
Development of Reliability Aware
Intelligent Memory Manager in an SoC

(SoC-RAIMM)

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

Soyeb A. Khanusiya

(10MECV29)

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2012

ii

Development of Reliability Aware
Intelligent Memory Manager in an SoC

(SoC-RAIMM)

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

Soyeb A. Khanusiya

(10MECV29)

Under the Internal guidance of

Prof. Amisha Naik

and

External guidance of

Mr. Deepak Baranwal

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

iii

Declaration

This is to certify that

1. The thesis comprises of my orginal work towards the degree of Master of

Technology in VLSI Design at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material used.

Soyeb A. Khanusiya

iv

Certificate

This is to certify that the Major Project entitled “Development of Reliability

Aware Intelligent Memory Manager in an SoC (SoC-RAIMM)” submitted

by Soyeb A. Khanusiya,towards the partial fulfilment of the requirements for the

degree of Master of Technology in VLSI Design of Nirma University, Ahmedabad

is the record of work carried out by him under our supervision and guidance. In

our opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this major project, to the best of our

knowledge, haven’t been submitted to any other university or institution for award

of any degree or diploma.

Date: Place: Ahmedabad

Internal Guide External Guide

Prof. Amisha Naik Mr. Deepak Baranwal
(Professor, EC) (Senior Engineering Specialist)

(ST Microelectronics)

HOD Programm Co-ordinator

Prof. A. S. Ranade Dr. N. M. Devashrayee
(Professor, EC) (Professor, EC)

v

Acknowledgement

It is my immense pleasure to acknowledge the persons without whom this disserta-

tion would be incomplete or even impossible.

I wish to thank first and foremost, Prof. A. S. Ranade, Head of Department,

Electrical Engineering and Dr.N.M.Devashrayee, Program Coordinator, M.Tech -

Electronics and Communication(VLSI Design), for allowing me to pursue my dis-

sertation from ST Microelectronics, Greater Noida. I am thankful to ST Microelec-

tronics for providing me the exposure to industry.

I owe my deepest thank to my external guide Mr. Deepak Baranwal (APG, ST

Microelectronics) and Internal Guide Prof. Amish Naik, Nirma University, Ahmed-

abad to provide me the guidance throughout the dissertation. They are always there

to support me whenever I need them.

I consider it an honor to work with such a team headed by Mr. Deepak Baranwal.

I would like to thank my team members Mr. Digvijay Pratap Singh , Mr. Soyeb

Khanusiya and Mr. Sandhesh for providing me the space to work with them. I

thank all my team members for sharing their experience with me and helping me in

situation where I need them whether it is technically or personally.

I am deeply obliged to all the faculties, Support staff, Lab assistants, of Nirma

University, Ahmedabad for sharing their knowledge and experience with me. I

cannot find words to express my gratitude to my dearest and nearest friends for

their unconditional love and support. I am indebted to all of them for the golden

time of my life which I had spent with them. Thanks a lot for being with me and

making my life enjoyable.

Last but not the least I would like to acknowledge my parents without them I

may not be able to acknowledge the above all personalities. It is their love, support

and sacrifice because of which I am here at this stage of my life. I would also like

to express my love to my elder brother Zulfikar for giving me the reason to live life.

- Soyeb A. Khanusiya

vi

Abstract

As the geometries of the transistor reach the physical limits of operation, one of

the main design challenges of System On Chips (SoCs) will be to provide the sup-

port against permanent and intermittent faults that can occur in the system. One

of the most critical elements that affect the correct behavior of the system is the

unreliable operation of on chip memories. In this dissertation report, we present a

solution for the reliability of on chip memories of SoCs for sub nm technologies. This

report is concentrating on the Reliability with respect to the Process, Voltage and

Temperature variation. In sub nm technology this PVT variation effects are more

visible. These variations is random in nature, the main challenge is to monitoring

these random variation and taking some action to increasing SoC reliability. We

introduce the concept of RAIMM (Reliability Aware Intelligent Memory Manage-

ment) it allows to examine the effects of Process, Temperature and voltage (PVT)

variation on system memories. It also allows to continuously reliability prediction

for system memories and system level solutions for unreliable memories.

Contents

Declaration iii

Certificate iv

Acknowledgement v

Abstract vi

List of Figures xi

1 Introduction 1

1.1 Motivations behind the RAIMM . 1

1.1.1 Reliability Methodology . 6

1.2 RAIMM Proposal . 9

1.3 Features of RAIMM . 10

2 SystemC 12

2.1 Introduction . 12

2.2 Language Comparison . 13

2.3 SYSTEMC Features . 14

2.4 SYSTEMC DESIGN FLOW . 15

2.5 SYSTEMC Compilation Flow . 16

2.6 System of SystemC . 17

2.6.1 TERMINOLOGY . 17

vii

CONTENTS viii

2.7 Simulation and Debugging Using SystemC 19

3 TLM (Transaction Level Modeling) 21

3.1 Introduction . 21

3.2 TLM BASED METHODOLOGY . 23

3.3 TLM TERMINOLOGY . 24

3.4 MODELING API . 25

3.4.1 Core TLM Interface Layer . 26

3.4.2 Protocol Layer . 26

3.4.3 IP Layer . 27

3.4.4 Other Terminology . 28

3.5 INTERCONNECT MODELING . 29

3.5.1 Interconnect Structure . 29

4 ARM926 BASED PLATFORM 31

4.1 Introduction . 31

4.2 ARM Based Platform for IP development- /verification 31

4.3 Components of the Platform . 33

4.3.1 Arm926 - Overview . 34

4.3.2 Universal asynchronous receiver/transmitter (UART) 36

4.3.3 DMA Controller . 38

4.4 Working with Arm926 Environment 39

4.4.1 Debug Interfaces . 39

4.4.2 Creating a Debug Configuration 40

4.4.3 Connecting to a target . 41

5 RAIMM Implementation 43

5.1 About the RAIMM . 43

5.2 Features of RAIMM . 43

5.3 RAIMM Usage in SOCs . 44

CONTENTS ix

5.4 Functional Description . 44

5.4.1 Reliability Compute and Ranking Module 46

5.4.2 Reliability Template . 51

5.4.3 Registers for each memory . 51

5.4.4 Remap Module . 54

5.4.5 RAIMM Configuration Register 54

5.4.6 RAIMM Status Register . 54

5.4.7 RAIMM Interrupt Controller 54

5.4.8 RAIMM DMA . 55

5.5 System Connectivity . 57

5.5.1 RAIMM top level view with platform 57

5.6 Software Consideration . 57

5.7 PROGRAMMERS Model . 59

5.7.1 Register fields . 59

5.7.2 List of RAIMM Register . 59

5.7.3 RAIMM Global registers description 61

5.7.4 RAIMM Local registers for each memory 65

5.8 RAIMM Verification . 66

5.8.1 Overview . 66

5.9 Driver . 67

5.9.1 Registers . 68

5.9.2 RAIMM Verification Strategy 69

5.9.3 RAIMM Verification with UART Interrupt operation 72

5.10 Methodology for Implementing RAIMM Transaction-level modeling . 73

5.10.1 TLM Methodology . 73

5.10.2 PLATFORM . 77

5.10.3 Components of the Platform 78

5.10.4 LAUCHING OF PLATFORM 81

5.11 RAIMM Results . 81

CONTENTS x

5.11.1 Simulation results of RAIMM ranking module 81

5.11.2 RAIMM - Ranking Module Behavior 81

5.11.3 RAIMM Simulation Results 81

6 Conclusion 85

6.1 Conclusion . 85

List of Figures

1.1 Process variation over one die of a wafer 2

1.2 ID(on) for different supply voltage (nMOS) 4

1.3 ID(off) for different supply voltage (pMOS) 4

1.4 Idrain for Process variation . 5

1.5 ISUB and IDATE w.r.t. Temperature Variation 5

1.6 Overview of TRAM . 7

1.7 Probability of error for different temperature profiles 8

1.8 Block diagram of DRM . 9

1.9 Basic model for data transfer between CPU and Memory 10

1.10 RAIMM Concept . 11

2.1 Language Comparison . 13

2.2 SystemC Design flow . 15

2.3 SystemC Compilation flow . 16

2.4 System of SystemC . 17

3.1 TLM based methodology . 24

3.2 . 28

3.3 System level interconnect using TLM 30

4.1 ARM926e processor based virtual platform 33

4.2 rvDebuger interface with arm processor 40

4.3 Configuring arm processor as a target 42

xi

LIST OF FIGURES xii

4.4 Connecting with arm . 42

5.1 Functional block diagram of RAIMM 45

5.2 Voltage variation reliability checking process 47

5.3 Voltage variation reliability checking process 48

5.4 Process variation reliability checking process 48

5.5 Process variation reliability checking process 49

5.6 Temperature Variation reliability checking process 50

5.7 Temperature Variation reliability checking process 50

5.8 Decision Ranking Table . 51

5.9 Decision Ranking Table . 52

5.10 Flow chart of RAIMM reliability ranking module 52

5.11 Block diagram of RAIMM DMA . 55

5.12 RAIMM functional flowchart . 56

5.13 RAIMM system level connectivity . 57

5.14 Top level view of platform with RAIMM 58

5.15 RAIMM Verification Result with latency 71

5.16 RAIMM Verification Results with UART interrupt 74

5.17 Generic Design Flow with TLM Methodology 76

5.18 Simulation results of RAIMM ranking module 82

5.19 Voltge vs Reliabiliy . 83

5.20 RAIMM Simulation Results . 84

Chapter 1

Introduction

1.1 Motivations behind the RAIMM

Circuit designers have long been aware of the three primary categories of variation

across a chip: Process Parameters for NMOS and PMOS devices, Supply Voltage,

and Temperature – collectively referred to as ’PVT’. Each one varies independently,

although there may be correlations between them. These variations could generally

be different from within a chip, from chip-to-chip, and from wafer-to-wafer due

to integrated circuit (IC) wafer processing techniques. However, the chip-to-chip

variations and wafer-to-wafer variations would equally impact all components and

branches of a single chip. Therefore, the greater concern for system performance is

due to intra-chip PVT variation. The PVT variation could be time-varying during

circuit operation. Typically, process variations tend to be static in nature but may

drift slowly over time, while supply voltage and temperature variations are truly

dynamic in nature and depend primarily on the layout of the power/ground grids, the

floorplan of the blocks on the chip, and the activity levels of the blocks themselves.

As a result, PVT variations must be expected throughout any chip and will affect

latency, threshold voltage, clock skew and etc. Process variations can be further

classified into two distinct categories based upon their degree of correlation across

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Process variation over one die of a wafer

the chip. Random variations are considered uncorrelated spatially and therefore they

can be modeled as random variables at every location on the chip. Spatial variations

are highly-correlated across the chip and therefore are modeled as a spatial pattern or

gradient across the chip. Some circuits (e.g., small, matched, localized blocks) may

be more affected by random variations, while others (e.g., large, global, dispersed

blocks) may be more affected by spatial variations; so, both random and spatial

variations must be considered in system timing analysis.

Vt variation with PVT:

Threshold Voltage (VT) variation is caused by two types of sources: systematic

and random. Systematic sources include lithography-induced variations in chan-

nel length and width, which are deterministic and predictable. Random sources

include as gate line-edge-roughness (LER), random-dopant-fluctuation (RDF), and

gate work-function variation (WFV), which are non-deterministic and are projected

to be the dominant sources of VT variation for transistor. The effect of random

fluctuation is because of the number of impurity atoms, as one of the issues for

continued transistor scaling. Analytical models and three-dimensional (3D) fine-

CHAPTER 1. INTRODUCTION 3

grid statistical device simulations were subsequently used to understand and predict

RDF-induced VT variation in deep sub-micron devices. It is well known that RDF-

induced VT is inversely proportional to (WL)0.5, where W and L are the transistor

channel width and length, respectively.

Intra Die Variation:

By lowering supply voltage, the dynamic power decreases quadratically. On the

other hand, the process variation sensitivity increases. PVT variation effects are

more stringent in small size devices. Variations in channel length, channel width,

oxide thickness, threshold voltage, line-edge roughness, and random dopant fluctu-

ations are the sources of the inter-die and the intra-die variations in process pa-

rameters. One of this inter die effects is threshold voltage variations due to the

changes of a single transistor (e.g. threshold voltage increases if temperature is re-

duced). However, intra-die variations may be different in one transistor to another

(i.e. increase in Vth for one device on the other hand decrease in threshold voltage).

An example of the systematic intra-die variation can be the change in the channel

length of different transistors of a die that are spatially correlated. The RDF in-

duced Vth variation is a classic example of the random intra-die variation. Fig.2

shows the Monte Carlo simulations for a single NMOS transistor. As it can be seen

the drain current variation for lower supply voltages is higher. Fig 3 shows same

for the PMOS transistor. As the supply voltage is reduced the process variation is

increased. So with a small change in threshold voltage due to RDF, LER, aging

effect, and etc, the drive current is changed significantly causing different behavior

and in some circuits causing failure.

Fig 1.4 shows the effect of process variation on sub threshold current as it can be

seen, process variation is dominant and the sigma is changed from 4.33nA to 4.71nA

As shown in fig 1.5, the gate current is changed only by 0.5pA from - 40C to 125C

while sub is changed by a value around 12 .5nA. So, we can see that at lower supply

voltages, gate leakage is neglected and the process variations caused by this current

has no significant effect on circuit evaluation. The effects of process variations on

CHAPTER 1. INTRODUCTION 4

Figure 1.2: ID(on) for different supply voltage (nMOS)

Figure 1.3: ID(off) for different supply voltage (pMOS)

CHAPTER 1. INTRODUCTION 5

Figure 1.4: Idrain for Process variation

Figure 1.5: ISUB and IDATE w.r.t. Temperature Variation

CHAPTER 1. INTRODUCTION 6

6T-SRAM cause changes in SRAM reliability. In this case we used a SRAM cell

specified for low power supply applications. It means that the SRAM cell is resized

to work in lower supply voltages. If corresponding sizing for higher supply voltages

is used for lower supply voltages, then these process variations causes some failures.

So now reliability is more concerned for sub nm technologies.

1.1.1 Reliability Methodology

Adaptive Body Biasing (ABB)

Bidirectional adaptive body bias (ABB) is used to compensate for die-to-die param-

eter variations by applying an optimum pMOS and nMOS body bias voltage to each

die which maximizes the die frequency subject to a power constraint.

Adaptive Voltage Management (AVM)

Detects temperature accurately by using two ring oscillators, sets supply voltage

most suitable with a table look-up method corresponding to the process variation.

Also, the AVM can supply the stable voltage with a local shift type regulator even

at lower voltage. Thereby, this supply-voltage control system considering PVT

variations can control the internal voltage corresponding to process and temperature

variations and can realize a wide-operating-margin.

Temperature and Reliability Aware Memory design (TRAM)

Allow designers to examine the effects of frequency, supply voltage, power dissipa-

tion and temperature on reliability of memories. Fig 1.6 illustrates the overview

of the TRAM which generates reliability values for memory blocks as a function of

supply voltage and frequency while taking temperature into account. TRAM uses

temperature estimates of the memory under design to generate a better estimate of

the expected probability of error in the memory. TRAM computes the reliability

with respect to probability of error/failure. Experimental results indicate that the

CHAPTER 1. INTRODUCTION 7

Figure 1.6: Overview of TRAM

probability of error is significantly higher at high temperature. Fig 1.7 indicates

that an increase in Vdd fails to reduce probability of error at higher temperature.

Increase in Vdd does not guarantee a reduction in probability of error because of

the temperature effect. TRAM allows the designer to explore memory Vdd selec-

tion for the tradeoff between power and reliability in thermally aware environment

and quantifies the effect of temperature on the probability of failures in memories.

Thermal Aware Vdd selection using TRAM can reduce the power dissipation by up

to 2.5X for a predefined limit of errors.

Dynamic reliability management (DRM) and Dynamic temperature man-

agement (DTM)

Proposed to recapture the system performance and reliability margin. Unlike DTM,

which tends to avoid temperature violations to minimize the chances of reliabil-

ity failure, DRM reacts to the current reliability state and then adjusts the volt-

age/frequency to recover unacceptable reliability loss or use available excess margin

CHAPTER 1. INTRODUCTION 8

Figure 1.7: Probability of error for different temperature profiles

to boost performance by allowing operation at a higher supply voltage. DRM focuses

on the process variation and temperature aware model for the oxide break-down

(OBD) failure. Reliability Evaluation and prediction is achieved by the reliability

assessment module. This module is software-based and takes into account both pro-

cess and temperature variabilities for system reliability monitoring Thermal sensors

provides accurate inputs to reliability models for projecting the degradation caused

by various failure mechanisms. The projected failure probability is used to control

the maximum voltage in the DVFS module. Management of reliability is achieved

by the Dynamic voltage/frequency scaling (DVFS) module. This Module computes

the deviation between the predicted overall lifetime reliability and target reliability.

This Deviation is then used in the PID of the DVFS to adjust the system maximum

voltage. To decide the reliability, DFM uses the Weibull Probability Distribution.

F (t) = 1 - R (t). F (t) is cumulative distribution function of time to breakdown R

(t) is Reliability Function.

The on-chip real time reliability monitoring and control can boost supply voltages

beyond nominal values, which may enhance system performance by 28.7 perccent

CHAPTER 1. INTRODUCTION 9

Figure 1.8: Block diagram of DRM

without violating pre-defined reliability constraints.

1.2 RAIMM Proposal

Memories are increasingly used in SoC’s. As per new technology trends, SoC’s

worked at lower operating voltage. So as technology scaling increased, Soft Error

Rate sensitively affects the performance of SoC’s. Due to this SER, the reliability

is going to be decreased. So we are concentrating on the MEMORY reliability of

SoC’s which are affected by Soft Error Rate (SER). To achieve this, we introduce

the concept of RAIMM (Reliable Aware of Intelligence Memory Management). To

increase the reliability of SRAM in SoC, we need to split the system memory into

multiple blocks and place it in different area on die. There after every memory

block connected with its individual PVT sensor for continuously update the values

of PVT variation. For particular technology, the PVT variation values are fixed,

for checking the reliability, RAIMM compares the values from PVT sensor with the

reference values/lookup table to decide the reliability of the Memory. If the values

CHAPTER 1. INTRODUCTION 10

Figure 1.9: Basic model for data transfer between CPU and Memory

of PVT sensors are out of range, than the data is transferred to the memory which

one is reliable. To achieve this task, Memory Manager is introduced in the RAIMM.

Memory manager decides the reliability from the PVT values. For that, we have

to make lookup table for P, V and T values individually. If memory is unreliable,

This Memory Manager generates the output as interrupt for the CPU. For specific

technology, Reliability ranges for Supply voltage, Temperature and process variation

are decided by the statistical analysis. So lookup table/Ranking table compares the

PVT sensor’s output with these ranges for taking the decision in terms of reliable or

unreliable condition. We are taking sum assumption for the sensors o Availability

of suitable PVT sensors which can provide a overall memory operating conditions o

Sensors are low-consumption so as not to worsen the local conditions

1.3 Features of RAIMM

1. Continuously monitoring process, voltage and temperature variation in the system

memory. 2. Monitoring Reliability of the System Memory due to the process,

CHAPTER 1. INTRODUCTION 11

Figure 1.10: RAIMM Concept

voltage, temperature variation. 3. Generating system level interrupts for unreliable

memory. 4. Memory profiling based on the accesses done to a particular memory

module 5. Ranking of memories based on PVT condition and memory profiling. 6.

Remapping of unreliable memory data into reliable memory.

Chapter 2

SystemC

2.1 Introduction

SystemC is a system design language that has evolved in response to a pervasive

need for a language that improves overall productivity for the designers of electronic

systems. Typically, today’s systems contain the Application-specific hardware and

software. Furthermore, the hardware and software are usually co-developed on a

tight schedule, the systems have tight real-time performance constraints, and thor-

ough functional verification is required to avoid expensive and sometimes catas-

trophic failures. SystemC offers real productivity gains by letting engineers design

both the hardware and software components together as these components would

exist on the final system, but at a high level of abstraction. This higher level of

abstraction gives the design team a fundamental understanding early in the design

process of the intricacies and interactions of the entire system and enables better

system trade offs, better and earlier verification, and over all productivity gains

through reuse of early system models as executable specifications.

What is SYSTEMC?

SystemC is a C++ class library and methodology that can effectively be used to

create a model of a system consisting of software algorithm, hardware architecture

12

CHAPTER 2. SYSTEMC 13

Figure 2.1: Language Comparison

and interfaces of Soc.

Why SYSTEMC?

C/C++ has no notion of time No event sequencing Concurrency But H/W is

inherently concurrent H/W Data Types No ’Z’value for tri-state buses

SYSTEMC Class Library use for:

Cycle-Accurate model for Software Algorithm Hardware Architecture Interface

of SoC (System-on-Chip) System-level designs Executable Specification

2.2 Language Comparison

SystemC is not a language, but rather a class library within a well established lan-

guage, C++. SystemC is not a panacea that will solve every design productivity

issue. However, when SystemC is coupled with the SystemC Verification Library, it

does provide in one language many of the characteristics relevant to system design

and modeling tasks that are missing or scattered among the other languages. Ad-

ditionally, SystemC provides a common language for software and hardware, C++.

CHAPTER 2. SYSTEMC 14

Several languages have emerged to address the various aspects of system Design. Al-

though Ada and Java have proven their value, C/C++ is predominately used today

for embedded system software. The hardware description languages (HDLs), VHDL

and Verilog, are used for simulating and synthesizing digital circuits. Vera and e

are the languages of choice for functional verification of complex application-specific

integrated circuits (ASICs). SystemVerilog is a new language that evolves the Ver-

ilog language to address many hardware-oriented system design issues. Matlab and

several other tools and languages such as SPW and System Studio are widely used

for capturing system requirements and developing signal processing algorithms.

2.3 SYSTEMC Features

Hardware Type Communication

Signals and protocols

Notion of Time

Time Sequences Operation

Concurrency

Hardware and system are inherently coherent i.e. they operate in parallel

Reactivity

Hardware is inherently reactive, it responds to stimuli and is in constant interaction

with its environment

Hardware Data Types

Bit type, Bit Vector Type, signed and unsigned int, fixed point types and multi

value logic types. Integrated Simulation Kernel

CHAPTER 2. SYSTEMC 15

Figure 2.2: SystemC Design flow

2.4 SYSTEMC DESIGN FLOW

Design methods surrounding SystemC are currently maturing and vary widely. In

the next few years, these methods will likely settle into a cohesive design methodol-

ogy (with a few variants among certain industry segments). The resulting method-

ology will feel similar to the methodologies in use today, but at higher levels of

abstraction. To some, the concept of using one unified language for hardware and

software development appears revolutionary, but this concept is clearly an evolu-

tionary path for those who frequently work in both domains. Although tools and

language constructs exist in SystemC to support Register-transfer-level (RTL) mod-

eling and synthesis, a major reason for using the language is to work at higher ab-

straction levels than RTL. SystemC’s ability to model RTL designs enables support

of design blocks generated by higher level (behavioral or graphical entry) synthesis

tools or to support legacy design blocks.

CHAPTER 2. SYSTEMC 16

Figure 2.3: SystemC Compilation flow

2.5 SYSTEMC Compilation Flow

The flow for compiling a SystemC program or design is very traditional, and

is illustrated in Figure for GNU C++. Most other compilers will be similar. The

C++ compiler reads each of the SystemC code file sets separately and creates an

object file (usual file extension of .o). Each file set usually consists of two files

typically with standard file extensions. We use .h and .cpp as file extensions, since

these are the most commonly used in C++. The .h file is generally referred to

as the header file and the .cpp file is often called the implementation file. After

creating the object files, the compiler (actually the loader or linker) will link your

object files and the appropriate object files from the SystemC library (and other

libraries such as the standard template library or STL). The resulting file is usually

referred to as an executable, and it contains the SystemC simulation kernel and

your design functionality. The compiler and linker need to know two special pieces

of information. First, the compiler needs to know where the SystemC header files

are located (to support include ¡systemc.h¿). Second, the linker needs to know

CHAPTER 2. SYSTEMC 17

Figure 2.4: System of SystemC

where the compiled SystemC libraries are located. This is typically accomplished

by providing an environment variable named SYSTEMC, and ensuring the Makefile.

2.6 System of SystemC

2.6.1 TERMINOLOGY

Modules

Modules are the basic building block within SystemC to partition a design. Modules

allow designers to break complex systems into smaller more manageable pieces.

Modules help split complex designs among a number of different designers in a

design group. Modules allow designers to hide internal d ta representation and

algorithms from other modules. This forces designers to use public interfaces to other

modules, and the entire system becomes easier to change and easier to maintain. For

example, a designer can decide to completely change the internal data representation

and implementation of a particular module. However, if the external interface and

CHAPTER 2. SYSTEMC 18

internal function remain the same, the users of the module do not know that the

internals were changed. This allows designers to optimize the design locally.

Processes

Processes are the basic unit of execution within SystemC. Processes are called to

emulate the behavior of the target device or system. Some processes behave just

like functions, the process is started when called, and returns execution back to

the calling mechanism when complete. Other processes are called only once at the

beginning of simulation and are either actively executing or suspended waiting for

a condition to be true. The condition can be a clock edge or a signal expression

or combination of both. Processes have sensitivity lists, i.e. a list of signals that

cause the process to be invoked, whenever the value of a signal in this list changes.

Processes cause other processes to execute by assigning new values to signals in the

sensitivity list of the other process.

Three types of SystemC processes are available:

o Methods When events (value changes) occur on signals that a process is sen-

sitive to, the process executes. A method executes and returns control back to the

simulation kernel.

o Threads Thread Process can be suspended and reactivated. The Thread Pro-

cess can contain wait() functions that suspend process execution until an event

occurs on one of the signals the process is sensitive to. An event will reactivate the

thread process from the statement the process was last suspended. The process will

continue to execute until the next wait().

o Clocked Threads Clocked threads can be used to create implicit state machines

within design descriptions. An implicit state machine is one where the states of

the system are not explicitly defined. Instead the states are described by sets of

statements with wait() function calls between them. Clocked Thread Processes are

a special case of a Thread Process. Clocked Thread Processes help designers describe

their design for better synthesis results. Clocked Thread Processes are only triggered

CHAPTER 2. SYSTEMC 19

on one edge of one clock, which matches the way hardware is typically implemented

with synthesis tools.

Ports

Ports of a module are the external interface that pass information to and from a

module, and trigger actions within the module. Signals create connections between

module ports allowing modules to communicate.

A port can have three different modes of operation.

o Input o Output o InOut

Events

Flexible, low-level synchronization primitive Used to construct other forms of syn-

chronization

Channels

A container class for communication and synchronization They implement one or

more interfaces

Interface

Specify a set of access methods to the channel

2.7 Simulation and Debugging Using SystemC

The scheduler in SystemC executes the following steps during simulation.

1. All clock signals that change their value at the current time are assigned their

new values.

2. All SCMETHOD or SCTHREAD processes with inputs that have changed

are executed. The entire body of SCMETHOD function processes is executed, while

CHAPTER 2. SYSTEMC 20

SCTHREAD processes are executed until the next wait() statement suspends exe-

cution of the process. SCMETHOD or SCTHREAD processes are not executed in

a fixed order.

3. All SCCTHREAD processes that are triggered have their outputs updated,

and they are saved in a queue to be executed later in step 5. All outputs of

SCMETHOD/SCTHREAD processes that were executed in step 1 are also updated.

4. Steps 2 and 3 are repeated until no signal changes its value.

5. All SCCTHREAD processes that were triggered and queued in step 3 are

executed. There is no fixed execution order of these processes. Their outputs are

updated at the next active edge (when step 3 is executed), and therefore are saved

internally.

6. Simulation time is advanced to the next clock edge and the scheduler goes

back to step 1.

Chapter 3

TLM (Transaction Level

Modeling)

3.1 Introduction

In order to handle the ever increasing complexity of system on- chips (SoCs) and

time-to-market pressures, the design abstraction has been raised to the system level

in order to increase design productivity. This higher level of abstraction generated

large interest in transaction-level modeling, synthesis, and verification.

In a transaction-level model (TLM), the details of communication among

computation components are separated from the details of computation components.

Communication is modeled by channels, while transaction requests take place by

calling interface functions of these channel models.

Unnecessary details of communication and computation are hidden in a

TLM and may be added later. TLMs speed up simulation and allow exploring and

validating design alternatives at the higher level of abstraction.

Transaction-level modeling is an emerging concept without precise defini-

tions. A working group of Open SystemC Initiative (OSCI) is currently defining a

set of terminology for TLM and will eventually develop TLM standards. In reality,

21

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 22

when engineers talk of TLM, they are probably talking about one or more of four

different modeling styles that are discussed in the following section.

The underlying concept of TLM is to model only the level of detail that

is needed by the engineers developing the system components and subsystem for

a particular task in the development process. By modeling only the necessary de-

tails, design teams can realize huge gains in modeling speed thus enabling a new

methodology. At this level, changes are relatively easy because the development

team has not yet painted itself into a corner with low-level details such as a parallel

bus implementation versus a serial bus implementation.

Using TLMs makes tasks usually reserved for hardware implementations prac-

tical to run on a model early in the system development process. TLM is a concept

independent of language. However, to implement and refine TLM models, it is help-

ful to have a language like SystemC whose features support independent refinement

of functionality and communication that is crucial to efficient TLM development.

In the transaction-level model (TLM), the details of communication among

computation components are separated from the details of the implementation of

computation components. Communication is modeled as channels and transaction

requests take place by calling interface functions of these channel models. Unneces-

sary details of communication and computation are hidden in the TLM and may be

worked out later. Transaction-level modeling enables speeding up simulation time,

exploring and validating implementation alternatives at the higher level of abstrac-

tion. However, the current definition of TLM is too general and not well defined.

Without clear definition of TLMs, not only the predefined TLMs cannot be easily

reused, but also the usages of TLMs in the existing design practices, namely system

synthesis, platform-based design, and component based design, cannot be systemat-

ically developed. Consequently, the advantages of TLM don’t effectively benefit the

users of the existing design practices. The TLM can be used in the existing three

design practices:

• System synthesis (top down approach),

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 23

• Platform-based design (meet-in-the-middle approach),

• Component-based design (bottom-up approach).

System synthesis, starts design from the system behavior representing the de-

sign’s functionality, generates system architecture from the behavior, and gradually

reaches the implementation model by adding implementation details.

With comparison to the system synthesis, Platform-based design maps the

system behavior to the predefined system architecture, rather than generating the

architecture from the behavior. An example of platform-based design approach is to

use VCC for design estimation/exploration and Co-Ware N2C for interface synthesis.

Unlike above two approaches, in order to produce the predefined platform,

Component-based design assembles the existing computation components by insert-

ing wrappers among them. Component-based design focuses on component reuse

and wrapper generation. All of above three design practices fully/ partly cover de-

sign domain from the system behavior to the detailed system implementation, which

exhibits great potential of employing TLMs

3.2 TLM BASED METHODOLOGY

• If the proper design language and techniques are used consistently throughout

the flow, then the SAM can be reused and refined to develop the TLM.

1. Refinement of implementation features such as HW/SW partitioning; HW par-

titioning among ASICs, FPGAs, and boards; bus architecture exploration; co-

processor definition or selection; and many more 2. Development platform for system

software 3. ”Golden Model” for the hardware functional verification 4. Hardware

micro-architecture exploration and a basis for developing Detailed hardware speci-

fications In the near future, if EDA tools mature sufficiently, the TLM code may be

refined to a behavioral synthesis model and be automatically converted to hardware

from a higher-level abstraction than the current RTL synthesis flows. Today, the

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 24

Figure 3.1: TLM based methodology

hardware refinement is likely done through a traditional paper specification and RTL

development techniques, although the functional verification can now be performed

via the TLM as outlined later in this chapter. At first, development of the TLM

appears to be an unnecessary task.

The TLM creates benefits including: 1) Earlier software development 2) Ear-

lier and better hardware functional verification test bench 3) Creates a clear and

unbroken path from customer requirements to Detailed hardware and software spec-

ifications

The TLM has several goals

3.3 TLM TERMINOLOGY

TLM modeling infrastructure defines SoC design as a project that refers to IP mod-

els. Each project is hierarchically organized in several directories listed below:

• Component. Contain all TLM component models implemented for a given

project. Each component holds its own directory, which can be hierarchically

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 25

organized and may have inter-project dependencies.

• Platform. Represent the location where components and/or test benches are

instantiated for creating the top netlist of a design.

• Software. Keep embedded software codes to be run on the TLM simulation

platform of a given project.

• Devkit. Contain simulation facilities such as transaction recorders or helper

functions that are not directly parts of TLM models, but useful for the project

in certain perspectives or context.

• External. Store definitions of external libraries and tools required by the TLM

simulation. These definitions may not strictly be related to TLM models. For

example, a library containing a processor model is referred by a TLM platform

to instantiate an ISS yet it remains an external item

3.4 MODELING API

The TLM uses layered approach, which separates a functional IP model clearly

from its communication interfaces that exchange data with other models. The TLM

layered approach offers high-level primitives tailored for the specific modeling needs

of modeling engineers. In many cases of system modeling, several communication

protocols of different semantics and content are required. Some cases may only

require a simple communication protocol that requests a point-to-point connection

to pass data from an initiator to a target. On the other hand, certain cases may

need a more complex protocol that supports the following features:

1. Complex data structures with address, data, and byte-enable information. 2.

Transaction routing onto the communication medium. 3. score-boarding capabilities

for verification purposes.

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 26

To address such varying modeling requirements, the TLM layered approach has

defined three complementary layers listed below:

1. Core TLM interface layer. 2. Protocol layer. 3. IP layer.

3.4.1 Core TLM Interface Layer

The core TLM interface layer is the foundation of TLM methodology. It defines

a transactional level interface, and declares the related transactional level ports

accordingly. Indeed, such layer is the minimum interface definition required for

modeling a SoC at the transactional level. It gets ready a communication API that

is capable of transporting a transaction from an initiator to a target module.

3.4.2 Protocol Layer

Various communication protocols can be defined on top of the core TLM interface

layer. These protocols rely fully on the core TLM interface to transfer a transaction

between two different points in a system. The semantics of the transactional transfer

are refined by these protocols in terms of transaction payload and blocking/non-

blocking transfer.

TLM modules communicate through ports. Initiator ports are defined as

a specialization of sc port on the master side, while target ports are defined as

a specialization of sc export on the slave side. For each TLM protocol, a set of

methods is defined. These methods are also known as convenience functions. They

are specified in the form of interfaces in the C++ abstract class.

• Initiator Port.

For initiator ports, the implementation of these methods is 1. Core TLM interface

layer. Done once and for all by the protocol developer. It allows translating user-

level operations (e.g. Read or write) into the appropriate core TLM interface calls.

• Target Module.

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 27

For target modules, the core TLM interface is implemented in a target base class

that is done once and for all by the protocol developer. This implementation calls the

methods of the protocol interface implemented in each target module. Therefore, the

IP developer is responsible for the right implementation of the convenience functions.

Since target modules inherit from the protocol interface, the compiler will definitely

check for the existence of the implementation of these convenience functions. The

examples of the TLM protocols developed by our efforts include: 1. TLM TAC

TAC stands for Transaction Accurate Communication. It specifies a very

abstract bus model with a blocking read/write API. It uses the bidirectional blocking

core TLM interface, tlm transport if.

2. TLM STBUS. This is a model of the STBus4 protocol at the packet level.

This protocol definition includes the representation of all opcodes and the associ-

ated information of STBus. It uses the unidirectional blocking core TLM interface,

tlm blocking put if, and the non-blocking core TLM interface, tlm nonblocking put if.

3. TLM SYNCHRO. A TLM protocol particularly developed for purely func-

tional simulations. System synchronizations are modeled without using sc signal. It

uses the unidirectional blocking core TLM interface, tlm blocking put if.

3.4.3 IP Layer

TLM IPs is modeled on top of a TLM protocol layer as functional modules.

Communications between TLM IPs are established through the communication API

defined in the protocol interface. A given TLM IP can instantiate as many ports

as required as long as it is in accordance with the underlying protocol. Several ports

based on the same protocol could be instantiated by an IP, for instance, a dual port

memory IP. Each IP is aware of a set of protocols that it can support. An example

of an IP supporting multiple protocols is the protocol converter. This IP receives

transactions from a sub-system built on a particular protocol. It then converts the

received transactions into another protocol, and reinitiates them to another sub-

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 28

Figure 3.2

system as new transactions based on this protocol. Figure 3.2 illustrates the idea of

the TLM layered approach in SystemC.

3.4.4 Other Terminology

1) Nonblocking: Means function implementations can never call wait() 2) Block-

ing: Means function implementations might call wait() 3) Unidirectional: data

transferred in one direction 4) Bidirectional: data transferred in two directions 5)

Write/Peek: Write potentially overwrites data and can never block. Peek reads

most recent valid value. Write/Peek is similar to write/read to a variable or signal

6) Put/Get: Put queues data. Get consumes data. Put/Get is similar to writ-

ing/reading from a FIFO 7) Pop: A pop is equivalent to a get in which the data

returned is simply ignored

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 29

3.5 INTERCONNECT MODELING

An interconnect or channel is a structure responsible for establishing communi-

cations among TLM modules. It can be modeled in various manners at the trans-

actional level depending on the expected accuracy as well as the model used on the

final platform. The minimum features of a TLM interconnect are the abilities to:

1. Decode addresses. 2. Route a transaction from an initiator to a target module.

This approach is sufficient to model untimed modules for fast functional sim-

ulations during the embedded software development. It is obviously insufficient for

an architectural analysis. In that case, the topology (e.g. nodes and links between

nodes of a network-on-chip) of the interconnect module will have to be modeled

along with its arbitration policy and potential delays.

3.5.1 Interconnect Structure

In the untimed TLM, an interconnect is modeled as a hierarchical channel with

communication ports and the implementation of one of the core TLM interfaces.

Depending on the communication purposes, communication ports of a channel can

be arranged differently as:

• Simple Transaction Router

If a channel simply routes transactions without considering arbitration, a single

initiator port and a single target port will be sufficient. Each of these communication

ports can be bound to one or more IP ports. Indeed, an initiator port and a target

port of a router are centralized points to receive and transmit transactions collec-

tively from all IP ports involved in the system communication. Figure illustrates

the interconnect structure of a transaction router.

• Arbiter Channel

A sophisticated channel with arbitration ability is typically implemented for cases

where the system topology and port notions are required for handling arbitration.

CHAPTER 3. TLM (TRANSACTION LEVEL MODELING) 30

Figure 3.3: System level interconnect using TLM

In an arbiter channel, an initiator port or a target port will be particularly assigned

for each IP port involved in the system Communication. The interconnect structure

of an arbiter is depicted in Fig 3.3

Chapter 4

ARM926 BASED PLATFORM

4.1 Introduction

This System platform is a completely abstracted platform and different IPs is

modeled in SystemC at higher abstraction level either transaction level models or

timing annotated models. In this scenario, the platform gives a glimpse of platform

SoC and a complete hardware + software prototype is available. There is an oper-

ating system booted on the platform and it permits to develop/plug and integrate

device drivers for IPs.

4.2 ARM Based Platform for IP development-

/verification

The ARM platform can be used to demonstrate platform architecture as well as

illustrates the possibility to deploy the platform for RTL development/verification.

The intent of the platform is to provide a preliminary platform with minimum

required components which permits to run test software and permits to plug the

RTL IP, corresponding verification IP and facilitates the RTL IP verification.

Such a platform could be a demo platform as well as it could help customer

31

CHAPTER 4. ARM926 BASED PLATFORM 32

to do early evaluation of System with their own IPs. Customer may develop an

abstracted IP model and perform all kind of analysis, start developing test benches

for further phases of development. This could be a suitable platform for customer to

perform hardware software partitioning and make explorations pertaining to make

a better decision on what could go in software and the hardware portion of the IP.

The ARM926 processor based system has been shown in Fig 17.

The approach helps for following of the activities in design cycle -

• Such platform which could be used for developing test vectors with an ab-

stracted IP prototype. These test vectors could be further used for RTL veri-

fication with references already available.

• This platform could be considered a reference platform for RTL development

and seamlessly permits to write small s/w ’c/c++’ test benches.

• A similar platform could be used for HW/SW partitioning. Facilitated with

some tools available, it could be used to gather performance statistics in order

to partition Software functionalities versus Hardware.

• Start early S/W driver development and perform S/W debugging. In this

platform the S/W debugging capabilities are very good as well, it permits to

debug the hardware also to a great extent.

• A setup could be established to have Instruction set simulator or Cycle ac-

curate simulators plugged in the same platform and run the software as if

running on the ARM boards.

The added advantage of such platforms are better simulation performance,

good debugging capabilities with test benches as it permits to write C test benches.

This platform will be highly recommended to customers who are interested in de-

veloping IPs which might have software along with hardware and Another plat-

form in parallel will permit to perform various activities e.g. IP prototyping at

CHAPTER 4. ARM926 BASED PLATFORM 33

Figure 4.1: ARM926e processor based virtual platform

higher abstraction level, hardware software partitioning or developing a complete

system prototype with their own IP. In these platforms there is always possibility

of adding/removing the ip models very easily. In fact, we can start with minimal ip

models needed to build the platform and could identify sequentially the IPs needed

to integrate.

4.3 Components of the Platform

The current platform is based on TLM protocol. The available TLM IP models are

ARM926 o ARM926 core for running C software and interrupt handling.

DMAC PL080 o TLM TAC IP Model available. Full functionality available.

VIC o TLM TAC IP Model available. Full functionality available.

UART o TLM TAC IP Model available. Full functionality available

CHAPTER 4. ARM926 BASED PLATFORM 34

4.3.1 Arm926 - Overview

The ARM926 processor is a member of the ARM9 family of general-purpose

microprocessors. The ARM926 processor is targeted at multi-tasking applications

where full memory management, high performance, low die size, and low power

are all important. The ARM926 processor supports the 32-bit ARM and 16-

bit Thumb instruction sets, enabling you to trade off between high performance and

high code density. The ARM926 processor includes features for efficient execution of

Java byte codes, providing Java performance similar to JIT, but without the associ-

ated code overhead. The ARM926 processor supports the ARM debug architecture

and includes logic to assist in both hardware and software debug. The ARM926 pro-

cessor has a Harvard cached architecture and provides a complete high-performance

processor subsystem, including:

• An ARM9 integer core

• A Memory Management Unit (MMU)

• Separate instruction and data AMBA AHB bus interfaces

• Separate instruction and data TCM interfaces.

The ARM926 processor provides support for external coprocessors enabling

floating-point or other application-specific hardware acceleration to be added. The

ARM926 processor implements ARM architecture v5TEJ. The ARM926 processor

is a synthesizable macrocell. This means that you can optimize the macrocell for

a particular target library, and that you can configure the memory system to suit

your target application. You can individually configure the cache sizes to be any

power of two between 4KB and 128KB. The tightly-coupled instruction and data

memories are instantiated externally to the ARM926 macrocell, providing you with

the flexibility of optimizing the memory subsystem for performance, power, and

particular RAM type. The TCM interfaces enable nonzero wait state memory to be

attached, in addition to providing a mechanism for supporting DMA.

CHAPTER 4. ARM926 BASED PLATFORM 35

Main features are:

• fmax 333 MHz (downward scalable).

• MMU.

• 16 Kbyte of instruction cache + 16 Kbyte of data cache.

• TCM memory available through customization.

• AMBA bus interface.

• Coprocessor interface through customization.

• JTAG and ETM9 (embedded trace macro-cell) for debug, large size version.

Vectored Interrupt Control (VIC PL190)

Acting as an interrupt controller, the VIC determines the source that is request-

ing service and where its interrupt service routine (ISR) is loaded, doing that in

hardware. In particular, the VIC supplies the starting address, or vector address,

of the ISR corresponding to the highest priority requesting interrupt source.

Main features of the VIC are:

• Support for 32 standard interrupt sources.

• Generation of both fast interrupt request (FIQ) and interrupt ReQuest (IRQ),

according to ARM system operation. IRQ is used for general interrupts,

whereas FIQ is intended for fast, low-latency interrupt handling

• Support for 16 vectored interrupts (IRQ only).

• Hardware interrupt priority, where FIQ interrupt has the highest priority,

followed by vectored IRQ interrupts (from vector 0 to vector 15), and then

non-vectored IRQ interrupts with the lowest priority.

• Interrupt masking.

CHAPTER 4. ARM926 BASED PLATFORM 36

• Interrupts request status and raw interrupt status (prior to masking).

• Software interrupts generation.

• An AHB slave to connect to the CPU.

The interrupt inputs must be level sensitive, active HIGH, and held asserted

until the interrupt service routine clears the interrupt. Edge-triggered interrupts are

not compatible. The interrupt inputs do not have to be synchronous to HCLK

4.3.2 Universal asynchronous receiver/transmitter (UART)

A UART is responsible for performing the main task in serial communications

with computers. The device changes incoming parallel information into serial data

that can be sent on a communication line. The UART performs all tasks required

for the communication, including timing, parity checking, and so forth. The UART

is an APB module in the power bus subsystem; it supports standard asynchronous

communication bits (start, stop, and parity), which are added prior to transmission

and removed on reception. The UART can support serial data baud rate, dc up to

UARTCLK max freq/16. It supports modem control functions CTS, DCD, DSR,

RTS, DTR and RI.

If the interrupt is not currently being serviced, the highest priority request

generates an IRQ interrupt. FIQ interrupts have the highest priority, followed by

vectored interrupts (0-15) and, finally, none vectored interrupts.

The UART performs:

o Serial-to-parallel conversion on data received from a peripheral device o Parallel-

to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the

AMBA APB interface. The transmit and receive paths are buffered with internal

FIFO memories enabling up to 16-bytes to be stored independently in both transmit

and receive modes.

CHAPTER 4. ARM926 BASED PLATFORM 37

The UART can generate:

• Individually-maskable interrupts from the receive (including timeout), trans-

mit, modem status and error conditions

• A single combined interrupt so that the output is asserted if any of the indi-

vidual interrupts are asserted, and unmasked

• DMA request signals for interfacing with a Direct Memory Access (DMA)

controller.

If a framing, parity, or break error occurs during reception, the appropriate error

bit is set, and is stored in the FIFO. If an overrun condition occurs, the overrun

register bit is set immediately and FIFO data is prevented from being overwritten.

You can program the FIFOs to be 1-byte deep providing a conventional double-

buffered UART interface. The modem status input signals Clear to Send (CTS),

Data Carrier Detect (DCD), Data Set Ready (DSR), and Ring Indicator (RI) are

supported. The output modem control lines, Request to Send (RTS), and Data

Terminal Ready (DTR) are also supported.

Main features

• Separate 16x8 transmit and 16x12 receive first-in, first-out memory buffers

(FIFOs)

• Programmable FIFO disabling for 1-byte depth

• Programmable baud rate generator

• Independent masking of transmit FIFO, receive FIFO, receive timeout, modem

status, and error condition interrupts

• Support for direct memory access (DMA)

• False start bit detection

CHAPTER 4. ARM926 BASED PLATFORM 38

• Line break generation and detection

• Programmable hardware flow control

• Fully-programmable serial interface characteristics

• Data can be 5, 6, 7, or 8 bits.

• even, odd, stick, or no-parity bit generation and detection

• 1 or 2 stop bit generation

4.3.3 DMA Controller

The DMAC enables memory-to-memory, memory-to-peripheral, peripheral-to-

memory, and peripheral-to-peripheral transactions. Each DMA stream provides

unidirectional serial DMA transfers for a single source and destination. For example,

a bidirectional port requires one stream for transmit and one for receive. The source

and destination areas can each be either a memory region or a peripheral, and you

can access them through the same AHB master, or one area by each master.

Main features of the DMAC are:

• Each DMA channel can support a unidirectional transfer, with internal four-

word FIFO per channel.

• 16 peripheral DMA request lines, where each peripheral connected to the

DMAC can assert either a single DMA request or a DMA request (with pro-

grammable size to increase data transfer effectiveness).

• Hardware priority (0 the highest to 7 the lowest) for each DMA channel to

manage requests from more than 1 channel at the same time.

• scatter or gather DMA support through the use of linked lists.

• An AHB slave acting as programming interface to access to DMA control

registers:

CHAPTER 4. ARM926 BASED PLATFORM 39

• Two AHB masters for data transfer following a DMA request.

• 32-bit AHB master bus width, supporting 8, 16, and 32-bit wide transactions.

• support both big-endian and little-endian (default on DMAC reset).

• separate and combined DMA error and DMA count interrupt requests, with

three interrupt request signals (DMACINTTC, DMACINTERR and DMAC-

INTR).

• interrupt masking and raw interrupt status (prior to masking).

4.4 Working with Arm926 Environment

RealView Debugger

RVdebugger is Arm model debugger front end for software debugging. The

rvdebugger is used to launch the ARM based platform. An input file can be pro-

grammed for rvdebugger which will run the simulations from platform environment

and let user perform the configurations needed from the software side.

4.4.1 Debug Interfaces

Hardware Debug Interfaces

The RealView ICE Debug Interface is available if installed, which enables you

to debug hardware through a RealView ICE unit.

Software Debug Interfaces

The following software Debug Interfaces are available:

• RealView ARMulator ISS, to connect to RealView ARMulator ISS (RVISS)

simulated processors. RVISS is always installed with RealView Debugger.

• Instruction Set System Model (ISSM), to connect to simulated Cortex proces-

sors. ISSM is always installed with RealView Debugger.

CHAPTER 4. ARM926 BASED PLATFORM 40

Figure 4.2: rvDebuger interface with arm processor

• SoC Designer, to connect to RealView SoC Designer models.

• Real-Time System Model (RTSM), to connect to models of real-time systems.

• The fig 18 shows the debug interfaces

4.4.2 Creating a Debug Configuration

To add a new Debug Configuration:

• Select Connect to Target... from the Target menu to display the Connect to

Target window.

• Select Configuration from the Grouped by drop-down list.

• Click the Add button for the required Debug Interface. The configuration

dialog box for the selected Debug Interface is displayed.

CHAPTER 4. ARM926 BASED PLATFORM 41

• Configure the Debug Interface targets as required: o RealView Instruction

Set Simulator (RVISS) o Instruction Set System Model (ISSM) o Real-Time

System Model (RTSM) o RealView ICE o SoC Designer.

• After you have configured and saved the Debug Interface configuration, a new

Debug Configuration is added to that Debug Interface. RealView Debugger

assigns a default name to the Debug Configuration according to the Target

Interface.

4.4.3 Connecting to a target

Connecting to a RealView SoC Designer target

To connect to a model created with RealView SoC Designer:

• Open the required model in RealView SoC Designer Simulator.

• Start RealView Debugger.

• In RealView Debugger, select Connect to Target... from the Target menu to

display the Connect to Target window as shown in figure.

• Select Configuration from the Grouped by drop-down list as shown in fig 19

and 20.

• Expand the SoC Designer Debug Interface.

• Expand the required SoC Designer Debug Configuration. SoC Designer con-

nections are named model.target[n] where: model is the name of the SoC

Designer model. Target Identifies the target processor being modeled.

• Double-click on the target to connect.

CHAPTER 4. ARM926 BASED PLATFORM 42

Figure 4.3: Configuring arm processor as a target

Figure 4.4: Connecting with arm

Chapter 5

RAIMM Implementation

5.1 About the RAIMM

The RAIMM (Reliability Aware Intelligent Memory Manager) is an intelligent mem-

ory manager implemented as a digital IP.

5.2 Features of RAIMM

• Continuously Monitoring of Reliability of the System Memory due to the pro-

cess, voltage, temperature (PVT) variation

• It provide three state reliability output , Reliable , Less Reliable and Unreliable

• Memory profiling based on the accesses to memory.

• Ranking of memories based on PVT condition and memory profiling.

• Remapping of unreliable memory data into reliable memory.

• System level interrupts for unreliable memory.

• Dynamically change address object once data remapping done

43

CHAPTER 5. RAIMM IMPLEMENTATION 44

• User has a flexibility to control interrupt generation, i.e. if user want to gen-

erate interrupt in less reliable region or unreliable region.

5.3 RAIMM Usage in SOCs

• In predicting memory failures in advance

• Provides a framework to safe-guard the application

• Provides the continuous status of memories to control:

1.DVFS 2.Power optimization 3.Selective code mapping in the memory blocks

5.4 Functional Description

The function of memory manager is to continuously update the reliability status

of system memory with respect to PVT Variations and it provides a fail safe solution

in case of memory is less reliable or unreliable. To detect the Process Voltage and

temperature variation in system memory, PVT sensors is placed with the system

memory; these sensors continuously sense the PVT variations in system memory and

provides sensed data to memory manager. Using these PVT variation data memory

manager compute the reliability. If memory manager detect system memory in less

reliable or unreliable then it provides the system level solution. (I.e. for less reliable

memory it remaps the data from less reliable memory to redundant memory, for

unreliable memory it raises system level interrupt).

The following sections describe the functions of the RAIMM:

• Reliability compute and Ranking Module

• Reliability Template

• Registers for each memory

CHAPTER 5. RAIMM IMPLEMENTATION 45

Figure 5.1: Functional block diagram of RAIMM

CHAPTER 5. RAIMM IMPLEMENTATION 46

• Remap Module

• RAIMM Configuration Register

• RAIMM status register

• RAIMM Interrupt registers

• RAIMM Interrupt controller

• RAIMM DMA

5.4.1 Reliability Compute and Ranking Module

The function of ranking module is dynamically checks the reliability status of

system memory with respect to PVT variations. It has predefined PVT reference

value including all corner cases for particular technology. The PVT sensors which is

placed with the system memory is continuously (during run time) provides the PVT

data to ranking module, Using mathematical computation between sensors data and

predefine reference data ranking module decide the final reliability status of system

memory. Reliability checking strategy:

• 2 stage computation to get reliability status of system memory

• In first stage, ranking module check the reliability status for individual Process

, voltage and Temperature variation

First stage Voltage variation reliability checking process

• It decides the reliability of system memory with respect to voltage variatio

• Total Nine possible outputs in the form of color code for different voltage

corner cases

CHAPTER 5. RAIMM IMPLEMENTATION 47

Figure 5.2: Voltage variation reliability checking process

• Predefine reference values taken form the Monte Carlo simulation and it changes

according to technology o Possible outputs of voltage ranking table is R1,R2,R3,B1,B2,B3,G1,G2,G3.

o R- red , B-blue , G- green

First stage Process variation reliability checking process

• Reliability of system memory with respect to process variation.

• Predefined reference values taken from the Monte Carlo simulation (40 nm

technology).

• 6sigma - process variation simulated.

• It is divided into two stages I.First stage decide the reliability for separate

nMOS and pMOS process variation II.Second stage decide the final reliability

for process variation using the first stage outputs combinations

• Total Nine possible outputs in the form of color code

CHAPTER 5. RAIMM IMPLEMENTATION 48

Figure 5.3: Voltage variation reliability checking process

Figure 5.4: Process variation reliability checking process

CHAPTER 5. RAIMM IMPLEMENTATION 49

Figure 5.5: Process variation reliability checking process

First stage Temperature Variation reliability checking process

• It decides the reliability of system memory with respect to temperature vari-

ation

• Predefined reference values taken from the Monte Carlo simulation (40 nm

technology)

• It includes all corner cases between -40C to 150C

• Nine possible outputs in the color code

Final Decision Ranking Table

• Decision Ranking table decides the final reliability with respect to PVT vari-

ation

• Total three outputs of decision ranking table o Reliable o Less Reliable o

Unreliable

CHAPTER 5. RAIMM IMPLEMENTATION 50

Figure 5.6: Temperature Variation reliability checking process

Figure 5.7: Temperature Variation reliability checking process

CHAPTER 5. RAIMM IMPLEMENTATION 51

Figure 5.8: Decision Ranking Table

• Three dimensional ranking tables to cover all possible combinations of first

stage outputs.

Flow Chart of Reliability Ranking Module

5.4.2 Reliability Template

As discuss above Ranking module uses the predefine PVT reference values which

is taken from the Monte-Carlo simulation, but these values are different for different

technologies (i.e. if user wants to move from one technology to other then user

should have to make changes in design). To eliminate this issue, RAIMM provides

the flexibility to designer is just make a changes in only one text file according to

requirement, so no need to make changes in design. Reliability Template is text

file it contains PVT reference values for particular technology and reliability ranges

for that reference values. It provides this information to reliability checking process

or ranking module.

5.4.3 Registers for each memory

For N number of memories N such a registers are required,

CHAPTER 5. RAIMM IMPLEMENTATION 52

Figure 5.9: Decision Ranking Table

Figure 5.10: Flow chart of RAIMM reliability ranking module

CHAPTER 5. RAIMM IMPLEMENTATION 53

• Status Register

• Counter Register o Two read Counter Register o Two Write Counter Register

• Warning Counter Register

• Control Register

Status Register

It stores the reliability status of memory according to the reliability ranking module

output.

Counter Register

• Two read counter:

First read counter counts the number of read transactions but it control through the

prescaler and second counter increment whenever first counter gives control signal

I.e. if first read counter counts are equals to prescaler then it gives control signal to

the second read counter.

• Two write counter:

First counter count the number of write transactions but it control trough the

prescaler and second counter increment counter whenever first counter gives con-

trol signal. i.e. if first counter counts are equals to prescaler then gives count signal

to second counter.

Warning Counter Register

It Counts the warning in terms of reliability, for example whenever memory goes in

to the less reliable region warning counter increment.

CHAPTER 5. RAIMM IMPLEMENTATION 54

5.4.4 Remap Module

This module responsible for source address, destination address and transfer size

decision for RAIMM DMA. When memory goes in to the less reliable region im-

mediately remap module is enabled and it take a less reliable memory address as a

source address. For destination address remap module search the available redun-

dant memory, if redundant memory is available then it takes redundant memory

address as a destination address. Once both addresses are decided remap module

calculates the transfer size and it send these information to RAIMM DMA.

5.4.5 RAIMM Configuration Register

To enable/disable RAIMM.

5.4.6 RAIMM Status Register

32-bit register, it stores the reliability status of each memory. Two bit for each

memory to store less reliable and unreliable status. User programmable bits for

interrupt control

5.4.7 RAIMM Interrupt Controller

This module generates a system interrupt when memory is in less reliable or

unreliable region. RAIMM provides the flexibility to user for generate interrupt

in less reliable or unreliable condition. Suppose user wants to generate interrupt

only in less reliable condition then user have to set the less reliable programmable

bit of status register and interrupt register or user wants to generate interrupt in

unreliable region then user have to set unreliable programmable bit of status and

interrupt register.

CHAPTER 5. RAIMM IMPLEMENTATION 55

Figure 5.11: Block diagram of RAIMM DMA

5.4.8 RAIMM DMA

RAIMM DMA is a simple DMA controller performs only memory to memory

data moving operation. Initially it configure trough the software but once applica-

tion is start then RAIMM DMA control and configure through hardware(RAIMM)

only. RAIMM remap module provides the source address, destination address, trans-

fer size and DMA enable bit to DMA. Once DMA enabled bit is set, DMA start

data remapping operation from source address to destination address. When DMA

remapping operation is complete it send a TRANSFER COMPLETE sync signal to

remap module to update the address map object.

CHAPTER 5. RAIMM IMPLEMENTATION 56

Figure 5.12: RAIMM functional flowchart

CHAPTER 5. RAIMM IMPLEMENTATION 57

Figure 5.13: RAIMM system level connectivity

RAIMM Functional flow chart

5.5 System Connectivity

5.5.1 RAIMM top level view with platform

5.6 Software Consideration

You must take into account the following software considerations when programming

the RAIMM

CHAPTER 5. RAIMM IMPLEMENTATION 58

Figure 5.14: Top level view of platform with RAIMM

CHAPTER 5. RAIMM IMPLEMENTATION 59

• Initially you must have to provide the address information of each registers to

the RAIMM address information registers.

• Initially you must have to provide the information of available redundant mem-

ory.

5.7 PROGRAMMERS Model

5.7.1 Register fields

The following applies to the registers used in the RAIMM:

• You must not access reserved or unused address locations because this can

result in unpredictable behavior of the device.

• You must write reserved or unused bits of registers as zero, and ignore them

on read unless otherwise stated in the relevant text.

• A system or power-on reset resets all registers bits to logic 0 unless otherwise

stated in the relevant text.

• All registers support read/write accesses unless otherwise stated in the relevant

text. A write updates the contents of a register and a read returns the contents

of the register.

• You can only access registers defined in this document using word reads and

word writes, unless otherwise stated in the relevant text.

5.7.2 List of RAIMM Register

• RAIMM Global registers

RAIMM STATUS Status register

RAIMM INTR Interrupt register

CHAPTER 5. RAIMM IMPLEMENTATION 60

RAIMM CONFIG Configuration register

RAIMM PRESCALER Prescaler register

RAIMM SOURCEADDR Source Address register

RAIMM DESTADDR Destination Address register

RAIMM TRANSFERSIZE Transfer Size register

RAIMM srcaddM0 contains the address information of memory block zero.

RAIMM srcaddM1 contains the address information of memory block one.

RAIMM srcaddM2 contains the address information of memory block two.

RAIMM srcaddM3 contains the address information of memory block three.

RAIMM srcaddM4 contains the address information of memory block four.

RAIMM srcaddM5 contains the address information of memory block five.

RAIMM USEM0 - indicates memory block zero is redundant or not.

RAIMM USEM1 - indicates memory block one is redundant or not.

RAIMM USEM2 - indicates memory block two is redundant or not.

RAIMM USEM3 - indicates memory block three is redundant or not.

RAIMM USEM4 - indicates memory block four is redundant or not.

RAIMM USEM5 - indicates memory block five is redundant or not.

• RAIMM Local registers for each memory(i.e. if N number of memory, N

number of such registers required)

RAIMM RDCNTR Two Read transaction count register

RAIMM WRCNTR Two Write Transaction count register

RAIMM WRNCNTR Warning count register

• RAIMM DMA registers

RAIMM DMA Configuration Register

CHAPTER 5. RAIMM IMPLEMENTATION 61

RAIMM DMA Source Address Register

RAIMM DMA Destination Address Register

RAIMM DMA Control Register

5.7.3 RAIMM Global registers description

STATUS Register

• To store the reliability status of each memory blocks

• 32 bit register

• Bit for each memory block from LSB [Bit 0: less reliable status, Bit 1: Unre-

liable status]

• Field Description, HW Write access,

Based on memory reliability status output of PVT ranking module.

-Bit [1-0] : Memory block zero

-Bit [3-2] : Memory block one

-Bit [5-4] : Memory block two

-Bit [7-6] : Memory block three

-Bit [9-8] : Memory block four

-Bit [11-10]: Memory block five

• User Controllable bit: it is for to generate interrupt in less reliable or unreliable

status of memory.

-Bit [18-17]: Memory block zero

-Bit [20-19]: Memory block one

-Bit [22-21]: Memory block two

CHAPTER 5. RAIMM IMPLEMENTATION 62

-Bit [24-23]: Memory block three

-Bit [26-25]: Memory block four

-Bit [28-27]: Memory block five

-Bit [31] : Reset the Register

RAIMM Interrupt Register

• To store the reliability status of each memory blocks

• 32 bit register

• Bit for each memory block from LSB[Bit 0: less reliable status, Bit 1: Unreli-

able status

• Field Description

• Bit set through the hardware, based on memory reliability status output of

PVT ranking module.

-Bit [1-0] : Memory block zero

-Bit [3-2]: Memory block one

-Bit [5-4]: Memory block two

-Bit [7-6]: Memory block three

-Bit [9-8]: Memory block four

-Bit [11-10]: Memory block five

• User Controllable bit: it is for to generate interrupt in less reliable or unreliable

status of memory.

-Bit [18-17] : Memory block zero

-Bit [20-19]: Memory block one

-Bit [22-21]: Memory block two

CHAPTER 5. RAIMM IMPLEMENTATION 63

Table 5.1: d ddf

-Bit [24-23]: Memory block three

-Bit [26-25]: Memory block four

-Bit [28-27]: Memory block five

-Bit [31]: Reset the Register

RAIMM Configuration Register

• 32 bit register

• Enabled/Disabled RAIMM

• Field Description:

Bit [0]: 1-Enabled memory manager. 0 -Disabled memory manager

RAIMM Prescaler Register:

• 32 bit register

• To Control Read/Write transaction counter overflow

• Field Description:

Bit [0-10]: User Programmable, User can fix Prescaler value.

RAIMM Source Address Register

• To store the address of less-reliable or unreliable memory

• 32 bit register

• Field Description:

Bit [0-31]: To store source address

CHAPTER 5. RAIMM IMPLEMENTATION 64

RAIMM Destination Address Register

• To store the address of available redundant memory

• 32 bit register

• Field Description:

Bit [0-31]: To store source address

RAIMM Transfer Size Register

• To store the transfer size, data size which is in the less-reliable or unreliable

memory

• 32 bit register

• Field Description:

Bit [0-10]: To store transfer size

RAIMM srcadd[M0-M5] Register

• 32 bit register

• It contain the initial address information of memory, N registers required for

N number of memory

• Field Description:

Bit [0-31]: To store the address information[M0-M5]

CHAPTER 5. RAIMM IMPLEMENTATION 65

RAIMM USE[M0-M5] Register

• 32 bit register

• It contains the information of redundant memory, N registers required for N

number of memory.

• Initially configure through the software, initially software should provide the

information of redundant memory.

• Field Description:

Bit [0-31]: To store the address information[M0-M5]

5.7.4 RAIMM Local registers for each memory

Two Read Counter Registers

• To count no of read transaction to the each memory block.

• N such registers for N memory

• Both are 32 bit registers

• Prescaler register control the First read counter register and first read counter

register control the second read counter register.

• Field Description is same for both read counter register:

-Bit [30-0] - Count the number of read transactions

-Bit [31] - Reset the Register

CHAPTER 5. RAIMM IMPLEMENTATION 66

Two Write Counter Registers

• To count no of write transactions to the each memory blocks.

• N such registers for N memory

• Both are 32 bit registers

• Prescaler register control the first write counter register and first write counter

register control the second read counter register.

• Field Description is same for both write counter register:

-Bit [30-0] - Count the number of read transactions

-Bit [31] - Reset the Register

Warning counter register

• To count no of warning when memory is less reliable or unreliable.

• N such registers for N memories

• 32 bit registers

• Field Description:

-Bit [30-0] - To Count number of warnings

-Bit [31] - Reset the Register

5.8 RAIMM Verification

5.8.1 Overview

• The additional logic for the verification of the RAIMM.

• The tests for the signals are system specific and enable to write the necessary

test cases.

CHAPTER 5. RAIMM IMPLEMENTATION 67

• These tests are controlled by registers.

• Driver is used to provide the PVT values of each memory, through these values

RAIMM check the reliability level of each memory

5.9 Driver

• Driver is used to provide the PVT values for each memory.

• RAIMM decides the reliability of each memory using these values.

• Reliability Ranges are decided by the Template i.e. specification.(input specs.txt

file)

• This template has three levels of Reliability

1 Reliable i.e. Green

2 Less Reliable i.e. Blue

3 Unreliable. i.e. Red

Example: Voltage: Green 1.21 1.32 Blue 1.01 1.20 Red 0.8 1.00

This is an example of the template for voltage. User can modify this ranges

as per application required. RIMM decides the reliability using these ranges. Green

indicates Reliable; same as Blue and Red indicates Less Reliable and Unreliable

respectively. So, if voltage is in the range of 1.21 to 1.32, RAIMM take it as a

Reliable. Out of these three ranges, Voltage is considered as an unreliable condition.

Same is required for nMOS Process, pMOS Process and Temperature.

Constraints (input specs.txt): User has to define ranges in the order of Temper-

ature, Voltage, nMOS Process and pMOS Process and also in same manner. Test

Cases:

” To provide the PVT ranges for each Memory. ” Each memory block/region

required separate Test Cases.

CHAPTER 5. RAIMM IMPLEMENTATION 68

Example: Temperature: Reliable Voltage: Reliable nMOS Process: Less Reliable

pMOS Process: Less Reliable

This is an example of Test Cases for only one memory block/region (test case driver1.txt

file). These types of test cases are required for all memory block/region.

• Driver takes these ranges to generate the values for the verification purpose.

• Test cases can also be provided in the following manner: E.g. Voltage: Reliable

Less Reliable

So in this case, Driver generates the PVT ranges using both conditions. Constraints

(test case driverx): User has to define ranges in the order of Temperature, Voltage,

nMOS Process and pMOS Process and also in same manner.

5.9.1 Registers

For Verification purpose, following registers are required to be enable/disable. 1)

Memory Enable Register:

Used to provide memories which are available as a Redundant. Registers:

• RAIMM USEM0

• RAIMM USEM1 Reset value : 0x0

• RAIMM USEM2 Set value : 0x1

• RAIMM USEM3

• RAIMM USEM4

• RAIMM USEM5

By default, M4 and M5 are provided as a Redundant Memory than it is dynamically

changed as per Reliable levels.

CHAPTER 5. RAIMM IMPLEMENTATION 69

Note: If redundant memory is in unreliable condition, than RAIMM uses only

System memory, if anyone is free and in reliable condition which is totally dependent

on Driver Test Cases. If System Memory is not free, RAIMM doesn’t work.

2) Source Address Registers: To provide the predefined source address of each

memory. Data is transfer to source address of memory which one is enabled by

Memory Enable Register. Registers:

• RAIMM srcaddM0

• RAIMM srcaddM1

• RAIMM srcaddM2

• RAIMM srcaddM3

• RAIMM srcaddM4

• RAIMM srcaddM5

3) Transfer Size Register: To provide the size of data to transfer the data of Unre-

liable/Less Reliable Memory to the Reliable memory. RAIMM DMA SIZE

5.9.2 RAIMM Verification Strategy

RAIMM Verification was done successfully for below test scenario

Test:

• Total 4 system memories (M0-M3)

Total 2 redundant memories (M4-M5)

Application code execution from M0 memory

Code is copying content of M0 Memory to M3 memory

• Failure(Less reliability) is introduced in M0 memory (rest all memories should

remain reliable).

CHAPTER 5. RAIMM IMPLEMENTATION 70

• The RAIMM chooses any of the redundant memory modules from two redun-

dant memory modules.

• RAIMM select source address as M0 memory address and Destination Address

as available redundant memory address.

• RAIMM DMA is configured with source address and destination address to

remap content of M0 memory to selected redundant memory.

• Once Remapping is done RAIMM change the address of M0 memory with

address of selected redundant memory

M0 memory address is M4 memory address, M0 is converted as a redun-

dant memory

M4 memory address is M0 memory address, M4 is converted ad a memory

address is system memory

• It is verified that test is executed successfully

• Latency is estimated

RAIMM Verification Results

Latency of RAIMM for Remapping

• Considering 200 MHz clock. Each clock of 5ns.

• RAIMM total execution time T: 0.005234010(1046802 clock cycles)

• RAIMM DMA start time for remapping T: 0.000001345(269 clock cycles)

• RAIMM DMA end time for remapping T: 0.005234010(1046802 clock cycles)

• Latency = end time - start time

• Latency = 0.005232665 seconds.(1046533 clock cycles)

CHAPTER 5. RAIMM IMPLEMENTATION 71

Figure 5.15: RAIMM Verification Result with latency

CHAPTER 5. RAIMM IMPLEMENTATION 72

• The latency above shows the time required by RAIMM DMA to remap 2MB

of data from one memory module to other module

5.9.3 RAIMM Verification with UART Interrupt operation

• Test:

- Total 4 system memories (M0-M3)

- Total 2 redundant memories (M4-M5)

- Application code execution from M0 memory

- UART configured to generate system level interrupt

- UART interrupt service routine address point to M0 memory Address

- Code is copying content of M0 Memory to M4(Redundant) memory after

selected count of UART interrupt

• Initially RAIMM configured.

• UART system level interrupt generated successfully.

• Failure(Less reliability) is introduced in M0 memory (rest all memories should

remain reliable)

• RAIMM warning counter register count the number of interrupt from UART.

Once counter reach at selected number then it immediately enable the RAIMM

Remap module to remap the content of less reliable memory to reliable redun-

dant memory.

• The RAIMM chooses any of the redundant memory modules from two redun-

dant memory modules.

• RAIMM select source address as M0 memory address and Destination Address

as available redundant memory address.

CHAPTER 5. RAIMM IMPLEMENTATION 73

• RAIMM DMA is configured with source address and destination address to

remap content of M0 memory to selected redundant memory.

• Once Remapping is done RAIMM change the address of M0 memory with

address of selected redundant memory

- M0 memory address is M4 memory address, M0 is converted as a redun-

dant memory

- M4 memory address is M0 memory address, M4 is converted ad a memory

address is system memory

• It is verified that test is executed successfully

• Latency is estimated

RAIMM Verification Results with UART interrupt operation

5.10 Methodology for Implementing RAIMM Transaction-

level modeling

5.10.1 TLM Methodology

Transaction-level modeling (TLM) is a high-level approach to modeling digital

systems here details of communication among modules is separated from the details

of the implementation of functional units or of the communication architecture.

Communication mechanisms such as buses or FIFOs are modeled as channels, and

are presented to modules using SystemC interface classes. Transaction requests take

place by calling interface functions of these channel models, which encapsulate low-

level details of the information exchange. At the transaction level, the emphasis is

more on the functionality of the data transfers - what data are transferred to and

from what locations - and less on their actual implementation that is, on the actual

protocol used for data transfer. This approach makes it easier for the system-level

CHAPTER 5. RAIMM IMPLEMENTATION 74

Figure 5.16: RAIMM Verification Results with UART interrupt

CHAPTER 5. RAIMM IMPLEMENTATION 75

designer to experiment, for example, with different bus architectures (all supporting

a common abstract interface) without having to recode models that interact with

any of the buses, provided these models interact with the bus through the common

interface. The right TLM abstraction level often depends on the application

domain and purpose of running the simulation in the first place. Some applications

require cycle accuracy - for example to analyze detailed cache behavior. Some might

even require linking in RTL models as part of the development flow, while other

applications (typically software development tasks) only need functional accuracy.

At the same time, if modeling is performed at lower level of abstraction model,

it would directly affect the simulation performance of the complete platform and

could be not at all usable so identifying the application and deployment need to be

done cautiously. The TLM methodology starts with the first level of conceiving idea

about a system or SoC. The main objectives of the methodology is as follows -

• SystemC IP prototyping/System level platform for functional verification.

- Understanding the RAIMM IP specification and modeling in TLM or

any other abstraction level as per the requirements.

• Testbench and test vectors generations with System Level Platform.

- First level of test bench available and test vectors could be generated

with the platform.

• Start Early Software Development with TLM Platform.

- Once a prototype available, AN S/W development could be started with-

out waiting for real board or H/W platform.

• Platform/tests availability for RTL verification.

- Second step will provide test inputs and test bench for this step. All test

vectors could be reused.

• S/W Validation on System Level Platform.

CHAPTER 5. RAIMM IMPLEMENTATION 76

Figure 5.17: Generic Design Flow with TLM Methodology

CHAPTER 5. RAIMM IMPLEMENTATION 77

- This platform may be used for Real S/W validation. Although there

had been simulation performance issues identified when RTL and SystemC

plugged together but there are some methods to improve this bottleneck

5.10.2 PLATFORM

This proposal is basically to have an ARM based abstracted Platform. The

intent of the platform is to provide a preliminary platform with minimum required

components which permits to run test software and permits to plug the RAIMM IP,

which facilitates the IP verification.

The approach helps for following of the activities in design cycle -

• This platform which is used for developing test vectors with an abstracted IP

prototype. These test vectors could be further used for RTL verification with

references already available.

• Start early S/W driver development and perform S/W debugging. In this

platform the S/W debugging capabilities are very good as well, it permits to

debug the hardware also to a great extent.

• A similar platform could be used for HW/SW partitioning of RAIMM Ip.

Facilitated with some tools available, it could be used to gather performance

statistics in order to partition Software functionalities versus Hardware.

This System platform is a completely abstracted platform and IP is modeled

in SystemC at higher abstraction level either transaction level models or timing

annotated models. In this scenario, the platform gives a glimpse of SoC and a

complete hardware + software prototype is available.

The added advantage of platform are better simulation performance, good

debugging capabilities with test benches as it permits to write C test benches. This

platform will be highly recommended in developing IPs which might have software

CHAPTER 5. RAIMM IMPLEMENTATION 78

along with hardware and Another platform in parallel will permit to perform var-

ious activities e.g. IP prototyping at higher abstraction level, hardware software

partitioning or developing a complete system prototype with their own IP.

Such a platform could be a demo platform as well as it could help to do early

evaluation of System with their own IPs. We may develop an abstracted IP model

and perform all kind of analysis, start developing test benches for further phases

of development. This could be a suitable platform to perform hardware software

partitioning and make explorations pertaining to make a better decision on what

could go in software and the hardware portion of the IP.

5.10.3 Components of the Platform

The current platform is based on TLM TAC (Transaction Accurate Channel) pro-

tocol. The available TLM IP models are

ARM926

- ARM926 core for running C software and interrupt handling.

DMAC PL080

- TLM TAC IP Model available. Full functionality available.

VIC

- TLM TAC IP Model available. Full functionality available.

UART

- TLM TAC IP Model available. Full functionality available.

RAIMM

- TLM IP Model.

CHAPTER 5. RAIMM IMPLEMENTATION 79

ROUTER

• The router is the interconnect backbone in the platform known as Transaction

Accurate Channel (TAC).

• The TAC is responsible for routing the transaction from one IP to other IP,

IP to Memories.

• The router in the platform acts as decoder, the decoder decodes the transaction

of each IP then routes according to the address.

• Once the decoder decodes the transaction, the router will have start ad-

dress and size of the target IP. If the transaction address information doesn’t

matches the entries of memory map the router returns an error.

• Each of the hierarchy or sub-hierarchy of the TAC channel needs to have a

memory map. The memory map is for the accessible registers and memory

regions.

• The platform consists of two routers, one known as MAIN SYSTEM IN-

TERCONNECT (TAC ROUTER) and other is dedicated router for the in-

tegration of RAIMM IP known as SECONDRY LEVEL INTERCONNECT

(RAIMM TAC ROUTER).

• The TAC ROUTER is responsible routing the transactions from its bind Ips

to other Ips or RAIMM TAC ROUTER.

RAIMM TAC ROUTER

• NEED OF RAIMM TAC ROUTER

• The RAIMM TAC ROUTER was mainly added for better performance of

RAIMM IP.

CHAPTER 5. RAIMM IMPLEMENTATION 80

• The RAIMM TAC ROUTER is connected to split memories and dedicated

DMA.

• The RAIMM TAC ROUTER has additional variables which indicate about

the reliability and redundancy of the memories. These variables changes ac-

cording to the reliability of the memories.

• The RAIMM TAC ROUTER initializes the split memories into useable memo-

ries and redundant memories. The initialization is according user specification.

• The RAIMM TAC ROUTER tracks all the transaction coming to memories

and to count number of transaction to the memory modules, the transaction

count is helpful in judging the memory modules.

• The RAIMM TAC ROUTER helps in remapping by dynamically changing the

start address of the memory modules.

• The RAIMM TAC ROUTER is responsible for dynamically changing the start,

end address of two memory modules i.e. redundant and unreliable memory

module used for remapping.

• The RAIMM TAC ROUTER changes the address only after getting and signal

from RAIMM DMA.

Dynamically Changing the Address of Memory Modules

• The platform contains the map file parser which creates an object for each

entry in map file.

• The RAIMM TAC ROUTER uses the object created by map file parser to

dynamically change the address of memory modules.

• Whenever the RAIMM TAC ROUTER gets a signal from the RAIMM DMA

the router exchanges the address of the memory modules.

CHAPTER 5. RAIMM IMPLEMENTATION 81

• After remapping the RAIMM TAC ROUTER also changes the status of the

memory modules by disabling the unreliable memory and sets the remapped

redundant memory as currently in use.

• For eg if M0 data is copied to M5 then start address of M0 and M5 will be

changed as shown in table. The router also changes the status of the memory

modules.

5.10.4 LAUCHING OF PLATFORM

• The rvdebugg is used to launch the ARM based platform.

• The ARM926 fast model simulator has been deployed in the platform.

• Once the platform is launched the driver (PVT sensors) acts as stimulus for

the operation RAIMM IP.

• An input file can be programmed for rvdebugg which will run the simulations

from platform environment and let user perform the configurations needed

from the software side.

5.11 RAIMM Results

5.11.1 Simulation results of RAIMM ranking module

5.11.2 RAIMM - Ranking Module Behavior

5.11.3 RAIMM Simulation Results

CHAPTER 5. RAIMM IMPLEMENTATION 82

Figure 5.18: Simulation results of RAIMM ranking module

CHAPTER 5. RAIMM IMPLEMENTATION 83

Figure 5.19: Voltge vs Reliabiliy

CHAPTER 5. RAIMM IMPLEMENTATION 84

Figure 5.20: RAIMM Simulation Results

Chapter 6

Conclusion

6.1 Conclusion

Purpose of RAIMM is used for increasing the reliability of SoC in sub

nm technology. RAIIM is continuously predicting the reliability of system memories,

and if any memory is goes in unreliable zone then it provides the system level

solution.

85

References

[1] V. Chandra and R. Aitken, ”Impact of Technology and Voltage Scaling on the

Soft Error Susceptibility of Nanoscale CMOS,” IEEE Intl. Symposium on Defect

and Fault Tolerance of VLSI Systems, 2008.

[2] R. Rodriguez et al, ”The impact of gate oxide breakdown on SRAM stability,”

IEEE Electron Device Letters, pp. 559-561, Sep. 2002

[3] E. H. Cannon et al, ”The impact of aging effects and manufacturing variation on

SRAM soft-error rate,” IEEE Transactions on Device and Materials Reliability,

Vol. 8, No. 1, pp. 145-152, Mar 2008

[4] Chandra et al, ”Impact of Voltage Scaling on Nanoscale SRAM Reliability”,

DATE’09

[5] Pilo et al, ”An SRAM Design in 65nm and 45nm Technology Nodes Featuring

Read and Write-Assist Circuits to Expand Operating Voltage”, 2006 Symposium

on VLSI Circuits

[6] Bathen and Dutt, E-RoC: ” Embedded RAIDs-on-Chip for Low Power Dis-

tributed Dynamically Managed Reliable Memories ”, DATE’2011

[7] Jeff Mueller M.B. ”Techniques for Clock Skew Reduction over Intra-Die Process,

Voltage, and Temperature Variations”.

[8] Changhwan Shin ”Advanced MOSFET Designs and Implications for SRAM Scal-

ing”

86

REFERENCES 87

[9] James W. Tschanz ”Adaptive Body Bias for Reducing Impacts of Die-to-Die and

Within-Die Parameter Variations on Microprocessor Frequency and Leakage”

[10] Takayuki GYOHTEN ”An On-Chip Supply-Voltage Control System Consider-

ing PVT Variations for Worst-Case less Lower Voltage SoC Design”

[11] Farshad Moradi, Oag Wisland. ”Process Variations in Sub-Threshold SRAM

Cells in 65nm CMOS” 22nd International Conference on Microelectronics (ICM

2010).

[12] Amin Khajeh, Aseem Gupta. ”TRAM: A Tool for Temperature and Reliability

Aware Memory Design”

[13] Ashok K. Sharma ”Semiconductor Memories: Technology, Testing and Relia-

bility” IEEE Press.

[14] Cheng Zhuo ”Process Variation and Temperature-Aware Reliability Manage-

ment”

[15] David C Black ”SystemC: From the Ground Up” Kluwer Academic Publisher

[16] Daniel Gajaski ”Transaction level Modeling: An Overview”

[17] IEEE standard SystemC: Language Reference manual

[18] www.systemc.org

[19] ”SystemC Version 2.0 User’s Guide”

[20] Sudeep Pasricha ”Transaction level modeling of SoC with SystemC

[21] Lukai Cai ”Transaction Level Modeling in System Level Design”

[22] ”UART: Technical Reference Manual”, ARM Limited.

[23] ”DMAC: Technical Reference Manual”, ARM Limited.

[24] ”VIC: Technical Reference Manual”, ARM Limited.

	Declaration
	Certificate
	Acknowledgement
	Abstract
	List of Figures
	Introduction
	Motivations behind the RAIMM
	Reliability Methodology

	RAIMM Proposal
	Features of RAIMM

	SystemC
	Introduction
	Language Comparison
	SYSTEMC Features
	SYSTEMC DESIGN FLOW
	SYSTEMC Compilation Flow
	System of SystemC
	TERMINOLOGY

	Simulation and Debugging Using SystemC

	TLM (Transaction Level Modeling)
	Introduction
	TLM BASED METHODOLOGY
	TLM TERMINOLOGY
	MODELING API
	Core TLM Interface Layer
	Protocol Layer
	IP Layer
	Other Terminology

	INTERCONNECT MODELING
	Interconnect Structure

	ARM926 BASED PLATFORM
	Introduction
	 ARM Based Platform for IP development- /verification
	Components of the Platform
	Arm926 - Overview
	Universal asynchronous receiver/transmitter (UART)
	DMA Controller

	Working with Arm926 Environment
	Debug Interfaces
	Creating a Debug Configuration
	Connecting to a target

	RAIMM Implementation
	About the RAIMM
	Features of RAIMM
	RAIMM Usage in SOCs
	Functional Description
	Reliability Compute and Ranking Module
	Reliability Template
	Registers for each memory
	Remap Module
	RAIMM Configuration Register
	RAIMM Status Register
	RAIMM Interrupt Controller
	RAIMM_DMA

	System Connectivity
	RAIMM top level view with platform

	Software Consideration
	PROGRAMMERS Model
	Register fields
	List of RAIMM Register
	RAIMM Global registers description
	RAIMM Local registers for each memory

	RAIMM Verification
	Overview

	Driver
	Registers
	RAIMM Verification Strategy
	RAIMM Verification with UART Interrupt operation

	Methodology for Implementing RAIMM Transaction-level modeling
	TLM Methodology
	PLATFORM
	Components of the Platform
	LAUCHING OF PLATFORM

	RAIMM Results
	Simulation results of RAIMM ranking module
	RAIMM - Ranking Module Behavior
	RAIMM Simulation Results

	Conclusion
	Conclusion

