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Abstract

Today low power devices like Netbooks and Tablets have started appearing in the market
and they are being used in day to day activities. The End-User has seen the need for a faster
and more capable system to work on. So, the race to increase the performance of the system
has already started. Among the parts which can be optimized, one is System Controller
Unit also known as SCU. SCU is an ARC Microcontroller. It plays major role during the
booting of the system and also while the system is running. Current implementation of
SCU is not optimized. The main objective of this thesis work is to optimize the current
SCU model in such a way that it can fully utilize all the resources available to it and hence
it can provide better performance in terms of time and power. This thesis work is mainly

concentrated on the firmware part of the SCU.
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Chapter 1

Introduction

Today low power devices like Netbooks and Tablets have started appearing in the market.
Different companies are coming in market with their own designs. Each device offers differ-
ent features and gives different performance. System Controller Unit also known as SCU
is one of the core parts of Netbook and Tablet which is responsible for the performance of
the overall system.

SCU is an ARC Microcontroller. I have worked on the firmware part of SCU. Firmware part
of SCU has two main modules. One is BootROM Code module and another is Runtime
module. BootROM Code module is used during booting process while runtime module
comes in to the picture once booting is completed. During boot process SCU is responsible
for initializing ROM and storage devices, initiating boot flow, reading Firmware image and
verifying the headers. During runtime, SCU is responsible for IPC, interrupt handling and
timer services.

During my thesis, I have gone through the basics of firmware architecture. Then I have
studied the firmware part of the SCU and from that I had created a work flow model of
SCU. I have studied that model in detail and then I have tried to improve it. The two major
areas which I have looked upon are time and power. I have looked in to the possibilities

where SCU can be used extensively in Power Management activities.
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1.1 Objective of the Work

The objective of this research is to provide a better utilization of the resources and to obtain

better performance.

1.2 Scope of the Work

The scope of this work is to optimize the performance of SCU and hence optimize the

performance of the device in which SCU is used.

1.3 Thesis Organization

The rest of the thesis is organized as follows.
Chapter [2| Detail study of the Firmware Architecture
Chapter [3| Architecture of SCU
Chapter 4| Operating System Power Management
Chapter |5, Proposed Implementation
Chapter [6] Implementation and Results

Chapter [7] Conclusion and Future Work



Chapter 2

Detail study of the Firmware
Architecture/[1]

2.1 Firmware Organization

Firmware Organization includes many modules. Three main modules are BootROM, Firmware
Image and Firmware Recovery. BootROM Code is executed by the SCU microcontroller
and resides in the SoC. Firmware Image is located in the storage device. The Firmware
Recovery modules are downloaded from an external peripheral source (such as USB or

wireless) and executed by the SCU.

BootROMCode
® Resides on SOC

Firmware Recovery

¢ Resides on ¢ Resides on
eMMC Storage External
Device Peripherals

* Executed by SCU

¢ Code Executed
by SCU

Figure 2.1: Firmware Organization



CHAPTER 2. DETAIL STUDY OF THE FIRMWARE ARCHITECTURE[I] )

2.2 Storage Device

Storage device is logically divided into two areas. (1) Boot Partition/ Protected Partition (2)
User Partition/ Unprotected Partition. The Protected Partition or Boot Partition contains
the header, followed by the Runtime FW. The Unprotected Partition or User Partition
contains the OS image, OS level drivers and Root File system. The Unprotected Partition
can be accessed by processor using the storage drivers. Access to the storage device is
controlled by the mutex controller. The processor can only access the User partition. The
SCU can access the boot partition as well as the user partition. It uses a special driver

service to access those partitions.

2.3 Firmware Bootflow

Firmware Bootflow is very complex in nature and it includes many steps and different cases.
Before the bootflow begins, it is assumed that image of the OS is already loaded in the boot
partition of storage device. When system is powered on, BootROM code is executed. SCU
takes care of this execution. Then the firmware image is loaded in to the SRAM. Then
the Bootflow is handed to processor. Afterwards OS will take the control of the boot flow.
When any error occurres during the bootflow then the system goes to OS recovery. FW
recovery module is called for this OS recovery. FW Recovery resides on some external USB
device. When this module is called, it first initializes the USB device and will start the data
transfer from USB to SRAM. Then SCU executes that module.

2.4 Interrupt Routing and Handling

Interrupt Routing and Handling is very flexible. It supports Thirty Two interrupts. Some
interrupts are serviced by SCU while others are serviced by processor. To handle SCU
interrupts deffered interrupt handling is called whereas to handle processor related inter-
rupts, no-deffered interrupt handling is called. These interrupts are two level interrupts.
The first level interrupt tells which subsystem has generated the interrupt while the second

level indicates the actual interrupt that has occurred.
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2.5 GPIO

Different types of GPIO are available out of which some support the PnP capability while
others don’t support PnP capability. Device with PnP capability are easily recognize by the
system and easily integrated in to the system while non PnP compatible device needs special
types of operation and information. These non-PnP compatible devices are integrated using

static information which is provided to the OS using some static tables.

2.6 Inter-Processor Communication

When a piece of firmware needs to get information from, or issue instructions to, a different
processor, inter-processor communication mechanisms have to be created. In general, there
are two groups of messages, downstream and upstream. Downstream messages can originate
from either processor or Power-unit. Additionally, there are messages between ACU and

SCU. ACU uses its own IPC handling mechanisms for these messages.

2.7 Timer Services

There are two 32-bit internal timers and eight external timers in the SCU . SCU can access
the two internal timers. Processor cannot directly access two internal timers. Processor has
access to the eight external timers. The platform has two real-time clocks (RTCs). Both

are functionally identical, but they may or may not be in sync with each other at all times.



Chapter 3

Overview of SCU

3.1 Introduction

System Controller Unit (SCU) has to take care of many responsibilities from boot time to
runtime. Main tasks of SCU during booting includes of loading different firmware, waking
up different systems, checking different security related issues. SCU thus plays an important
role in preparing the system for use. Main responsibilities of SCU during Runtime includes

PM activities; interrupt handling, IPC and handling timer events.

3.2 Architecture of SCU [5]

SCU is an ARC micro controller. It is the subsystem which takes control after reset. It
is expected to be on all the time and hence is designed to consume very low power. The
SCU subsystem consists of System Controller Unit core (ARC 600 core), on-chip memories
(ROM, RAM) and peripherals. The SCU has on-chip code ROM, code RAM and data
RAM. The System Controller Unit has bus mastering capability. It has access to SRAM.
It implements IPC mechanism to communicate with processor.

The instruction ROM is used to store the bootstrap code that is responsible for boot-
strapping SCU after power up. The instruction RAM is used as local RAM for the System
Controller Unit. It holds latency critical code of the SCU. It is responsible for boot strap-
ping the processor. The data RAM is used as local RAM for the System Controller Unit.

It has 36 different general purpose and special purpose registers.
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One Non-Maskable Interrupt pin is used to interrupt the SCU. The interrupt vector
table is fixed inside ROM. It is up to the programmer to define a new interrupt vector
table location inside SRAM once the execution switches from ROM to SRAM. Both Pro-
cessor and SCU have ability to interrupt each other using doorbell mechanism. Besides
IPC, the interrupt system also captures the interrupt from various devices and processes
it or transmits to the processor in a message format using front side bus delivery method.
The interrupt unit is configurable and can support up to 32 interrupts. These 32 interrupts
are categorized in over two sets of maskable interrupts: level2 (mid priority) and level 1
(low priority). A third level is reserved for exceptions, which has the highest priority. The
core does not implement interrupt vectors as such, but rather a table of jumps. When an
interrupt occurs, the processor jumps to fixed address in memory, which contains a jump
instruction to the interrupt handling code.

The processor timers are two independent 32-bit timers. Timer 0 and timer 1 are iden-
tical in operation. The only difference between them is that they are connected to different
interrupts. The processor timers are connected to a system clock signal that operates even
when the SCU is in sleep mode. The timers can be used to generate interrupt signals that
will wake the processor from sleep mode. The processor timers automatically reset and
restart their operation after reaching the limit value. The processor timers can be pro-
grammed to count only the clock cycles when the processor is not halted. The processor
timers can also be programmed to generate an interrupt or to generate a system reset upon
reaching the limit value.

The SCU FW implements logic for IPC. These registers will be implemented in a sepa-
rate hardware block and will be primarily used for communication between host processor
and SCU. Apart from processor, other subsystems are also expected to send message trans-
actions to the SCU using this mechanism. The IPC hardware along with IPC firmware
would be responsible for supporting all IPC functionality. The IPC unit is designed to
asynchronously pass control messages and data between the processor and SCU. The mes-
sage could be as simple as a write or more complex where the processor can request the SCU
to perform some task, collect some data and make the SCU write that data in a specific
SRAM location.

The SCU DMA serves two purposes: One is to provide a way for the SCU to move data
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to and from DDR since it has no way of doing that using load/store instructions. This
includes the ability to move data directly from DDR into the instruction RAM of the SCU.
And another is to provide handshaking interface that enable SPI controllers to do DMA

operations.

3.3 Bootstrap Workflow [2]

When the system is switched on, SCU performs following steps.

e Initialize bootstrap stuff

Initialize TO: In this step, TO is allowed to generate delays when system needs
it.
— Read from Flash: In this step the top DWORD is read to obtain starting

address of the images or headers.

— Copy data from SPI to execution RAM: This is done to keep a seperate

copy of the bootsrap code which can be used if the original copy gets corrupted.
— Jump to execution RAM: Actual execution starts from the RAM.
— Enable security engine: This initializes the security engine which plays a
major part in checking the images or headers for verification.

— Initialize the SRAM: This step allows SCU to copy anything needed for exe-
cution to SRAM.

e Initialize Storage Device: This allows reading from storage devices images and headers

which are required for actual runtime execution.
e Initiate cold boot process
— Read FW Image: This is the first step of cold boot process. When this image

is read different headers are also read along with it.

— Verify Different Headers: Different headers are checked for security related
issues and also checked if any of them are corrupted. In that case, firmware

recovery gets initialized.
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— Verify Different Firmware: Different firmware like SCU Runtime, PM Unit

and Processor firmware are checked if any of them are corrupted..

— Disable all interrupts: All the interrupts are disabled so that if the user

provides some input through different interface, they will be ignored.

3.4 Runtime Workflow [2]

e Configure GPIOs: GPIOs are configured from the tables that are available to SCU
FW.

e Setup Runtime Interrupt Vector Table: IVT is initialized and used later to

handle different interrupts .

e Subsystem initialization: All the subsystems are brought back from their reset

state and initialized to their default state.

¢ Enable IPC interrupts: Interrupts between different subsystems are enabled. Dif-
ferent subsystems like processor and PMU can communicate with each other using

IPC interrupts.

e Enable timer for interrupt: Timers can be used by different subsystems in case

they need timer interrupts.

e Initialize Clock: Clock is now initialized and synchronized with the master clock

which is real time clock.

¢ Enable master interrupt control: All the interrupts which were disabled during
last step of bootstrap are now enabled and now the system can generate the interrupts

which are handled by SCU.

e SCU Idle loop: SCU goes into the waiting state for some event to occur.



Chapter 4

Operating System Power
Management [3]

4.1 Overview

OSPM'’s (Operating System Power Management) primary function is to efficiently manage
power by controlling platform and subsystem power states. OSPM uses the concept of
modes in order to determine the most power efficient state for the platform at any given
point in time. A mode represents a comprehensive power model of the platform which
provides access to all the resources required to support a specific usage model. Subsys-
tems which are not explicitly required for a given usage model and the associated mode
will be placed in a low power mode. The SCU has inherent knowledge of the subsystem
PM capabilities, constraints, and implementation, will direct subsystem specific actions to

implement a specific state.

4.2 OSPM Architecture

Power Manager is a Control Panel application that manages devices independent of the base
PM model. The Power Manager interface provides flexibility to OEMs and device driver
developers without sacrificing compatibility with the base model. In the base power model,
devices receive notification that the OS is suspending and resuming. This notification

occurs in an interrupt context, so devices are restricted regarding what they can do during

11
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a suspend state and how long they can take to do it. The following illustration describes

the PM architecture.

Sensor
II"IDLIT Policy (system inactivity,

user inactivity)
User
input

. Power 1

¥

timers

Current power state Next power state for
of platform platform

L

ED e 2
PMU Firmware

Veo ! Clk Veo ! Clk Tree
Gating config

Figure 4.1: OSPM Architecture

Using Power Manager, devices receive power state change notifications as I/O controls.
Because I/O controls run in a thread context, driver developers have much more flexibility
in how they implement the power state change. Using I/O controls to manage power also
enables separation of device power state from overall OS power state. Thus, some devices
can be turned off while the OS is running, and others can be left on while most of the OS
is suspended. In addition to managing device power, Power Manager notifies applications

about power-related events. For example, Power Manager informs interested applications
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when the OS resumes from a suspend state.

e OS power states impose maximum power consumption limits on all devices.

e Application imposes minimum power consumption limits on specific devices to obtain

minimum performance levels.

e Power Manager allows devices to intelligently manage their own power, as long as

their power levels are between the maximum and minimum limits.

e If the minimum power consumption limit is set higher than the maximum, the power

of the device remains elevated for as long as the application requires the device.

e Devices can implement one or more device power states. Device power states are

limited in number.

e If the OS transitions to the suspended state, application-imposed minimum power

limits are set aside while the OS is in a suspend state.

a. OSPM Framework: A message Framework for applications, platform services and

other OEM policy managers, User interfaces, etc to plug in.

b. Policy Manager: A pluggable Policy Engine, which can be smart enough to make key
mode transition/Policy decision for a given application usage as well the environment

the application running in

c. Event Manager: An Environment scan module which monitors various events that
happens in the platform, Sensor inputs, and System profiles. This module is respon-

sible for influencing the PM to make run time mode transitions.

d. Platform Power Manager: A Platform Power Manager, which will implement the

policy taken by the Policy engine.

e. Activity Timers: For each timer, Power Manager checks for a timeout and an optional

list of wake sources.
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4.2.1 OSPM Framework

The OSPM framework is a host for required OSPM components such as the system pro-
filer, power policy engine, platform power manager, and sensor manager. The framework
should run as a separate process dedicated to the functions specified in this architecture
specification. The framework also exposes a set of interfaces available to other user level
components. These interfaces provide the ability for Software components to convey mode
usage, performance requirements, and resource usage. This information is then provided to
OSPM components to allow them to project mode changes on the platform. The framework
also provides an interface which allows OSPM components / plug-ins to be dynamically cre-
ated / deleted. This action would typically be initiated by the event handler. The OSPM
framework provides external interfaces for applications, services, and drivers to communi-
cate with OSPM components. The framework encapsulates all the other OSPM components
within the process space of OSPM. The framework also supplies a set of API’s which provide
for inter-module communication within OSPM. The API’s will abstract the actual commu-
nication mechanism from the components so that any messaging interface can be used for

this purpose.

4.2.2 Policy Manager

Policy manager is responsible for picking the correct policy for a given usage. On init, a
static user defined policy of a given platform is loaded, and as the application launched,
depending on various runtime events, the policy manager actively chooses the correct policy
and notifies the power manager to implement that policy. It also notifies the user appropri-
ately on any change in the policy. The policy engine or the logic that chooses the correct
policy is designed as modular, so that user can plug in their own policy Manager. The
policy selection algorithm can be a very simple static look up to a very complex logic. The

idea is the OEM can add value differentiation through the policy engine

4.2.3 Event Manager

Event manager is responsible for doing the environment and system scan and provides

input to the Policy manager for any change in environment. It’s the policy manager which
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eventually decides what the correct policy for a given change in environment event.

4.2.4 Platform Power Manager

Power manager is the core execution piece of OSPM framework. It includes
a. PMU Driver: A platform specific PMU Driver, who drives the System PMU

b. Power Manager Engine: Responsible for coordinating device drivers, PM and CPU

coordination of sending PM events
c¢. CPU and Device driver interface
d. Event and Policy manager interface

e. PM Event handler: It is responsible for handling PM events and optional device, CPU

event.

Power manager expects all managed devices to support one or more device power states.
There are limited numbers of device power states, and the device must inform power man-
ager of its power consumption characteristics. Device power states generally trade off per-
formance for low power consumption. Some applications may require that a device be main-
tained at a certain device power level. For example, a streaming audio application might
require that its network card and audio codec stay powered at a high level while music is
playing. A streaming video application might need network and audio, and it might want to
keep the display from going into screen-saver mode and keep the backlight on. Applications

can request that Power Manager set minimum device power-state requirements.

4.3 Clock and Voltage Control

Subsystem power state change by PM logic in SCU involves controlling the voltage and
clocks to subsystems. Each subsystem is supplied current by a set of power rails. A voltage
and clock tree infrastructure is defined to control the voltage and clocks for any particular
subsystem of platform. The Voltage regulation mechanism provides two knobs to control

subsystem power state:
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a. Voltage Regulators in the PMIC that supply the power rails to platform. The power
rails are subdivided to form a tree structure. The Voltage Regulators in PMIC can be

controlled by System Controller using the SPI bus interface through PMIC registers.

b. Power Gates that provides an isolation mechanism for each subsystems in order to
achieve independent voltage islands. These Power Gates can be controlled by SCU

firmware through PMU register.

4.4 Logical to Physical Subsystem Mapping

The logical subsystem definition is used by OSPM to communicate to SCU. Physically, each
logical subsystem consists of one or more physical subsystem. A physical subsystem has
a dedicated clock supply with independent power/clock gate. SCU firmware controls the
power and clock gates of the physical subsystems as guided by the OSPM driver. SCU
firmware contains a table that maps logical subsystems to constituent physical subsys-
tems. This logical to physical subsystem mapping table is hard coded in the SCU Runtime

firmware.

4.5 Activity Timers

Upon initialization, Power Manager reads the registry to acquire a list of activity timer
names. For each timer, Power Manager checks for a timeout and an optional list of wake

sources. It then creates the following named events:
a. A timer reset event
b. An active status manual-reset event
c. A manual-reset event

If the timeout associated with the timer expires without a reset event, Power Manager
signals the active event and sets the inactive event. If the reset event is signaled, power
manager signals the inactive event and sets the active event. The first event is an auto-reset

event that any driver can signal to indicate system activity. Drivers that support resetting
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activity timers read the name of the timer reset event from the registry. The other events are
manual reset events, of which only one is signaled at a time. Drivers, applications, or power
manager itself can open handles to these events to determine whether the timer has expired.
These events indicate the status of the activity timer. The reset event is an input to the
activity timer system, and the status events are the corresponding outputs. Any number
of drivers can open handles to the reset event of an activity timer. A driver should read
the name of the event from the registry to obtain OEMs customizations set in the registry.
By customizing the registry, the OEMs decide how the activity of a driver is interpreted by
power manager. Potential sources of activity include all drivers that open handles to the
reset event of the activity timer. When the system is suspended, power manager signals the
active manual-reset events associated with activity timers. On a resume event, it scans the
timers to see if any are associated with the wake source that caused the system to resume.
If it finds a match, that activity event is signaled. This enables power manager to resume in
the system power state associated with that activity timer. A keypad press or touch-panel

tap can reset the activity timer.

4.6 Wake Events

A wake event is defined as any asynchronous event that takes the platform out of standby
mode. One example is a wake event generated by a communication device. Typically,
all wake events have to be communicated to the host in the form of an interrupt. Upon
receiving a wake event, the waking sub-system may need to be woken up at a minimum in
order to receive the in-band data. In addition, the SCU also wakes up subsystems that have
been identified by the OSPM in the Wake Config/Status registers. From an implementation
standpoint, wake is essentially another interrupt to the ARC core. For example, when a
KBD key is pressed in standby mode, the KBD controller generates an interrupt to the SCU.
Since SCU is aware that the platform is in standby mode, this interrupt now is treated as a
wake event. If the platform were not in standby, this would be a regular interrupt from the
host and no wake sequence is initiated. There are sub-systems that can generate a wake
event when the controller is either power or clock gated. These situations are handled on

a case-by-case basis. In some scenarios, the regular interrupt line cannot initiate a wake
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sequence; instead a separate routing from the wake capable buffer is used from the pins

directly, or an entirely separate GPIO outside of the interface must be used.

4.7 Advanced Configuration and Power Interface

4.7.1 Overview

ACPI aims to consolidate, check and improve upon existing power and configuration stan-
dards for hardware devices. It provides a transition from existing standards to entirely
ACPI-compliant hardware, with some ACPI operating systems already removing support

for legacy hardware.

4.7.2 OSPM responsibilities

ACPI requires that, once an OSPM-compatible operating system has activated ACPI on
a computer, it then takes over and has exclusive control of all aspects of PM and device
configuration. The OSPM implementation must expose an ACPI-compatible environment

to device drivers, which exposes certain system, device and processor states.

Power states [6]
The ACPI specification defines the following states for an ACPI-compliant computer-system.

e System States
To the user, the system appears to be either on or off. There are no other detectable
states. However, the system supports multiple power states that correspond to the
power states defined in the Advanced Configuration and Power Interface (ACPI) spec-
ification. The following table lists the power states from highest to lowest power

consumption.

e Device States: D0, D1, D2, D3, D4

Device power state definitions are statically predefined. Power Manager passes a device
state to a driver, and the driver is responsible for mapping the state to its device capabilities,
and then performing the applicable state transition on the device. The following table

describes device power states.
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Power state ACPI state | Description

Working S0 The system is fully usable.

Sleep S1,52,S3 The system appears to be off.

Hibernation S4 The system appears to be off.

Mechanical Off | G3 The system is completely off and consumes no power.

Table I: System Power States

Device power state | Registry key | Description

Full on Do On and running.

Low on D1 Fully functional at a lower power

Standby D2 Partially powered, with automatic wakeup on request.
Sleep D3 Partially powered, with device-initiated wakeup

Ooff D4 Device has no power.

Table II: Device Power States

A physical device does not have to support all of the device power states. The only
device power state that all devices must support is the full on state, DO. A driver that is
issued a request to enter a power state not supported by its device enters the next available
power state supported. For example, if power manager requests that it enter D2 and it does
not support D2, the device can enter D3 or D4 instead. This can be done if power manager
supports one of these states. If a device is requested to enter D3 and cannot wake up the
system, it should enter D4 and power off, rather than staying in standby. These rules are
intended to simplify driver implementation.

Power manager appropriately maps system power states to the corresponding device
power states. For example, if a device only supports device power states DO and D4, power
manager does not immediately request that the device enter the D4 power state when it
transitions from the full on power state. Power manager waits until the system enters a
system power state in which D3 or D4 is configured as the maximum device power state for
that device. If DO, D1, or D2 is configured as the maximum power state, power manager

keeps the device at DO.



Chapter 5

Proposed Implementation

5.1 Current Implementation

Currently power management is handled by operating system. SCU and PMU help oper-
ating system in managing the power for the system. We have only three possible power
modes: Normal Mode, Sleep Mode and Hibernate Mode. User can select any of these
modes. OSPM is notified when user selects a power mode. Then OSPM notifies SCU for

the current power mode and then SCU executes that power mode with the help of PMU.

5.2 Drawbacks of Current Implementation

Currently there are 64 subsystems in the system. After power on, all the subsystem are in
active mode if the system is running in normal mode. According to user operations, these
subsystems are utilized but generally all systems are not in active mode at same time. This
means that most of the time, many subsystems are wasting the power that they are getting
as they do not have any work to do. So, PM is not yet optimize specially in Tablets where

battery power plays an important role.

5.3 Proposal of new Implementation

As discussed earlier, we are not utilizing battery power at its best. What we can do is,

we can put some of the subsystems in sleep mode while they are not used and powered on

20
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them when they are needed. For this purpose, we must know which subsystems are used
at what time. Then we can create a list which defines which subsystem are active during
which activities. We can create our user defined power modes in which we can optimize our
system for a specific task. For example, documentation. Many people use their tablets or
laptops for documentation work. Half of the subsystems remain inactive during this task.
So, it is safe to turn off those subsystems which are inactive. When user wants to do some
other work, the system can be placed in normal mode. Same way we can do for audio/video
play back or internet surfing. Even we can combine them when and where ever it is possible.
The basic idea behind this whole implementation is simple. Consider an example of a home:
Assume home is a system and each room is a subsystem. At some moment of time, we will
be using only some rooms of the home. So, its better to switch of the lights of those rooms.
Same thing applies to any system. While system is running, all subsystem will not be used.
So, its better to power off those subsystems. Following figure shows the system in three
different states. One is totally turned off while another is totally turned on and the last one
is partially turned on. Total turn off means when the system is switched off and it is not
consuming any power. Total turn on means system is fully running with each subsystem is
turned on and system consumes the most power. Partially turned on system is what I am
talking about here when the unused subsystems will be turned off and only used subsystems

will be turned on. Based on the above idea, I have decided two power modes
e Audio Playback Mode (APM)

e Optimized Standby Mode (OSM)
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System
Figure: Different System States

Figure 5.1: Overview of Optimization

5.4 Audio Playback Mode

For Audio Playback mode I have created a mapping of the subsystems which indicates
which subsystems will be active and which subsystems will be in sleep state. For this mode
I have decided the binary value which will be written by OSPM in the SCU register. When
the user selects such power mode it will be communicated to OSPM. OSPM policy manager
will write that encoded value in the SCU register. Hence SCU will be notified for this mode
change. SCU will refer to the mode-system mapping table in the memory. Then according
to the table it will put the subsystem in to respected states. The SCU maintains two types
of tables. One table contains physical to logical subsystem mapping and another table to
maintain voltage and power rails for each subsystem. We will add another table which will

have mapping for each mode and the subsystems related to it.

My first level of implementation did not show big improvement in power saving. Reason
behind that was that small subsystems do not consume much power. So even if we switch
off the unused systems, the power consumption of the overall system would not be affected
much. The entity which makes the biggest difference here is the processor. It is one of the

most power consuming entity in whole system. So, we can keep the processor in the sleep
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mode and let audio engine handle the audio playback. Audio engine supports all kind of
audio playback. So once the user selects this power mode, the system will automatically
turn off the unused systems including processor and then playback is handled by the audio

engine. Theoretically it really saves a lot of power and so as practically.

5.5 Optimized Standby Mode

The system enters standby mode based on a number of criteria, including user or application
activity and preferences that the user sets in the power options application in Control Panel.
By default, the system uses the lowest-powered sleep state supported by all enabled wake-up
devices. Before the system enters standby mode, it determines the appropriate sleep state,
notifies applications and drivers of the pending transition, and then transitions the system
to the sleep state. In the case of a critical transition, such as when the critical battery
threshold is reached, the system does not notify applications and drivers. Applications
need to be prepared for this and take the appropriate action when the system returns to
the working state. The system wakes from standby mode in response to user activity or
a wake-up event defined by an application. The amount of time it takes the system to
wake depends on the sleep state it is waking from. The system takes more time to wake
from a lower-powered state than from a higher-powered state because of the extra work
the hardware may have to do (stabilize the power supply, re-initialize the processor, and
so forth). The system takes the most time to wake from hibernation (S4) because it must
read the hibernation file.

Current standby mode also known as S3 has some limitations like only CPU memory is
persistent while other memories are flushed once system goes in to sleep mode. Also resume
from standby mode takes around 5-7 seconds. Once the system goes into standby mode it
becomes offline meaning if we want to receive some updates from internet, it is not possible.
We have to turn on the system and then manually update the emails or RSS feeds. Here
arise the requirement of new optimized standby mode. In OSM system will always be
connected to internet.

This implementation becomes challenging as we need to update the system depending on

the user or architecture preference. We as a developer needs to decide which systems will be
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on and which events or interrupts can wake the system. For simplicity I have started with
timers and USB as wake events meaning once the system enters in to the sleep/standby
mode either timers or USB interrupts can wake the system. Here the devices which can
wake the events are configured using wake register of PM block in SCU. Before the system
goes in to standby mode, these registers are needs to be configured. So, when the system
enters into standby mode, these subsystems does not go to sleep mode instead they will be
in normal DO device state. So, for example, if USB is a wake event and once the system
is in standby mode, if we generate any USB interrupt for example moving or clicking USB
mouse or pressing a key on keyboard or entering a USB device in the system, system will
wake from standby mode. One thing we assume here is once the display goes off, user is

not going to communicate with the system.



Chapter 6

Implementation and Results

6.1 Overview

The user will select a power mode from OS interface. From that interface, OSPM will come
to know about the mode user has selected. OSPM will communicate this mode change to
SCU by writing to some register. SCU will in turn execute that power mode with the help
of PMU and PMIC.

6.1.1 OSPM State Management

OSPM supports multiple system idle states. System idle states can be directly co-related
with a specific mode. These states require a wake event to bring the system back to the
system active state (S0i0). The wake event can range from a timer event, to a network
related event. The OSPM must perform a series of actions to enter and exit and OSM
state. Based on the target platform state, OSPM writes the wake configuration registers
to direct the PMU’s to return to a specific configuration upon the detection of an enabled
wake event. OSPM must also program the wake enable registers to define what subsystem
wake events will be promoted to system PM wake events. Once these registers are properly
configured, the OSPM issues a command to the PMU’s to trigger on an asynchronous event
which will be determined by the mode table entry. OSPM will then generate a request to

the PMU to enter OSM state. An example of this sequence is shown below:

a. OSPM determines that a particular mode of operation should be entered (MP3 play-
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back, etc)

b. OSPM refers to the mode entry table to determine what state should be entered upon

resume and how to program the wake configuration register, PM wake control register.

c. OSPM writes wake configuration registers such that subsystem will enter state after

a PM wake event.

d. OSPM writes PM wake control registers such that a wake event from subsystem will

generate a PM wake sequence

e. Writing of register will allow a signal to be sent to the PMU that the PMU will trigger

on the wake event from subsystem and generate a PM wake sequence

f. OSPM sends a command to the PMU to enter the state by writing to command

register.

6.1.2 System State Entry/Exit

System State Entry

The steps for power down are as follow.
a. OSPM decides to place the system into OSM and programs OSPM registers.
b. OSPM sets the command type and writes the command register.
c. SCU informs Power Unit of state using Go-OSM message.
d. Power Unit places north subsystems into proper states.
e. SCU receives Ack-SLEEP and Ack-OSM messages.
f. SCU saves the GPIO value programming for all GPIO’s that will lose power.
g. SCU takes over the flow, and arms keepers using the signal in each family.
h. SCU walks through south subsystems.

i. SCU continues to shut down system rails for the required system state.
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System State Exit

The steps for power up are as follows.
a. SCU detects a wake event, takes any special action based on source.
b. SCU enables the main-GPIO subsystem, and restores values it saved on entry.
c. SCU disarms the keepers by asserting signal.
d. SCU walks through PMU registers and brings required subsystems to their wake state
e. SCU sends GoCQ0 if full wake required.

f. OSPM restores alternate function mapping as needed for controllers that lost power.

6.2 Challenges in new Implementation

The biggest challenge in implementing this idea is that it is not one level task. User can
choose the power mode at OS level, in turn OSPM comes to know about the mode change
and then OSPM notifies SCU about this mode change. Then SCU works with PMU to
implement the mode change request. So, we need to make changes at many levels and

communication needs to happen between all the layers of the system.

6.3 Workflow

Audio Playback

In this mode, the ACU can download the audio media into SRAM. Frequent CPU interaction
is not required once the media playback has started; the CPU may need to awaken only
when the ACU media buffers are exhausted. As a result, OSPM can put the platform into
APM such that only the audio subsystem is on and rest of the system state is as per APM.
When ACU runs out of the audio data in SRAM and needs to access the System Memory,
it sends Link-Up IPC message to SCU. SCU powers up the platform to partial sleep state.
SCU then sends back a ”Link-Up-Ack” message to ACU. ACU can now DMA the audio
data from system memory(DDR) to SRAM. After the ACU DMA is complete, ACU sends
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a ”Link-Down” message to SCU. SCU transitions the platform to APM state. If ACU
requires device driver services; it can trigger an interrupt to processor. SCU will wake the

platform to SO state. Detail Implementation is as follow:

e OSPM checks the ”Busy” bit in the PMU status register to ensure that it can initiate

a mode change

e OSPM enables subsystems to generate wake event by writing into the OSPM Wake

Configuration register

e OSPM enables interrupts to be propagated by setting the interrupt enable bit in the

Interrupt Control register

e OSPM configures the target state of each subsystem in platform standby state by

writing to the subsystem configuration register

e OSPM configures the Exit state of each subsystem from a wake event by writing into

the PM-WSSC register

e OSPM issues the set configuration command.

e PMU hardware sets the 'Busy’ bit in the PMU Status register

e PMU hardware generates an interrupt to SCU when OSPM writes to the PMU CMD

register

e Determines the cause of interrupt as an OSPM configuration change by reading the

PMU Interrupt register

e Registers the interrupt as an OSPM initiated one - sets a flag. SCU firmware should
prevent propagation of MSI. Set the MSI-DISABLE Bit. Servicing is deferred to the

main loop of the SCU Firmware

e Reads PMU Command register to determine the platform target state.

e Reads PMU Command register to determine if there is a trigger to start processing.

Valid trigger is a PME event from ACU. Any other trigger - log as invalid and exit



CHAPTER 6. IMPLEMENTATION AND RESULTS 29

e The config registers are read and exit config is prepared for optimization of the flow
e Waits for Ack-SLEEP message from Power Unit.

e IPC2 hardware receives the Ack-SLEEP from the Power Unit (SCU firmware services
the IPC interrupt and receives the SLEEP trigger.)

e If platform is entering Low power audio playback mode, then SCU firmware waits for
"link down” message from ACU. ”Link down” message indicates that there are not
ongoing DMA transfers by ACU, and that it safe to transition the platform to APM
Background state(LPMP3 mode)

e SCU receives IPC message from ACU, and decodes the message code to ”link down”.
e SCU Firmware sends GO-APM message to System
e SCU firmware waits for Ack-OSM message from Power Unit to be received via IPC

e [PC2 hardware receives the Ack-OSM from the Power Unit. ARC firmware services

the IPC interrupt and receives the Ack-OSM message.
e If Ack is for APM continue else abort
e SCU transitions the Power down/up subsytems per PM-SSC config
e Turn off the respected rails
e ACU has exhausted the audio media in SRAM and needs to access the System memory
e ACU send a ”link-up” request to SCU by trigger ACU-to-SCU IPC interrupts.
e ACU waits for an ”acknowledgement” from SCU
e SCU decodes the ACU message to be a ”Link-Up” request

e SCU checks the current platform state. If the platform is in Low power audio mode,

as indicated by the platform state, SCU initiates the partial wake sequence.

e SCU power up the rails
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e SCU compares the current sub-system power state with the target state for partial

S0 wake.
e SCU powers up required sub-systems
e The sequence of power modes is through M7-M6-M4
e Go to Power mode M5
e Wait for Ack APM message from Power Unit
e If security engine power up is required then power up the same
e SCU sends ”Link-Up-Ack”, acknowledgment for the ”Link-Up” request, to ACU

e On receiving the Ack, ACU proceeds to download audio media from System memory

to SRAM using ACU DMA engine
e On completion, ACU send a ”Link-Down” message to SCU

e On receiving the ”Link-Down” messages, SCU initiates APM Background stand-by

entry sequence.

e The CPU is already in SLEEP state. Link-down message is already received, so SCU

can skip these steps during re-entry.

e SCU Firmware sends GO-APM message to Power Unit

Optimized Standby

In this mode, system waits for all the system to become Idle. When the system becomes
idles, SCU start putting the subsystems in to D3 state. System provides each device the
capability to wake the system. The devices which request for wake event will be kept in
DO0il while all other devices will be kept in D3. SCU and processor also goes into Sleep
mode. Only devices which had requested for the wake event will be active in low power
mode. If any interrupt comes, it first comes to SCU. SCU will notify OSPM about that
interrupt. Then OSPM determines whether that interrupt has requested for the wake event

or not. If it has not registered as a wake source it will be ignored. If it has requested for the
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wake event, OSPM replies back to SCU that it is a wake event and make system available
to user by keeping all the subsystems in DO state. SCU gets the message and does the task
and then sends the end of interrupt to OSPM. Hence system again becomes live for the user

to use.

Notifications

| L Scheduled
:_Standby :

Figure 6.1: Optimized Standby

Detail Implementation is as follow:

e OSPM checks the ”Busy” bit in the PMU status register to ensure that it can initiate

a mode change

e OSPM enables subsystems to generate wake event by writing into the OSPM Wake

Configuration register

e OSPM enables interrupts to be propagated by setting the interrupt enable bit in the

Interrupt Control register
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Figure 6.2: Optimized Standby

e OSPM configures the target state of each subsystem in platform standby state by

writing to the subsystem configuration register

e OSPM configures the Exit state of each subsystem from a wake event by writing into

the PM-WSSC register
e OSPM issues the set configuration command.
e PMU hardware sets the 'Busy’ bit in the PMU Status register

e PMU hardware generates an interrupt to SCU when OSPM writes to the PMU CMD

register

e Determines the cause of interrupt as an OSPM configuration change by reading the

PMU Interrupt register
o Registers the interrupt as an OSPM initiated one - sets a flag.
e Reads PMU Command register to determine the platform target state.
e Reads PMU Command register to determine if there is a trigger to start processing.
e The config registers are read and exit config is prepared for optimization of the flow
o Waits for Ack-SLEEP message from Power Unit.

o IPC2 hardware receives the Ack-SLEEP from the Power Unit
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e SCU Firmware sends GO-OSM message to System
e SCU firmware waits for Ack-OSM message from Power Unit to be received via IPC

e IPC2 hardware receives the Ack-OSM from the Power Unit. ARC firmware services

the TPC interrupt and receives the Ack-OSM message.
o If Ack is for OSM continue else abort
e SCU transitions the Power down/up subsytems per PM-SSC config
e Turn off the respected rails

e SCU checks the current platform state. If the platform is in OSM, as indicated by

the platform state, SCU initiates the partial wake sequence.
e SCU power up the rails

e SCU compares the current sub-system power state with the target state for partial

S0 wake.
e SCU powers up required sub-systems
e Go to Power mode M5

e Wait for Ack Sx message from Power Unit

6.4 Results

After implementation, I carried out different experiments on the systems available to me.
I compared the power consumption with the legacy implementation and found that my

implementation improves the results and shows less power consumption.
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Audio Playback

The following graph shows the power consumption of overall system when mp3 music is
being played in the legacy mode for the duration of 60 seconds and observations were

recorded each second.
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Figure 6.3: Normal Playback

The following graph shows the power consumption of overall system with optimization
1 when mp3 music is being played with APM mode and processor is not in sleep mode for

the duration of 60 seconds and observations were recorded each second.
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Figure 6.4: Audio Playback: Implementation 1
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The following graph shows the power consumption of overall system with optimization

2 when mp3 music is being played with APM mode and processor is in sleep mode for the

duration of 60 seconds and observations were recorded each second.
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Figure 6.5: Audio Playback: Implementation 2

The following graph shows the comparison of all three scenarios.
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Optimized Standby

The following graph shows the power consumption of overall system when the system is idle

for the duration of 60 seconds and observations were recorded each second.
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Figure 6.7: Normal Standby Mode

The following graph shows the power consumption of overall system when the system is
in optimized standby mode for the duration of 60 seconds and observations were recorded

each second.
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Figure 6.8: Optimized Standby Mode
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The following graph shows the comparison of above two scenarios.
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Figure 6.9: Comparison of stand by and optimized standby mode
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Conclusion and Future Scope

7.1 Conclusion

In this dissertation, I proposed two different PM modes to save the power and increased
battery life. First I proposed Audio Playback mode in which only required subsystems runs
while others are turned off and in other mode when the system is idle, we turn off the
systems and save the power and then turn on them when the user becomes active. From
the results we can see that for audio playback mode’s optimization 2, the overall power
consumption becomes almost half then the original power consumption. Original average
power consumption for the system per second was 1679mW while with optimization 2 the
average power consumption per second becomes 653mW. Same way when system is in idle
condition without any optimization the average power consumption per second was 745mW
while with optimized standby mode it becomes 411mW per second. Hence I can conclude
that if we utilize our system efficiently we can reduce the power consumption of our system

which leads to longer battery life without affecting the system performance.

7.2 Future Scope

Current implementation is very specific for the platform and operating system. The next
challenge in this work is to make it OS and platform independent. Also some other modes
can be created depending on the operations like video playback, internet browsing or text

editing.
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