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Abstract

Cracks in a vibrating structural component reduce safety and can cause catastrophic

failure. The discontinuities like cracks and notches change the dynamic behavior of

structure. The change in vibration parameters depends upon location and severity of

the damage. So it is very important to study the effect of crack on vibration behavior

of structure to achieve structural safety and performance. The detection of damage

by using change in vibration parameters may prove a better way in structural health

monitoring.

In present work, the vibration analysis is performed on isotropic beam with and

without crack by Euler Bernoulli beam theory, finite element method, conventional

finite element software(ANSYS) and by experimental method by using FFT analyzer.

The results obtained by different methods shows close confirmation.

The various crack detection algorithms are studied and method to investigate mul-

tiple cracks location and its depth based on the natural frequencies is adopted. The

analysis for crack detection is performed for beam for different crack location and

crack depth. Natural frequencies of cracked beam are extracted from ANSYS. The

method gives unique results for crack location and depth.

Key words: Cracked beam,mode shape,modal analysis,natural frequency
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Nomenclature

English symbol

a Depth of crack (m)
h beam thickness (m)
x Distance of crack from left end (m)
D Transverse dispacement (m)
F Force (N)
A Area (m2)
I Second area moment of inertia (m4)
mp mass of beam (kg/m)
K Rotational spring stiffness (Nm/rad)
L Length (m))
U Strain energy (J)
E Young’s Modulus (GPa)
M Bending Moment (N/m2)

Greek symbols

σ Stress (Pa)
β Crack location (non-dimensional, x/L)
ρ Density(kg/m3)
φ Frequency Parameter

Subscripts

c Crack
nc No crack
b width of beam

Abbreviations

NDE Non-destructive Evaluation
NDT Non-destructive Technique
TMM Transfer Matrix Method
EM Energy Method
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Chapter 1

Introduction

1.1 Preliminary remarks

The increasing demands of higher productivity and economical design lead to higher

operating speeds of machinery and efficient use of materials through light weight struc-

tures. These trends make occurrence of resonant conditions more frequent during the

operation of machinery and reduce the reliability of the system. It is required that

structures must safely work during its service life. But, damages initiate a breakdown

period on the structures. Cracks are among the most encountered damage types in

the structures. Beam type structures are commonly used in steel construction and

machinery industry. So the structural safety of beam is very important due to its

practical importance. Cracks in a beam type structure may be hazardous due to

static or dynamic loadings, so that crack detection plays an important role for struc-

tural health monitoring applications. Every structural component and structure has

its certain vibration characteristics like natural frequencies, modal damping values,

modal strain energy, maximum detection, etc. When any type of discontinuity or

degenerative effect like crack is present in structural component, the vibration char-

acteristics are changed due to change in stiffness at crack location. These changes are

mode dependent. Hence it is possible to estimate the location and size of the crack

by measuring the changes in vibration parameters.

1
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Hence the knowledge of vibration characteristics of machine elements becomes es-

sential to ensure adequate safety margins. Any variation of natural frequencies or

other vibration characteristics will indicate either a failure or a need for maintenance

of machine. The measurement of natural frequencies of vibration and the forces

developed is necessary in the design and operation of active vibration isolation sys-

tems. The theoretically computed vibration characteristics may be different from the

actual values due to the assumptions made in the analysis. Continuous systems are

approximated as multi degree of freedom systems for simplicity. If the experimentally

measured natural frequencies and mode shapes of a continuous system are compa-

rable to the computed natural frequencies and mode shapes of the multi degree of

freedom model, then the approximation will be valid one.

1.2 Motivation

The detection of crack by using vibration based techniques gives an effective global

method of damage detection which is very helpful in structural health monitoring

(SHM) of aging structures like bridges, aircraft, railway systems, wind power sta-

tions. It provides very convenient way for remote monitoring in off-shore structures.

By controlling the damage state, more improvement in design becomes possible. The

laminated high performance material used in aero engineering introduces a serious

damage mechanism. So it requires a close monitoring of dynamic behavior during its

operating condition.

In sudden overload, the aging occurs in the structures, subjected to continuous vi-

brations at moderately low amplitude and it creates crack due to fatigue loading. So

SHM is very useful to make indication when damage occurs.

There are still many unsolved problems at every level. For example, at the low-

est level of damage detection, the challenges are to increase the sensitivity, detect

small amount of damage in early state. The other difficulty is to separate the effect
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of damage from the effects of change in environmental conditions.

1.3 Aims and scope

Keeping in view the above issues, investigation have been carried out with the fol-

lowing objectives.

• To study the dynamic behavior of beam with multiple cracks.

• To develop a scheme for modeling and analysis of transverse vibration of beam

with multiple cracks

• To develop a method for the solution of inverse problem of determining crack

position, size and orientation in beam.

• To carry out experiments to establish the accuracy of the theoretical prediction.

1.4 Methodology

In first stage, Euler’s beam theory [17] is used to determined the mode shape behavior

of uncracked beam at different natural frequency. In second stage, Natural Frequency

Based Mode shape Method is used for find out the transverse cracks in beam at

different location by Theocratical and Experimental Analysis.

1.5 Outline of Report

The report consists of Six chapter.The first chapter deals with Preliminary remarks

and list of the objectives and methodology used for this work. and scope of Project.

The second chapter reviews the relevant literature.The third chapter presents the

modal analysis of the Uncracked beam.In fourth Chapter find the multiple cracks

location in the beam by using Natural frequency based Mode Shape Method.The Fifth
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chapter Presents the Results obtained by Experimental for finding Crack location.The

Summary and future work are presented in the Sixth chapter.



Chapter 2

Literature Review

2.1 Introduction

The structure suffering from damage changes its dynamic properties. The change in

natural frequencies, modal damping values, modal strain energy, mode shapes can be

easily identified. So many researchers have worked on detection of damage by using

these modal parameters in different manners. The literature survey is carried out to

introduce the present state of research work done on vibration based techniques for

damage location. The subjects are classified in different sections with reference to

methods used for dynamic analysis and crack detection techniques used in it.

2.2 Modeling of Crack

2.2.1 Dynamic behavior of cracked structure

The type of material, boundary conditions, dimensions of structure play important

role to determine dynamic behavior of structure. The crack present in structure

changes its dynamic behavior. The following features of crack greatly affects the

dynamic behavior of structure:

• The position of crack

5
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• The depth of crack

• The orientation of crack

• The number of cracks

2.2.2 Different types of cracks

The cracks can be classified in following way:

• Crack perpendicular to the beam axis is known as transverse crack.

• Crack parallel to the beam axis is known as longitudinal crack.

• Crack at an angle to the beam axis is known as slant crack.

• Cracks that open when the affected part of the material is subjected to tensile

stresses and close when the stress is reversed are known as breathing cracks.

• Crack that always remains open is known as gaping crack or notch.

• Crack that is open on surface is known as surface crack.

• Crack that is not on surface is known as sub surface crack.

There is a wide variety in the way an open crack is modelled. They mostly differ

in the way the local effects are accounted for. crack has modelled by appropriately

reducing the section modulus of beam. According to the fracture mechanics princi-

ples, the crack occurring in a beam would reduce the local stiffness at the location of

the crack. Dimarogonas and Papadopoulos [1] established a 5 x 5 flexibility matrix

to model the vicinity of a crack; torsion was not included in the model later they

extended the matrix formulation by adding torsion resulting in a full 6 x 6 flexibility

matrix. In rotational spring approach, the reduced local stiffness at crack location

is calculated using castigliano’s second theorem as applicable to fracture mechanics

formulation. The calculated local stiffness is then modeled by a rotational spring
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for the pure bending vibration of a cracked beam. To establish the vibration equa-

tion, the cracked beam was represented by two substructure connected by a rotating

spring. A comprehensive review on vibration of a cracked structure is given by[2] by

Dimarogonas

In the case of transverse vibration of slender beam, it is generally assumed that

there is an extra angular rotation at the crack location proportional to the bending

moment at the section. Hence a crack can be modelled as a massless rotational

spring of infinitesimal length inserted at the location. Rizos and Asprgathos [3] have

demonstrated the utility of the method for a cantilever beam of rectangular cross-

section with a transverse edge crack. Spring stiffness calculated from crack size.

Panigrahi and Ramakrushna [4] This paper contains an attempt to evaluate dynamic

behaviors of beam structures with transverse crack subjected to external force. In

this work theoretical expressions have developed for finding out the mode shapes

and natural frequencies for beam with transverse crack using flexibility influence

coefficients and local stiffness matrix. Crack depth and crack position are taken

as main variable parameters. Suitable numerical models are considered, and the

results are presented graphically. Further experimental and finite element analysis

verifications are also done to prove the authenticity of the theory developed.

2.3 Crack Detection Methods

It is well known that when a crack develops in a component it leads to changes

in its vibration parameters, e.g. a reduction in the stiffness and increase in the

damping. These changes are mode dependent. Hence it may be possible to estimate

the location and size of the crack by measuring the changes in vibration parameters.

The vibration parameters could be structural parameters (i.e. mass, stiffness and

flexibility) or modal parameters (i.e. natural frequencies, modal damping values and

mode shapes). The vibration based methods of crack detection utilize one or more of

these parameters as the basis for crack detection.
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2.3.1 Crack detection based on Natural Frequency

Methods have been developed to detect the crack by measuring the changes in natural

frequencies. These include the forward problem of determination of natural frequen-

cies knowing the crack details and the inverse problem of determination of crack

details from the natural frequencies.

Maiti and Nandwana [5] developed the method to detect the crack by using first three

natural frequencies. The inclined edge crack is modeled by torsional spring approach.

The frequency equation is derived by applying boundary conditions and equation is

derived which relates change in stiffness due to crack location and natural frequen-

cies. The crack location and depth is predicted by intersection of curves of stiffness

vs crack location for first three modes.

Qian and Jiang [6] have used an element stiffness matrix of a beam with a crack is first

derived from an integration of stress intensity factors, and then a finite element model

of a cracked beam is established. This model is applied to a cantilever beam with an

edge-crack, and the eigen frequencies are determined for different crack lengths and

locations

Nandwana and Maiti [7] have also given same method for detection of location and

size of a crack in a steeped cantilever beam.

Bamnios and Trochides [8] have given the analytical and experimental investigations

provide a link between the change in natural frequencies of vibration and in mechani-

cal impedance to the location and size of the crack for flexural vibrations. It is shown

that the mechanical impedance of the beam changes substantially due to the presence

of the crack and can be used as an additional defect information carrier. The results

have been used to propose an improved method of non-destructive testing for simple

beam structures.
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2.3.2 Crack detection based on mode shape

A mode of vibration is characterized by a modal frequency and a mode shape, and

are numbered according to the number of half waves in the vibration. For example,

if a vibrating beam with both ends pinned displayed a mode shape of half of a sine

wave (one peak on the vibrating beam) it would be vibrating in mode 1. If it had a

full sine wave (one peak and one valley) it would be vibrating in mode 2. In the study

of vibration, the mode shape describes the expected curvature of a surface vibrating

at a particular mode. To determine the vibration of a system, the mode shape is

multiplied by a function that varies with time, thus the mode shape always describes

the curvature of vibration at all points in time, but the magnitude of the curvature

will change. The mode Shape is dependent on the shape of the surface as well as the

boundary conditions of that surface.

Mode of Fracture

Mode I: It is the opening mode. The dominant displacement is normal to the crack

surface. Mode I is studied most with well developed experimental methods. It usually

dominates in many engineering applications and is the most dangerous. Mode II: It

is a sliding mode and the displacement is in the plane of the plate. The separation

is antisymmetric through relative tangential displacement normal to the crack front.

Mode III:This mode also causes sliding motion, but the displacement is parallel to

the crack front, causing tearing.

Figure 2.1: Mode of fracture

Rizos [3] have presented a method based on flexural vibration which requires measure-

ment of amplitudes at any two location of the beam. The crack section is represented
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by a rotating spring. This method is useful for detection of both location and size

and is demonstrated for cantilever beam with normal edge crack. Dado [9] stated

crack detection algorithm for identification of transverse cracks in beams with differ-

ent end conditions. The input data is first two natural frequencies of bending mode.

The torsional spring approach is applied for Euler Bernoulli beam for modeling of

crack. The prediction of crack location and depth is performed by preparing tables

for different combinations of change in natural frequencies.

2.3.3 Detection of multiple cracks

Patil and Maiti [10] have proposed a method for detecting multiple cracks in a slender

beam based on frequency measurement. In this method, the transverse vibration has

been modeled through Transfer Matrix Method (TMM) and the crack is represented

by a rotational spring. Beam is virtually divided into number of segments and each

segments is considered to be associated with a damage parameter. This procedure

gives a linear relationship explicitly between the changes in natural frequencies of the

beam and damage parameters. Li [11] has also applied the Transfer Matrix method

for multi-step beams with an arbitrary number of cracks and concentrated masses.

Patil and Maiti [12] have also developed a mehtod for prediction of location and

size of multiple cracks based on measurement of natural frequencies has been verified

experimentally for slender cantilever beams with two and three normal edge cracks.

The analysis is based on energy method and representation of a crack by a rotational

spring.A strategy to overcome failure in the prediction for cases with one of the cracks

located near an anti-node has been suggested.

Mazanoglu and Yesilyurt [13] are presents the energy-based method for the vibration

identification of non-uniform Euler-bernoulli beams having multiple open cracks.The

distribution of the energy consumed is determined by taking into account not only the

strain change at the cracked beam surface as in general but also the considerable effect

of the stress field caused by the angular displacement of the beam due to bending.The

RayleighRitz approximation method is used in the analysis.The method is adapted
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to the cases of multiple cracks with an approach based on the definition of strain

disturbance variation along the beam.

Khiem and Lien [14] have multi-crack detection for beam by natural frequencies has

been formulated in the form of a non-linear optimization problem. The spring model

of crack is applied to establish the frequency equation based on the dynamic stiffness

of multiple cracked beam. The equation is the basic instrument in solving the multi-

crack detection of beam. The set of crack parameters to be detected includes not

only the crack position and depth, but also the quantity of possible cracks.

Caddemi and Calio [15] In this study,exact closed-form expressions for the vibration

modes of the EulerBernoulli beam in the presence of multiple concentrated cracks

are presented.The proposed expressions are provided explicitly as functions of four

integration constants only,to be determined by the standard boundary conditions.The

cracks, that are not subjected to the closing phenomenon,are modelled as a sequence of

Diracs delta generalised functions in the flexural stiffness.The Eigen-mode governing

equation is formulated over the entire domain of the beam without enforcement of any

continuity conditions,which are already accounted for in the adopted flexural stiffness

model.

2.4 Overview of literature review

Vibration based damage detection techniques has become the subject of interest for

many researchers. A lot of work is done in this field by using natural frequencies

and mode shapes as the damage indices. The significant work is carried out using

wavelet analysis as the damage detection method. The dynamic analysis of beam

like structures is carried out by many investigators to increase the structural safety of

beam because beam is used as a structural element in most of the machine structures.



Chapter 3

Dynamic Analysis of Beam

3.1 Frequency equation and mode shape for beam

3.1.1 Lateral vibration of beam

Modal analysis of any structural element is required to find out fundamental natural

frequency of system, which is lowest frequency from where structure starts vibrating.

Modal analysis of beam is done in span wise configuration.

For deriving the equation of motion,consider the free body diagram of an element

of a beam as shown in figure. M(x,t) is bending moment,V(x,t) is the shear force and

F(x,t) is the external force per unit length of the beam.Since the inertia force acting

on the beam is

ρA(x)dx
∂2ω(x, t)

∂x2
(3.1)

From the Euler Bernoulli beam theory, the relationship between bending moment and

deflection can be expressed as

M(x, t) = EI(x)
∂2w

∂x2
(x, t) (3.2)

where E is the young modulus and I(x) is the moment of inertia.By inserting Equa-

12
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tion (3.2) into (3.3),we obtain equation of motion for forced lateral vibration of non

uniform beam

Figure 3.1: Beam element

∂2

∂x2
[EI(x)

∂2w

∂x2
(x, t)] + ρA(x)

∂2w

∂x2
(x, t) = F (x, t) (3.3)

For a uniform beam Equation (3.4) becomes

EI
∂4w

∂x4
(x, t) + ρA

∂2w

∂t2
(x, t) = F (x, t) (3.4)

For free vibration we can write

c2
∂4w

∂x4
(x, t) +

∂2w

∂t2
= 0 (3.5)

By solving Equation (3.5) by method of separation of variable method,we get the

solution,

c =

√
EI

ρA
(3.6)
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By solving Equation (3.6) by method of separation of variable method,we get the

solution

w(x) = C1 cos βx+ C2 sin βx+ C3 cosh βx+ C4 sinh βx (3.7)

Where c1,c2,c3,c4 in each case can be found from the boundary conditions. And the

frequencies can be found from the equation:

ω2 = β2EI

ρA
(3.8)

3.1.2 Frequency equation and mode shape function for dif-

ferent boundary conditions

The common boundary conditions are as follows:

1. simply supported end:

Deflection w=0 and bending moment

EI
∂2w

∂x2
= 0 (3.9)

2. Free end:

Bending moment

EI
∂2w

∂x2
= 0 (3.10)

Shear force
∂

∂x
(
∂2w

∂x2
) = 0 (3.11)

3. Clamped end:

∂w

∂x
= 0 (3.12)
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For simply supported beam:

The frequency equation is

Wn(x) = Cn sin βnx (3.13)

The boundary conditions are satisfied by the values of = By solving above frequency

equation, we can get the infinite number of nature frequencies and mode shapes.

Similarly for cantilever beam:

The frequency equation is

cos βnl cosh βnl = 0 (3.14)

The mode shape function is

Wn(x) = Cn[sin βnx− sinh βnx− (
sin βnl + sinh βnl

cos βnl + cosh βnl
)(cos βnx− cosh βnx)] (3.15)

The frequency equation for this condition is satisfied for the values of = 1:87; 4:69;

7:85; 10:91 Similarly the frequency equations and mode shapes for fixed-fixed, fixed-

pinned and pinned-free conditions can be derived by same method. By using this

we can get infinite number of natural frequencies and mode shapes for any type of

boundary conditions of beam. The derivation of frequency equation and mode shapes

is explained in [5].

Table 3.1: Natural frequency of cantilever beam. (L=1m,b=0.050m,h=0.008m):

Frequency ANALYTICAL ANSYS %,
DIFFERENCE

f1Hz 13.628 13.621 0.051
f2Hz 85.40 85.35 0.070
f3Hz 237.91 238.95 0.4371
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3.1.3 Comparison of Analytical and ANSYS results:

Figure 3.2: Mode shape for cantilever beam by analytical

Figure 3.3: First Mode shape for cantilever beam by using ansys
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Figure 3.4: Second Mode shape for cantilever beam by using ansys

Figure 3.5: Third Mode shape for cantilever beam by using ansys



Chapter 4

Detection of cracks in Beam

4.1 Introduction

An uniform beam with n cracks located at ξ=x/L=β(j)(j=1,2,3,...,n) is shown in Fig.

1.

Figure 4.1: Beam with multiplecracks

For an EulerBernoulli beam the governing equation of motion is

∂2

∂x2

[
EI

∂2y(x, t)

∂x2

]
+ ρA

∂2y(x, t)

∂t2
= 0 (4.1)

Through separation of variables y(x,t)=Z(x)cos(ω, t),the mode shape equation is ob-

tained:

EI
d4Z

dx4
− ρAω2

iZ = 0EI
d4Z

dx4
− ρAω2

iZ = 0or
d4Z

dx4
− ρ4Z = 0 (4.2)

18
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where ρ is the mass density,A is the cross-sectional area,ω is natural frequency,E is

the young modulus of elasticity,I is the moment of inertia and

p4 =
ρAω2

EI
(4.3)

The general solution of Eq. (4.2) can be written as follows:

Z(x) = C1 [cos(px) + cosh(px)] + C2 [cos(px)− cosh(px)]

+ C3 [sin(px) + sinh(px)] + C4 [sin(px)− sinh(px)] (4.4)

Using this relation it is possible to relate displacement Z,slope θ=dZ/dx,bending

moment M,shear force V at the two ends i and i-1 of an arbitrary segment:
Z

θ

M

V


i

=


Ai Bi

Ci

EI
Di

EI

p4Di Ai
Bi

EI
Ci

EI

EIp4Ci EIp4Di Ai Bi

EIp4Bi EIp4Ci p4Di Ai




Z

θ

M

V


i−1

(4.5)

Ai =
cos(pli) + cosh(pli)

2
Ai =

cos(pli) + cosh(pli)

2
(4.6)

Ci =
− [cos(pli) + cosh(pli)]

2p2
, Di =

− [sin(pli) + sinh(pli)]

2p3
(4.7)

li=length of the segment

C1 =
Zi−1

2
, C2 = − Mi−1

2EIp2
, C3 =

θi−1

2p
, C4 = − Vi−1

2EIp3
(4.8)
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Shear force V acting on a section with its outer normal oriented in the positive x-

direction is considered positive downward.

At a crack location, there is continuity in Z, M and V and a jump in θ. Utilizing

these it is possible to relate the variables on the two sides of the crack:
Z

θ

M

V


i

=


1 0 0 0

0 1 1/Ki 0

0 0 1 0

0 0 0 1




Z

θ

M

V


i−1

(4.9)

where Si is the transfer matrix and Ki is the rotational spring stiffness given by eq(1).

For a step in a beam, the transfer matrix is just an identity matrix. This follows from

the fact that there is continuity of deflection, slope, moment and shear force at the

junction irrespective of the change in crosssections. For an intermediate support the

beam has a discontinuity in shear force equal to the support reaction. This fact can

be built into the corresponding transfer matrix.

4.1.1 Forward problem

For a given beam with geometric features such as a step, uniform segment, crack,

etc., the overall transfer matrix [H], i.e.[Z]N=[H][Z1](Fig. 4.1), can be obtained from

intermediate transfer matrices through simple multiplication

[
H
]

= [Rn]4×4 [Sn−1]4×4 ... [R2]4×4 [S1]4×4 [R1]4×4 (4.10)

These matrices are obtainable from Eqs. (4.5) and (4.9), etc. By inserting the

specified boundary conditions, it is possible to obtain a set of simultaneous equations

[H][Z]= 0. Mostly two parameters out of the four are zero at the ends. This helps to

obtain the characteristic matrix [H] as a matrix of size 2*2. This makes the proposed
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method very favourable. The characteristic equation of vibration is then given by

det [H(ω, β1, β2, β3, ...., K1, K2, K3, ...)]2×2 = 0 (4.11)

where ω is natural frequency. For a cantilever beam with a single crack, the charac-

teristic equation is as follows:∣∣∣∣∣∣ H
1
11 +

H2
11

K
H1

12 +
H2

12

K

H1
21 +

H2
21

K
H1

22 +
H2

22

K

∣∣∣∣∣∣ = 0 (4.12)

where

H11
1 = p4C1C2 + p4B1D2 + A1A2 + p4D1B2, H2

11 = EIp4A1D2

H1
12 = p4D1C2 + p4C1D2 +B1A2 + A1B2, H

2
12 = EIp4B1D2 (4.13)

H1
21 = p4C1B2 + p4B1C2 + p4A1D2 + p4D1A2, H

2
21 = EIp4A1C2 (4.14)

H1
22 = p4D1B2 + p4C1C2 + p4B1D2 + A1A2, H

2
22 = EIp4B1C2 (4.15)

Ai, Bi, Ci and Di (i = 1,2) are given by Eq. (4.5) except li is replaced by Li, where

L1= βL, L2=(1-β)L and β is the nondimensional crack location. Explicitly Eq. (4.10)

for cantilever and simply supported beams respectively are as follows:

4(1 + coshλ) +
λ

K
sinh(cosλ+ cosλe)− sinλ(coshλ+ coshλe) + 2 cosh(λβ) sin(λβ)

−2 cos(λβ) sinh(λβ)−2 sinh(λ(1−β)) cosh(λ(1−β))+2 cos(λ(1−β)) sinhλ(1−β) = 0

(4.16)

and

4 sinλ sinhλ+
λ

K
{sinhλ(cosλ− cosλe)− sinλ(coshλ− coshλe)} = 0 (4.17)
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It is a bit difficult to derive Eq. (4.14) using this approach. Eqs. (4.16) and (4.17)

can be re-written in a short form

∆1 +
λ

K
∆2 = 0 (4.18)

Solving Eq. (4.12) or (4.18) it is possible to solve the forward problem and obtain

the natural frequencies. In case there are n intermediate rigid supports, the size of

the characteristic determinant (det[H]) increases by n. That is, the matrix size is

then (n+2). The mode shape corresponding to a natural frequency can be obtained

through Eq. (4.4).

4.1.2 Procedure for crack detection

For a single span beam with one crack Eq. (4.12) or (4.18) can serve as a basis for

the detection of its location and size. But for the detection of multiple, say n, cracks

the number of unknowns are 2n. It is then difficult to apply Eq. (4.18) directly. Here

the approximate method of Hu and Liang [16] in conjunction with the TMM can be

employed. This is explained in the following:

The Rayleigh quotient is given by

ω2 = µ =

1
2

∫ L

0
EI(x)

(
d2Z
dx2

)2
dx

1
2

∫ L

0
ρAZ2dx

=
U

V
(4.19)

U = strainenergy =
1

2

∫ L

0

EI

(
d2Z

dx2

)2

dx =
1

2

∫ L

0

ψdx, ψ = EI

(
d2Z

dx2

)2

(4.20)

V = kineticenergy =
1

2

∫ L

0

ρAZ2dx (4.21)

For small changes in Frequency

∆µ

µ
=

∆U

U
− ∆V

V
(4.22)
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For a beam with a crack located normally to the beam axis and undergoing transverse

vibration ∆V=0 Considering a crack to affect the mode shape locally and representing

this effect by a damage parameter S,

∆U =
1

2

∫ L

0

Sψdx (4.23)

∆ω

ω
=

1

2

∫ L

0
SΨdx∫ L

0
Ψdx

(4.24)

If a beam is divided into m segments and the segment i is assumed to be associated

with a damage parameter Si,

∆ω

ω
= 2

m∑
i=1

1

I0

∫
Li

ψdxSi (4.25)

for nth frequency
∆ωn

ωn

= 2
m∑
i=1

∫
L

gn (ξ)LdξSi (4.26)

where

gn (ξ) = ψn/I0n (4.27)

For a beam divided into m segments and q number of known frequencies,Eq. (4.26)

gives rise to a set of simultaneous equations:

{
∆ωn

ωn

}
q×l

= 2 [H]q×m {S}m×l (4.28)

In the calculations some of the parameters Si are less than 0. Since a positive Si rep-

resents a reduction in section because of a crack, a negative Si indicates an increase

of area of section. this is unrealistic. To handle the case Si ¡ 0, the corresponding

segment is treated to be free of any damage and Si is set equal to zero. The calcula-

tions are repeated till a set of all positive damage parameters are obtained. Taking

only one damage parameter Si of a segment i as nonzero at a time and keeping all

others as zero, the change in a natural frequency Dxn due to one such damage in the

segment is calculated. A variation of K with crack location b is obtained using Eq.
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(4.18) and Dxn. This is repeated for three or more modes. Since,the stiffness of the

spring is independent of the mode, the location where the three or more such curves

intersect gives the crack location and the spring stiffness.

Result for simply supported beam

Table 4.1: Natural frequencies of simply supported beam with two cracks
case no. crack location Natural frequencies

β1 β2 ω1 ω2 ω3 ω4 ω5
1 uncracked beam 59.007 236.029 531.065 944.116 1475.18
2 0.25 0.45 58.625 235.142 528.096 942.515 1469.103

Table 4.2: Comparison of actual and predicted crack location for simply supported
beam

case no Actual data Natural frequencies Predicted data
Location β ω1 ω2 ω3 Location β %error

1 uncracked beam 59.007 236.029 531.065 - -
2 0.25 58.915 235.314 530.233 0.25 0
3 0.45 58.719 235.884 529.051 0.443 -0.7

Figure 4.2: crack detection in simply supported beam
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Figure 4.3: crack detection in simply supported beam

4.1.3 Result for cantilever beam

Table 4.3: Natural frequencies of cantilever beam with two cracks
case no. crack location Natural frequencies

β1 β2 ω1 ω2 ω3 ω4 ω5

1 uncracked beam 6.62 47.42 125.397 240.5539 392.892

2 0.1 0.4 6.243 46.32 123.69 237.834 386.782

3 0.1 0.5 6.18 45.938 122.3 235.487 384.782

Result for cantilever beam using ansys

Figure 4.4: Natural frequency of uncracked beam
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Figure 4.5: Natural frequency of cracked beam

Figure 4.6: Natural frequency of cracked beam

4.1.4 Experimental study

The experimental modal analysis can be done by FFT analyzer. The FFT analyzer

converts the time domain data to frequency domain data. The analysis of time

domain data is very complex and it is not in appropriate form. From the frequency

domain data, one can find resonance frequencies and the resonance conditions and

amplitude can be determined easily in frequency domain data. In present work, the

experimental analysis is done by using FFT analyzer.The experimental setup is as

shown in the fig 5.1

Mild steel beams were considered for experimental. Geometric and material prop-

erties of these beams are given in Table 4.1. Beams are supported by cantilever

support. Crack were made by wire-cut machining (EDM), using a wire of diameter of

0.25mm in size of 1mm.a/h=0.33,where h is beam thickness. Experimental set up of
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Figure 4.7: Experimental setup

Table 4.4: Geometric and material data for M.S.Beam.

Parameter L(m) b(m) h(m) ρg(kg/m
3)

Value 1 0.05 0.008 7860

cantilever supported beam is shown,One end of beam is fixed with the vice,FFT anal-

yser is attached which is also shown in figure.Four Channel LSM Test.Xpress FFT

Analyzer used for finding out the natural frequency of uncracked tube and cracked

beam.To measure natural frequencies,the accelerometer is fix vertically at the end

of the beam by applying a quick setting wax to the base of the accelerometer and

pressing it for 5 to 10 second.From FFT analysis,the frequency corresponding to first

few peaks are taken as natural frequencies.While testing a beam,it is tapped in the

transverse direction and first three natural frequencies is measured.

4.1.5 Crack Identification Procedure

Using Equation 4.17,find the dimensionless local flexibility coefficient K for the first

three natural frequency.After finding this K,use the Equation (4.19)- (4.20) and plot

the Mode shape of crack beam.from this mode shape,at the crack location change in

mode shape behavior Suddenly.so where the mode shape behavior change suddenly

gives the crack location.
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Table 4.5: Comparison of actual and predicted crack location for cantilever beam
case no Actual data Natural frequen-

cies
Predicted
data

Location β ω1 ω2 ω3 Location β %error
1 uncracked beam 6.538 47.2 124.6
2 0.1 6.504 46.65 123.3 0.067 -3.3

0.4 6.412 45.589 122.56 0.417 1.7
3 0.1 6.392 45.278 122.32 0.047 3.8

0.5 6.21 44.573 120.923 0.469 -3.1

Figure 4.8: crack detection at β = 0.1
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Figure 4.9: crack detection at β = 0.4

Figure 4.10: crack detection at β = 0.1
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Figure 4.11: crack detection at β = 0.5

A technique, combining the TMM and representation of an open edge crack oriented

normally to the axis by a rotational spring, has been proposed to solve the prob-

lem of detection of multiple cracks in beams with varying end conditions(fixed and

simple supports).The accuracy of results in the inverse, or crack detection, prob-

lem is good.The maximum difference in the prediction of location is less than 10The

method however suffers from one important limitation. That is, the maximum num-

ber of cracks that can be detected is less than equal to the number of segments into

which the beam is virtually divided.



Chapter 5

Conclusion and Future Scope

5.1 Conclusion

Dynamic analysis has been done for Uncracked beam and its given very reasonable

result between analytical and Ansys. The representation of a crack by a rotational

spring in a straight beam for modeling its transverse free vibration for solving multiple

cracks. The present effort to predict crack location by Natural Frequency Based Mode

shape Method in the multiple cracked beam.

5.2 Future Scope

• This method is extended for detection of multiple cracks at different angle.

• The multiple cracked beam analysed under the external force.

• This method is extended for multiple crack in rotating shaft.

31
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