
Development of Problem Solving Environment
For Handling Middleware Faults in Grid

By

Yogesh R.Vaghela

09MCE017

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERISITY

AHMEDABAD-382481

May, 2012

Development of Problem Solving Environment
For Handling Middleware Faults in Grid

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Yogesh R.Vaghela

(09MCE017)

Guided By

Dr.Madhuri Bhavsar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERISITY

AHMEDABAD-382481

May, 2012

iii

Declaration

I, Yogesh R.Vaghela, 09MCE017, give undertaking that the Major Project enti-

tled “Development of Problem Solving Environment For Handling Middleware

Faults in Grid” submitted by me, towards the partial fulfillment of the requirements

for the degree of Master of Technology in Institute of Technology of Nirma University,

Ahmedabad, is the original work carried out by me and I give assurance that no attempt

of plagiarism has been made. I understand that in the event of any similarity found subse-

quently with any published work or any dissertation work elsewhere; it will result in severe

disciplinary action.

Yogesh R.Vaghela

iv

Certificate

This is to certify that the Major Project entitled “Development of Problem Solving Environ-

ment For Handling Middleware Faults in Grid” submitted by Yogesh R.Vaghela (09MCE017),

towards the fulfillment of the requirements for the degree of Master of Technology in Com-

puter Science and Engineering of Nirma University, Ahmedabad is the record of work carried

out by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied in this

major project to the best of my knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

Dr.Madhuri Bhavsar Dr.S.N.Pradhan

Guide, Associate Professor, Professor and PG-Coordinator,

Department of C.S.E., Department of C.S.E,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Prof.D.J.Patel Dr.K.Kotecha

Professor and Head, Director,

Department of C.S.E, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

v

Abstract

Grid enable the sharing, selection and aggregation of a wide variety of resources including

supercomputers, storage systems, data sources and specialized devices that are geographi-

cally distributed and owned by different organizations for solving large-scale computational

and data intensive problems in science, engineering and commerce.However, the major

challenge in such highly heterogeneous and complex computing environment is to design an

efficient problem solving environment.The large number of components and their distribu-

tion in grid as well as the dynamic structure of the grid increases the risk of failures.Thus

providing a scalable and generic problem solving environment as a basic service for grids,

is of primary importance.This thesis aims at furnishing fault tolerant grid system by iden-

tifying and handling middleware faults.Grid middleware is core component of grid system

responsible for overall progress of grid application.In the research work carried out during

this thesis, middleware undertaken for experimentation is alchemi.Alchemi is a .NET-based

grid computing framework that provides the runtime machinery and programming envi-

ronment required to construct computational grid.Alchemi supports scheduling algorithm

which selects highest priority thread among the pool of threads and dedicate to it to the

available executor keeping scope for enhancement of application performance.This thesis

proposes customized scheduler algorithm for handling faults so that scheduling of jobs will

be based on available CPU power.Also a new manager proposed, recovers the jobs from its

failure, providing problem solving environment for grid application resolving faults and its

impacts.

vi

Acknowledgements

My deepest thanks to Dr.Madhuri Bhavsar, Senior Associate Professor, Department of

Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad

the Guide of the project that I undertook for giving her valuable inputs and correcting

various documents of mine with attention and care. She has taken the pain to go through

the project and make necessary amendments as and when needed.

My deep sense of gratitude to Dr.S.N.Pradhan, Professor and PG-Coordinator of De-

partment of Computer Engineering, Institute of Technology, Nirma University, Ahmedabad

for an exceptional support and continual encouragement throughout part one of the Major

project.

I would like to thanks Dr.Ketan Kotecha, Hon’ble Director, Institute of Technology,

Nirma University, Ahmedabad for his unmentionable support, providing basic infrastruc-

ture and healthy research environment.

I would also thank my Institution, all my faculty members in Department of Computer

Science and my colleagues without whom this project would have been a distant reality.

Last, but not the least, no words are enough to acknowledge constant support and sacri-

fices of my family members because of whom I am able to complete my dissertation work

successfully.

- Yogesh R.Vaghela

09MCE017

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Grid Computing Overview . 1
1.2 Problem Statement . 2
1.3 Objective . 2
1.4 Thesis Organization . 3

2 Literature Survey 4
2.1 Faults in Grid Computing . 4

2.1.1 Types of Faults in Grid . 4
2.1.2 Survey of Faults in Grid . 5

2.2 Fault Tolerant Technique in Grid . 7
2.2.1 Fault Tolerance in Grid . 7
2.2.2 Fault Tolerance in Grid Middleware 8
2.2.3 Fault Tolerance Mechanisms of Grid 9
2.2.4 Survey of Fault Tolerance Mechanism of Grid 10

2.3 Viewpoint . 12

3 Grid middleware 13
3.1 Why Alchemi middleware? . 13
3.2 Architecture of Alchemi Based Grid Application 14
3.3 Alchemi Grid Thread Programming Steps 15
3.4 How Alchemi Works . 16
3.5 Alchemi Grid Application Life cycle . 18
3.6 Alchemi API Class Diagram and Database structure 19

vii

CONTENTS viii

4 Grid Set up Configuration 28
4.1 Experimental Grid Set up Configuration . 28

4.1.1 Alchemi Installation . 28

5 Middleware Faults of Alchemi Grid 30
5.1 Middleware Faults of Alchemi . 30
5.2 Present Fault Tolerance Scenario in Alchemi 31

6 Proposed Solution 35
6.1 Development of problem solving environment in grid 35

6.1.1 Proposed New Alchemi Manager . 35
6.1.2 Proposed Customized Scheduler Algorithm 37

7 Implementation 40
7.1 Alchemi Grid API Main Classes Description 40

7.1.1 Proposed Algorithm Implementation 42
7.1.2 Proposed New Alchemi Manager Implementation 42

8 Result 43
8.1 Alchemi based Grid Application Result . 43

8.1.1 Proposed New Alchemi Manager Result 43
8.1.2 Proposed Algorithm Result . 43

9 Conclusion and Future Work 56
9.1 Conclusion . 56
9.2 Future Work . 56

10 List of publications 57

References 58

Index 59

List of Tables

I Alchemi grid application table description 20
II Alchemi executor table description . 20
III Alchemi thread table description . 21

I Experimental Grid Set up Configuration . 28

I Alchemi Core Classes Modules . 41
II Alchemi Manager Classes Modules . 41
III Alchemi Executor Classes Modules . 41

I Proposed New manager result of Grid Application 44
II Proposed Algorithm result of Grid Application 44

ix

List of Figures

2.1 Kinds of Faults in Grid[6] . 6
2.2 Fault Tolerance Mechanism in Currant Use[6] 11

3.1 Alchemi Grid Architecture[8] . 15
3.2 An Alchemi Grid[9] . 17
3.3 Interaction between User and Manager nodes[9] 19
3.4 Interaction between Executor and Manager nodes[9] 22
3.5 Thread Execution Flow of alchemi based grid Application[9] 23
3.6 Alchemi Core class Diagram . 24
3.7 Alchemi Manager Class Diagram 1 . 25
3.8 Alchemi Executor Class Diagram . 26
3.9 Alchemi Grid Application Class Diagram 27

5.1 Failure of Grid Application . 32
5.2 Heartbeat mechanism of Alchemi[16] . 33
5.3 Console information in Alchemi[16] . 34

6.1 Proposed New Manager . 36
6.2 Proposed Customized Scheduler Algorithm 38
6.3 Design of Problem Solving Environment . 39

7.1 Alchemi Grid API main classes . 40
7.2 Updated Logic in Alchemi Middleware API 42

8.1 Execution of Grid Application using Alchemi 44
8.2 Alchemi Manager starting state . 45
8.3 Alchemi Executor starting state . 46
8.4 Alchemi Manager stoping state . 47
8.5 If Manager node fails,grid application execution fails 48
8.6 New Alchemi Manager starting state . 49
8.7 With New Alchemi Manager,successful execution of grid application 50
8.8 Grid Console window showing five executor connected to grid manager . . . 51
8.9 Execution of Grid Application using Alchemi 52
8.10 Execution of Grid Application using Proposed Algorithm 53
8.11 Execution Time Comparison line chart . 54
8.12 Execution Time Comparison bar chart . 55

x

Chapter 1

Introduction

1.1 Grid Computing Overview

Grid [1][2] is a type of distributed system that supports the sharing and coordinated use

of geographically distributed and multi- owner resources independently from their physi-

cal type and location in dynamic virtual organizations that share the same goal of solving

large-scale applications.

Rajkumar Buyya defined the Grid as:

”Grid[3] is type of parallel and distributed system that enables the sharing, selection and

aggregation of geographically distributed resources dynamically at run time depending on

their availability, capability, performance, cost, user quality-of-self-service requirement”.

”Grid Computing[4] enables virtual organizations to share geographically distributed re-

sources as they pursue common goals, assuming the absence of central location, central

control, omniscience, and an existing trust relationship” In other words:

• Grid is a service for sharing computer power and data storage capacity over the

Internet and Intranet.

• Grid computing resources has enhanced the performance of computers.

1

CHAPTER 1. INTRODUCTION 2

• Computational Grid

This grid is used to allocate resources specifically for computing power. The resources

are usually high-performance machines.

• Data Grid

This grid is used for housing and providing access to data over multiple organizations.

• Scavenging Grid

It is one type of Computational grid which uses the unused resources for computational

power. It steals CPU cycles when CPU is idle, so it is also called Cycle Scavenging

Grid.

1.2 Problem Statement

Grid is service for sharing computer power to execute high performance and high computa-

tional Application.The major challenge in such highly heterogeneous and complex comput-

ing environment is to design an efficient problem solving environment. The large number

of components and their distribution in grid as well as the dynamic structure of the grid

increases the risk of failures. Thus providing a scalable and generic problem solving envi-

ronment as a basic service for grids is of primary importance in such systems.

1.3 Objective

To deal with the faults that are found in grid middleware, customized scheduler algorithm

is designed and developed for handling faults so that jobs are scheduled on the basis of

available CPU power. Also a new manager is proposed that recovers the jobs from its

failure, providing problem solving environment for grid application resolving faults and its

impacts.

CHAPTER 1. INTRODUCTION 3

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature survey describe Faults in Grid,Types Of Faults occur in Grid,Survey

Of Faults in Grids,Fault Tolerance in Grid Middleware,Faults Tolerance Mechanisms

of Grid,Survey Of Faults Tolerance Mechanisms of Grid and Viewpoint

Chapter 3, Grid Middleware describe introduction of alchemi grid,Architecture Of Al-

chemi Based Grid Application,Alchemi Grid Thread Programming Steps,How Alchemi

Works,Alchemi Grid Application Life cycle,Alchemi API Class Diagram and Database

structure and Thread Execution Flow of alchemi based grid Application.

Chapter 4, Grid Set up Configuration describe Experimental Grid Set up Configuration

and Alchemi Installation steps and required tools.

Chapter 5, Middleware Faults of Alchemi Grid describe Middleware Faults of Alchemi

and Present Fault Tolerance Scenario in Alchemi.

Chapter 6, Proposed Solution describe Development of Problem Solving Environment,Proposed

New Alchemi Manager Concept and Proposed Algorithm.

Chapter 7, Implementation describe Alchemi Grid API Main Classes Description,Proposed

Algorithm Implementation stpes and Proposed New Alchemi Manager Implementation

steps.

Chapter 8, Outcome describe Alchemi based Grid Application Result,Proposed New Al-

chemi Manager Result and Proposed Algorithm Result.

Chapter 9, Concluding remarks for the work done. Future goal to use checkpointing

mechanism for the solution of identified Middleware Faults of Alchemi Grid.

Chapter 2

Literature Survey

2.1 Faults in Grid Computing

Grid computing enables the aggregation and sharing of geographically distributed computa-

tional data and other resources as a single, unified resource for solving large-scale compute

and data intensive applications in dynamic, multiinstitutional virtual organizations. Since

Grid resources are highly heterogeneous and dynamic, more faults are likely to occur in

Grid environment. The generally accepted definitions of some basic terms as stated in are:

Fault[5]: A fault is a violation of a systems underlying assumptions.

Error[5]: An error is an internal data state that reflects a fault.

Failure[5]: A failure is an externally visible deviation from specifications.

A fault need not result in an error, or an error in a failure. For example, in the Ethernet

link layer of the network stack, a packet collision is an error that does not result in a failure

because the Ethernet layer handles it transparently.

2.1.1 Types of Faults in Grid

Faults may be classified based on several factors[5].

• Network faults: Faults due to network partition, Packet Loss, Packet corruption.

• Physical faults: Faulty CPUs, Faulty memory, Faulty storage, etc.

• Lifecycle faults: Version faults.

4

CHAPTER 2. LITERATURE SURVEY 5

• Media faults: Disk head crashes.

• Processor faults: Machine or operating system crashes.

• Middle ware faults: Middle ware related fault.

2.1.2 Survey of Faults in Grid

In order to identify Survey Of Faults in grids[6], Authors have consulted grid users spread

throughout the world through the multiple-choice questions below.

a. What are the more frequent kinds of Faults you face on Grids?

b. What are the mechanisms used for detecting and/or correcting and/or tolerating

faults?

The questionnaire was sent several grid User in all over the world, such as : The main kinds

of Faults (see figure 2.1) are related to the environment configuration. Almost 76% of the

responses have pointed this out. According to some people surveyed, the lack of control

over grid resources is the main source of configuration failures. Following this, we have

middleware failures with 48%, application failures with 43% and finally hardware failures

with 34%.

CHAPTER 2. LITERATURE SURVEY 6

Figure 2.1: Kinds of Faults in Grid[6]

CHAPTER 2. LITERATURE SURVEY 7

2.2 Fault Tolerant Technique in Grid

In a grid environment there are potentially thousands of resources, services and applica-

tions that need to interact in order to make possible the use of the grid as an execution

platform.Since these elements are extremely heterogeneous, there are many failure possi-

bilities, including not only independent failures of each element, but also those resulting

from interactions between them. Because of the inherent instability of grid environments,

fault detection and recovery is a critical component that must be addressed. The need for

fault tolerance is especially acute for large parallel applications since the failure rate grows

with the number of processors and the duration of the computation. The earliest use of

computers made it apparent that even with careful design and good components, physi-

cal defects and design errors were unavoidable. Thus, designers of early computers used

practical techniques to increase reliability. They used redundant structures to mask failed

components; error control codes and duplication or triplication with voting to detect or cor-

rect information errors; diagnostic techniques to locate failed components and automatic

switchovers to replace failed subsystems.

2.2.1 Fault Tolerance in Grid

Fault tolerance[5] is the survival attribute of computer systems. The function of fault tol-

erance is

“to preserve the delivery of expected services despite the presence of fault-caused errors

within the system itself. Errors are detected and corrected, and permanent faults are located

and removed while the system continues to deliver acceptable service”

Fault tolerance is the property of a system that continues operating consistent with its

specifications even in the event of failure of some of its parts. From a user’s point of view,

a distributed application should continue despite failures. The fault tolerance has become

the main topic of research. Till now there is no single system that can be called as the

complete system that will handle all the faults in grids. Grid is a dynamic system and the

nodes can join and leave voluntarily. For making fault tolerance system a success, following

CHAPTER 2. LITERATURE SURVEY 8

point must consider:

• How new nodes join the system,

• How computing resources are shared,

• How the resources are managed and distributed

2.2.2 Fault Tolerance in Grid Middleware

Grids have middleware stacks, which are a series of cooperating programs, protocols and

agents designed to help users access the resources of a Grid. Grid Middleware refers to the

security, resource management, data access, instrumentation, policy, accounting, and other

services required for applications, users, and resource providers to operate effectively in a

Grid environment. Middleware acts as a sort of ’glue’, which binds these services together.

Middleware connect applications with resources. Formally Grid middleware can be defin-

ing as: “A mediator layer that provide a consistent and homogeneous access to resources

managed locally with different syntax and access methods” The brief overview of the some

popular middleware Alchemi, Globus, Sun Engine and their fault tolerance mechanisms has

been discussed in this section.

Alchemi:Alchemi[9] is a .NET-based grid computing framework that provides the run- time

machinery and programming environment required to construct desktop grids and develop

grid applications. Till today not much work is done on Alchemi Fault tolerance. The basic

technique used by Alchemi for Fault Tolerance is Heartbeat Mechanism.The Executors in

the Alchemi sends the heartbeat messages to the Manager at regular interval of time. Man-

ager after receiving messages from executors guesses that the executor node is still working.

So the procedure of fault tolerance is not so well planned. In later chapters we will see

fault tolerance procedure of Alchemi in more detail and try to find challenges in its fault

tolerance system.

Sun Grid Engine:Sun’s Grid Engine[20] is a Distributed Resource Management tool; it

provides load management across heterogeneous, distributed computing environments. Sun

made the source available under the Grid Engine project . The Grid Engine project is an

open source version of the software is known as Grid Engine. Grid Engine is generally in-

stalled across a cluster of machines using a shared file system. It can be configured to work

CHAPTER 2. LITERATURE SURVEY 9

across disparate file systems. Users submit jobs to Grid Engine and Grid Engine manages

the allocation of jobs to machines within the cluster. This ensures the resources are used

more productively therefore increasing availability. In this middleware with the help of the

user and kernel level Check pointing manage the fault.

Globus:The Globus toolkit[19] is designed to enable people to create computational Grids.

Globus is an open source initiative aimed at creating new Grids capable of the scale of

computing seen only in supercomputers up to now. As an open source project any person

can download the software, examine it, install it and hopefully improve it. By this constant

stream of comments and improvements, new versions of the software can be developed with

increased functionality and reliability. In this way the Globus project itself will be on going

with constant evolution of the toolkit.Globus Toolkit has three pyramids of support built on

top of a security infrastructure, as illustrated. They are:Resource management,Data man-

agement,Information services,All of these are built on top of the underlying Grid Security

Infrastructure (GSI).This provides security functions, including single/mutual authentica-

tion, fault tolerant, confidential communication, authorization, and delegation. Through

the monitoring of the system by the gate keeper we can manage the fault. It provide secure

communication between clients and servers. It also communicates with the GRAM client

(globus run) and authenticates the right to submit jobs. After authentication, gatekeeper

forks and creates a job Manager delegating the authority to communicate with clients.

2.2.3 Fault Tolerance Mechanisms of Grid

grid users have used automatic ways to deal with failures in their Grid Environment. To

achieve the automatic ways to deal with failures, various fault tolerance mechanisms are

there. Some of these fault tolerance mechanisms[5] are:

Application-dependent: Grids are increasingly used for applications requiring high lev-

els of performance and reliability, the ability to tolerate failures while effectively exploiting

the resources in scalable and transparent manner must be integral part of grid computing

resource management systems.

Monitoring Systems: In this a fault-monitoring unit is attached with the grid. The base

technique which most of the monitoring units follow is heart beating technique.

Fault Tolerant Scheduling: With the momentum gaining for the grid computing sys-

CHAPTER 2. LITERATURE SURVEY 10

tems, the issue of deploying support for integrated scheduling and fault-tolerant approaches

becomes a paramount importance. For this most of the fault tolerant scheduling algorithms

are using the coupling of scheduling policies with the job replication schemes such that jobs

are efficiently and reliably executed. Scheduling policies are further classified on basis of

time-sharing and space sharing.

Checkpointing-recovery: Check pointing and rollback recovery provides an effective

technique for tolerating transient resource failures, and for avoiding total loss of results.

Check pointing involves saving enough state information of an executing program on a sta-

ble storage so that, if required, the program can be re-executed starting from the state

recorded in the checkpoints. Checkpointing distributed applications is more complicated

than Checkpointing the ones, which are not distributed. When an application distributed,

the Checkpointing algorithm not only has to capture the state of all individual processes,

but it also has to capture the state of all the communication channels effectively.

2.2.4 Survey of Fault Tolerance Mechanism of Grid

Grid users have used automatic ways to deal with failures on their systems (see figure

2.2). Nevertheless, 57% of them are application dependent.Even when monitoring sys-

tems are used (29% of the cases).Checkpointing is used in 29% of the systems and fault-

tolerant scheduling in 19%. In some cases, different mechanisms are combined.In case of

checkpointing-recovery and fault-tolerant scheduling, they are only able to deal with crash

failure semantics for both hardware and software components.

CHAPTER 2. LITERATURE SURVEY 11

Figure 2.2: Fault Tolerance Mechanism in Currant Use[6]

CHAPTER 2. LITERATURE SURVEY 12

2.3 Viewpoint

After analyzing the need of fault handling in grid,realized to solve middleware related

faults.Studied different middleware Alchemi,Globus,Sun Grid Engine etc.For verification

of system,grid based application was developed in alchemi middleware.Based on various

result identified alchemi middleware related faults are realized.Alchemi supports scheduling

algorithm which selects highest priority thread among the pool of threads and dedicate to it

to the available executor keeping scope for enhancement of application performance. This

thesis proposes customized scheduler algorithm for handling faults so that scheduling of

jobs will be based on available CPU power.Also proposed new manager recovers the jobs

from its failure providing, problem solving environment for grid application resolving faults

and its impacts and integrated with Alchemi grid.

Chapter 3

Grid middleware

3.1 Why Alchemi middleware?

Alchemi[9][16][12] is an open source software framework that allows you to painlessly aggre-

gate the computing power of networked machines into a virtual supercomputer And develop

applications to run on the grid. Alchemi includes: The runtime machinery (Windows exe-

cutables) to construct grids. A .NET API and tools to develop .NET grid applications and

grid enabled legacy applications. It has been designed with the primary goal of being easy

to use without sacrificing power and flexibility. As Alchemi is the emerging technology, so

a lot of work has to be done to make it a standard .NET based middleware. We are using

Alchemi as the framework to setup the grids. There can be many reasons for choosing

Alchemi as the framework for building the computational grid and then further choosing to

build a fault tolerant system for it. Some of these reasons are:

• Alchemi is the first .NET based stable grid.

• Most important is that Alchemi is open source. So one can do any number of changes

in it.

• Another important reason is that most of the systems in our labs are running Windows

Operating Systems.

• Fault tolerance research area is still under development in Alchemi.

13

CHAPTER 3. GRID MIDDLEWARE 14

3.2 Architecture of Alchemi Based Grid Application

Alchemi grid architecture[8] is complex comprising of many layers as shown in figure 3.1.

Typically,a user application instantiates 3 classes of objects from theAlchemi API: GCon-

nection, GApplication and one or more GThreads. GConnection is a class responsible for

connecting and sending authentication information from the user application to the central

component called Manager.

The GConnection is consumed by GApplication, which is also created by the user applica-

tion. To take an advantage of the grid, user application must create a number of independent

jobs and submit them to the grid.

In Alchemi terminology, the independent jobs are referred to as grid threads. They are

objects whose class definition is inherited from GThread class. Before executing GApplica-

tion Start() method, which starts parallel execution of the grid threads, the GThreads are

added to the GApplication thread collection.

Furthermore, a DLL or EXE module that implements this class, along with all depen-

dant modules are added to the manifest of the GAplication instance. Since the threads

need to be sent to participating grid nodes, a thread class is marked with Serializable at-

tribute, which is a .Net concept for marking classes available for serialization.

A serialization is a process of transforming an object into a form which can be saved into a

file or other storage or be sent across a wire. The GApplication class defines a number of

events, the most important being ApplicationFinish. The Application Finish event is raised

when all dispatched threads reach the finished state.

In Alchemi terminology, the central controller is called Manager. The Manager is respon-

sible for persisting GThread objects received from the user application. The other roles of

the manager include GThread scheduling, dispatching and monitoring.

Grid nodes capable of code execution are called Executors. The executors register them-

selves with the manager. They can be dedicated or non dedicated participants of the

CHAPTER 3. GRID MIDDLEWARE 15

Alchemi grid. The manager monitors a state and availability of the registered executors.

The executor states are persisted into short term storage. Scheduler is a component re-

sponsible for assigning the GThreads to the executors. In the Alchemi environment it is

possible to plug-in a custom scheduler.

Figure 3.1: Alchemi Grid Architecture[8]

3.3 Alchemi Grid Thread Programming Steps

The two central classes in Alchemi grid API are GThread and GApplication that rep-

resent grid thread and application respectively.Gthread class is used for the code to be

executed remotely and GApplicaion is for locally executed code. To build the custom grid

thread,following steps[16] are to be followed:

CHAPTER 3. GRID MIDDLEWARE 16

• import the namespace Alchemi.Core

• Extend the GThread class

• Override the start() method

• Make the class serializable

To build an appplicaion,following steps are to be followed:

• Import the namespace Alchemi.Core

• Create an instance of GApplication with manager’s IP and port no

• Add custom grid thread module as a dependency

• Create an instances of grid thread

• Add the thread instances to the GApplication’s Threads Collection

• Set the finish callback method of grid

• Set the finish callback method of applicaion

• Start the application

• Write the callback methods for thread and application

3.4 How Alchemi Works

There are three types of distributed components (nodes) involved in the construction of

Alchemi grid (shown in figure 3.2) and execution of grid applications[9][16]: Manager, Ex-

ecutor and User.

a. Manager: The Manager manages the execution of grid application and provides ser-

vices associated with managing thread execution.The Executors register themselves

with the Manager which in turn keeps track of their availability. Threads received

from the owner are placed in a pool and scheduled to be executed on the various

available Executors.A priority for each thread can be explicitly specified when it is

CHAPTER 3. GRID MIDDLEWARE 17

Figure 3.2: An Alchemi Grid[9]

created within the Owner,but is assigned the highest priority by default if none is

specified.Threads are scheduled on a Priority and First Come First Served(FCFS)

basis,in that order. The Executors return completed threads to the Manager which

are subsequently passed on or collected by the respective Owner.

b. Executor: The Executor accepts threads from the Manager and executes them. An

Executor can be configured to be dedicated, meaning the resource is centrally man-

aged by the Manager, or non-dedicated, meaning that the resource is managed on a

volunteer basis via a screen saver or explicitly by the user. For non-dedicated execu-

tion, there is one-way communication between the Executor and the Manager. In this

case, the resource that the Executor resides on is managed on a volunteer basis since

it requests threads to execute from the Manager. When two-way communication is

possible and dedicated execution is desired the Executor exposes an interface so that

the Manager may communicate with it directly. In this case, the Manager explicitly

CHAPTER 3. GRID MIDDLEWARE 18

instructs the Executor to execute threads, resulting in centralized management of the

resource where the Executor resides.

c. User : Grid applications are executed on the User node. The API abstracts the

implementation of the grid from the user and is responsible for performing a variety

of services on the users behalf such as submitting an application and its constituent

threads for execution, notifying the user of finished threads and providing results and

notifying the user of failed threads along with error details.

3.5 Alchemi Grid Application Life cycle

To develop and execute a grid application[9][16] the developer creates a custom grid thread

class that derives from the abstract GThread class. An instance of the GApplication object

is created and any dependencies required by the application are added to its Dependency

Collection. Instances of the GThread derived class are then added to the GApplications

ThreadCollection. The lifecycle of a grid application is shown in Figure, showing simplified

interactions between the Owner and Executor nodes respectively and the Manager. The

GApplication serializes and sends relevant data to the Manager, where it is persisted to

disk and threads scheduled. Application and thread state is maintained in a SQL Server /

MSDE database.Non-dedicated executors poll for threads to execute until one is available.

Dedicated executors are directly provided a thread to execute by the Manager. Threads are

executed in .NET application domains, with one application domain for each grid applica-

tion. If an application domain does not exist that corresponds to the grid application that

the thread belongs to, one is created by requesting, destabilizing and dynamically loading

the applications dependencies. The thread object itself is then desterilized, started within

the application domain and returned to the Manager on completion. After sending threads

to the Manager for execution, the GApplication polls the Manager for finished threads. A

user-defined GThreadFinish delegate is called to signify each threads completion and once

all threads have finished a user-defined GApplicationFinish delegate is called.

CHAPTER 3. GRID MIDDLEWARE 19

Figure 3.3: Interaction between User and Manager nodes[9]

3.6 Alchemi API Class Diagram and Database structure

this section describes the database architecture[9][16][11] of alchemi in which relevant infor-

mation is stored. Some tables are static storing data structures are grp,prm,usr and prm

which stores information about the users, groups and permissions. There are also some

dynamic data structures which are reflected to update the recent information. They are:

application,executor,thread.also describes Class Diagram of Alchemi API[9][16] and main

Classes[9][16] Description of Alchemi.

CHAPTER 3. GRID MIDDLEWARE 20

column name grid application table description

applicationid Unique identifier for application generated by manager.

timecreated Time when the application was created.

usrname Identifies the user by whom the application is supplied.

applicationname Name of the application.

timecompleted Completed time of application.

Table I: Alchemi grid application table description

column name executor table description

executorid Unique identifier for executor generated by manager.

isdedicated Mode of an executor Dedicated :1 ,Non-dedicated :0.

isconnected Whether the executor is connected or not.

pingtime Time of last ping to the executor.

host Host name.

port Port.

usrname Executor User Name.

cpumax max cpu.

cpuusage usage of cpu.

cpuavail Availableof total of cpu.

cputotal usage Total cpu usage.

memmax Total Memory size.

diskmax Total Disk size.

numcpus No of cpu.

cpuLimit Limit to usage of cpu.

memLimit Limit to the Memory.

diskLimit Limit on disk Usage.

arch Architecture.

os Operating System.

Table II: Alchemi executor table description

CHAPTER 3. GRID MIDDLEWARE 21

column name thread table description

internalthreadid Thread ID assigned by system .

applicationid application id to which the thread relates.

executorid executor on which the thread is executed.

threadid thread ID assigned by user unique for application.

state current state of the thread.

timestarted time on which thread execution start.

timefinished time on which thread execution finished.

priority priority of the thread .

failed whether the execution of thread is failed .

Table III: Alchemi thread table description

CHAPTER 3. GRID MIDDLEWARE 22

Figure 3.4: Interaction between Executor and Manager nodes[9]

CHAPTER 3. GRID MIDDLEWARE 23

Figure 3.5: Thread Execution Flow of alchemi based grid Application[9]

CHAPTER 3. GRID MIDDLEWARE 24

Figure 3.6: Alchemi Core class Diagram

CHAPTER 3. GRID MIDDLEWARE 25

Figure 3.7: Alchemi Manager Class Diagram 1

CHAPTER 3. GRID MIDDLEWARE 26

Figure 3.8: Alchemi Executor Class Diagram

CHAPTER 3. GRID MIDDLEWARE 27

Figure 3.9: Alchemi Grid Application Class Diagram

Chapter 4

Grid Set up Configuration

4.1 Experimental Grid Set up Configuration

Because of lack of availability of grid simulators, Grid setup[15] is required to configure.

This grid is scalable and no of nodes can be connected in grid. However to deal with our

algorithm, 2 machines are configured in grid.

4.1.1 Alchemi Installation

Alchemi Manager

The prerequisite for Alchemi Manager[15] Installation are:

Front End Tools

• Microfost Visual Studio 2005

• Alchemi 1.0.6

Machine Name Ip Address CPU Clock rate RAM

Pgcse-14 10.1.3.14 3.20 GHZ 1 GB

Pgcse-15 10.1.3.15 3.20 GHZ 1 GB

Pgcse-16 10.1.3.16 2.20 GHZ 1 GB

Pgcse-17 10.1.3.17 2.20 GHZ 1 GB

Pgcse-18 10.1.3.18 3.20 GHZ 1 GB

Table I: Experimental Grid Set up Configuration

28

CHAPTER 4. GRID SET UP CONFIGURATION 29

Back End Tools

• Microsoft Sql Server 2005

Alchemi Executer

The only prerequisite for Alchemi Executer[15] Installation are:

• .Net Framework 2.0

Chapter 5

Middleware Faults of Alchemi Grid

5.1 Middleware Faults of Alchemi

1. If the manager node fails [10][17] due to disconnected from the network or hardware

failure then all the executor nodes will probably stop their ongoing work. Again if

the manager node and the database resides on the same computer then as soon as the

manager node fails there is no way to retrieve the output of the already processed sub

tasks. Hence the failure of the Grid manager may seriously hamper the performance

of a Grid environment so grid application execution fails. (shown in figure-5.1)

2. If any of the executor nodes fails[10][17][13] to complete its assigned job then this task

is rescheduled to another executor and the task is executed again from its initial state.

Generally, if any job associated with a Grid application unable to succeed during its

runtime in the executor then the scheduling algorithm just marks the job as failed and

reset but it does not keep any track of the percentage of the work that has already

been done.so if some Executer has failed after 1 hours of work then all the work done

during that 1 hours will be wasted.

3. Manager node uses FIFO policy for scheduling. It stores the threads according to their

priority It does not consider the CPU load of the processors on which the executors

are running. If more than one executor is available at a time, it might happen that a

thread is scheduled on a more loaded executor[17] which can degrade the performance.

30

CHAPTER 5. MIDDLEWARE FAULTS OF ALCHEMI GRID 31

5.2 Present Fault Tolerance Scenario in Alchemi

1. Heartbeat mechanism[7] is used by Alchemi: Executor nodes send the heartbeat mes-

sages at some interval to the Manager to whom they are connected. This will help

the Manager node to maintain the status of the Executor nodes. In case the Man-

ager node doesn’t receive the heartbeat messages from the executor nodes between

the pre-decided times, the Manager node consider that executor node to be dead and

update its information.(shown in figure-5.2)

2. Executor fails due to a hardware failure.In this case Alchemi is using the heartbeat

technique to re- schedule the thread to another Executor.

3. Executor fails due to the user logging off or stopping down the Executor. In this

case the Manager is informed that the Executor is going offline and the thread is

re-scheduled.

4. Dynamically determine new nodes added or deleted: As the new node is added or

removed, the Manager is being provided with the information dynamically and it

updates the console information to make a correct record of the information so as to

avoid any faults.(shown in figure-5.3)

CHAPTER 5. MIDDLEWARE FAULTS OF ALCHEMI GRID 32

Figure 5.1: Failure of Grid Application

CHAPTER 5. MIDDLEWARE FAULTS OF ALCHEMI GRID 33

Figure 5.2: Heartbeat mechanism of Alchemi[16]

CHAPTER 5. MIDDLEWARE FAULTS OF ALCHEMI GRID 34

Figure 5.3: Console information in Alchemi[16]

Chapter 6

Proposed Solution

6.1 Development of problem solving environment in grid

Identified alchemi middleware faults has been solved using “Problem Solving Environment”

shown in figure 6.3.If the manager node fails [10][17] due to disconnected from the network

or hardware failure then all the executor nodes will probably stop their ongoing work. Again

if the manager node and the database resides on the same computer then as soon as the

manager node fails there is no way to retrieve the output of the already processed sub tasks.

Hence the failure of the Grid manager may seriously hamper the performance of a Grid en-

vironment so grid application execution fails. so we are proposed “New Alchemi Manager”

shown in figure 6.1.If more than one executor is available at a time, it might happen that a

thread is scheduled on a more loaded executor so threads execution time increase which can

degrade the performance of Alchemi grid so we are proposed “Customized Scheduler Algo-

rithm” shown in figure 6.2.Proposed “New Alchemi Manager” and “Customized Scheduler

Algorithm” embedded in problem solving environment and integrated with alchemi grid to

handle faults leading towards performance enhancement.

6.1.1 Proposed New Alchemi Manager

Alchemi used “Heartbeat mechanism” :Executors send the heartbeat messages at some

interval(5 second) to the Manager to whom they are connected. This will help the Manager

to maintain the status of the Executors. In case the Manager doesn’t receive the heartbeat

35

CHAPTER 6. PROPOSED SOLUTION 36

messages from the executor between the pre-decided times, the Manager consider that

executor to be dead and update its information, with use of “Heartbeat mechanism” we

proposed “New Alchemi Manager”. After every heartbeat interval, the Alchemi Manager

sends a heartbeat messages to the New Alchemi manager. The New Alchemi manager is

on the one of the registered executor. In case of absence of heartbeat messages for certain

predefined time interval lets the New Alchemi manager to consider the Alchemi Manager

has failed, and it itself takes the control as new Alchemi manager.

Figure 6.1: Proposed New Manager

CHAPTER 6. PROPOSED SOLUTION 37

6.1.2 Proposed Customized Scheduler Algorithm

The Proposed algorithm described here base on the CPU cycles for solution of executor

overload problem of Alchemi grid shown in figure 6.2.

Algorithm 6.1 The Proposed Algorithm

1 T is group of threads of Grid Applcation.

2 E is register executors on which the threads are to schedule to execute.

3 Repeat up to all threads from T are scheduled

4 select the threads from group of threads T.

5 select the highest priority threads from the selected thread. Suppose the selected thread is

Thread1.

6 Select the executor which satisfies the criteria.

7 Criteria

a. Available CPU cycles=Max CPU cycles * CPU Availability.

8 schedule Thread1 to Executor1 to the Manager.

9 The manager then migrate Thread1 to ExecutorA for the execution.

10 End repeat.

Advantage

The algorithm is thread based and check criteria for executor so improve performance of

grid.

CHAPTER 6. PROPOSED SOLUTION 38

Figure 6.2: Proposed Customized Scheduler Algorithm

CHAPTER 6. PROPOSED SOLUTION 39

Figure 6.3: Design of Problem Solving Environment

Chapter 7

Implementation

7.1 Alchemi Grid API Main Classes Description

Typically,a user application instantiates 3 classes of objects from the Alchemi API[8]: GCon-

nection, GApplication and one or more GThreads shown in figure 7.1. GConnection is a

class responsible for connecting and sending authentication information from the user ap-

plication to the central component called Manager.The GConnection is consumed by GAp-

plication, which is also created by the user application. To take an advantage of the grid,

user application must create a number of independent jobs and submit them to the grid. In

Alchemi terminology, the independent jobs are referred to as grid threads. They are objects

whose class definition is inherited from GThread class.Alchemi API have Mainly 3 Classes

Modules see Table-I,II,III.

Figure 7.1: Alchemi Grid API main classes

40

CHAPTER 7. IMPLEMENTATION 41

Alchemi Core Classes Modules

Class Name Description

GThread.cs This class represent a ”thread” that can be run on a remote grid
node.

ThreadCollection.cs This class represent a collection of GThreads.

ThreadIdentifier.cs This class represent an identifier to uniquely identify a thread across
applications.

ThreadState.cs This class represent a List of possible thread states.

GNode.cs This class contains methods for connection between making the node
as grid node and relates it with the grid manager.

SecurityCredentials.cs This class represent the credentials required to authenticate to a node.

Table I: Alchemi Core Classes Modules

Alchemi Manager Classes Modules

Class Name Description

GManager.cs This class represents an Alchemi Manager.

MApplication.cs This class represents an Application on the manager.

MExecutor.cs This class represents a container for the executor reference held by
the manager.

MThread.cs This class represents a thread on the manager node.

DefaultScheduler.cs This class represents Scheduling of threads ,works on the basis of
priority based FIFO.

Configuration.cs This class stores the configuration information for the Alchemi Man-
ager includes information such as database details, own port.

Table II: Alchemi Manager Classes Modules

Alchemi Executor Classes Modules

Class Name Description

ExecutorInfo.cs This class represents the static attributes of an executor.

GExecutor.cs The GExecutor class is an implementation of the IExecutor interface
and represents an Executor node.

HeartbeatInfo.cs This structure is a container for all the information sent in a hereat-
beat update.

Configuration.cs This class stores the configuration information for the Alchemi Ex-
ecutor includes information such as the manager host and port no.

Table III: Alchemi Executor Classes Modules

CHAPTER 7. IMPLEMENTATION 42

7.1.1 Proposed Algorithm Implementation

• For the implementation[18][21][22] of proposed customized scheduler algorithm for ex-

ecutor overloaded fault proposed one class CPUClock.cs to check criteria and default-

scheduler.cs class within Manager Module was modified.Updated Logic in Alchemi

Middleware API(Application Programming Interface) Shown in figure 7.2.

Figure 7.2: Updated Logic in Alchemi Middleware API

7.1.2 Proposed New Alchemi Manager Implementation

• For the implementation[18][21][22] of proposed New Alchemi Manager modify Heart-

beatinfo.cs class within Manager Module was modified.Updated Logic in Alchemi

Middleware API(Application Programming Interface) Shown in figure 7.2.

Chapter 8

Result

8.1 Alchemi based Grid Application Result

8.1.1 Proposed New Alchemi Manager Result

Functionality of new manager was tested on a job which was developed and deployed on

Alchemi Grid, and the results obtained were compared against the existing manager of

grid.The proposed New Alchemi Manager was deployed on registered executor takes control

on grid after failure of existing manager. Reasons of failure of existing manager could be

because of failure in hardware or faults in the network. Results are shown in Table I and

figure 8.5,8.6 and 8.7.

8.1.2 Proposed Algorithm Result

To setup Alchemi grid, first start Alchemi manager node shown in figure 8.2, Alchemi

manager is configured to run on the node having IP 10.1.3.16, and there are five Alchemi

Executor nodes registerd with the Alchemi Manager as shown in figure 8.3 and 8.8.In this

Alchemi Grid, one of the grid application was run and tested for multiple times with different

grid configuration. The results obtained from Alchemi grid are compared with the results

obtained from Proposed Algorithm which are shown in Table II and figure 8.9,8.10,8.11 and

8.12.

43

CHAPTER 8. RESULT 44

Grid Application Failure of Threads, % Failure Proposed New manager
(Number of Threads) if manager node fails in Alchemi Result

10 3 30% Successfully executed

20 8 40% Successfully executed

30 14 46% Successfully executed

40 22 55% Successfully executed

Table I: Proposed New manager result of Grid Application

Grid Application Execution Time of Alchemi Proposed Algorithm Result
(Threads,Executors)

(10, 2) 51.2 second 46.5 second

(10, 3) 40.3 second 36.6 second

(10, 4) 31.3 second 29.4 second

(10, 5) 25.4 second 22.1 second

Table II: Proposed Algorithm result of Grid Application

Figure 8.1: Execution of Grid Application using Alchemi

CHAPTER 8. RESULT 45

Figure 8.2: Alchemi Manager starting state

CHAPTER 8. RESULT 46

Figure 8.3: Alchemi Executor starting state

CHAPTER 8. RESULT 47

Figure 8.4: Alchemi Manager stoping state

CHAPTER 8. RESULT 48

Figure 8.5: If Manager node fails,grid application execution fails

CHAPTER 8. RESULT 49

Figure 8.6: New Alchemi Manager starting state

CHAPTER 8. RESULT 50

Figure 8.7: With New Alchemi Manager,successful execution of grid application

CHAPTER 8. RESULT 51

Figure 8.8: Grid Console window showing five executor connected to grid manager

CHAPTER 8. RESULT 52

Figure 8.9: Execution of Grid Application using Alchemi

CHAPTER 8. RESULT 53

Figure 8.10: Execution of Grid Application using Proposed Algorithm

CHAPTER 8. RESULT 54

Figure 8.11: Execution Time Comparison line chart

CHAPTER 8. RESULT 55

Figure 8.12: Execution Time Comparison bar chart

Chapter 9

Conclusion and Future Work

9.1 Conclusion

• Proposed customized scheduler algorithm and proposed new alchemi manager em-

bedded in problem solving environment and integrated with Alchemi grid so reduced

effect of identified middleware faults and grid application execution time is reduced

by 6 to 9%.

• Handling middleware faults can lead to an effective and efficient grid environment.

9.2 Future Work

• For the Alchemi manager node fails due to disconnected from the network or hardware

failure then all the executor nodes will probably stop their ongoing work. so grid

application execution fails solution for such type of fault can be obtained by applying

either checkpointing mechanism in which periodical backup of the threads and its

states can be taken by the manager or applying failover in which hot backup of the

machines are taken. So if any executor fails to finish the execution of the thread then

status of execution can be retrieved under checkpointing and can be re-scheduled on

another executor for remaining execution continues.

56

Chapter 10

List of publications

• Yogesh Vaghela,Prof.Madhuri Bhavsar, Development of Custom Scheduler To

Improve Performance of Alchemi Grid, at International Conference on Informa-

tion,Knowledge and Research in Engineering and Technology and Sciences-2012 or-

ganized by G.K.Bharad Institute of Engineering,Rajkot and AES,Sangli,Maharastra,

India,ISBN No:978-81-906220-3-5,Page 534 to 537 during 24-25 March 2012.

• Yogesh Vaghela, Development of Problem Solving Environment in Alchemi

Grid,at National Conference on Advances in Engineering and Technology organized

by Kalol institute of Technology and Research Center,Kalol,India during 9-10 March

2012.

57

References

[1] Rajkumar Buyya, ”High Performance Cluster Computing: Architectures and Systems”,
ISBN 0-13-013784-7, Prentice Hall PTR, NJ, USA, 1999.

[2] Rajkumar Buyya and Srikumar venugopal, ”A Gentle Introduction to Grid Comput-
ing and Technologies”, White Paper,MIELe-Security Pvt. http://www.buyya.com/

papers/GridIntro-CSI2005.pdf

[3] C.Kesselman. I. Foster, ”Computational grids. In The Grid: Blueprint for a New Com-
puting Infrastructure”,Morgan-kaufman edition,San Francisco,USA,1999.

[4] Ian Foster, ”What is the Grid? A Three Point Checklist”, Argonne National Laboratory
and University of Chicago.http://www.gridbus.org/papers/TheGrid.pdf

[5] S.SivaSathya,K.SyamBabu ”Survey of fault tolerant techniques for grid”,15740137
@2010 ScienceDirect, Ramanujan School of Computer Science, Pondicherry Univer-
sity, Pondicherry,India.

[6] Raissa Medeiros, Walfredo Cirne, Francisco Brasileiro, Jacques Sauv ”Faults in Grids:
Why are they so bad and What can be done about it?”,0-7695-2026-X/03,@2003
IEEE,Proceedings of the Fourth International Workshop on Grid Computing Univer-
sidade Federal de Campina Grande,Paraba,Brazil.

[7] Amit Jain and R.K. Shyamasundar ”Failure Detection and Membership Management in
Grid Environments”,1550-5510/04 @IEEE 2004,Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (GRID04),School of Technology and Com-
puter Science Tata Institute of Fundamental Research Mumbai-400005,India.

[8] Zeljko Stanfel, Goran Martinovic, Zeljko Hocenski ”Scheduling Algorithms for Dedi-
cated Nodes in Alchemi Grid”,1-4244-2384-2/08,@2008 IEEE,Faculty of Electrical En-
gineering J.J. Strossmayer University of Osijek,Osijek, Croatia.

[9] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal ”Al-
chemi.NET Framework in Grid Computing”,Grid Computing and Distributed Systems
(GRIDS) Laboratory Department of Computer Science and Software Engineering The
University of Melbourne, Australia 2003.

[10] Sabir Ismail,Abu Fazal Md Shumon,Md Ruhul Amin ”Distributed Memory Caching for
the Fail Safe Computation to Improve the Grid Performance”,978-1-4244-8494-2/10
@2010 IEEE,Proceedings of 13th International Conference on Computer and Informa-
tion Technology (ICCIT 2010) 23-25 December, 2010, Dhaka, Bangladesh.

58

http://www.buyya.com/papers/GridIntro-CSI2005.pdf
http://www.buyya.com/papers/GridIntro-CSI2005.pdf
http://www.gridbus.org/papers/TheGrid.pdf

REFERENCES 59

[11] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal ”Peer-to-
peer grid computing and a .NET-based Alchemi framework”,in: HighPerformance Com-
puting: Paradigm and Infrastructure, L. Yang, and M.Guo (Eds.) Wiley Press, New
Jersey, USA, 2005.

[12] M.A. Arefin, M.S. Sadik, S. Coetzee, and J. Bishop ”Alchemi vs. Globus: a performance
comparison”,in: Proc. Int. Conf. Electrical and Computer Engineering, pp. 602-605,
2006.

[13] Md. Abu Naser Bikas, AltafHussain, Abu Awal Md. Shoeb,Md. Khalad Hasan, and Md.
Forhad Rabbi ”File Based GRID Thread Implementation in the .NET-based Alchemi
Framework”, Multitopic ConferenceI, NMIC. IEEE Intern, pp. 468-472, 2008.

[14] http://www.gridcomputing.com/

[15] http://www.alchemi.net/

[16] http://www.cloudbus.org/alchemi/

[17] http://www.mail-archive.com/alchemi-developers@lists.sourceforge.net/

[18] http://msdn.microsoft.com/en-us/library/

[19] http://www.globus.org/

[20] http://web.njit.edu/all_topics/HPC/sge.html

[21] http://www.codeproject.com/

[22] http://csharp-station.com/Tutorial.aspx/

http://www.gridcomputing.com/
http://www.alchemi.net/
http://www.cloudbus.org/ alchemi/
http://www.mail-archive.com/alchemi-developers@lists.sourceforge.net/
http://msdn.microsoft.com/en-us/library/
http://www.globus.org/
http://web.njit.edu/all_topics/HPC/sge.html
http://www.codeproject.com/
http://csharp-station.com/Tutorial.aspx/

Index

Alchemi Grid, 13

Conclusion, 56

Faults in Grid Computing, 4

Faults Tolerance in Grid Middleware, 8

Faults Tolerance Mechanisms of Grid, 9

Future Work, 56

Grid Computing Overview, 1

Implementation, 40

Middleware Faults of Alchemi, 30

Proposed Solution, 35

Result, 43

Survey of Fault Tolerance Mechanism, 10

Survey of Faults in Grids, 5

Types of Faults in Grid, 4

Viewpoint, 12

60

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Grid Computing Overview
	Problem Statement
	Objective
	Thesis Organization

	Literature Survey
	Faults in Grid Computing
	Types of Faults in Grid
	Survey of Faults in Grid

	Fault Tolerant Technique in Grid
	Fault Tolerance in Grid
	Fault Tolerance in Grid Middleware
	Fault Tolerance Mechanisms of Grid
	Survey of Fault Tolerance Mechanism of Grid

	Viewpoint

	Grid middleware
	Why Alchemi middleware?
	Architecture of Alchemi Based Grid Application
	Alchemi Grid Thread Programming Steps
	How Alchemi Works
	Alchemi Grid Application Life cycle
	Alchemi API Class Diagram and Database structure

	Grid Set up Configuration
	Experimental Grid Set up Configuration
	Alchemi Installation

	Middleware Faults of Alchemi Grid
	Middleware Faults of Alchemi
	Present Fault Tolerance Scenario in Alchemi

	Proposed Solution
	Development of problem solving environment in grid
	Proposed New Alchemi Manager
	Proposed Customized Scheduler Algorithm

	Implementation
	Alchemi Grid API Main Classes Description
	Proposed Algorithm Implementation
	Proposed New Alchemi Manager Implementation

	Result
	Alchemi based Grid Application Result
	Proposed New Alchemi Manager Result
	Proposed Algorithm Result

	Conclusion and Future Work
	Conclusion
	Future Work

	List of publications
	References
	Index

