
Network Based Packet Watermarking
Using TCP/IP Protocol Suite

By

Maitrik Shah

10MCEC15

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2012

Network Based Packet Watermarking
Using TCP/IP Protocol Suite

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

By

Maitrik Shah

(10MCEC15)

Guided By

Prof. Samir B. Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2012

Declaration

I, Maitrik K. Shah, 10MCEC15, give undertaking that the Major Project entitled

“Network based packet watermarking using TCP/IP protocol suite” submitted

by me, towards the partial fulfillment of the requirements for the degree of Master of

Technology in Institute of Technology of Nirma University, Ahmedabad, is the original

work carried out by me and I give assurance that no attempt of plagiarism has been made.

I understand that in the event of any similarity found subsequently with any published

work or any dissertation work elsewhere; it will result in severe disciplinary action.

Maitrik Shah

iii

Certificate

This is to certify that the Major Project entitled “Network Based Packet Watermarking

Using TCP/IP Protocol Suite” submitted by Maitrik Shah (10MCEC15), towards the

partial fulfillment of the requirements for the degree of Master of Technology in Com-

puter Science and Engineering of Nirma University, Ahmedabad is the record of work

carried out by him under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The results em-

bodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Prof. Samir B. Patel Dr.S.N.Pradhan

Guide, Associate Professor, Professor and PG-Coordinator,

Department of C.S.E., Department of C.S.E,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Prof.D.J.Patel Dr.K.Kotecha

Professor and Head, Director,

Department of C.S.E, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

iv

Abstract

Watermarking is defined as the art and science of embedding information in some cover.

It takes one piece of information and embeds it within another. Mostly digital data is used

for embedding. In this paper, we present a way to embed this digital information into the

data packet. TCP/IP packets are transmitted over a network in large quantity. Within

TCP/IP header there are number of fields that are not used for normal transmission or

are “optional” fields which can be used by the sender of the datagrams. An analysis of

the areas of a typical IP header shows that there are few fields which are either unused

or optional reveals many possibilities where data can be stored and transmitted. Options

field of IP header is one of those fields. By embedding information in the options field of

IP packet, we can make use of unused field of the IP header and can transmit our digital

data within TCP/IP packets from sender to the receiver. One advantage of transmitting

data in the header is that intruders will not have any idea that data is transmitted in

the header, intruders will concentrate only on the payload of the packet. In order to

implement this idea we will make our packet(which contains hidden data)to look like as

normal packet(which does not contain hidden data) so that intruders will not be able to

identify that our packet contains hidden data. Encryption and compression however are

optional in performing watermarking, but by making use of such techniques the security

in the design can be incorporated. Challenges like loss of packets and many others are

also handled in the design.

Index Terms - Watermarking, Steganography, Packet-Watermarking,IP options,Linux

Kernel.

v

Acknowledgements

My deepest thanks to Prof. Samir B. Patel, Associate Professor, Department of Com-

puter Science and Engineering, Institute of Technology, Nirma University, Ahmedabad

the Guide of the project that I undertook for giving his valuable inputs and correcting

various documents of mine with attention and care. He has taken the pain to go through

the project and make necessary amendments as and when needed.

My deep sense of gratitude to Dr. S.N.Pradhan, Professor and PG-Coordinator of

Department of Computer Engineering, Institute of Technology, Nirma University, Ahmed-

abad for an exceptional support and continual encouragement throughout part one of the

Major project.

I also express my profound gratitude to Prof. Zunnun Narmawala, Prof. Vijay

Ukani and Prof. Priyanka Sharma for their timely suggestions, continuous support

and help to solve my doubts.

I would like to thanks Dr. Ketan Kotecha, Hon’ble Director, Institute of Technology,

Nirma University, Ahmedabad for his unmentionable support, providing basic infrastruc-

ture and healthy research environment.

I would also thank my Institution, all my colleagues and all my faculty members in

Department of Computer Science and my colleagues without whom this project would

have been a distant reality. Last, but not the least, no words are enough to acknowledge

constant support and sacrifices of my family members because of whom I am able to

complete my dissertation work successfully.

- Maitrik Shah

10MCEC15

vi

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

List of Tables ix

List of Figures x

Abbreviations xii

1 Project Introduction 1
1.1 Watermarking . 1
1.2 Packet Watermarking . 2
1.3 Objective . 2
1.4 Basic Model Of Watermarking . 3
1.5 Thesis Organization . 4

2 Literature Survey and Important observations 5
2.1 Previous Work . 5
2.2 Problems . 7

3 Our Approach And Method 8
3.1 IP Packet Structure . 8
3.2 IP Options . 11
3.3 Approach . 15
3.4 Processing at Sender side using Approach-V 22
3.5 Processing at Receiver side using Approach-V 24

4 Linux Kernel 26
4.1 Linux Kernel structure Overview . 26
4.2 The Linux Source Tree . 28
4.3 Sending Messages . 30

4.3.1 Overview . 30
4.3.2 Processing At Sender Side . 32
4.3.3 List Of Functions . 33

4.4 Receiving Messages . 34

vii

4.4.1 Overview . 34
4.4.2 Processing At Receiver Side . 36
4.4.3 List of Functions . 38

5 Implementation and Results 39
5.1 Implementation Setup . 39

5.1.1 Changes made in TCP/IP stack of linux kernel 39
5.1.2 Steps to download and install kernel source code 40
5.1.3 Steps to recompile kernel . 41

5.2 Results . 44

6 Conclusion and Future Work 55
6.1 Conclusion . 55
6.2 Future Scope . 55

A List of Publication 56

References 58

Index 58

viii

List of Tables

3.1 Summary of Approaches . 20

4.1 Functions invoked during message transmission 33
4.2 Functions invoked during message reception 38

ix

List of Figures

1.1 Basic Model Of Watermarking . 3

2.1 Steganographic method example1 . 6
2.2 Steganographic method example2 . 7

3.1 IP Packet Structure: Green coloured fields are those which are used in
previous implementation. 9

3.2 IP flags . 10
3.3 Defined IP packet options . 12
3.4 End of Options List . 12
3.5 No Operation . 13
3.6 Security bit sequence . 13
3.7 Loose Source Routing bit sequence . 13
3.8 Strict Source Routing bit sequence . 14
3.9 Record Route bit sequence . 14
3.10 Stream Identifier bit sequence . 14
3.11 Internet Timestamp bit sequence1 . 15
3.12 Use of End of options field-1 . 16
3.13 Use of End of options field-2 . 16
3.14 Use of specific bit sequence-1 . 17
3.15 Use of specific bit sequence-2 . 17
3.16 Format of code field of IP options . 18
3.17 Use of Code bits of IP options field . 18
3.18 Use of Identification field-1 . 19
3.19 Use of Identification field-2 . 21
3.20 Processing at Sender side . 23
3.21 Processing at Receiver side . 25

4.1 Kernel Subsystem Overview . 27
4.2 Message Transmission [12] . 31
4.3 Message Reception [12] . 35

5.1 GUI for Linux kernel Configuration . 42
5.2 GUI for Linux kernel Configuration . 43
5.3 Output of program at receiver side . 45
5.4 Log file at receiver side . 46
5.5 Log file at receiver side for encrypted data 46
5.6 Output of sniffer program . 47
5.7 Output of tcpdump . 48
5.8 Output of wireshark . 49

x

5.9 Output of wireshark . 49
5.10 Output of tcpdump for encrypted data 50
5.11 Output of wireshark for encrypted data 51
5.12 Output of program at receiver side . 52
5.13 Output of tcpdump using Timestamp . 53
5.14 Output of wireshark using Timestamp 54

xi

Abbreviations

DF Do Not Fragment

DOD Department of Defence

ihl IP header length

IP Internet Protocol

IPC Inter-process Communication

IPv4 Internet Protocol Version-4

MM Memory Manager

NET Network Interface

SCHED Schedular

TCP Transmission Control protocol

TTL Time To Live

UDP User Datagram Protocol

VFS Virtual File System

xii

Chapter 1

Project Introduction

1.1 Watermarking

One of the reasons that intruders can be successful is that most of the information they

acquire from a system is in a form that they can read and comprehend. Intruders may

reveal the information to others, modify it to misrepresent an individual or organization,

or use it to launch an attack or change the ownership, make the copy of it and distribute

it to the others. One solution to this problem is Watermarking.

Watermarking is the technique to embed the information in the carrier medium. The

medium that contains a digital watermark is called a carrier. Carrier medium may be

image, Audio, Video, Network protocols such as TCP, IP, UDP . We can embed informa-

tion in the carrier medium in visible form which is called visible watermark or in invisible

form which is called invisible watermark. We generally do not use digital watermark as

separate file or link. We will embed our digital watermark which is nothing but informa-

tion directly into the carrier medium. We can provide security and confidentiality with

the use of the key. A person who wants to access and modify the embedded watermark

must possess a security key. Without security key embedded watermark can’t be accessed

and modified. Digital watermarking can be characterized by a number of requirements.

The most important are [3]:

• Transparency: The watermark must be imperceptible, image and audio quality

must be unchanged.

• Robustness: Measures, how stable a watermark against alterations of the carrier

medium is.

1

• Capacity: Describes the amount of information that can be embedded into a carrier

medium by a watermarking algorithm.

• Security: Without knowledge of the secret key, the embedded information may not

be extracted, altered or destroyed without rendering the carrier medium unusable.

• Performance: In real-world systems embedding and retrieval process need to be

sufficiently fast. Depending on the application this can be multiple times real-time.

1.2 Packet Watermarking

Here in this paper, we describe packet watermarking technique by transmitting data

(encrypted) in the options field of TCP/IP packet header. We describe that a more im-

portant problem that has received little attention to date is that of Packet Watermarking.

In Image watermarking we embed our watermarked data in the image. Similarly in packet

watermarking we will embed our information in the packet. And for that we will make

use of header field of IP packet. By embedding information in the options field we can

make use of unused options field of the IP header and can transmit the watermarked data.

1.3 Objective

This project comprehends the following objectives:

(i) To develop secure system for transmitting hidden data.

(ii)To make the use of unused options field of the IP header.

2

1.4 Basic Model Of Watermarking

Here in this section basic model of watermarking is described. It consists of Carrier

object, Message(we want to send) and secret key which is optional. Carrier object is

also known as cover-object, within which we will hide our message. Basically, the model

for Watermarking is shown on Fig.1 [3]. Message is the confidential information that

sender wants to send to the receiver. It can be plain text(if not encrypted), cipher text(if

encrypted), other image, or anything that can be embedded in a bit stream such as a

copyright mark, a covert communication, or a serial number. Secret-key is also known as

Watermark-key, which ensures that only recipient who know the corresponding decoding

key will be able to extract the message from a cover-object. The cover-object with the

secretly embedded message is then called the Watermarked-object.

Figure 1.1: Basic Model Of Watermarking

To recover message from the watermarked object receiver requires the cover-object

itself and a corresponding decoding key if a Watermark-key was used during the encoding

process.

To recover message from the watermarked object receiver requires the cover-object

itself and a corresponding decoding key if a Watermark-key was used during the encoding

process.

There are several suitable carriers below to be the cover-object [3]:

1. Network Protocols such as TCP, IP and UDP

2. Audio that using digital audio formats such as wav, midi, avi, mpeg, mpi and voc.

3

3. File and Disk

4. Images file

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2: Literature Survey, This section describes different methods on how hidden

data can be transmitted across the network. It also describes the problems in those

methods.

Chapter 3: Our Approach And Method, This section includes the details of different

approaches about how packet watermarking can be used to send hidden data using

unused options field of the IP header.

Chapter 4: Linux Kernel, This section includes the details of linux kernel and TCP/IP

stack in linux kernel. It also includes what will happen in TCP/IP stack when

sender sends the packet and receiver receives the packet.

Chapter 5: Implementation and Results, This section includes the flowchart and de-

scription of what happens at sender side and receiver side when packet comes to IP

layer. It also includes snapshots as a result of implementation of our approach.

Chapter 6: Conclusion and Future Work

4

Chapter 2

Literature Survey and Important

observations

2.1 Previous Work

TCP/IP packet header contains number of fields that are reserved for future use or

unused. So there are many possibilities to transmit hidden data in TCP/IP packet.

Similar approaches have been published in [1],[2],[4],[5].

• In [1] the author has used Identification field of the IP header which is of 16 bits.

It is the random number which is assigned by the sender when the packet is con-

structed. This field is used when fragmentation of the packet occurs. With the

value in this field receiver will identify frames of the same packet. Here author has

used one number 256 as key. Encoding is done like this:

Encoding: Suppose we want to send H. ASCII of H is 72.

72*256 = 18432 this value will be sent in the Identification field.

Decoding: 18432/256 = 72(H).

• In [2] author has used Do Not Fragment Bit of IP header to send the hidden data.

This field is used to specify whether to do fragmentation or not. So we can use this

field to send our data only if we are sure packet will not be fragmented. In this work

the problem is the size of data we can use to send our data. Do not Fragment field

5

is of one bit only so here we can transmit only one bit for each datagram. Suppose

our packet does not carry anything in the payload. It contains only data. Since IP

header is of 20 bytes if options field is unused than the ratio useful information to

total data is 1:160, it means that if you want to transmit the phrase “hello India”

then there will be overhead of almost 2 Kb for just 11 bytes.

• In [4] they have made the use of type-of-service field of IP packet to send data.

Type-of-service field is of 8 bits. In those 8 bits 2 bits are unused and that 2 bits

can be used to transmit the hidden data. In another approach they have made the

use of reserved bits of TCP header for the transmission of the hidden data. 6 bits

of the TCP header are reserved. So they have made the use of those 6 bits. So if we

combine these two approach we can transmit one byte of hidden data per packet

transmitted.

• In [5] they have used two steganographic method. In one method they have used

number of fragments to send hidden data. SS is the steganogram sender and SR

is the steganogram receiver. Here, original IP packet is divided into predetermined

number of fragments. If the number of fragments are even then it means that binary

“0” is transmitted otherwise binary “1” as shown in the following figure.

Figure 2.1: Steganographic method example1

• In another method they have used fragmentation offset field of IP header to trans-

mit hidden data. If fragmentation offset is even then it means that binary “0” is

transmitted otherwise binary “1” as shown in the following figure.

6

Figure 2.2: Steganographic method example2

2.2 Problems

The main problem in second paper which makes the use of DF field of IP header is the

Packet Fragmentation. There are two possibilities:

1. Packet will be fragmented.

2. Packet will not be fragmented.

Since as a sender we do not know what will be the network between sender and receiver.

So we do not know whether fragmentation will occur or not. We can use DF field of IP

header if and only if we are sure that our packet will not be fragmented. Even if we are

sure that our packet will not be fragmented we can send only 1 bit of hidden data using

this field.

Problem in [1],[4],[5] is very few number of hidden bits per packet are transmitted.

7

Chapter 3

Our Approach And Method

3.1 IP Packet Structure

TCP/IP is the protocol used in Internet. TCP/IP were developed by a Department

of Defense (DOD) research project to connect a number different networks designed by

different vendors into a network of networks (the “Internet”). IP (Internet Protocol) is

responsible for moving packet of data from node to node, and TCP (Transmission Control

Protocol) is responsible for verifying the correct delivery of data from client process to

server process. The basic unit of data transfer is Packet. At sender side the data is

partitioned into IP packets and packets are transmitted over the network. At receiver

side packets are reassembled to get the data. Each packet begins with a header containing

addressing and system control information. The IP packet header consists of 20 bytes(if

options field not used) of data divided in several fields. Each field has a special purpose,

depending on the type of data contained in the packet payload. Following figure shows

the structure of the IP packet.

• Version(4 bits): The Version field indicates the format of the internet header. This

document describes version 4.

• IHL(4 bits): Internet Header Length is the length of the internet header in 32 bit

words, and thus points to the beginning of the data. Note that the minimum value

for a correct header is 5.

• Type of Service(8 bits): The Type of Service provides an indication of the abstract

parameters of the quality of service desired. These parameters are to be used to

8

Figure 3.1: IP Packet Structure: Green coloured fields are those which are used in previ-
ous implementation.

guide the selection of the actual service parameters when transmitting a datagram

through a particular network. The major choice is a three way tradeoff between

low-delay, high-reliability, and high-throughput.

• Total Length(16 bits): Total Length is the length of the datagram, measured in

octets, including internet header and data. This field allows the length of a data-

gram to be up to 65,535 octets. Such long datagrams are impractical for most hosts

and networks. All hosts must be prepared to accept datagrams of up to 576 octets

(whether they arrive whole or in fragments).

• Flags(3 bits): Various Control Flags.

• Fragment Offset(13 bits): This field indicates where in the datagram this fragment

belongs. The fragment offset is measured in units of 8 octets (64 bits). The first

fragment has offset zero.

• Time to Live(8 bits): This field indicates the maximum time the datagram is allowed

to remain in the internet system. If this field contains the value zero, then the

datagram must be destroyed.

• Protocol(8 bits): This field indicates the next level protocol used in the data portion

of the internet datagram.

9

Figure 3.2: IP flags

• Header Checksum(16 bits): of checksum of the header is inserted into this field.

Since some header fields change (e.g., time to live), this is recomputed and verified

at each point that the internet header is processed.

• Source Address(32 bits): The source address.

• Destination Address(32 bits): The destination address.

• Options(variable): The options may appear or may not appear in datagrams. They

must be implemented by all IP modules (host and gateways). What is optional is

their transmission in any particular datagram, not their implementation.

10

3.2 IP Options

When a packet is sent to the IP layer, then it normally includes all required information

in the packet’s protocol header. However, there could be times when packets require

additional information in the protocol header for example, for diagnostics purposes or if

a packet’s path across the Internet is specified before it is sent. For these purposes, an

Option field with variable length can be added to each IP packet header.

The Option field can take one or several packet options, where an option can be given

in either of two formats [17]:

1. Single byte options: One byte options field which describes only the option type.

The length of these options is always exactly one byte.

2. Multi byte options: The first byte includes the option type and the second byte

contains the length of this packet option. The following bytes include the actual

data of that option.

Following figure lists all IP packet options defined in RFC 791 [20], including their

lengths and their defined option numbers and option classes. There are four option

classes in total but only two are currently used. Option class 0 includes packet options

for control and management; option class 2 includes debugging and measurement options.

The option classes 1 and 3 are reserved for future IP packet-option classes.

11

Figure 3.3: Defined IP packet options

• End of Option List : This packet option marks the end of a series of options; it

is appended to the last packet option and must never be between any other pair of

options.

Figure 3.4: End of Options List

12

• No operation : No Operation can be between any two packet options, for example

to let the second option begin at a 32-bit boundary.

Figure 3.5: No Operation

• Security : It comprises a total of 11 bytes. The Security option allows end systems

to send security parameters or define own (controllable) groups of communication

partners, which want to exchange IP packets in isolation from all other traffic. The

two-byte Security field can be used to state 16 security levels for an IP packet; of

these, the original RFC 791 defines eight levels, including Unclassified, Confidential,

Restricted, Secret or Top Secret. The other security levels are reserved for future

use.

Figure 3.6: Security bit sequence

• Loose Source Routing : This option is used to specify all routers an IP packet

has to visit on its way across the network. In addition, it accepts data about the

packet’s path. The third byte includes a pointer to the address of the next router

that the packet has to pass.

Figure 3.7: Loose Source Routing bit sequence

13

• Strict Source Routing : The Strict Source Routing option differs in only one

point from the Loose Source Routing option: The packet may pass exactly those

routers specified in the Route Data list.As with the previous option, if fragmentation

is required, then the Strict Source Routing option has to be copied in each single

fragment, which means that One is in the first position of this option.

Figure 3.8: Strict Source Routing bit sequence

• Record Route : The Record Route option can be used to register the addresses

of all intermediate systems an IP packet will pass on its way to the destination.

The third byte includes a pointer to the field that is to accept the next address.

Figure 3.9: Record Route bit sequence

• Stream Identifier : This option enables the transport of SATNET Stream Iden-

tifiers across the Internet. The Stream Identifier packet option is always 4 bytes

long and has to be copied to all fragments, if fragmentation is used. However, this

option currently has no practical use.

Figure 3.10: Stream Identifier bit sequence

• Internet Timestamp : This option can be used to store time stamps of selected

or all network nodes. A 4-bit flag determines the data to be stored here, and it can

take either of the following values:

– 0 – time stamps only, stored in consecutive 32-bit words,

14

– 1 – each timestamp is preceded with internet address of the registering entity,

– 3 – the internet address fields are prespecified. An IP module only registers

its timestamp if it matches its own address with the next specified internet

address.

Figure 3.11: Internet Timestamp bit sequence1

3.3 Approach

The objective is to hide information in addition to make the use of unused options field

of IP header and to securely transmit the data. As discussed in section literature survey,

we can use IP identification field and Do Not Fragment bit of IP header, if and only if

fragmentation does not occur. Unfortunately we are not sure whether fragmentation will

occur or not. In this design we will neither hide data in the identification field of IP nor in

the offset field but, we will hide our data in the options field of the IP header. Resulting

in a situation in which we do not have to bother whether the packet will be fragmented

or not. Secondly options field is of the variable length in which maximum 40 bytes can

be used. So we can send good amount of data instead of few bytes.

Most of the times IP options field is not used. But there could be times when packets

require additional information in the protocol header for diagnostics purposes or if a

packet’s path across the Internet is specified before it is sent.In that case options field

will be included.

So there are two cases:

1. Options will be included

2. Options will not be included

15

Following are the five approaches that can be considered.

• Approach-I : Use of End of options field Here we will make use of End of

options list field as shown in the following figure.

Figure 3.12: Use of End of options field-1

In first case we have set value of ihl field to its actual value. Receiver will search for

the sequence 0/10000000. After this sequence hidden data will be there. But the

problem with this approach is intruder will easily read our data. Because normally

after end of options field there will be no operation field to maintain 32 bit boundry.

Here after end of options sequence we are sending hidden data so intruder easily

conclude that there is something in the header.

Figure 3.13: Use of End of options field-2

In second case we set value of ihl field to 5. In this case intruder will not be able

16

to conclude that there is something in the packet. But intermediate routers will

not be able to read data of options field. This will cause problem in cases when we

have used strict source routing, loose source routing, etc.

• Approach-II : Use of specific bit sequence To solve the problem of previous

approach we have used specific bit sequence as shown in the following figures.

Figure 3.14: Use of specific bit sequence-1

Figure 3.15: Use of specific bit sequence-2

Here, intermediate routers will be able to read header correctly. We will use spe-

cific bit sequence(e.g. 00000100). So that receiver can understand by reading this

sequence that there is hidden data in the header. But it may be possible that same

17

sequence will be there in TCP header as shown in second case. So receiver will

misinterpret this packet. Here receiver will not be able to distinguish which packet

has hidden data and which does not have.

• Approach-III : Use of Code bits of IP options field

Following figure shows the format of code bits.

Figure 3.16: Format of code field of IP options

Here, the class field which of 2 bits can have 4 values.

00 - datagram control

10 - Debugging and Management

Other two values 01 and 11 are unused. So we can set 11 - for our hidden data as

shown in the following figure.

Figure 3.17: Use of Code bits of IP options field

18

So in sequence 011 - - - - -, 011 will tell the receiver there is hidden data. And

remaining five bits will specify the length of the hidden data. But by reading 011

- - - - - sequence intruder can easily conclude that there is something abnormal in

the header.

• Approach-IV : Use of Identification field with same value for each packet

Identification field is of 16 bits. It is the random number generated by sender. For

each and every packet in which sender wants to send hidden information sender can

set this field to some value(e.g. 593). When receiver get the packet it will read this

field. If it is 593 receiver will conclude that hidden data is there in the messsage.

Length of the hidden field is specified by the length field which is of 1 byte.

Figure 3.18: Use of Identification field-1

In normal cases value of identification field increases by 1 for each packet but in

our case we copy same value in identification field. Since for each and every packet

identification field is same. By observing large number of packets from sender to

the receiver intruder will get an idea that there is something wrong in the packet.

By analysis of those packets he will be able to get our pattern.

19

Following table describes the summary of all the previous approaches.

Table 3.1: Summary of Approaches
Approach Description Problem

Approach-1(a) Use of End of options Intruder will identify
field with actual ihl value that there is something

hidden in the header.
Approach-1(b) Use of End of options Intermediate routers will

field with ihl value 5 not be able to read
the complete header.

Approach-2 Use of specific code Receiver will not be able
sequence to identify the packets with

or without hidden data.
Approach-3 Use of Class bits Intruder will identify

of the options field that there is something
hidden in the header.

Approach-4 Use of Identification Intruder can find the
field the pattern because same

value used in all packets.

• Approach-V : Use Of Identification Field with different value for each

packet

The problem in the previous approach can be eliminated if we choose different value

of identification field for each packet. We will divide this field in two parts as shown

in the figure 3.19.

Here the first part will be same for each packet(e.g.00111000). But for the first

packet of the sequence random number will be generated for the remaining part.

And that number will be incremented by 1 for each of the following packet. So

each packet will have different value in the identification field. Receiver will search

for 00111000 sequence. If it is there in the packet it means packet contains hidden

data. So receiver will search for the hidden data in the packet.

Since each and every packet has different value for the identification field intruder

will not have any idea that there is something hidden in the header.

Following two sections shows you the flowchart of processing at sender side and pro-

cessing at receiver side when packet comes to the IP layer.

20

Figure 3.19: Use of Identification field-2

21

3.4 Processing at Sender side using Approach-V

Figure 3.20 shows the flowchart of what happens when sender wants to send packets using

approach-V.

As shown in the figure when packet comes from transport layer to IP layer sender will

add standard IP header which is of 20 bytes.Then two possibilities are there:

• Sender may send options data. If sender wants to send options data then ihl field

will be updated according to the number of bytes added in the header. Maximum

value of ihl field is 15. So if after addition of options data value of ihl becomes 15

then sender can not send hidden data. If it is less then 15 then sender can send

hidden data.

• Sender may not send options data. Here, again there are two possibilities based

on whether sender wants to send hidden data or not. If he does not want to send

hidden data then packet will be forwarded to the lower layer. If sender wants to

send hidden data then he will specify length(nbyte) of hidden data at (ihl*4+1)th

byte of the IP header. Then sender reads nbyte of data from the file and insert it

into IP header as shown in figure 3.19.

22

Figure 3.20: Processing at Sender side

23

3.5 Processing at Receiver side using Approach-V

Figure 3.21 shows the flowchart of what happens when receiver receives the packet.

• First of all when packet comes from the data link layer to the IP layer receiver will

check ihl field of IP header. If it is greater than 5 it means that options data is

there. If it is equal to 5 no options data is there in the packet.

• Then receiver will read first 8 bits of identification field. If hexadecimal value of first

8 bits of identification field is 38(in hexadecimal), then it means that hidden data

is there in the packet. Receiver can get length(nbyte) of hidden data by reading

(id*4+1)th byte of IP header. Receiver will write nbyte of data in the file and

forward this packet to the transport layer.

• If hexadecimal value of first 8 bits of identification field is not equal to 38, then

it means that no hidden data in the packet and packet will be forwarded to the

transport layer as shown in the figure 3.21.

24

Figure 3.21: Processing at Receiver side

25

Chapter 4

Linux Kernel

4.1 Linux Kernel structure Overview

The Linux kernel is composed of five main subsystems [22]:

1. The Process Scheduler (SCHED) is responsible for controlling process access to the

CPU. The scheduler enforces a policy that ensures that processes will have fair

access to the CPU, while ensuring that necessary hardware actions are performed

by the kernel on time.

2. The Memory Manager (MM) permits multiple process to securely share the ma-

chine’s main memory system. In addition, the memory manager supports virtual

memory that allows Linux to support processes that use more memory than is avail-

able in the system. Unused memory is swapped out to persistent storage using the

file system then swapped back in when it is needed.

3. The Virtual File System (VFS) abstracts the details of the variety of hardware

devices by presenting a common file interface to all devices. In addition, the VFS

supports several file system formats that are compatible with other operating sys-

tems.

4. The Network Interface (NET) provides access to several networking standards and

a variety of network hardware.

5. The Inter-Process Communication (IPC) subsystem supports several mechanisms

for process-to-process communication on a single Linux system.

26

Figure 4.1: Kernel Subsystem Overview

This diagram emphasizes that the most central subsystem is the process scheduler: all

other subsystems depend on the process scheduler since all subsystems need to suspend

and resume processes. Usually a subsystem will suspend a process that is waiting for a

hardware operation to complete, and resume the process when the operation is finished.

For example, when a process attempts to send a message across the network, the network

interface may need to suspend the process until the hardware has completed sending the

message successfully. After the message has been sent (or the hardware returns a failure),

the network interface then resumes the process with a return code indicating the success

or failure of the operation. The other subsystems (memory manager, virtual file system,

and inter-process communication) all depend on the process scheduler for similar reasons.

27

4.2 The Linux Source Tree

Linux source code is usually in the /usr/src directory (if installed). Otherwise it should

be manually installed. Next section describes the steps to download and install kernel

source code.This is an overview of the Linux source directory structure (not all branches

are shown):

• arch - architecture specific code, by processor

– i386 - code for Intel processors (including 486 and Pentium lines)

∗ boot - location of newly compiled kernels

• drivers - code for drivers of all sorts

– block - block device drivers (e.g., hard drives)

– cdrom - CD ROM device drivers

– net - network device drivers

– pci - PCI bus drivers

• fs - code for different file systems (EXT2, MS-DOS, etc.)

• include - header files used throughout the code

– asm asm-i386 - processor dependent headers

– config - general configuration headers

– linux - common headers

– net - networking headers

• kernel - code for the kernel specific routines

• lib - code for errors, strings, and printf

• mm - code for memory management

• modules - object files and references for the kernel to load as required

• net - code for networking

28

– core - protocol independent code

– ipv4 - code specific to IPv4

– packet - protocol independent packet code

– sched - code for scheduling network actions

29

4.3 Sending Messages

This chapter presents the sending side of message trafficking. It provides an overview of

the process, examines the layers packets travel through, details the actions of each layer,

and summarizes the implementation code within the kernel.

4.3.1 Overview

An outgoing message begins with an application system call to write data to a socket.

The socket examines its own connection type and calls the appropriate send routine

(typically INET). The send function verifies the status of the socket, examines its protocol

type, and sends the data on to the transport layer routine (such as TCP or UDP). This

protocol creates a new buffer for the outgoing packet (a socket buffer, or struct skbuff

skb), copies the data from the application buffer, and fills in its header information (such

as port number, options, and checksum) before passing the new buffer to the network

layer (usually IP). The IP send functions fill in more of the buffer with its own protocol

headers (such as the IP address, options, and checksum). It may also fragment the packet

if required. Next the IP layer passes the packet to the link layer function, which moves

the packet onto the sending device’s xmit queue and makes sure the device knows that

it has traffic to send. Finally, the device (such as a network card) tells the bus to send

the packet.

30

Figure 4.2: Message Transmission [12]

31

4.3.2 Processing At Sender Side

Writing to a Socket

• Write data to a socket (application)

• Fill in message header with location of data (socket)

• Check for basic errors - is socket bound to a port? can the socket send messages?

is there something wrong with the socket?

• Pass the message header to appropriate transport protocol (INET socket)

Creating a Packet with TCP

• Check connection - is it established? is it open? is the socket working?

• Create a packet buffer

• Copy the payload from user space

• Add the packet to the outbound queue

Wrapping a Packet in IP

• Look up route to destination (if necessary - TCP)

• Fill in the packet IP header

• Copy the transport header and the payload from user space

• Send the packet to the destination route’s device output funtion

Transmitting the Packet

• Put the packet on the device output queue

• Wake up the device

• Wait for the scheduler to run the device driver

• Test the medium (device)

• Send the link header

• Tell the bus to transmit the packet over the medium

32

4.3.3 List Of Functions

Following table gives information about few functions that are invoked when packet is

sent.Table shows the function name , What they do and location of those functions in

the linux kernel.

Table 4.1: Functions invoked during message transmission
Function Name What they do? Location in

the Kernel

ssock write() creates and fills in message header
with data size/addresses returns sock sendmsg() net/socket.c

sock sendmsg() calls scm sendmsg() [socket control message] net/socket.c
tcp do sendmsg() waits for connection, if necessary

adds data to waiting packet and checks
window status calls csum and copy from user()
to copy packet and do checksum
calls tcp send skb() net/socket.c

tcp send skb() calls skb queue tail() to add packet to queue
calls tcp transmit skb() net/ipv4/tcp output.c

tcp transmit skb() builds TCP header and adds checksum
checks ACKs,SYN net/ipv4/tcp output.c

tcp v4 sendmsg() checks for IP address type, opens connection,
port addresses net/ipv4/tcp ipv4.c

ip build xmit calls sock alloc send skb() to establish
memory for skb sets up skb header net/ipv4/ip output.c

ip queue xmit() looks up route builds IP header
fragments if required adds IP checksum
calls dev queue xmit() net/ipv4/ip output.c

dev queue xmit() if device has a queue
calls enqueue() to add packet to queue
calls qdisc wakeup() to wake device
else calls hard start xmit() net/core/dev.c

hard start xmit() tests to see if medium is open
sends header tells bus to send packet drivers/net/DEVICE.c

33

4.4 Receiving Messages

This chapter presents the receiving side of message trafficking. It provides an overview of

the process, examines the layers packets travel through, details the actions of each layer,

and summarizes the implementation code within the kernel.

4.4.1 Overview

An incoming message begins with an interrupt when the system notifies the device that a

message is ready. The device allocates storage space and tells the bus to put the message

into that space. It then passes the packet to the link layer, which puts it on the backlog

queue, and marks the network flag for the next “bottom-half” run.

The bottom-half is a Linux system that minimizes the amount of work done during

an interrupt. Doing a lot of processing during an interrupt is not good precisely be-

cause it interrupts a running process; instead, interrupt handlers have a “top-half” and

a “bottom-half”. When the interrupt arrives, the top-half runs and takes care of any

critical operations, such as moving data from a device queue into kernel memory. It then

marks a flag that tells the kernel that there is more work to do - when the processor has

time - and returns control to the current process. The next time the process scheduler

runs, it sees the flag, does the extra work, and only then schedules any normal processes.

When the process scheduler sees that there are networking tasks to do it runs the

network bottom-half. This function pops packets off of the backlog queue, matches them

to a known protocol (typically IP), and passes them to that protocol’s receive function.

The IP layer examines the packet for errors and routes it; the packet will go into an

outgoing queue (if it is for another host) or up to the transport layer (such as TCP or

UDP). This layer again checks for errors, looks up the socket associated with the port

specified in the packet, and puts the packet at the end of that socket’s receive queue.

Once the packet is in the socket’s queue, the socket will wake up the application

process that owns it (if necessary). That process may then make or return from a read

system call that copies the data from the packet in the queue into its own buffer. (The

process may also do nothing for the time being if it was not waiting for the packet, and

get the data off the queue when it needs it.)

34

Figure 4.3: Message Reception [12]

35

4.4.2 Processing At Receiver Side

• Receiving a Packet

– Wake up the receiving device (interrupt)

– Test the medium (device)

– Receive the link header

– Allocate space for the packet

– Tell the bus to put the packet into the buffer

– Put the packet on the backlog queue

– Set the flag to run the network bottom half when possible

– Return control to the current process

• Running the Network “Bottom Half”

– Run the network bottom half (scheduler)

– Send any packets that are waiting to prevent interrupts (bottom half)

– Loop through all packets in the backlog queue and pass the packet up to its

Internet reception protocol - IP

– Flush the sending queue again

– Exit the bottom half

• Unwrapping a Packet in IP

– Check packet for errors - too short? too long? invalid version? checksum

error?

– Defragment the packet if necessary

– Get the route for the packet (could be for this host or could need to be for-

warded)

– Send the packet to its destination handling routine (TCP or UDP reception,

or possibly retransmission to another host)

• Accepting a Packet in TCP

36

– Check sequence and flags; store packet in correct space

– If already received, send immediate ACK and drop packet

– Determine which socket packet belongs to

– Put packet into appropriate socket receive queue

– Wake up and processes waiting for data from that socket

• Reading from a Socket

– Wake up when data is ready (socket)

– Call transport layer receive function

– Move data from receive queue to user buffer (TCP/UDP)

– Return data and control to application (socket)

37

4.4.3 List of Functions

Following table gives information about few functions that are invoked when packet is

recieved.Table shows the function name , What they do and location of those functions

in the linux kernel.

Table 4.2: Functions invoked during message reception
Function Name What they do? Location in

the Kernel

DEVICE rx() performs status checks
to make sure it should be receiving
calls dev alloc skb() to reserve space for packet
gets packet off of system bus drivers/net/DEVICE.c

ip rcv() examines packet for errors:invalid checksum
invalid length (too short or too long)
and incorrect version (not 4)
defrags packet if necessary
calls ip route input() to route packet net/ipv4/ip input.c

tcp recvmsg() checks for errors
wait until there is at least one packet available
calls cleanup rbuf() to release memory
and send ACK if necessary net/ipv4/tcp.c

tcp data() calls tcp data queue() to queue packet net/ipv4/tcp input.c
tcp data queue() if packet is out of sequence:

if old, discards immediately
else calculates appropriate storage location
calls skb queue tail() to put packet
in socket receive queue net/ipv4/tcp input.c

inet recvmsg() extracts pointer to socket sock
checks socket to make sure it is accepting net/ipv4/af inet.c

sock read() sets up message headers
returns sock recvmsg() with result of read net/socket.c

38

Chapter 5

Implementation and Results

5.1 Implementation Setup

For implementation fedora-10, kernel version-2.6.27 and i686 architecture has been used.

To implement approach-V few changes in TCP/IP stack in linux kernel has been made

and programs at sender side and receiver side are also developed. After making changes

to the linux kernel it is necessary to build and install the kernel. Following subsections

give the details of changes made in kernel, steps to download and install the kernel and

steps to recompile the kernel.

5.1.1 Changes made in TCP/IP stack of linux kernel

Following files in the TCP/IP stack has been modified.

• /kernel-2.6.27/linux-2.6.27.i686/include/linux/ip.h

This file contains the structure of IP header. Modification to that structure has

been made to include our data in the options field and to divide identification field

in two parts.

• /kernel-2.6.27/linux-2.6.27.i686/include/net/ip.h

This file contains declaration and definition of functions which are used at network

layer when packet is dent or received. Here, we have declared our function named

ip my ident() which uses our logic of identification field.

• /kernel-2.6.27/linux-2.6.27.i686/net/ipv4/inetpeer.c

39

This file contains definition of our function named ip my ident(). This function

contains the main logic of identification field.

• /kernel-2.6.27/linux-2.6.27.i686/net/ipv4/ip_output.c

This file will be executed when packet comes to IP layer from transport layer. In

this file ip build and send pkt() is there which assigns values to the IP header field.

Here, in this function we have called our function named ip my ident().

• /kernel-2.6.27/linux-2.6.27.i686/net/ipv4/ip_input.c

This file will be executed when packet comes from data link layer to IP layer. This

file contains ip rcv function which is main IP receive routine. Few changes has been

made to implement our approach.

5.1.2 Steps to download and install kernel source code

There are 3 basic steps involved in installing the kernel source [6].

1. Download the desired kernel source (matching your current kernel if required)

2. Installing the SRC.RPM package

3. Using rpmbuild to prepare the source into a usable state

Following two commands will download the latest kernel for your fedora.

• yum install yum-utils

• yumdownloader –source kernel

• Kernel will be stored in root directory.

ex:for fedora 10 /root/kernel-2.6.27.41-170.2.117.fc10.src.rpm

• Then enter following command.

rpm -ivh kernel-2.6.27.41-170.2.117.fc10.src.rpm

• It may show you that tools like xmlto etc are missing you can downlaod it using

normal yum command

for ex: yum install xmlto

40

• After installing that again enter following command.

rpm -ivh kernel-2.6.27.41-170.2.117.fc10.src.rpm

• Code will be saved in /root/rpmbuild/BUILD/kernel-2.6.27/linux-2.6.27.noarch/net

5.1.3 Steps to recompile kernel

After getting the source and installing kernel following are the steps for recompilation of

linux kernel [8]:

• Prepare the kernel source tree using the following commands:

– cd ~/rpmbuild/SPECS

– rpmbuild -bp --target=$(uname -m) kernel.spec

– The kernel source tree is now located in the

~/rpmbuild/BUILD/

kernel-2.6.27.41-170.2.117.fc10/linux-2.6.27.41-170.2.117.fc10.<arch>

directory.

• Configure kernel options:

– Change to the kernel source tree directory:

cd ~/rpmbuild/BUILD/kernel-2.6.27.41-170.2.117.fc10/linux-2.6.27.41-170.2.117.fc10.$arch/

– Select the desired configuration file from

~/rpmbuild/BUILD/kernel-2.6.$ver/linux-2.6.$ver.$arch/configs.

– Copy the desired config file to

to ~/rpmbuild/BUILD/kernel-2.6.$ver/linux-2.6.$ver.$arch/.config:

cp configs/<desired-config-file> .config

• Run the following command.

make oldconfig

41

Then run the following command, selecting and saving the desired kernel options

from the text-based UI:

make menuconfig

For GUI run the following command:

make xconfig

Figure 5.1: GUI for Linux kernel Configuration

• Then Build the kernel using following command: To build all kernel flavors:

rpmbuild -bb --target=‘uname -m‘kernel.spec

• Then run the following command to install the kernel. This step actually installs

the new kernel into the running system.

42

Figure 5.2: GUI for Linux kernel Configuration

su -c "rpm -ivh --force

$HOME/rpmbuild/RPMS/<arch>/kernel-<version>.<arch>.rpm"

43

5.2 Results

Using approach-V we have developed programs at sender side and receiver side. In this

section results of those programs which has been implemented using approach-V has been

shown. We have used RSA encryption algorithm to provide security to our data.

• Program at sender side sends data as shown in the figure 3.19 using approach-V. One

file contains confidential data which sender wants to send hiddenly and another file

contains non confidential data which sender wants to send in the payload. Sender

will specify number of hidden bytes(nbyte) he wants to send hiddenly in each packet

and then sends packets.

• Program at receiver side reads packet data as shown in the figure 3.21 using

approach-V. When packet come to the receiver receiver will check whether hid-

den data is there in the packet or not. If hidden data is there in the packet receiver

will write nbyte of hidden data in the file and data of payload in anothe file. Figure

5.3 shows the snapshot of output of program at receiver side. At the same time

receiver will create one log file which shows all the information about packet. Log

file contains details of IP header,hidden data in the options field, TCP header and

data in the payload. Figure 5.4 shows the log file. Figure 5.5 shows the log file for

encrypted data. Here, the IP address of sender is 10.1.3.18 and IP address of the

receiver is 10.1.3.14.

44

Figure 5.3: Output of program at receiver side

45

Figure 5.4: Log file at receiver side

Figure 5.5: Log file at receiver side for encrypted data

46

• I have captured packets sent by sender using sniffer program and two packet sniffing

tools tcpdump and wireshark. Figures 5.6, 5.7, 5.8 shows the output of them

respectively.

Figure 5.6: Output of sniffer program

47

Figure 5.7: Output of tcpdump

• Figure 5.8 shows output of wireshark when sender is 10.1.3.18 which sends hidden

data in IP header using approach-V. Figure 5.9 shows output of wireshark when

sender sends normal packet which does not contain hidden data. From these two

figures we can say that wireshark decodes our packet which contains hidden data

as normal packet which does not contain hidden data. It means that wireshark is

not able to detect that our packet contains hidden data.

48

Figure 5.8: Output of wireshark

Figure 5.9: Output of wireshark

49

Figure 5.10 and 5.11 shows the output of tcpdump and wireshrk for encrypted data.

Figure 5.10: Output of tcpdump for encrypted data

50

Figure 5.11: Output of wireshark for encrypted data

51

• Figure 5.12 shows the output of receiver program when sender sends packets using

Timestamp options. Sender has used 24 bytes for timestamp option. So value of

ihl field is 11(20+24=44/4=11) because total size of IP header is 44 in which 20

bytes of standard header and 24 bytes for timestamp.

Figure 5.12: Output of program at receiver side

• Figure 5.13 and 5.14 shows the output of tcpdump and wireshark respectively when

sender sends hidden data using approach-V with timestamp option.

52

Figure 5.13: Output of tcpdump using Timestamp

53

Figure 5.14: Output of wireshark using Timestamp

54

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation I have proposed an approach to watermark TCP/IP packets. I have

used options field of IP header for that. After implementation and analysis of result

we can say that wireshark and tcpdump is not able to identify that our packet contains

hidden data. Most of the intruders uses wireshark and tcpdump sniffing tools. So we can

say that our approach is secure to transmit hidden data in the IP header from sender to

receiver. So Watermarking in network packets can be used to send hidden information

in the free space of the packet header.

6.2 Future Scope

In this thesis I have proposed method to send text files in the options field of IP header.

Different compression and authentication algorithms can also be integrated with the

proposed scheme. Proposed approach can be extended to send any kind of multimedia

data like images, audio, video.

55

Appendix A

List of Publication

Maitrik Shah, Prof. Samir B. Patel, “Network based packet watermarking us-

ing TCP/IP protocol suite”, of the 2nd International Conference on Current Trends

in Technology - ‘NUiCONE’, organized by Institute of Technology, Nirma University,

Ahmedabad, India, 8-10 December 2011.

56

References

[1] Craig H. Rowland “Covert Channels in the TCP/IP protocol suite”, Techniques for

Data Hiding IBM Systems Journal Vol 35, 2003.

[2] Enrique Cauich, Roberto Gmez, Ryouske Watanabe, “Data Hiding in Identifica-

tion and Offset IP fields”, Proc. 5th Int’l. School and Symp. Advanced Distributed

Systems (ISSADS),Jan.2005 .

[3] Mrs. S.S.Sherekar, Dr. V.M.Thakare, Dr.Sanjeev Jain, “Role of Digital Watermark in

e-governance and e-commerce”, IJCSNS International Journal of Computer Science

and Network Security, VOL.8 No.1, January 2008.

[4] Theodore G. Handel, Maxwell T Sanford, “Data hiding in the OSI Network

model”,First International workshop on Information Hiding, May-June 1996..

[5] Wojciech Mazurczyk and Krzysztof Szczypiorski, “Steganography in Handling Over-

sized IP Packets”, Proc. Int. Conf. Multime. Inf. Netwo. Security MINS-2009.

[6] http://www.g-loaded.eu/2005/12/14/the-complete-fedora-kernel-headers/

[7] http://forums.fedoraforum.org/archive/index.php/t-101436.html.

[8] http://www.fedoraproject.org/wiki/Building-a-custom-kernel

[9] http://www.6test.edu.cn/~lujx/linux-networking/

[10] K. Ahsan and D. Kundur,“Practical data hiding in TCP/IP”, Proc. ACM Workshop

on Multimedia Security, 2002.

[11] Zander S., Armitage G., Branch P.,“A Survey of Covert Channels and Countermea-

sures in Computer Network Protocols”, IEEE Communications Surveys Tutorials,

3rd Quarter 2007, Volume: 9, Issue: 3, ISSN: 1553-877X.

57

http://www.g-loaded.eu/2005/12/14/the-complete-fedora-kernel-headers/
http://forums.fedoraforum.org/archive/index.php/t-101436.html.
http://www.fedoraproject.org/wiki/Building-a-custom-kernel
http://www.6test.edu.cn/~lujx/linux-networking/

[12] http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html

[13] R M Goudar, S J Wagh, M D Goudar, “Secure Data Transmission using Steganog-

raphy Based Data Hiding in TCP/IP”, International Conference and Workshop on

Emerging Trends in Technology (ICWET) TCET, Mumbai, India, 2011.

[14] http://www.linuxhowtos.org/C_C++/socket.htm

[15] Peter Jay Salzman, Ori Pomerantz, “The Linux Kernel Module Programming

Guide”, 2004.

[16] Brian Beej Jorgensen Hall, “Beej’s Guide to Network Programming Using Internet

Sockets”, 2009.

[17] Behrouz A. Forouzan,“TCP/IP Protocol Suite”, 3rd edition, TMH publications,

May-2005 .

[18] W. Richard Stevens, Gary R. Wright,“TCP/IP Illustrated: The Protocols”, volume-

1, Addison-Wesley Professional

[18] W. Richard Stevens, Gary R. Wright,“TCP/IP Illustrated: Implementation”,

volume-2, Addison-Wesley Professional

[20] http://www.ietf.org/rfc/rfc791.txt

[21] Mansfied, K Ohta, Y. Takei, N. Kato and Y. Nemoto “Towards trapping wily in-

truders in large computer networks” ,In proceedings of the second annual workshop

in recent advances in intrusion detection(RAID) west lafayette, IN, sept-1999

[22] http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/

LinuxKernelOverview.html

58

http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html
http://www.linuxhowtos.org/C_C++/socket.htm
http://www.ietf.org/rfc/rfc791.txt
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/LinuxKernelOverview.html
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/LinuxKernelOverview.html

Index

Abstract, v

Acknowledgements, vi

Basic Model Of Watermarking, 3

Certificate, iv

Declaration, iii

Destination Address, 10

End of Options List, 12

Fragment Offset, 9

Header Checksum, 10

Implementation Setup, 39

Internet Timestamp, 14

IP Options, 11

IP Packet Structure, 8

Linux Kernel structure Overview, 26

Loose source routing, 13

No operation, 13

Options, 10

Packet Watermarking, 2

Previous Work, 5

Protocol, 9

Record route, 14

Results, 44

Security, 13

Source Address, 10

Stream Identifier, 14

Strict source routing, 14

The Linux Source Tree, 28

Thesis Organization, 4

Total Length, 9

TTL, 9

Version, 8

Watermarking, 1

59

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	Project Introduction
	Watermarking
	Packet Watermarking
	Objective
	Basic Model Of Watermarking
	Thesis Organization

	Literature Survey and Important observations
	Previous Work
	Problems

	Our Approach And Method
	IP Packet Structure
	IP Options
	Approach
	Processing at Sender side using Approach-V
	Processing at Receiver side using Approach-V

	Linux Kernel
	Linux Kernel structure Overview
	The Linux Source Tree
	Sending Messages
	Overview
	Processing At Sender Side
	List Of Functions

	Receiving Messages
	Overview
	Processing At Receiver Side
	List of Functions

	Implementation and Results
	Implementation Setup
	Changes made in TCP/IP stack of linux kernel
	Steps to download and install kernel source code
	Steps to recompile kernel

	Results

	Conclusion and Future Work
	Conclusion
	Future Scope

	List of Publication
	References
	Index

