
Optimizing Vision Benchmark

for

GPU

By

Dirgh Buch

[09MCE028]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2012

ii

Optimizing Vision Benchmark

for

GPU

Major Project II

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

PREPARED BY :

Dirgh Buch

09MCE028

GUIDED BY :

Prof.Vibha Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD

iii

DECLARATION

I, Dirgh Buch, 09MCE028, give undertaking that the Major Project entitled

“Optimizing Vision Benchmark for GPU” submitted by me, towards the

partial fulfillment of the requirements for the degree of Master of Technology in

Institute of Technology of Nirma University, Ahmedabad, is the original work

carried out by me and I give assurance that no attempt of plagiarism has been

made. I understand that in the event of any similarity found subsequently with

any published work or any dissertation work elsewhere; it will result in severe

disciplinary action.

Dirgh Buch

iv

DEDICATION

This thesis is dedicated to God Almighty, who has been my driving force in all

situations I faced during the project work.

I would also like to dedicate this thesis to my guide Prof. Vibha Patel, whose

continuous guidance and suggestion kept me motivated and also to my family who

are my moral support for the whole tenure.

v

CERTIFICATE

This is to certify that the Major Project I, entitled “Optimizing Vision Benchmark

for GPU”, submitted by Mr. Dirgh V. Buch [09MCE028], towards the partial ful-

fillment of the requirements for the degree of Master of Technology in Computer

Science and Engineering of Nirma University of Science and Technology, Ahmed-

abad is the record of work carried out by him under my supervision and guidance.

In many opinion, submitted work has reached a level required for being accepted

for examination. The result embodied in this major project I, to the best of my

knowledge,haven’t been submitted to any other university or institution for award

of any master degree.

Prof. Vibha Patel Dr. S.N. Pradhan

Guide, Professor, Professor,P.G. Coordinator,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Prof. D. J. Patel Dr. Ketan Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

vi

ABSTRACT

The San Diego Vision Benchmark Suite (SD-VBS), a suite of diverse vision appli-

cations drawn from the vision domain. From the assembly line to home entertain-

ment systems, the need for efficient real-time computer vision systems is growing

rapidly.NVIDIA has developed the CUDA (Compute Unified Device Architecture)

which can be used to speedup computer vision application. CUDA enables soft-

ware developers to access the GPU through standard programming languages such

as ’C’. It also gives developers access to the GPU’s virtual instruction set, onboard

memory and the parallel computational elements. Taking advantage of parallel

computation will significantly speedup applications. Here we explore the potential

power of using CUDA and NVIDIA GPUs to speedup common computer vision

algorithms along with algorithmic optimizations. Approaches to optimize few ap-

plications of SD-VBS on GPU are part of this thesis. To analyze simulation time

of these applications inputs of different size are feeded.

vii

ACKNOWLEDGEMENT

It gives me great pleasure in expressing thanks and profound gratitude to Prof.

Vibha Patel ,Professor, Department of Computer Science and Engineering,Institute

of Technology, Nirma University, Ahmedabad for her valuable guidance and con-

tinual encouragement throughout the Major Project II. I am heartily thankful to

her for her time to time suggestion and clarity of the concepts of the topic that

helped me a lot during my project work.

I like to give my special thanks to Dr. S. N. Pradhan, P.G. Coordinator,

Department of Computer Science and Engineering,Institute of Technology, Nirma

University, Ahmedabad for his continual kind words of encouragement and moti-

vation throughout the project.

Without the blessings of God,these work would not have been so easy to carry

out.

I am grateful to my family members who were always there to keep me morally

motivated all the time.

I am equally grateful to all my friends who were doing in-house project.Without

them this whole year would not have been so joyful and it really went by ease.

Dirgh Buch

[09MCE028]

viii

Abbreviation Notation and Nomenclature

API . Application Program Interface

ALU .Arithmetic Logic Units

CPU .Central Processing Unit

CUDA . Compute Unified Device Architecture

CUDA FFT .CUDA Fast Fourier Transform

CUBLAS . CUDA Basic Linear Algebra Subroutine

GFLOPS .Million Floating Point Instructions Per Second

GPGPU . General Purpose Graphics Processing Units

GPU . Graphics Processing Unit

IEEE . Institute of Electrical and Electronics Engineers

NVCC . CUDA Compiler

PTX . Parallel Thread Execution

MP . Multiprocessors

SD-VBS San Diego Vision Benchmark SDK Software Development Kit

SP . stream processors

Contents

Certificate v

Abstract vi

Acknowledgement vii

Abbreviation Notation and Nomenclature viii

Contents viii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Motivation of the Project . 2

1.2 Objective & Scope . 3

1.2.1 Objective . 3

1.2.2 Scope Of The Project . 3

2 Literature Survey and Important observations 4

2.1 San Diego Vision Benchmark Suit(SD-VBS) 4

2.1.1 Feature Tracking . 5

2.1.2 Scale invariant feature Tracking(SIFT) 6

2.1.3 Disparity Map . 7

2.2 Introduction to NVIDIA CUDA . 8

2.2.1 CUDA Memory Model . 9

2.2.2 CUDA Execution Model . 11

2.2.3 CUDA Programming Model 11

ix

CONTENTS x

3 Implementation and Performance Analysis 13

3.1 Methodology . 13

3.2 Feature Tracking . 14

3.3 Scale Invariant Feature Transform(SIFT) 20

3.4 Disparity Map . 23

3.5 Overall Analysis . 24

4 Conclusion and future work 26

4.1 Conclusion . 26

4.2 Future Work . 26

References 27

A Installation of CUDA 29

A.1 CUDA 4.0 with Parallel Nsight . 29

A.1.1 Installation . 29

A.1.2 Creating and Executing Visual studio project 29

A.1.3 Debugging in Parallel Nsight 30

A.2 CUDA 2.3 in emulation mode . 30

A.2.1 Creating and Executing Visual studio project 30

List of Figures

1.1 Floating point operations per second for the GPU and CPU(Source

[8]) . 3

2.1 Applications in SD-VBS . 4

2.2 Applications in SD-VBS . 5

2.3 Applications in SD-VBS . 6

2.4 Applications in SD-VBS . 7

2.5 CUDA Software Stack . 8

2.6 CUDA Memory Model . 9

2.7 CUDA Programming/Execution Model. 12

3.1 Feature Tracking hotspots . 14

3.2 Feature Tracking Phase wise Execution Time 16

3.3 Blur function Execution time Behavior 17

3.4 Feature Tracking Output . 18

3.5 Execution time for different Datasets of Tracking 19

3.6 Smooth function Execution time Behavior 20

3.7 SIFT Phase wise Execution Time 22

3.8 Disparity Map Phase wise Execution Time 23

3.9 Execution time for Different Datasets of Disparity Map 24

3.10 Execution time for all three applications in SD-VBS 25

xi

List of Tables

2.1 Characteristics of CUDA memories 10

3.1 Performance Improvement in SD-VBS applications 24

xii

Chapter 1

Introduction

Computer vision is the science that enables computer systems to extract informa-

tion from an image or a sequence of images. The development of computer vision is

essential for the advancement of a multitude of areas including medical, entertain-

ment and security. Computer vision systems are useful for tasks such as industrial

control, event detection, informational organization and object modeling. Other

domains of computer vision systems also include motion analysis, image restora-

tion and scene construction. With a wide variety of emerging applications, the

demand for more advanced computer vision systems is quickly growing.

There are several limiting factors when developing accurate real-time computer

vision systems. Most computer vision tasks require a great deal of mathematical

computation. For many computer vision algorithms, the analysis of a single im-

age can take anywhere from a few seconds to several hours to process. In short,

computer vision algorithms require a large number of computations as well as an

equally large number of memory values. Computer vision algorithms are applied

to broad range of environments from home entertainment systems to the opera-

tion of unmanned aerial and ground vehicles. Each new generation of application

increases the need for more computational resources. Traditionally software de-

velopers and even scientists have strictly relied on the increase of processor clock

frequency as the primary method of gaining performance for the next generation

of applied algorithms.[12].

Graphics Processing Units (GPUs) are commonly found on graphics cards and

computer mother boards. These specialized processors have great potential for

solving a number of problems. Unlike traditional Central Processing Units (CPUs),

1

CHAPTER 1. INTRODUCTION 2

the GPU contains as many as several hundred mathematical computation cores.

These cores have evolved recently from being able to perform simple graphics

computations to fully capable processing engines. Due to the nature of many

processing cores, GPUs can perform mathematical computations in a massively

parallel manner.

Many applications and algorithms have the potential to take advantage of the par-

allel processing capabilities of GPU systems. In most cases, problems possessing

data level parallelism are best suited for GPU execution. Data parallelism focuses

on distributing the large amounts of data across different parallel computing cores.

A problem appears data-parallel if each core can perform the same identical task

on different pieces of distributed data. There are distinct ranges of data-parallel

problems.

Small scale image processing that includes the parallel manipulation or analysis of

pixels can be achieved with multiprocessor extensions such as Single Instruction,

Multiple Data (SIMD). Larger problems of data-parallel computing can be solved

with large scale distributed systems consisting of multiple independent computers

that communicate through a computer network or network grid. Non-large-scale

data-level parallel problems are ideal applications that can be optimized. In this

categorization, modern computer vision applications fall into a unique domain

since they are more complex than simple image processing tasks yet would not be

described as large enough to require massive computing resources of a distributed

system.

In this thesis we have carried out various optimizations possible on the applications

from SD-VBS. We have shown our experimental results and our methodology to

carry out the optimization.We have shown the performance improvement because

of the use of GPU for parallelization.

1.1 Motivation of the Project

Data-parallel processing maps data elements to parallel processing threads. Many

applications that process large data sets can use a data-parallel programming

model to speed up the computations. As we can see from the graph in figure

1.1 there is drastic difference in GFLOPs between the best CPU architecture and

GTX 480 on which we have tested our implementation.It is the reason to chose

GPU for parallelization instead of a multicore CPU.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Floating point operations per second for the GPU and CPU(Source
[8])

1.2 Objective & Scope

1.2.1 Objective

Objective of this project is to optimize San-Diego Vision Benchmark for GPU.

1.2.2 Scope Of The Project

Optimization of Applications of SD-VBS benchmark Feature Tracking, SIFT and

Disparity Map.

Chapter 2

Literature Survey and Important

observations

2.1 San Diego Vision Benchmark Suit(SD-VBS)

The Department of Computer Science and Engineering at the University of Cal-

ifornia, San Diego has developed a vision benchmark suite known as ”The San

Diego Vision Benchmark Suite” (SD-VBS) [1]. The suite contains applications

from the following representative areas: Image Processing and Formation, Image

Analysis, Image Understanding, and Motion, Tracking and Stereo Vision. This

suite contains nine representative computer vision applications shown in figure2.1

and each application contains a set of image inputs that vary in size.

Figure 2.1: Applications in SD-VBS

4

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS5

2.1.1 Feature Tracking

Tracking is about extracting motion information from a sequence of images.Feature

extraction and a linear solver that calculates the movement of features. Robotic

Vision and Automotive domain for realtime vehicle are the areas where feature

tracking is widely used. Kanade Lucas Tomasi (KLT) tracking algorithm is im-

plemented in SD-VBS for feature tracking[1]. The algorithm comprises of three

major computation phases: image processing, feature extraction and feature track-

ing shown in 2.2. The image processing phase works on operate on pixel level

granularity which involves noise filtering, gradient image and image pyramid com-

putations.

Figure 2.2: Applications in SD-VBS

The main part of algorithm, feature extraction and tracking, operates on coarse

grained data, which is identified by the features[2] . The working set varies sig-

nificantly across the major computation blocks. Image processing field is paral-

lelization friendly because while it operates on the entire image, the operations are

restricted to Multiply and Accumulate (MAC) making it a data intensive phase of

the application. Complex matrix operations such as matrix inversion and motion

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS6

vector estimation, makes feature extraction and tracking kernels computationally

intensive and makes exploitation of innate parallelism more challenging.

2.1.2 Scale invariant feature Tracking(SIFT)

The Scale Invariant Feature Transform (SIFT) algorithm is used to detect and

describe robust and highly distinctive features in images. These features are in-

variant to scaling, rotation and noise.SIFT finds wide applicability in domains

such as object recognition, image stitching, 3D modeling, video tracking. An

interesting and desired feature of SIFT descriptors is its robustness to partial oc-

clusions, which makes it a pervasive algorithm for navigation and match moving

applications.

Figure 2.3: Applications in SD-VBS

SIFT implements David Lowes Scale Invariant Feature Transform algorithm in

the SD-VBS. This algorithm computes features and their descriptors given a gray

scale image. Key kernels of the algorithm are image processing, key point detec-

tion and feature descriptor computation shown in 2.3. The preprocessing stage of

SIFT involves filtering operations in addition to a data compute intensive linear

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS7

interpolation phase which includes upsampling to extract anti-alias image. The

detection of key point phase involves creation and pruning of the Difference of

Gaussian (DOG) Pyramids. Creation of the DOG is data intensive while feature

extraction is computationally intensive. To assign orientations to feature points in

the descriptor computation kernel, histogram binning is implemented. This phase

is highly compute intensive. The image processing and DOG creation phase are

characterized by regular pre-fetch friendly memory access pattern and predictable

working set. Identification of key points and descriptor assignment is plagued by

irregular memory pattern and intensive computations.[3].

2.1.3 Disparity Map

Disparity map algorithm is about calculating depth information.Given a pair of

stereo images for a scene, taken from slightly different positions, it computes the

depth information for objects jointly represented in the two pictures. The depth in-

formation is useful to decide the relative position of objects. Robot vision systems

use Disparity Map extensively to compute the depth information, which is useful

in applications such as cruise control, pedestrian tracking, and collision control.

The implementation is based on Stereopsis, also known as Depth Perception[4].

From a stereo image pair, the disparity algorithm computes dense disparity.

Figure 2.4: Applications in SD-VBS

Dense disparity operates on pixel level granularity unlike sparse disparity where

depth information is computed on features of interest. filtering, correlation, cal-

culation of sum of squared differences (SSD) and sorting are major kernels of

Disparity map shown in 2.4. SD-VBS has the 2-D filtering operation implemented

as two 1-D filters for better cache locality. Correlation and SSD are computed on

every pixel across the image, making them expensive data intensive operations.

In conclusion, disparity is a parallelization-friendly algorithm whose performance

is only limited by the ability to pull the data into the chip.

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS8

2.2 Introduction to NVIDIA CUDA

NVIDIA introduced CUDA (Compute Unified Device Architecture), a general

purpose parallel computing architecture with a parallel programming model and

instruction set architecture - that leverages the parallel compute engine in NVIDIA

GPUs to solve many complex computational problems in a more efficient way than

on a CPU. [6].

NVIDIA CUDA SDK has been designed for running parallel computations on

the device hardware: it consist of a compiler, host and device runtime libraries

and a driver API. CUDA software stack is composed of several layers: a hardware

driver (CUDA Driver), an API and its runtime (CUDA Runtime), two higher-level

mathematical libraries (CUDA Libraries) of common usage as shown in figure

2.5.[7]

Figure 2.5: CUDA Software Stack

GPU performance is influenced by the architectural organization of the hard-

ware platform. NVIDIA suggests that achieving the highest GPU occupancy and

optimizing the use of the memory hierarchy are the two main factors behind GPU

performance [8]. In fact, both of them are related since maximizing the occupancy

can help to cover latency during global memory loads. Overall, they ensure the

best performance even if some resources remain under utilized. Therefore, maxi-

mizing occupancy should be examined at a later stage in the compilation process,

once data related issues have been properly addressed.

CHAPTER 2. LITERATURE SURVEY AND IMPORTANT OBSERVATIONS9

2.2.1 CUDA Memory Model

CPU and GPU have separate memory spaces. CPU memory known as host mem-

ory and GPU memory known as Device memory. CUDA offers different types

of memories with different configuration. The local, global, constant and tex-

ture spaces are regions of device memory [6]. Each multiprocessor has following

memory space as shown in figure 2.6

Figure 2.6: CUDA Memory Model

• Local Memory: It is small volume of memory, which can be accessed only

by one streaming processor. The local memory space resides in device mem-

ory, so local memory accesses have same high latency and low bandwidth as

global memory accesses. Local memory accesses only occur for some auto-

matic variables. Automatic variables that the compiler is likely to place in

local memory are [6]:

– Arrays for which it cannot determine that they are indexed with con-

stant quantities,

– Large structures or arrays that would consume too much register space,

CHAPTER 2. LITERATURE SURVEY AND IMPORTANTOBSERVATIONS10

Memory Location Cached Access Scope

Register On-Chip NO Read/Write One Thread
Local Off-Chip NO Read/Write One Thread
Global Off-Chip No Read/Write All Threads + Host
Constant Off-Chip YES Read All Threads + Host
Texture Off-Chip YES Read All Threads + Host

Table 2.1: Characteristics of CUDA memories

– Any variable if the kernel uses more registers than available (this is also

known as register spilling).

• Global Memory: It is the largest volume of memory available to all

multiprocessors in a GPU, from 256 MB to 1.5 GB in modern solutions

(and up to 4 GB in Tesla). It offers high bandwidth, over 100 GB/s for

top solutions from NVIDIA, but it suffers from very high latencies (several

hundred cycles).

Global memory resides in device memory and device memory is accessed via

32-,64-, or 128-byte memory transactions.

• Shared Memory: It is 16-KB memory shared between all streaming pro-

cessors in a multiprocessor. Because it is on-chip, the shared memory space

is much faster than the local and global memory spaces. To achieve high

bandwidth, shared memory is divided into equally-sized memory modules,

called banks, which can be accessed simultaneously. Any memory read or

write request made of n addresses that fall in n distinct memory banks can

therefore be serviced simultaneously, yielding an overall bandwidth that is

n times as high as the bandwidth of a single module.

• Constant Memory: It is a 64 KB, read only memory for all multipro-

cessors. It’s cached by 8 KB for each multiprocessor. The constant memory

space resides in device memory.

• Texture Memory: This memory space resides in device memory and is

cached in texture cache, so a texture fetch costs one memory read from

device memory only on a cache miss, otherwise it just costs one read from

texture cache. not fetch latency.

CHAPTER 2. LITERATURE SURVEY AND IMPORTANTOBSERVATIONS11

2.2.2 CUDA Execution Model

CUDA Execution model consist of Grid, ThreadBlocks, and Threads.

• Grid : An entire grid is handled by a single GPU chip.

• ThreadBlocks : The GPU chip is organized as a collection of multiproces-

sors (MPs), with each multiprocessor responsible for handling one or more

blocks in a grid. A block is never divided across multiple MPs.

• Threads : Each MP is further divided into a number of stream processors

(SPs), with each SP handling one or more threads in a block.

2.2.3 CUDA Programming Model

A CUDA program consists of one or more phases that are executed on either the

host (CPU) or a device such as a GPU. The GPU is viewed as a compute device :

that is a coprocessor to the CPU(host), has its own DRAM(device Memory), Runs

many threads in parallel [4]. Data parallel portion of application are executed on

the device as kernels which run in parallel on many threads. Difference between

GPU and CPU thread are:

• GPU threads are extremely lightweight and requires very little creation over-

head.

• GPU needs 1000s of threads for full efficiency where as multicore CPU needs

only a few.

A kernel is executed as a grid of thread blocks. A thread block is a batch

of thread that can cooperate with each other by efficiently sharing data through

shared memory, and synchronizing there execution for hazard free shared memory

accesses. There is a limit to the number of threads per block, since all threads of a

block are expected to reside on the same processor core and must share the limited

memory resources of that core. Blocks are organized into a one-dimensional or

two-dimensional grid of thread blocks as illustrated by figure 2.7. The number of

thread blocks in a grid is usually dictated by the size of the data being processed

or the number of processors in the system. It must be possible to execute thread

block in any order, in parallel or in series. This independence requirement allows

thread blocks to be scheduled in any order across any number of cores, enabling

CHAPTER 2. LITERATURE SURVEY AND IMPORTANTOBSERVATIONS12

Figure 2.7: CUDA Programming/Execution Model.

programmers to write code that scales with the number of cores. For efficient

cooperation, the shared memory is expected to be a low-latency memory near each

processor core (much like an L1 cache) and thread synchronization is expected to

be lightweight.

Chapter 3

Implementation and Performance

Analysis

Here we have shown the results of parallelization of different applications in SD-

VBS. We have also taken into consideration various problem size to compare the

results. For comparing the result we have varied the size of problems.We have

chosen following datasets for different size of problems, one with highest size, one

with medium size and the one with least size.

• fullhd (1920 x 1080)

• vga (680 x 480)

• cif (352 x 288)

All the implementations are done in Visual Studio 2008 with CUDA 4.0. They

are tested on hardware NVIDIA GeForce GPU GTX-480 with block size 32 x 32.

3.1 Methodology

• Execute the application code as Visual Studio project.

• Using Intel V-Tune Performance Amplifier identify the hotspots.

• Identify the modules which are frequently used in application by code in-

spection.

• Make CUDA kernel for the identified hotspot and frequently used modules.

• Compare the execution time for both sequential and parallel module.

13

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 14

• Look for the other possible optimizations.

• Compare final results.

3.2 Feature Tracking

Feature Tracking application is data intensive application[1].In this application we

extract motion information from sequence of images. Figure 3.1 shows the result

of V-Tune Performance Amplifier.

Figure 3.1: Feature Tracking hotspots

As imageRead() is I/O operation it cannot be converted into parallel code and the

fillfeature() function is used only once.From the figure 3.1 following are the major

modules or kernels which can be parallelized.

• imageBlur

• calcSobelX

• calcSobelY

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 15

First we need to convert the hotspot into CUDA kernel.calcSobelX() has parallel

portion that we can convert into CUDA code.Following code shows the parallel

portion of function.

F2D* calcSobel_dX(F2D* imageIn)

{

\\ variable initialization

for(i=startRow; i<endRow; i++)

{

for(j=startCol; j<endCol; j++)

{

\\Sequantial Code

}

}

\\ return

}

CUDA code for the same is shown below.

calcSobelXCUDA(F2D *imageIn_d,F2D *tempOut_d,F2D *kernel_1d,F2D *kernel_2d,F2D *imageOut_d)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

int idy = blockIdx.y * blockDim.y + threadIdx.y;

\\ Code convert to work in parallel

}

function calculateSobelX(F2D* imageIn)

{

\\ Device Memory allocation

\\ Data trasfer from host to device

\\ Block and thread creation

calcSobelXCUDA<<<dimgrid,dimBlock >>>(imageIn_d,tempOut_d,kernel_1d,kernel_2d,imageOut_d);

\\ Data transfer from device to host

\\ Release device memory

}

For the parallelization of the application following graph in figure 3.2 shows phase

wise reduction in execution time for fullhd dataset.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 16

Figure 3.2: Feature Tracking Phase wise Execution Time

As we can see there is continuous performance improvement as we keep on paral-

lelizing modules. Loop unrolling phase shows the performance improvement when

we unroll steps in for loops for the faster execution.Initial stage the implementation

was giving memory allocation failed error. To handle that error cudaDeviceReset()

function was used. When the implementation was complete the code was tested

by removing the function which resulted in quite performance improvement. To

understand such behavior each kernel was separately measured in execution time.

It was observed that the memory transfer overhead comes into picture, only for

the first time the kernel is called. For the rest of the executions it shows lesser

execution time. Figure 3.3 graph shows this behavior.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 17

Figure 3.3: Blur function Execution time Behavior

3.4a and 3.4b figures shows the complete execution of parallel and sequential

version of algorithm.so from that we can calulate speed up as

Sequantial/parallel=5.60/3.70=1.513

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 18

(a) Sequantial Execution of Feature Track-
ing

(b) Parallel Execution of Feature Tracking

Figure 3.4: Feature Tracking Output

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 19

Apart from the blur function behavior there is another phenomenon regard-

ing the size of the datasets. As we have discussed earlier we have taken three

size of datasets cif,vga and fullhd. fullhd has the highest size. Our experiments

shows that smaller the size CPU outperforms GPU because of the certain over-

heads associated with GPU execution. Graph in figure 3.5 shows the result of our

experiments.

Figure 3.5: Execution time for different Datasets of Tracking

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 20

3.3 Scale Invariant Feature Transform(SIFT)

In the previous section we have discussed about Feature Tracking which is data

intensive application means it is coded with repetitive low-intensive arithmetic

operations across a very fine level data granularity. In this section we discuss

about Scale Invariant Feature Transform(SIFT) which is, unlike feature track-

ing,compute intensive application. Means this has complex mathematical opera-

tions. In SIFT we extract invariant features from distorted images.

Figure 3.6: Smooth function Execution time Behavior

In SIFT by code inspection we found that imsmooth() is called numerous times.

By parallelizing it we have significantly improved the performance. As discussed

earlier the first execution takes time and rest of execution becomes faster.This

behavior is explained in figure 3.6.

In the first phase of parallelization we converted the imsmooth() function to the

CUDA kernel. This conversion gave us tremendous improvement in performance.

While looking for further possible optimizations we found that the kernel can be

split into two as the later portion of the kernel needed to wait long for the preceding

portion to get its work done. However, the synchThread() was doing the job, we

splited the kernel and that gave us further reduction in execution time.Following

code we have shown how we have split the kernel into two.

smoothCUDAKernel(F2D* buffer_d,float *temp_d,F2D* myarray_d,F2D* out_d,int W)

{

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 21

int idx = blockIdx.x * blockDim.x + threadIdx.x;

int idy = blockIdx.y * blockDim.y + threadIdx.y;

\\ first for loop

synchronizeThreads();

\\ Second for loop

}

function smoothImage(F2D* buffer,float *temp,F2D* myarray,F2D* out,int W){

\\ Memory Allocation

smoothCUDAKernel <<<dimgrid,dimBlock >>>(buffer_d,temp_d,myarray_d,out_d,W);

\\ return

}

We split the kernel into two for two for loops in the kernel as shown in code above.

smoothCUDAKernelPart1(F2D* buffer_d,float *temp_d,F2D* myarray_d,int W)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

int idy = blockIdx.y * blockDim.y + threadIdx.y;

\\ first for loop

}

smoothCUDAKernelPart2(F2D* buffer_d,float *temp_d,F2D* myarray_d,F2D* out_d,int W)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

int idy = blockIdx.y * blockDim.y + threadIdx.y;

\\ Second for loop

}

function smoothImage(F2D* buffer,float *temp,F2D* myarray,F2D* out,int W){

\\ Memory Allocation

smoothCUDAKernelPart1 <<<dimgrid,dimBlock >>>(buffer_d,temp_d,myarray_d,W);

smoothCUDAKernelPart2 <<<dimgrid,dimBlock >>>(buffer_d,temp_d,myarray_d,out_d,W);

\\ return

}

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 22

Splitting the loop into two makes the execution marginally faster.Readings for the

same are shown in figure 3.7.

Figure 3.7: SIFT Phase wise Execution Time

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 23

3.4 Disparity Map

Disparity map is data intensive application.As we have discussed in previous sec-

tion it finds the depth information from pair of images taken form different angle.

We have identified two functions which we can convert into CUDA kernels.

• finalSAD

• findDisparity

findDisparity() function is the core function which calculates disparity. These

functions do not have complex mathematical computation. Phase wise execution

time reduction is shown in the figure 3.8 below Considering all the three problem

Figure 3.8: Disparity Map Phase wise Execution Time

size, optimization is best for the fullhd dataset. It gives the maximum speed

up. Other dataset results in the higher execution time than the sequential one.

Readings for the same are shown in figure 3.9 below.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 24

Figure 3.9: Execution time for Different Datasets of Disparity Map

3.5 Overall Analysis

From our experimental results we can calculate speed up for all of the three ap-

plications. Speedup for all three shown in table 3.1 SIFT applications results in

Application Serial Parallel Speedup
Feature Tracking 5.312 3.785 1.413
SIFT 14.544 3.034 4.792
Disparity Map 9.9 7.538 1.313

Table 3.1: Performance Improvement in SD-VBS applications

maximum speedup while Feature tracking and Disparity map has nearly similar

speedup. The reason behind that is imsmooth() function is executed numerous

times which results in the lesser and lesser execution time. Results are shown

graphically in figure 3.10.

CHAPTER 3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 25

Figure 3.10: Execution time for all three applications in SD-VBS

Chapter 4

Conclusion and future work

4.1 Conclusion

The approaches suggested for optimization are described in this thesis. Its ex-

perimental results shows that there is significant performance improvement as

expected. However, when problem is smaller CPU can beat GPU because of the

overhead associated with the data transfer on GPU and kernel execution. Another

usual phenomenon which has been observed is that the memory transfer overhead

is found only for the first time when the kernel is called. For the rest of the

executions there was no memory transfer overhead. Highest speedup is achieved

for SIFT application compared to Feature Tracking and Disparity Map. Reason

behind this is that the parallel function in SIFT is called number of times. More

the number of times the parallel function is called higher will be the speedup.

4.2 Future Work

Our work can be used as a test suite to validate efficiency of automatic paralleliza-

tion tools. The tools which convert the sequential code to a parallel one.

26

References

[1] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,

Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford

Taylor, ”SD-VBS: The San Diego Vision Benchmark Suite”, IEEE Intera-

tional Symposium on Workload Characterization, October 2009.

[2] B. D. Lucas and T. Kanade, An Iterative Image Registration Technique with

an Application to Stereo Vision, in Proceedings of Imaging Understanding

Workshop, 1981.

[3] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, in

International Journal for Computer Vision, 2004.

[4] P. Chang, D. Hirvonen, T. Camus, and B. Southall, Stereo-Based Object

Detection, Classification, and Quantitative Evaluation with Automotive Ap-

plications, in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, June 2005.

[5] John Nickolls, Ian Buck & Michel Garland, NVIDIA, Kevin Skadron, Uni-

versity of verginia,”Scalable parallel Programming with CUDA”,March/April

2008, ACM QUEUE

[6] D. C. Clarissa Tacchella, ”Nvidia cuda compute unified device architec-

ture”,nomatr - 707827 , 708250.

[7] D. L. N. Research,”nvidia gpu architecture and implications”, NVIDIA Cor-

poration 2007.

[8] CUDA C Programming Guide version 4.

[9] http://http.developer.nvidia.com/ParallelNsight/2.1/

Documentation/UserGuide/HTML/Parallel_Nsight_User_Guide.htm

27

http://http.developer.nvidia.com/ParallelNsight/2.1/Documentation/UserGuide/HTML/Parallel_Nsight_User_Guide.htm
http://http.developer.nvidia.com/ParallelNsight/2.1/Documentation/UserGuide/HTML/Parallel_Nsight_User_Guide.htm

REFERENCES 28

[10] http://parallelnsight.nvidia.com/

[11] http://developer.nvidia.com/cuda-toolkit-40

[12] www-bcf.usc.edu/~jbarbic/multi-core-15213-sp07.ppt

http://parallelnsight.nvidia.com/
http://developer.nvidia.com/cuda-toolkit-40
www-bcf.usc.edu/~jbarbic/multi-core-15213-sp07.ppt

Appendix A

Installation of CUDA

A.1 CUDA 4.0 with Parallel Nsight

A.1.1 Installation

1. Obtain CUDA toolkit from [11] and install it in the default directory

2. Obtain CUDA developer drivers from [11] for your operating system and

install it

3. Obtain GPU Computing SDK from [11] for your operating system and install

it.

4. Register for Parallel Nsight and download suitable Parallel Nsight for your

operating system and machine.

5. For CUDA 3.2 install visual studio 8 with sp1 and for CUDA 4 install visual

studio 2010.

6. For the list of minimum requirement for Parallel Nsight visit [9]

A.1.2 Creating and Executing Visual studio project

1. Click on new Project.

2. In Installed Templates - NVIDIA - CUDA - CUDA 4.0 Runtime will create

new CUDA project ready to execute.

3. kernel.cu file will have sample program of CUDA which you can replace

29

APPENDIX A. INSTALLATION OF CUDA 30

4. Then you can run it like a simple visual studio project by pressing F5 or

from menu.

A.1.3 Debugging in Parallel Nsight

1. Installing Parallel Nsight will give you Nsight menu in visual studio menu

bar.

2. First you have to start Nsight Monitor.

3. then go to Nsight - start cuda debugging.

A.2 CUDA 2.3 in emulation mode

Installation of CUDA 2.3 is done the same way CUDA 4.0 is installed we just have

to install visual studio 2008. and we are not going to install Parallel Nsight.

A.2.1 Creating and Executing Visual studio project

1. create Empty win32 project

2. do

Configuration Properties >> Custom Build Step >> General:

Command Line = $(CUDA_BIN_PATH)\nvcc.exe -ccbin

$(VCInstallDir)bin -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS

-Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MT -I$(CUDA_INC_PATH)

-I./ -o $(ConfigurationName)\example1.obj example1.cu

3. do

Configuration Properties >> C/C++ >> Code Generation:

Runtime Library = Multi-threaded (/MT)

4. do

Configuration Properties >> Linker >> Input:

Additional Dependencies = cudart.lib cutil32.lib

5. Your project is ready to execute and debug.

	Certificate
	Abstract
	Acknowledgement
	Abbreviation Notation and Nomenclature
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation of the Project
	Objective & Scope
	Objective
	Scope Of The Project

	Literature Survey and Important observations
	San Diego Vision Benchmark Suit(SD-VBS)
	Feature Tracking
	Scale invariant feature Tracking(SIFT)
	Disparity Map

	Introduction to NVIDIA CUDA
	CUDA Memory Model
	CUDA Execution Model
	CUDA Programming Model

	Implementation and Performance Analysis
	Methodology
	Feature Tracking
	Scale Invariant Feature Transform(SIFT)
	Disparity Map
	Overall Analysis

	Conclusion and future work
	Conclusion
	Future Work

	References
	Installation of CUDA
	CUDA 4.0 with Parallel Nsight
	Installation
	Creating and Executing Visual studio project
	Debugging in Parallel Nsight

	CUDA 2.3 in emulation mode
	Creating and Executing Visual studio project

