLK input port, if the rising-edge delay is at the minimum, 1.3, the falling-edge

delay is probably equal or close to 1.3, and not at the maximum of +1.4.

To account for correlation between rising-edge and falling-edge delays, enable

CRPR. In that case, PrimeTime adds a certain amount of slack back into the mini-

mum pulse width calculation. The amount added is equal to the range of minimum

rise delay or the range maximum fall delay for the path, whatever is smaller:

crp = min((Mr mr), (Mf mf))

where crp = clock reconvergence pessimism, Mr = cumulative maximum rise delay,

mr = cumulative minimum rise delay, Mf = cumulative maximum fall delay, and mf

= cumulative minimum fall delay. For an example of this calculation applied to pulse

width checking, see Figure.
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2.10 DFT(scan) Insertion

Once the netlist is available, Scan insertion is done to increase the controllability and

observability of the internal nodes in the design.

a. Modes of scan Operation

Scan operates in shift and capture cycles. Data is injected into the device

through primary inputs and is shifted out of the device through the ”SD” input

port of the flops. Scan en (SE) port is active high for shift operation. Once the

chain has been flushed out and compared, the scan en signal is toggled (driven

low). Now a single clock pulse is applied to capture the data into the flops

through the ”D” inputs, before the scan en is toggled again (driven high) and

the data shifted out for comparison. Fig shows scan shift and Fig shows scan

capture operation respectively. Whenever scan en is high, the circuit will be

operating in scan mode and when it is low, the circuit will operate in normal

mode.

Figure 2.18: Scan shift
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Figure 2.19: Scan capture

b. Scan Insertion (DFT insertion) flow

Fig. 2.11 shows the scan insertion flow for DUT. It includes the following steps,

• Read design : Design is read in the form of ddc/verilog into the dc shell

• Create test protocol : It will describes how the signal should operates in

scan mode

• Pre DFT-DRC : Performs design rule checking to scan design and will list

out design rule violations before DFT insertion

• Specify scan architecture : It will define type of scan style, number of scan

chains, chain length, handling multiple clocks, lockup elements, registers

to be omitted from scan chains in the design

• Preview DFT: Checks scan architecture before implementing to actual de-

sign. This allows for quick iteration cycles when changes need to be made

in scan architecture

• Insert scan : Scan architecture is inserted to the design

• Post DFT-DRC : validates that scan chain trace properly after DFT in-

sertion



CHAPTER 2. BACKGROUND THEORY 34

Figure 2.20: DFT insertion flow chart

2.11 DFT compression (codec insertion)

DFT Max is the next generation of DFT synthesis. In this Adoptive scan technique

is used for data volume compression with no impact of test coverage. The main

advantages are

• Tester cycle reduction

• Test application time reduction

• Uses minimum number of ports

In this technique de-compressor logic is added at the input side of flop to achieve

controllability and compressor logic is added after flop for observability. Due to this

addition of compressor and decompressor logic, Adaptive scan compression is also
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known as Codec insertion. Fig.2.12 shows the codec insertion for scan chains without

addition of any extra scan in/out ports.

Figure 2.21: Compressor and decompressor logic added to scan chains

There are two modes of operation in DFT Max,

• Internal scan mode ( regular scan) : In this mode, de-compressor and compressor

logic are bypassed from accessing the scan chain

• Scan compression mode : DFT compiler allows de-compressor and compressor

logic to access scan chain

2.11.1 Scan Compression working

Available long scan chains are split into shorter chains. Shorter chains required less

time to load and less data to be loaded on tester. In Fig 2.13 two long scan chains with

12 flops in each chain is broken down into 6 chains with 4 flops in each chain without

addition of extra scan ports. This reduces test application time due to reduction in

chain length, which in turn reduces test cost.

Test application time = patterns * length of scan chain

With higher level of compression come higher area overhead, increased risk of

routing congestion and only a small incremental improvement in Test Application

Time Reduction (TATR) and Test Data Volume Reduction (TDVR).
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Figure 2.22: Adaptive scan compression

2.11.2 Hierarchical Adaptive Scan Synthesis ( HASS )

In HASS Codec insertion is done in bottom-up flow. All the adaptive scan logic is

placed at core level and codec is inserted block by block. At top level these codec

inserted blocks are combined. This mainly reduces the routing congestion at top level

and issues can be debugged easily. Fig.2.14 shows the HASS architecture at top level,

where the codec insertion is done for core 1 and core 2 blocks.

An adaptive scan core contains scan chains that are configured in two modes of

operations compression mode (scan compression mode) and reconfigurable scan mode

(internal scan mode). A pure scan core contains scan chains configured in a single

mode of operation (internal scan mode). At the chip level, these cores are integrated

to provide two modes of operations:

• Compression mode - activates all adaptive scan chains as well as all pure scan

core chains

• Reconfigurable scan mode - activates the reconfigured scan chains of each adap-

tive scan core as well as all pure scan core chains.



CHAPTER 2. BACKGROUND THEORY 37

Figure 2.23: Hierarchical Adaptive Scan Synthesis Architecture

2.12 Defining the Operating Conditions

In most technologies, variations in operating temperature, supply voltage, and man-

ufacturing process can strongly affect circuit performance (speed). These factors,

called operating conditions, have the following general characteristics:

• Operating temperature variation

Temperature variation is unavoidable in the everyday operation of a design. Ef-

fects on performance caused by temperature fluctuations are most often handled

as linear scaling effects, but some submicron silicon processes require nonlinear

calculations.

• Supply voltage variation

The designs supply voltage can vary from the established ideal value during

day-to-day operation. Often a complex calculation (using a shift in threshold

voltages) is employed, but a simple linear scaling factor is also used for logic-

level performance calculations.

• Process variation



CHAPTER 2. BACKGROUND THEORY 38

This variation accounts for deviations in the semiconductor fabrication process.

Usually process variation is treated as a percentage variation in the performance

calculation.

When performing timing analysis, Design Compiler must consider the worst-case

and best-case scenarios for the expected variations in the process, temperature, and

voltage factors.
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Methodology

This chapter includes the methodology used to implement the project. It depends on

the type of input (DUT) format. If DUT is in netlist format, then DFT insertion can

be done directly. If DUT is in RTL format, before DFT insertion first synthesis is

done to get the gate level design (netlist) and formal verification is done between RTL

and netlist for logical equivalence check. Let’s consider the DUT is in RTL format to

cover the entire flow.

3.1 To convert RTL into Gate level netlist

Synthesis is a process to translate the RTL designs into a gate-level, optimized,

mapped netlist. To perform synthesis, synopsys design compiler tool is used. Initially

all the (link and target) libraries related to design are loaded to .synopsys dc.setup

file. The advantage of setup file is, it will automatically link to dc shell environment.

• Read stage

The input RTL (DUT) is read into dc shell by using following DC commands

read verilog/vhdl or analyze and elaborate. Analyze command analyzes the

design into an intermediate format and stores in the specified library, elaborate

will builds the design from the intermediate format.

39
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• Link stage

After reading the design, set top module name in RTL to current design and

link all the libraries in setup file. To perform this set current design and link

command is used.

• Sourcing constraints

All the required constraints for the design are sourced by source command

• Uniquification stage

Removes multiply-instantiated hierarchy in the current RTL design by creating

a unique design for each cell instance. For this uniquify command is used.

• Compile stage

There are two methods of compiling the design, Top down and Bottom up. In

compile stage, optimization and mapping is done. compile -scan will replaces

normal flops with scan flops in addition to optimization and mapping.

• Write stage

The translated RTL design into the netlist is saved in the form of .v/.ddc file

by using write command

3.2 To convert RTL into Gate level netlist

The following script is used to get netlist from RTL in dc shell in Unix environment.

The input to the dc shell is RTL (DUT) and the output is gate level optimized mapped

netlist.

read verilog (.v RTL design)

set current design (top design name)

link

uniquify
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source design constraints

compile

report timing /report constraints /report clocks

write -format (verilog/vhdl) - hierarchy -output ¡ outputfile.v/ddc ¿

3.3 DFT (scan) insertion and stitching

Scan insertion can be done for a netlist ( DUT ) using synopsys DFT compiler or

Design compiler tool. In this project Design compiler tool is used for scan insertion.

This part mainly includes Design Rule Checking (DRC), fixing the DRC violations

and scan insertion. Design Rules are a series of parameters provided by semiconduc-

tor manufacturers that enable the designer to verify the correctness of a mask set.

DRC check for DUT is done before and after the scan insertion, because these DRC

violations will disturb the scan chain implementation for DUT

a. Steps to perform scan insertion

• Read stage

Netlist (DUT) is read into dc shell. This netlist can be read in ver-

ilog/binary format (.v/.ddc) by using read verilog/ddc command

• Create test protocol

Test protocol is created according to the user specification by using Create

test protocol command. In this we need to define scan clocks, scan enable,

reset signals, scan in/out ports.

• ” Pre- DFT DRC

This is design rule checking before the scan insertion. Analyze DUT and

fix all DRC violations before scan insertion. Dft drc -pre command is used

for pre DRC checks

• ” Specify scan architecture



CHAPTER 3. METHODOLOGY 42

In this stage, we will specify scan flop style, number of scan chains, number

of scan flops in each scan chain etc For this set dft signal command is used.

• ” Preview DFT

In this stage we can make changes in scan architecture according to the re-

quirements and allows quick iteration cycles. Preview dft is the command.

• ” Scan stitching

All the scan flops are stitched and scan chain is implemented as specified

in scan architecture using insert DFT command.

• ” Post- DFT DRC

After scan insertion, DRC check is performed once again and all the vio-

lations need to be fixed. After this test coverage can be obtained. If test

coverage is low, once again netlist in resynthesize using required constraints

to increase the coverage. Dft drc -post -coverage command is used.

b. Scripts generated to perform Timing analysis

read verilog (codec inserted netlist)

current design ¡top design name¿

link

update timing

check timing

report timing

report constraints -all violators

report clocks

report analysis coverage

3.4 Parasitic Interconnect Corners

Parasitics can be extracted at many corners. These are mostly governed by the

variations in the metal width and metal etch in the manufacturing process. Some of
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these are:

• Typical: This refers to the nominal values for interconnect resistance and ca-

pacitance.

• Max C: This refers to the interconnect corner which results in maximum ca-

pacitance. The interconnect resistance is smaller than at typical corner. This

corner results in largest delay for paths with short nets and can be used for max

path analysis.

• Min C: This refers to the interconnect corner which results in minimum capaci-

tance. The interconnect resistance is larger than at typical corner. This corner

results in smallest delay for paths with short nets and can be used for min path

analysis.

• Max RC: This refers to the interconnect corner which maximizes the intercon-

nect RC product. This typically corresponds to larger etch which reduces the

trace width. This results in largest resistance but corresponds to smaller than

typical capacitance. Overall, this corner has the largest delay for paths with

long interconnects and can be used for max path analysis.

• Min RC: This refers to the interconnect corner which minimizes the interconnect

RC product. This typically corresponds to smaller etch which increases the trace

width. This results in smallest resistance but corresponds to larger than typical

capacitance. Overall, this corner has the smallest path delay for paths with

long interconnects and can be used for min path analysis.
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Result Analysis

This chapter includes the result of given DUT which is obtained at worst and the best

case check after synthesis. Next includes Timing Analysis result netlist. Here I do

the timing analysis of 16 sign-off corners (with the name of corner, which technology

node(28nm), which spef is being used, standard cell which is used from the library).

In this I had analyze the report-timing of the each corner and find the critical path

for setup and hold.

Figure 4.1: Worst Negative Slack(WNS)/Critical Path Path for Setup and Hold

Shown below figure is the case of the worst path/critical path in the design for

the setup, in other words its the worst negative slack (WNS)for the setup. CMAX-

SS-125C (means the corner(CMAX), is it fast or the slow corner, if the ss than its

44
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slow nmos and slow pmos, if the ff than its fast nmos and fast pmos, if its fs than

fast nmos and slow pmos and if the sf than slow nmos and fast pmos , and the last

one is defining the temperature) corner contains the critical path for the setup and

that is optimize with the other worst path(RCMIN-SS-0C) with the same path that

contain for the CMAX-SS-125C.

Figure 4.2: worst path/critical path for the setup
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Shown below figure is the case of the worst path/critical path in the design for the

hold, in other words its the worst negative slack (WNS)for the hold. RCMIN-SS-125C

(means the corner(RCMIN), is it fast or the slow corner, if the ss than its slow nmos

and slow pmos, if the ff than its fast nmos and fast pmos, if its fs than fast nmos and

slow pmos and if the sf than slow nmos and fast pmos , and the last one is defining

the temperature) corner contains the critical path for the setup and that is optimize

with the other worst path(CMIN-SS-125C) with the same path that contain for the

RCMIN-SS-125C.

Figure 4.3: worst path/critical path for the hold
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Here is the comparison for setup and hold worst slack between the SS(slow nmos

and slow pmos) and FF(fast nmos and fast pmos) like, for the CMAX at 0C corner.

Figure 4.4: worst path/critical path for the setup and hold for CMAX-0C corner

Here is the comparison for setup and hold worst slack between the SS(slow nmos

and slow pmos) and FF(fast nmos and fast pmos) like, for the CMAX at 125C corner.

Figure 4.5: worst path/critical path for the setup and hold for CMAX-125C corner

In this project I had find timing analysis of 16 different corner’s in the design. we

have to find the some critical corners and that corners are optimize such a way that
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all the corners covers in the critical corners. So, the benefit of this is to the next team

(physical design (PD)) that Tool memories usage is less and Runtime will decreases

drastically as a result of which PD team can do more iteration and do more analysis

on this critical corners.
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Project objective: plot the worst timing path for setup analysis and

hold analysis for each timing corner to study the variation between dif-

ferent timing corners and reduce the timing corners for physical design

flow.
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