Network Based Packet Watermarking
Using TCP/IP Protocol Suite

By

Maitrik Shah
10MCEC15

g NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
AHMEDABAD-382481

MAY 2012

Network Based Packet Watermarking
Using TCP/IP Protocol Suite

Major Project

Submitted in partial fulfillment of the requirements
For the degree of

Master of Technology in Computer Science and Engineering

By
Maitrik Shah
(10OMCEC15)

Guided By
Prof. Samir B. Patel

g NIRMA

UNIVERSITY
INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
AHMEDABAD-382481

MAY 2012

Declaration

[, Maitrik K. Shah, 1I0MCEC15, give undertaking that the Major Project entitled
“Network based packet watermarking using TCP /IP protocol suite” submitted
by me, towards the partial fulfillment of the requirements for the degree of Master of
Technology in Institute of Technology of Nirma University, Ahmedabad, is the original
work carried out by me and I give assurance that no attempt of plagiarism has been made.
I understand that in the event of any similarity found subsequently with any published

work or any dissertation work elsewhere; it will result in severe disciplinary action.

Maitrik Shah

il

Certificate

This is to certify that the Major Project entitled “Network Based Packet Watermarking
Using TCP/IP Protocol Suite” submitted by Maitrik Shah (1I0MCEC15), towards the
partial fulfillment of the requirements for the degree of Master of Technology in Com-
puter Science and Engineering of Nirma University, Ahmedabad is the record of work
carried out by him under my supervision and guidance. In my opinion, the submitted
work has reached a level required for being accepted for examination. The results em-
bodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Prof. Samir B. Patel
Guide, Associate Professor,
Department of C.S.E.,
Institute of Technology,

Nirma University, Ahmedabad.

Prof.D.J.Patel
Professor and Head,
Department of C.S.E;

Institute of Technology,

Nirma University, Ahmedabad.

Dr.S.N.Pradhan

Professor and PG-Coordinator,
Department of C.S.E,

Institute of Technology,

Nirma University, Ahmedabad.

Dr.K.Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad.

v

Abstract

Watermarking is defined as the art and science of embedding information in some cover.
It takes one piece of information and embeds it within another. Mostly digital data is used
for embedding. In this paper, we present a way to embed this digital information into the
data packet. TCP/IP packets are transmitted over a network in large quantity. Within
TCP/IP header there are number of fields that are not used for normal transmission or
are “optional” fields which can be used by the sender of the datagrams. An analysis of
the areas of a typical IP header shows that there are few fields which are either unused
or optional reveals many possibilities where data can be stored and transmitted. Options
field of TP header is one of those fields. By embedding information in the options field of
IP packet, we can make use of unused field of the IP header and can transmit our digital
data within TCP/IP packets from sender to the receiver. One advantage of transmitting
data in the header is that intruders will not have any idea that data is transmitted in
the header, intruders will concentrate only on the payload of the packet. In order to
implement this idea we will make our packet(which contains hidden data)to look like as
normal packet(which does not contain hidden data) so that intruders will not be able to
identify that our packet contains hidden data. Encryption and compression however are
optional in performing watermarking, but by making use of such techniques the security
in the design can be incorporated. Challenges like loss of packets and many others are
also handled in the design.

Index Terms - Watermarking, Steganography, Packet-Watermarking,IP options,Linux

Kernel.

Acknowledgements

My deepest thanks to Prof. Samir B. Patel, Associate Professor, Department of Com-
puter Science and Engineering, Institute of Technology, Nirma University, Ahmedabad
the Guide of the project that I undertook for giving his valuable inputs and correcting
various documents of mine with attention and care. He has taken the pain to go through

the project and make necessary amendments as and when needed.

My deep sense of gratitude to Dr. S.N.Pradhan, Professor and PG-Coordinator of
Department of Computer Engineering, Institute of Technology, Nirma University, Ahmed-
abad for an exceptional support and continual encouragement throughout part one of the

Major project.

I also express my profound gratitude to Prof. Zunnun Narmawala, Prof. Vijay
Ukani and Prof. Priyanka Sharma for their timely suggestions, continuous support

and help to solve my doubts.

I would like to thanks Dr. Ketan Kotecha, Hon’ble Director, Institute of Technology,
Nirma University, Ahmedabad for his unmentionable support, providing basic infrastruc-

ture and healthy research environment.

I would also thank my Institution, all my colleagues and all my faculty members in
Department of Computer Science and my colleagues without whom this project would
have been a distant reality. Last, but not the least, no words are enough to acknowledge
constant support and sacrifices of my family members because of whom I am able to

complete my dissertation work successfully.

- Maitrik Shah
10MCEC15

vi

Contents

Declaration

Certificate

Abstract

Acknowledgements

List of Tables

List of Figures

Abbreviations

1

Project Introduction

1.1
1.2
1.3
1.4
1.5

Watermarking
Packet Watermarking
Objective
Basic Model Of Watermarking
Thesis Organization

Literature Survey and Important observations

2.1
2.2

Previous Work
Problems.

Our Approach And Method

3.1
3.2
3.3
3.4
3.5

IP Packet Structure
IPOptions
Approach
Processing at Sender side using Approach-V .
Processing at Receiver side using Approach-V

Linux Kernel

4.1
4.2
4.3

4.4

Linux Kernel structure Overview
The Linux Source Tree
Sending Messages
4.3.1 Overview
4.3.2 Processing At Sender Side
4.3.3 List Of Functions
Receiving Messages

vil

iii

v

vi

1x

B~ W NN~

ot Ot

4.4.1 Overview

4.4.2 Processing At Receiver Side

4.4.3 List of Functions

5 Implementation and Results
5.1 Implementation Setup

5.1.1 Changes made in TCP/IP stack of linux kernel
5.1.2 Steps to download and install kernel source code

5.1.3 Steps to recompile kernel
52 Results.

6 Conclusion and Future Work
6.1 Conclusion
6.2 Future Scope

A List of Publication
References

Index

viil

39
39
39
40
41
44

55
25
55

56

58

58

List of Tables

3.1 Summary of Approaches

4.1 Functions invoked during message transmission
4.2 Functions invoked during message reception

X

List of Figures

1.1

2.1
2.2

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Basic Model Of Watermarking 3
Steganographic method examplel 6
Steganographic method example2 7
IP Packet Structure: Green coloured fields are those which are used in

previous implementation.o 9
IP flags 10
Defined IP packet options L 12
End of Options List 12
No Operation 13
Security bit sequence oL 13
Loose Source Routing bit sequence 13
Strict Source Routing bit sequence 14
Record Route bit sequence 14
Stream Identifier bit sequence L. 14
Internet Timestamp bit sequencel 15
Use of End of options field-1 16
Use of End of options field-2, 16
Use of specific bit sequence-1 17
Use of specific bit sequence-2 17
Format of code field of IP options 18
Use of Code bits of IP options field 18
Use of Identification field-1 19
Use of Identification field-2 21
Processing at Sender side oL 23
Processing at Receiver side oL 25
Kernel Subsystem Overview 27
Message Transmission [12] Lo o 31
Message Reception [12] o 35
GUI for Linux kernel Configuration 42
GUI for Linux kernel Configuration 43
Output of program at receiver side 45
Log file at receiver side 46
Log file at receiver side for encrypted data 46
Output of sniffer program 47
Output of tepdump 48
Output of wireshark oo 49

5.9 Output of wireshark oo 49

5.10 Output of tcpdump for encrypted data 50
5.11 Output of wireshark for encrypted data 51
5.12 Output of program at receiver side 52
5.13 Output of tcpdump using Timestamp 53
5.14 Output of wireshark using Timestamp 54

x1

Abbreviations

DF
DOD
ihl
IP
IPC
IPv4
MM
NET
SCHED
TCP
TTL
UDP
VES

Do Not Fragment
Department of Defence

IP header length

Internet Protocol
Inter-process Communication
Internet Protocol Version-4
Memory Manager

Network Interface

Schedular

Transmission Control protocol
Time To Live

User Datagram Protocol

Virtual File System

xii

Chapter 1

Project Introduction

1.1 Watermarking

One of the reasons that intruders can be successful is that most of the information they
acquire from a system is in a form that they can read and comprehend. Intruders may
reveal the information to others, modify it to misrepresent an individual or organization,
or use it to launch an attack or change the ownership, make the copy of it and distribute
it to the others. One solution to this problem is Watermarking.

Watermarking is the technique to embed the information in the carrier medium. The
medium that contains a digital watermark is called a carrier. Carrier medium may be
image, Audio, Video, Network protocols such as TCP, IP, UDP . We can embed informa-
tion in the carrier medium in visible form which is called visible watermark or in invisible
form which is called invisible watermark. We generally do not use digital watermark as
separate file or link. We will embed our digital watermark which is nothing but informa-
tion directly into the carrier medium. We can provide security and confidentiality with
the use of the key. A person who wants to access and modify the embedded watermark
must possess a security key. Without security key embedded watermark can’t be accessed
and modified. Digital watermarking can be characterized by a number of requirements.

The most important are [3]:

e Transparency: The watermark must be imperceptible, image and audio quality

must be unchanged.

e Robustness: Measures, how stable a watermark against alterations of the carrier

medium is.

e Capacity: Describes the amount of information that can be embedded into a carrier

medium by a watermarking algorithm.

e Security: Without knowledge of the secret key, the embedded information may not

be extracted, altered or destroyed without rendering the carrier medium unusable.

e Performance: In real-world systems embedding and retrieval process need to be

sufficiently fast. Depending on the application this can be multiple times real-time.

1.2 Packet Watermarking

Here in this paper, we describe packet watermarking technique by transmitting data
(encrypted) in the options field of TCP/IP packet header. We describe that a more im-
portant problem that has received little attention to date is that of Packet Watermarking.
In Image watermarking we embed our watermarked data in the image. Similarly in packet
watermarking we will embed our information in the packet. And for that we will make
use of header field of IP packet. By embedding information in the options field we can

make use of unused options field of the IP header and can transmit the watermarked data.

1.3 Objective

This project comprehends the following objectives:
(i) To develop secure system for transmitting hidden data.

(ii) To make the use of unused options field of the IP header.

1.4 Basic Model Of Watermarking

Here in this section basic model of watermarking is described. It consists of Carrier
object, Message(we want to send) and secret key which is optional. Carrier object is
also known as cover-object, within which we will hide our message. Basically, the model
for Watermarking is shown on Fig.1 [3]. Message is the confidential information that
sender wants to send to the receiver. It can be plain text(if not encrypted), cipher text (if
encrypted), other image, or anything that can be embedded in a bit stream such as a
copyright mark, a covert communication, or a serial number. Secret-key is also known as
Watermark-key, which ensures that only recipient who know the corresponding decoding
key will be able to extract the message from a cover-object. The cover-object with the

secretly embedded message is then called the Watermarked-object.

Cover Object,
o ——

Watermarked

Message, f(C.M.K I Chbject,
] (C.MK) | W

v

K:y. ;

Figure 1.1: Basic Model Of Watermarking

To recover message from the watermarked object receiver requires the cover-object
itself and a corresponding decoding key if a Watermark-key was used during the encoding
process.

To recover message from the watermarked object receiver requires the cover-object
itself and a corresponding decoding key if a Watermark-key was used during the encoding
process.

There are several suitable carriers below to be the cover-object [3]:
1. Network Protocols such as TCP, IP and UDP

2. Audio that using digital audio formats such as wav, midi, avi, mpeg, mpi and voc.

3. File and Disk

4. Images file

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2: Literature Survey, This section describes different methods on how hidden
data can be transmitted across the network. It also describes the problems in those

methods.

Chapter 3: Our Approach And Method, This section includes the details of different
approaches about how packet watermarking can be used to send hidden data using

unused options field of the IP header.

Chapter 4: Linuz Kernel, This section includes the details of linux kernel and TCP/IP
stack in linux kernel. It also includes what will happen in TCP/IP stack when

sender sends the packet and receiver receives the packet.

Chapter 5: Implementation and Results, This section includes the flowchart and de-
scription of what happens at sender side and receiver side when packet comes to IP

layer. It also includes snapshots as a result of implementation of our approach.

Chapter 6: Conclusion and Future Work

Chapter 2

Literature Survey and Important

observations

2.1 Previous Work

TCP/IP packet header contains number of fields that are reserved for future use or
unused. So there are many possibilities to transmit hidden data in TCP/IP packet.
Similar approaches have been published in [1],[2],[4],[5].

e In [1] the author has used Identification field of the IP header which is of 16 bits.
It is the random number which is assigned by the sender when the packet is con-
structed. This field is used when fragmentation of the packet occurs. With the
value in this field receiver will identify frames of the same packet. Here author has

used one number 256 as key. Encoding is done like this:

Encoding: Suppose we want to send H. ASCII of H is 72.
72%256 = 18432 this value will be sent in the Identification field.

Decoding: 18432/256 = 72(H).

e In [2] author has used Do Not Fragment Bit of IP header to send the hidden data.
This field is used to specify whether to do fragmentation or not. So we can use this
field to send our data only if we are sure packet will not be fragmented. In this work

the problem is the size of data we can use to send our data. Do not Fragment field

is of one bit only so here we can transmit only one bit for each datagram. Suppose
our packet does not carry anything in the payload. It contains only data. Since IP
header is of 20 bytes if options field is unused than the ratio useful information to
total data is 1:160, it means that if you want to transmit the phrase “hello India”

then there will be overhead of almost 2 Kb for just 11 bytes.

e In [/] they have made the use of type-of-service field of TP packet to send data.
Type-of-service field is of 8 bits. In those 8 bits 2 bits are unused and that 2 bits
can be used to transmit the hidden data. In another approach they have made the
use of reserved bits of TCP header for the transmission of the hidden data. 6 bits
of the TCP header are reserved. So they have made the use of those 6 bits. So if we
combine these two approach we can transmit one byte of hidden data per packet

transmitted.

e In [5] they have used two steganographic method. In one method they have used
number of fragments to send hidden data. SS is the steganogram sender and SR
is the steganogram receiver. Here, original IP packet is divided into predetermined
number of fragments. If the number of fragments are even then it means that binary

“0” is transmitted otherwise binary “1” as shown in the following figure.

Packet 2 Packet 1
fragments fragments

EEER BEEE
S o SR

Hiddenbit 17 Hiddenbit 0"

Figure 2.1: Steganographic method examplel

e In another method they have used fragmentation offset field of IP header to trans-
mit hidden data. If fragmentation offset is even then it means that binary “0” is

transmitted otherwise binary “1” as shown in the following figure.

Sequence | Identifier | Total DF MF | Fragment | Hidden
Length Flag Flag Offset data
0-0 345 1300 0 l 0
0-1 345 1340 0 1 160 1
0-2 345 1340 0 l 325 0
0-3 345 1220 0 0 490 1

Figure 2.2: Steganographic method example2

2.2 Problems

The main problem in second paper which makes the use of DF field of IP header is the

Packet Fragmentation. There are two possibilities:
1. Packet will be fragmented.
2. Packet will not be fragmented.

Since as a sender we do not know what will be the network between sender and receiver.
So we do not know whether fragmentation will occur or not. We can use DF field of IP
header if and only if we are sure that our packet will not be fragmented. Even if we are
sure that our packet will not be fragmented we can send only 1 bit of hidden data using
this field.

Problem in [1],[1],[5] is very few number of hidden bits per packet are transmitted.

Chapter 3

Our Approach And Method

3.1 IP Packet Structure

TCP/IP is the protocol used in Internet. TCP/IP were developed by a Department
of Defense (DOD) research project to connect a number different networks designed by
different vendors into a network of networks (the “Internet”). IP (Internet Protocol) is
responsible for moving packet of data from node to node, and TCP (Transmission Control
Protocol) is responsible for verifying the correct delivery of data from client process to
server process. The basic unit of data transfer is Packet. At sender side the data is
partitioned into IP packets and packets are transmitted over the network. At receiver
side packets are reassembled to get the data. Each packet begins with a header containing
addressing and system control information. The IP packet header consists of 20 bytes(if
options field not used) of data divided in several fields. Each field has a special purpose,
depending on the type of data contained in the packet payload. Following figure shows
the structure of the IP packet.

e Version(4 bits): The Version field indicates the format of the internet header. This

document describes version 4.

e IHL(4 bits): Internet Header Length is the length of the internet header in 32 bit
words, and thus points to the beginning of the data. Note that the minimum value

for a correct header is 5.

e Type of Service(8 bits): The Type of Service provides an indication of the abstract

parameters of the quality of service desired. These parameters are to be used to

0 15 16 B 31

4-bit H-bit header, Bhibtype of service . .
version length TOS) 16-bit total length (in bytes)
o 3bit | e o
I6=bit identification fags | 13-bit fragment offset
R e i
8-bit i kive 8+bit protocol 16-bit header checksum 20 bytes
32-bit source IP address |
32-bit destination IF address
F: options (if any) i

17 data }

i
|

Figure 3.1: IP Packet Structure: Green coloured fields are those which are used in previ-
ous implementation.

guide the selection of the actual service parameters when transmitting a datagram
through a particular network. The major choice is a three way tradeoff between

low-delay, high-reliability, and high-throughput.

e Total Length(16 bits): Total Length is the length of the datagram, measured in
octets, including internet header and data. This field allows the length of a data-
gram to be up to 65,535 octets. Such long datagrams are impractical for most hosts
and networks. All hosts must be prepared to accept datagrams of up to 576 octets

(whether they arrive whole or in fragments).
e Flags(3 bits): Various Control Flags.

e Fragment Offset(13 bits): This field indicates where in the datagram this fragment
belongs. The fragment offset is measured in units of 8 octets (64 bits). The first

fragment has offset zero.

e Time to Live(8 bits): This field indicates the maximum time the datagram is allowed
to remain in the internet system. If this field contains the value zero, then the

datagram must be destroyed.

e Protocol(8 bits): This field indicates the next level protocol used in the data portion

of the internet datagram.

0 4 8 165 1 Gl
vam:-n| H |Tj¢-an:f3en1-:a Total Langh

ertfication Fragmeant Cffeat

Frobocil Heddar ChaHELM

Tirma To v |

Faddng

Figure 3.2: IP flags

Header Checksum(16 bits): of checksum of the header is inserted into this field.
Since some header fields change (e.g., time to live), this is recomputed and verified

at each point that the internet header is processed.
Source Address(32 bits): The source address.
Destination Address(32 bits): The destination address.

Options(variable): The options may appear or may not appear in datagrams. They
must be implemented by all IP modules (host and gateways). What is optional is

their transmission in any particular datagram, not their implementation.

10

3.2 IP Options

When a packet is sent to the IP layer, then it normally includes all required information
in the packet’s protocol header. However, there could be times when packets require
additional information in the protocol header for example, for diagnostics purposes or if
a packet’s path across the Internet is specified before it is sent. For these purposes, an
Option field with variable length can be added to each IP packet header.

The Option field can take one or several packet options, where an option can be given

in either of two formats [17]:

1. Single byte options: One byte options field which describes only the option type.
The length of these options is always exactly one byte.

2. Multi byte options: The first byte includes the option type and the second byte
contains the length of this packet option. The following bytes include the actual
data of that option.

Following figure lists all IP packet options defined in RFC 791 [20], including their
lengths and their defined option numbers and option classes. There are four option
classes in total but only two are currently used. Option class 0 includes packet options
for control and management; option class 2 includes debugging and measurement options.

The option classes 1 and 3 are reserved for future IP packet-option classes.

11

Class Number Length Name
O O - End of Cption
List
] 1 - Mo Dperation
11 Security
O 3 War Loose Source
Fouting
O 9 War Strict Source
Fouting
War Record Route
4 Stream ID
2 4 WA Internet
Timestamp

Figure 3.3: Defined IP packet options

e End of Option List : This packet option marks the end of a series of options; it
is appended to the last packet option and must never be between any other pair of

options.

20000000

Figure 3.4: End of Options List

12

e No operation : No Operation can be between any two packet options, for example

to let the second option begin at a 32-bit boundary.

70000001

Figure 3.5: No Operation

e Security : It comprises a total of 11 bytes. The Security option allows end systems
to send security parameters or define own (controllable) groups of communication
partners, which want to exchange IP packets in isolation from all other traffic. The
two-byte Security field can be used to state 16 security levels for an IP packet; of
these, the original RFC 791 defines eight levels, including Unclassified, Confidential,
Restricted, Secret or Top Secret. The other security levels are reserved for future

use.

10000010 (0001011 Security

Compartments Restrictions

Transmission Control Code

Figure 3.6: Security bit sequence

e Loose Source Routing : This option is used to specify all routers an IP packet
has to visit on its way across the network. In addition, it accepts data about the
packet’s path. The third byte includes a pointer to the address of the next router

that the packet has to pass.

10000011 | Length Fointer | Route Data

Figure 3.7: Loose Source Routing bit sequence

13

e Strict Source Routing : The Strict Source Routing option differs in only one
point from the Loose Source Routing option: The packet may pass exactly those
routers specified in the Route Data list. As with the previous option, if fragmentation
is required, then the Strict Source Routing option has to be copied in each single

fragment, which means that One is in the first position of this option.

10001001 | Length Pointer Route Data

Figure 3.8: Strict Source Routing bit sequence

e Record Route : The Record Route option can be used to register the addresses
of all intermediate systems an IP packet will pass on its way to the destination.

The third byte includes a pointer to the field that is to accept the next address.

10000011 |length |Pointer |Route Data

Figure 3.9: Record Route bit sequence

e Stream Identifier : This option enables the transport of SATNET Stream Iden-
tifiers across the Internet. The Stream Identifier packet option is always 4 bytes
long and has to be copied to all fragments, if fragmentation is used. However, this

option currently has no practical use.

10001000 | 00000010 | Strearm 1D

Figure 3.10: Stream Identifier bit sequence

e Internet Timestamp : This option can be used to store time stamps of selected
or all network nodes. A 4-bit flag determines the data to be stored here, and it can

take either of the following values:

— 0 — time stamps only, stored in consecutive 32-bit words,

14

— 1 — each timestamp is preceded with internet address of the registering entity,

— 3 — the internet address fields are prespecified. An IP module only registers
its timestamp if it matches its own address with the next specified internet

address.

01000100 | Length Painter Counter Flag

Address

Tirmesta mp|

Figure 3.11: Internet Timestamp bit sequencel

3.3 Approach

The objective is to hide information in addition to make the use of unused options field
of IP header and to securely transmit the data. As discussed in section literature survey,
we can use [P identification field and Do Not Fragment bit of IP header, if and only if
fragmentation does not occur. Unfortunately we are not sure whether fragmentation will
occur or not. In this design we will neither hide data in the identification field of IP nor in
the offset field but, we will hide our data in the options field of the IP header. Resulting
in a situation in which we do not have to bother whether the packet will be fragmented
or not. Secondly options field is of the variable length in which maximum 40 bytes can
be used. So we can send good amount of data instead of few bytes.

Most of the times IP options field is not used. But there could be times when packets
require additional information in the protocol header for diagnostics purposes or if a
packet’s path across the Internet is specified before it is sent.In that case options field
will be included.

So there are two cases:
1. Options will be included

2. Options will not be included

15

Following are the five approaches that can be considered.

e Approach-I : Use of End of options field Here we will make use of End of

options list field as shown in the following figure.

ihl =11

20 Bytes

Data of Options| 50000000 Length OFf | ;11 4en Data 24 Bytes
Field Data

Figure 3.12: Use of End of options field-1

In first case we have set value of ihl field to its actual value. Receiver will search for
the sequence 0/10000000. After this sequence hidden data will be there. But the
problem with this approach is intruder will easily read our data. Because normally
after end of options field there will be no operation field to maintain 32 bit boundry.
Here after end of options sequence we are sending hidden data so intruder easily

conclude that there is something in the header.

ihl= 5

20 Bytes

Data of Options 20000000 Length Of Hidden Data 24 Bytes
Field Data

Figure 3.13: Use of End of options field-2

In second case we set value of ihl field to 5. In this case intruder will not be able

16

to conclude that there is something in the packet. But intermediate routers will

not be able to read data of options field. This will cause problem in cases when we

have used strict source routing, loose source routing, etc.

e Approach-II : Use of specific bit sequence To solve the problem of previous

approach we have used specific bit sequence as shown in the following figures.

ihi =11
20 Bytes
Data of Options| 55000000 No-operation 24 Bvtes
Field 1
00000100 Length of Hidden Data
Data

TCP Header

wWith Hidden Data

Figure 3.14: Use of specific bit sequence-1

IP Header

00000 10000000000

TCP Header

Without Hidden Data

Figure 3.15: Use of specific bit sequence-2

Here, intermediate routers will be able to read header correctly. We will use spe-

cific bit sequence(e.g. 00000100). So that receiver can understand by reading this

sequence that there is hidden data in the header. But it may be possible that same

17

sequence will be there in TCP header as shown in second case. So receiver will

misinterpret this packet. Here receiver will not be able to distinguish which packet

has hidden data and which does not have.

e Approach-III : Use of Code bits of IP options field

Following figure shows the format of code bits.

0 4 8 12 16 20 24 28 32
|] |]]]
Option Type "‘-,thion Length
Y b Option Data
0 4 8
']
- |Cop-| Option .
|ed | Class Option Number

Figure 3.16: Format of code field of IP options

Here, the class field which of 2 bits can have 4 values.

00 - datagram control

10 - Debugging and Management

Other two values 01 and 11 are unused. So we can set 11 - for our hidden data as

shown in the following figure.

ihl =11

20 Bytes

Data of Options
| Eield

70000000

24 Bytes

Hidden Data

With Data of options field

ihl=g

No operation

Hidden Data

Without Data of options field

Figure 3.17: Use of Code bits of IP options field

18

20

So in sequence 011 - - - - - , 011 will tell the receiver there is hidden data. And
remaining five bits will specify the length of the hidden data. But by reading 011
————— sequence intruder can easily conclude that there is something abnormal in

the header.

Approach-1V : Use of Identification field with same value for each packet

Identification field is of 16 bits. It is the random number generated by sender. For
each and every packet in which sender wants to send hidden information sender can
set this field to some value(e.g. 593). When receiver get the packet it will read this
field. If it is 593 receiver will conclude that hidden data is there in the messsage.

Length of the hidden field is specified by the length field which is of 1 byte.

ihl =11 ihl=5
Identification 20 Bytes Identification
Data of Options| 20000000 No-operation 24 Bvtes Length Hidden Data
| Eield L
Length Hidden Data

Without Data of options field
With Data of options field

Figure 3.18: Use of Identification field-1

In normal cases value of identification field increases by 1 for each packet but in
our case we copy same value in identification field. Since for each and every packet
identification field is same. By observing large number of packets from sender to
the receiver intruder will get an idea that there is something wrong in the packet.

By analysis of those packets he will be able to get our pattern.

19

20

Following table describes the summary of all the previous approaches.

Table 3.1: Summary of Approaches

Approach Description Problem
Approach-1(a) | Use of End of options Intruder will identify
field with actual ihl value | that there is something
hidden in the header.
Approach-1(b) | Use of End of options Intermediate routers will
field with ihl value 5 not be able to read
the complete header.
Approach-2 | Use of specific code Receiver will not be able
sequence to identify the packets with
or without hidden data.
Approach-3 | Use of Class bits Intruder will identify
of the options field that there is something
hidden in the header.
Approach-4 | Use of Identification Intruder can find the
field the pattern because same
value used in all packets.

e Approach-V : Use Of Identification Field with different value for each
packet

The problem in the previous approach can be eliminated if we choose different value
of identification field for each packet. We will divide this field in two parts as shown
in the figure 3.19.

Here the first part will be same for each packet(e.g.00111000). But for the first
packet of the sequence random number will be generated for the remaining part.
And that number will be incremented by 1 for each of the following packet. So
each packet will have different value in the identification field. Receiver will search
for 00111000 sequence. If it is there in the packet it means packet contains hidden

data. So receiver will search for the hidden data in the packet.

Since each and every packet has different value for the identification field intruder

will not have any idea that there is something hidden in the header.

Following two sections shows you the flowchart of processing at sender side and pro-

cessing at receiver side when packet comes to the IP layer.

20

ihl=5

ihl =11

Identification

Identification 20 Bytes

Eijl:; of Options| 54000000 No-operation 24 Bvtes Length Hidden Data
Length Hidden Data
Without Data of options field
With Data of options field
0 9 15
00111000 01000000

01000001
01000010
01000011
I |
I I
I I
10000000

Identification Field

Figure 3.19: Use of Identification field-2

21

3.4 Processing at Sender side using Approach-V

Figure 3.20 shows the flowchart of what happens when sender wants to send packets using
approach-V.
As shown in the figure when packet comes from transport layer to IP layer sender will

add standard IP header which is of 20 bytes.Then two possibilities are there:

e Sender may send options data. If sender wants to send options data then ihl field
will be updated according to the number of bytes added in the header. Maximum
value of ihl field is 15. So if after addition of options data value of ihl becomes 15
then sender can not send hidden data. If it is less then 15 then sender can send

hidden data.

e Sender may not send options data. Here, again there are two possibilities based
on whether sender wants to send hidden data or not. If he does not want to send
hidden data then packet will be forwarded to the lower layer. If sender wants to
send hidden data then he will specify length(nbyte) of hidden data at (ih1*44-1)th
byte of the IP header. Then sender reads nbyte of data from the file and insert it

into IP header as shown in figure 3.19.

22

Application Layer

¥
Transport Layer

Y

Add Standard IP header

!

Yes Want to
Send options
data?
¥
Add options data
¥
Update ihl value
Yes MNo
Y
Error
Bad IP header Yes I Mo
ini=15?

MNo

f
Send packet to

IP Layer

Mo

Want to add
hidden data?

Mo Want to Yes
Send hidden

data?

Add number of
hidden bytes (nbyte)
you want to send
in (ih4)+1™ byte

¥

Read nbytes
of data from file
and insert in the IP header

lower layer

¥
DataLink layer

Figure 3.20: Processing at Sender side

23

3.5 Processing at Receiver side using Approach-V

Figure 3.21 shows the flowchart of what happens when receiver receives the packet.

e First of all when packet comes from the data link layer to the IP layer receiver will
check ihl field of IP header. If it is greater than 5 it means that options data is

there. If it is equal to 5 no options data is there in the packet.

e Then receiver will read first 8 bits of identification field. If hexadecimal value of first
8 bits of identification field is 38(in hexadecimal), then it means that hidden data
is there in the packet. Receiver can get length(nbyte) of hidden data by reading
(id*4+4-1)th byte of IP header. Receiver will write nbyte of data in the file and

forward this packet to the transport layer.

e [f hexadecimal value of first 8 bits of identification field is not equal to 38, then
it means that no hidden data in the packet and packet will be forwarded to the

transport layer as shown in the figure 3.21.

24

| Start ;

¥

Receives Packet

Y

Data Link layer

Mo

Error

¥

IP Header + Payload

Y

Yes

L
Mo Options

Y

Read Ihl field
HO inl=57
Yes
Cptions data €t

Read first & bits{id1)
of ldentification field

Mo hidden data

!

Send IP payload
to Transport layer

IP Layer

Hidden Data

Y

Read hddn=(ih*4+1)" byte

Y

Write hddn number of bytes into file

Transport Layer

Figure 3.21: Processing at Receiver side

25

Chapter 4

Linux Kernel

4.1 Linux Kernel structure Overview

The Linux kernel is composed of five main subsystems [22]:

1. The Process Scheduler (SCHED) is responsible for controlling process access to the
CPU. The scheduler enforces a policy that ensures that processes will have fair
access to the CPU, while ensuring that necessary hardware actions are performed

by the kernel on time.

2. The Memory Manager (MM) permits multiple process to securely share the ma-
chine’s main memory system. In addition, the memory manager supports virtual
memory that allows Linux to support processes that use more memory than is avail-
able in the system. Unused memory is swapped out to persistent storage using the

file system then swapped back in when it is needed.

3. The Virtual File System (VFS) abstracts the details of the variety of hardware
devices by presenting a common file interface to all devices. In addition, the VFS
supports several file system formats that are compatible with other operating sys-

tems.

4. The Network Interface (NET) provides access to several networking standards and

a variety of network hardware.

5. The Inter-Process Communication (IPC) subsystem supports several mechanisms

for process-to-process communication on a single Linux system.

26

Memory Manager

Yirtual File Process Inter-Process
Swstem Scheduler Communication
b

k4
&

Legend: l

|
|
1 Subsysten
|
|

MNetwork Interface ——depends or—e

Figure 4.1: Kernel Subsystem Overview

This diagram emphasizes that the most central subsystem is the process scheduler: all
other subsystems depend on the process scheduler since all subsystems need to suspend
and resume processes. Usually a subsystem will suspend a process that is waiting for a
hardware operation to complete, and resume the process when the operation is finished.
For example, when a process attempts to send a message across the network, the network
interface may need to suspend the process until the hardware has completed sending the
message successfully. After the message has been sent (or the hardware returns a failure),
the network interface then resumes the process with a return code indicating the success
or failure of the operation. The other subsystems (memory manager, virtual file system,

and inter-process communication) all depend on the process scheduler for similar reasons.

27

4.2 The Linux Source Tree

Linux source code is usually in the /usr/src directory (if installed). Otherwise it should
be manually installed. Next section describes the steps to download and install kernel
source code.This is an overview of the Linux source directory structure (not all branches

are shown):

e arch - architecture specific code, by processor

— 1386 - code for Intel processors (including 486 and Pentium lines)

x boot - location of newly compiled kernels

e drivers - code for drivers of all sorts

block - block device drivers (e.g., hard drives)

cdrom - CD ROM device drivers

— net - network device drivers

pci - PCI bus drivers
e fs - code for different file systems (EXT2, MS-DOS, etc.)

e include - header files used throughout the code

asm asm-i386 - processor dependent headers

config - general configuration headers
— linux - common headers

— net - networking headers

kernel - code for the kernel specific routines

lib - code for errors, strings, and printf

e mm - code for memory management

modules - object files and references for the kernel to load as required

net - code for networking

28

core - protocol independent code
ipv4 - code specific to IPv4
packet - protocol independent packet code

sched - code for scheduling network actions

29

4.3 Sending Messages

This chapter presents the sending side of message trafficking. It provides an overview of
the process, examines the layers packets travel through, details the actions of each layer,

and summarizes the implementation code within the kernel.

4.3.1 Overview

An outgoing message begins with an application system call to write data to a socket.
The socket examines its own connection type and calls the appropriate send routine
(typically INET). The send function verifies the status of the socket, examines its protocol
type, and sends the data on to the transport layer routine (such as TCP or UDP). This
protocol creates a new buffer for the outgoing packet (a socket buffer, or struct skbuff
skb), copies the data from the application buffer, and fills in its header information (such
as port number, options, and checksum) before passing the new buffer to the network
layer (usually IP). The IP send functions fill in more of the buffer with its own protocol
headers (such as the IP address, options, and checksum). It may also fragment the packet
if required. Next the IP layer passes the packet to the link layer function, which moves
the packet onto the sending device’s xmit queue and makes sure the device knows that
it has traffic to send. Finally, the device (such as a network card) tells the bus to send

the packet.

30

LNIE=L Ue no Jayoed spuas leAUp R | feEeH Uy |
zaob jayoed ‘valedald a0Ap sUnJ fB|npaLas | -" ‘eEsHdl O
: BpEsH 43l g
CHm —uT " B o
ananb uo " ||||||||||||||||||||||||| _
WERIRE 1| ananb puas
O uo sach jaymed
unyjeydde of "
sunf@l [oRUeY | D
|
Ul
L i AUl
" IapEay BEP j3Y208
AEGELT] 512 |
| O ="
| o NG
|
! Iapeay U Iayng jayed
! 54 431 B] |
|
“ - I —
| P Wodsuel |
|
ganuueD “ [oxojoud o EL 134205 O} S3IM
= -
uoijes|dde SEHLUM, [BY20% SoaYD [IN| ucijea|dde
/3 —

co_ﬁﬂ&<

Figure 4.2: Message Transmission [12]
31

4.3.2 Processing At Sender Side

Writing to a Socket

e Write data to a socket (application)
e Fill in message header with location of data (socket)

e Check for basic errors - is socket bound to a port? can the socket send messages?

is there something wrong with the socket?

e Pass the message header to appropriate transport protocol (INET socket)

Creating a Packet with TCP

e Check connection - is it established? is it open? is the socket working?
e Create a packet buffer

e Copy the payload from user space

e Add the packet to the outbound queue

Wrapping a Packet in IP

e Look up route to destination (if necessary - TCP)
e Fill in the packet IP header
e Copy the transport header and the payload from user space

e Send the packet to the destination route’s device output funtion

Transmitting the Packet

e Put the packet on the device output queue

Wake up the device

Wait for the scheduler to run the device driver

Test the medium (device)

Send the link header

Tell the bus to transmit the packet over the medium

32

4.3.3 List Of Functions

Following table gives information about few functions that are invoked when packet is

sent. Table shows the function name , What they do and location of those functions in

the linux kernel.

Table 4.1: Functions invoked during message transmission

Function Name

What they do?

Location in
the Kernel

ssock_write()

creates and fills in message header
with data size/addresses returns sock_sendmsg()

net/socket.c

sock_sendmsg()

calls scm_sendmsg() [socket control message]

net /socket.c

tep_do_sendmsg)()

waits for connection, if necessary

adds data to waiting packet and checks
window status calls csum_and_copy_from_user()
to copy packet and do checksum

calls tep_send_skb()

net /socket.c

tep-send_skb()

calls _skb_queue_tail() to add packet to queue
calls tep_transmit_skb()

net /ipv4/tcp_output.c

tep_transmit_skb()

builds TCP header and adds checksum
checks ACKs,SYN

net /ipv4/tcp_output.c

tep-v4_sendmsg|()

checks for IP address type, opens connection,
port addresses

net /ipv4/tep_ipvd.c

ip_build_xmit

calls sock_alloc_send_skb() to establish
memory for skb sets up skb header

net /ipv4/ip_output.c

ip_queue_xmit()

looks up route builds IP header
fragments if required adds IP checksum
calls dev_queue xmit()

net /ipv4/ip_output.c

dev_queue_xmit()

if device has a queue

calls enqueue() to add packet to queue
calls qdisc_wakeup() to wake device
else calls hard_start_xmit()

net/core/dev.c

hard_start_xmit()

tests to see if medium is open
sends header tells bus to send packet

drivers/net/DEVICE.c

33

4.4 Receiving Messages

This chapter presents the receiving side of message trafficking. It provides an overview of
the process, examines the layers packets travel through, details the actions of each layer,

and summarizes the implementation code within the kernel.

4.4.1 Overview

An incoming message begins with an interrupt when the system notifies the device that a
message is ready. The device allocates storage space and tells the bus to put the message
into that space. It then passes the packet to the link layer, which puts it on the backlog
queue, and marks the network flag for the next “bottom-half” run.

The bottom-half is a Linux system that minimizes the amount of work done during
an interrupt. Doing a lot of processing during an interrupt is not good precisely be-
cause it interrupts a running process; instead, interrupt handlers have a “top-half” and
a “bottom-half”. When the interrupt arrives, the top-half runs and takes care of any
critical operations, such as moving data from a device queue into kernel memory. It then
marks a flag that tells the kernel that there is more work to do - when the processor has
time - and returns control to the current process. The next time the process scheduler
runs, it sees the flag, does the extra work, and only then schedules any normal processes.

When the process scheduler sees that there are networking tasks to do it runs the
network bottom-half. This function pops packets off of the backlog queue, matches them
to a known protocol (typically IP), and passes them to that protocol’s receive function.
The IP layer examines the packet for errors and routes it; the packet will go into an
outgoing queue (if it is for another host) or up to the transport layer (such as TCP or
UDP). This layer again checks for errors, looks up the socket associated with the port
specified in the packet, and puts the packet at the end of that socket’s receive queue.

Once the packet is in the socket’s queue, the socket will wake up the application
process that owns it (if necessary). That process may then make or return from a read
system call that copies the data from the packet in the queue into its own buffer. (The
process may also do nothing for the time being if it was not waiting for the packet, and

get the data off the queue when it needs it.)

34

13pEaH jaLIy
Iapeay

e 1
E2(]

1
dl

|:|-EI-

ananbuo
JEH |RE -

peoied
52100 7 |

O Ca

\ 7/

SHLILCD ‘EJEP
gjobi uoeo) dde

ananb puag
o}ino

-

4

peal jarpce

peojAed o)
SYSE 3008

104 B -
|
|
I
I
|
I
|
I
|

-

sempays | ananb Boyoeg Joyoed salo)s LURIpEL Lig
OV] uor saob jayoed SYBUD A01ap SRAILE Jayd
|
_ =" IO CuE
rlllI||||I||I|I|I||I|||III|||I||II_
(dI} |eooyaud ananb pyoed JJEY Wocd, "
=T TR e sdod ygjau SLNJ I NpaLos =
. .
v AU
LSTRITETNT sl I}
g 2jnal BB 4|
m m
- Jouss|
ananb jay20s sI0U8 1}
u saobjeyomd eHoaYD 471
(- -
podsuei|
ananb wey B30 Lol
................ (fessecau pegpioyiem | speadjavoos | Y |spea uojzadde

oljeo|jddy

]

Figure 4.3: Message Reception |

35

4.4.2 Processing At Receiver Side

e Receiving a Packet

— Wake up the receiving device (interrupt)
— Test the medium (device)
— Receive the link header

— Allocate space for the packet

Tell the bus to put the packet into the buffer

Put the packet on the backlog queue

Set the flag to run the network bottom half when possible

Return control to the current process
e Running the Network “Bottom Half”

— Run the network bottom half (scheduler)

— Send any packets that are waiting to prevent interrupts (bottom half)

Loop through all packets in the backlog queue and pass the packet up to its

Internet reception protocol - IP

Flush the sending queue again

Exit the bottom half

e Unwrapping a Packet in IP

Check packet for errors - too short? too long? invalid version? checksum

error?
— Defragment the packet if necessary

— Get the route for the packet (could be for this host or could need to be for-
warded)

Send the packet to its destination handling routine (TCP or UDP reception,

or possibly retransmission to another host)
e Accepting a Packet in TCP

36

Check sequence and flags; store packet in correct space

If already received, send immediate ACK and drop packet

Determine which socket packet belongs to
— Put packet into appropriate socket receive queue

— Wake up and processes waiting for data from that socket
e Reading from a Socket

— Wake up when data is ready (socket)
— (Call transport layer receive function
— Move data from receive queue to user buffer (TCP/UDP)

— Return data and control to application (socket)

37

4.4.3 List of Functions

Following table gives information about few functions that are invoked when packet is

recieved.Table shows the function name , What they do and location of those functions

in the linux kernel.

Table 4.2: Functions invoked during message reception

Function Name

What they do?

Location in

the Kernel
DEVICE.rx() | performs status checks
to make sure it should be receiving
calls dev_alloc_skb() to reserve space for packet
gets packet off of system bus drivers/net/DEVICE.c

ip_rev()

examines packet for errors:invalid checksum
invalid length (too short or too long)

and incorrect version (not 4)

defrags packet if necessary

calls ip_route_input() to route packet

net/ipv4/ip_input.c

tep_recvmsg)()

checks for errors

wait until there is at least one packet available
calls cleanup_rbuf() to release memory

and send ACK if necessary

net /ipv4/tcp.c

tep_data()

calls tep_data_queue() to queue packet

net/ipv4/tcp-input.c

tcp_data_queue()

if packet is out of sequence:

if old, discards immediately

else calculates appropriate storage location
calls _skb_queue_tail() to put packet

in socket receive queue

net /ipv4/tcp_input.c

inet_recvmsg|()

extracts pointer to socket sock
checks socket to make sure it is accepting

net/ipv4/af inet.c

sock_read()

sets up message headers
returns sock_recvmsg() with result of read

net/socket.c

38

Chapter 5

Implementation and Results

5.1 Implementation Setup

For implementation fedora-10, kernel version-2.6.27 and i686 architecture has been used.
To implement approach-V few changes in TCP/IP stack in linux kernel has been made
and programs at sender side and receiver side are also developed. After making changes
to the linux kernel it is necessary to build and install the kernel. Following subsections
give the details of changes made in kernel, steps to download and install the kernel and

steps to recompile the kernel.

5.1.1 Changes made in TCP/IP stack of linux kernel

Following files in the TCP/IP stack has been modified.

e /kernel-2.6.27/1linux-2.6.27.1686/include/linux/ip.h

This file contains the structure of IP header. Modification to that structure has
been made to include our data in the options field and to divide identification field

in two parts.

e /kernel-2.6.27/1linux-2.6.27.1686/include/net/ip.h

This file contains declaration and definition of functions which are used at network
layer when packet is dent or received. Here, we have declared our function named

ip_my_ident() which uses our logic of identification field.

e /kernel-2.6.27/1linux-2.6.27.1686/net/ipv4/inetpeer.c

39

This file contains definition of our function named ip_my_ident(). This function

contains the main logic of identification field.

e /kernel-2.6.27/1inux-2.6.27.1686/net/ipv4/ip_output.c

This file will be executed when packet comes to IP layer from transport layer. In
this file ip_build_and_send_pkt() is there which assigns values to the IP header field.

Here, in this function we have called our function named ip_my_ident().

e /kernel-2.6.27/1linux-2.6.27.1686/net/ipv4/ip_input.c

This file will be executed when packet comes from data link layer to IP layer. This
file contains ip_rcv function which is main IP receive routine. Few changes has been

made to implement our approach.

5.1.2 Steps to download and install kernel source code
There are 3 basic steps involved in installing the kernel source [0].

1. Download the desired kernel source (matching your current kernel if required)

2. Installing the SRC.RPM package

3. Using rpmbuild to prepare the source into a usable state

Following two commands will download the latest kernel for your fedora.

e yum install yum-utils

e yumdownloader —source kernel

e Kernel will be stored in root directory.

ex:for fedora 10 /root/kernel-2.6.27.41-170.2.117.fc10.src.rpm

e Then enter following command.

rpm -ivh kernel-2.6.27.41-170.2.117.fc10.src.rpm

e [t may show you that tools like xmlto etc are missing you can downlaod it using

normal yum command

for ex: yum install xmlto

40

e After installing that again enter following command.

rpm -ivh kernel-2.6.27.41-170.2.117.fc10.src.rpm

e Code will be saved in /root/rpmbuild/BUILD /kernel-2.6.27/linux-2.6.27.noarch /net

5.1.3 Steps to recompile kernel

After getting the source and installing kernel following are the steps for recompilation of

linux kernel [3]:

e Prepare the kernel source tree using the following commands:

— ¢cd ~/rpmbuild/SPECS
— rpmbuild -bp --target=$(uname -m) kernel.spec

— The kernel source tree is now located in the

~/rpmbuild/BUILD/
kernel-2.6.27.41-170.2.117.fc10/1inux-2.6.27.41-170.2.117.£fc10.<arch>

directory.
e Configure kernel options:

— Change to the kernel source tree directory:
cd “/rpmbuild/BUILD/kernel-2.6.27.41-170.2.117.fc10/1inux-2.6.27.41-170.2.1
— Select the desired configuration file from
~/rpmbuild/BUILD/kernel-2.6.$ver/linux-2.6.$ver.$arch/configs.
— Copy the desired config file to

to “/rpmbuild/BUILD/kernel-2.6.$ver/linux-2.6.$ver.$arch/.config:

cp configs/<desired-config-file> .config

e Run the following command.

make oldconfig

41

Then run the following command, selecting and saving the desired kernel options

from the text-based Ul:

make menuconfig

For GUI run the following command:
make xconfig

ol L

£ roplications Places System @ o) @) root MonOck 17, 5:55PM o}
root@pgcseld:~/rpmbuild/BUILD/kernel-2.6.27/linux-2.6.27.noarch

Ele Edit View Terminal Tabs Help

Linux Kermel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->, Highlighted letters are hotkeys. Pressing <y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend:
[*) built-im [] excluded <M> module < > module capable

General setup ---»
[*] Enable loadable module support ---»
[*] Infrastructure for tracing and debugging user processes
-*- Enable the block layer ---»
Processor type and features ---»
Power management optioms ---»
Bus options (PCI etc.) ---=
Executable file formats / Emulations
[§ Wetworking support -3
Device Drivers --->
Firmsare Drivers ---» <
File systems ---=
kernel hacking ---=
Security options --->»
-*- Cryptographic API --->
[*] virtualization --->
Library routines ---»
Load an Alternate Configuratiom File
Save an Alternate Configuration File

< Exit > < Help >

Figure 5.1: GUI for Linux kernel Configuration

e Then Build the kernel using following command: To build all kernel flavors:

rpmbuild -bb --target=‘uname -m‘kernel.spec

e Then run the following command to install the kernel. This step actually installs

the new kernel into the running system.

42

"E) ~pplications Places System (@ o) .
reat@pgcseld:~/rpmbuild BUILD/kernel-2.6.27/inux-2.6.27.noarch
Fle Edt Yiew Jerminal Tabs Help

=

() root MonOct 17, 5:55 PM &

Networking options
Arrow keys navigate the menu. <Enter> selects submenus ---». Highlighted letters are hotkeys. Pressing <¥=
includes, <N> excludes, <> modularizes features. Press <Esc»<Esc» to exit, <7» for Help, </» for Search. Legend:
[*] built-in [| excluded <M> module < > module capable

Facket socket: mmapped I0
Unix domain sockets
Transformation wser configuration imterface
rransformation sub policy support (EXPERIMENTAL)
- Transformation migrate database {EXPERIMENTAL)
lransformation statistics (EXPERIMENTAL)
PF KEY sockets
PF_KEY MIGRATE (EXPERIMENTAL)
TCP/IP netwarking
IP: malticasting o
IP: advanced router
Choose IP: FIB lookup algorithm (choose FIB HASH if unsure) (FIB HASH)
IP: policy routing
IP: equal cost multipath
IP: werbose route monitoring
IP: kernel level autoconfiguration
IP: tunneling
IP: GRE tunnels ower IP
IP: broadcast GRE owver IP
IP: malticast rowting
IP: PIN-5M wersion 1 support
IP: PIN-5M wersion 2 support
IP: ARP daemon support (EXPERIMENTAL)
IP: TCP syncookie support (disabled per default)

37

- - - &

S9I_===

-

-

-

< Exit > < Help >

'4 @ kemel.. | B include ... [The Li... | [B configs ... | @ [Dgwnl... (860-02... | @ roct@p... @ [roct@d... i-._“

Figure 5.2: GUI for Linux kernel Configuration

su -c¢ "rpm -ivh --force

$HOME/rpmbuild/RPMS/<arch>/kernel-<version>.<arch>.rpm"

43

5.2 Results

Using approach-V we have developed programs at sender side and receiver side. In this
section results of those programs which has been implemented using approach-V has been

shown. We have used RSA encryption algorithm to provide security to our data.

e Program at sender side sends data as shown in the figure 3.19 using approach-V. One
file contains confidential data which sender wants to send hiddenly and another file
contains non confidential data which sender wants to send in the payload. Sender
will specify number of hidden bytes(nbyte) he wants to send hiddenly in each packet

and then sends packets.

e Program at receiver side reads packet data as shown in the figure 3.21 using
approach-V. When packet come to the receiver receiver will check whether hid-
den data is there in the packet or not. If hidden data is there in the packet receiver
will write nbyte of hidden data in the file and data of payload in anothe file. Figure
5.3 shows the snapshot of output of program at receiver side. At the same time
receiver will create one log file which shows all the information about packet. Log
file contains details of IP header,hidden data in the options field, TCP header and
data in the payload. Figure 5.4 shows the log file. Figure 5.5 shows the log file for
encrypted data. Here, the IP address of sender is 10.1.3.18 and IP address of the

recelver is 10.1.3.14.

44

ﬂAppllcatmns Places System @ ‘ @ g g root wed Feb 29, 5:54 PM lﬂ’))

root@pgcseld:~/C/Ath sem/25-2

Ffile Edit VWiew Terminal Tabs Help

ter without a cast 2

[root@pgcseld 25-2]# ./a.out

starting... txt 3¢ ‘Dlog.txt 52 || SOCK_RAW.txt 3¢
Size is: 120 val of id is 38c7 Source IP : 10.1.3.18 =
Size is: 120 val of id is 38c¢c8 Source IP : 10.1.3.18 "2
Size is: 120 val of id is 38c9 Source IP : 10.1.3.18

Size is: 120 val of id is 38ca Source IP : 18.1.3.18

Size is: 120 val of id is 38cb Source IP : 18.1.3.18

Size is: 120 val of id is 38cc Source IP : 18.1.3.18

Size is: 120 val of id is 38cd Source IP : 10.1.3.18

Size is: 120 val of id is 38ce Source IP : 10.1.3.18

Size is: 120 val of id is 38cf Source IP : 18.1.3.18

Size is: 120 val of id is 38d0 Source IP : 18.1.3.18

Size is: 120 val of id is 38dl Source IP : 18.1.3.18

Size is: 120 val of id is 38d2 Source IP : 18.1.3.18

Size is: 120 val of id is 38d3 Source IP : 18.1.3.18)

Size is: 120 val of id is 38d4 Source IP : 10.1.3.18

Size is: 120 val of id is 38d5 Source IP : 18.1.3.18

Size is: 120 val of id is 38d6 Source IP : 18.1.3.18 1

Size is: 120 val of id is 38d7 Source IP : 18.1.3.18

Size is: 120 val of id is 38d8 Source IP : 18.1.3.18

Size is: 120 val of id is 38d9 Source IP : 13.1*3.18

Size is: 120 val of id is 38da Source IP : 10.1Y3.18

Size is: 120 val of id is 38db Source IP : 18.1.3.18 v

[root@pgcseld 25-2]# gec charuwnheader!.dﬂ Ll

UAUUZU. HLFL FLFL FLFL FLFL FLFL FLFL FLFL FLFL AARARRARAAAARFAR
0x0030: 4141 1

frecv I
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAMAAAAAAAAAAARAAAAA

Further on with the rip_input() analysis

Like Linux uses skb_clone to make a copy of the datagram, FreeBSD uses m_copy L
[mbaif tond af ol FE ot + A nf A 1 h A A hd

Ln 1447, Col 61 INS

(& [[25-2- ... |[[# sock_... |[@ root@p... | B root@p... | [[(untitl... |[@ [Nimau... | [[13426... | § 4thsem... [EITT &

Figure 5.3: Output of program at receiver side

45

Applications Places System @ 0= 165 = -{,?g root Fri Mar 2, 4:30 PM o}
log.txt (~/C/ath sem/ +
File Edit View Search Tools Documents Help

O 8 8 # ®
New Open Save Print... Paste Find Replace
| mytcp.h 32 |D tcp.h 3¢ |D charownheader2.c 3% |D readercopy.c % |D log.txt 3¢ \
IP Header
|-IP Version ;4
|-IP Header Length : 36 Bytes I
|- Type Of Service : 0
|-IP Total Length : 120 Bytes(Size of Packet)
|-Identification 1 14440
|-TTL ;255
|-Protocol : 6
|-Checksum : 26870
|-Source IP 1 10.1.3.18
|-Destination IP : 10.1.3.14
TCP Header
|-Source Port : 1234
|-Destination Port : 8080
| -sequence Number 1 1090519040
| -Acknowledge Number : 16777216 L]
| -Header Length : 5 DWORDS or 20 BYTES
| -Window 1 32767
| -Checksum : 65535
|-Urgent Pointer : 0
|-doff : 20
DATA Dump
IP Header
45 00 00 78 38 68 00 00 FF 06 68 F6 DA 01 03 12 E..x8h....h.....
OA 01 03 OE 10 54 68 65 72 65 20 61 72 65 20 33 There are 3
50 10 20 62 P. b
Data in the options field
10 54 68 65 72 65 20 61 72 65 20 33 50 10 20 62 .There are 3P. b
TCP Header
04 D2 1F 90 41 00 00 00 Gl 00 06 GO 50 10 7F FF e AL p. 2. ~
Ln 22, Col 24 INS
(B (@ vir.. |[E [2-3... | ser... || @ [roo... | & [roo... | log.... ||~ [oth... | (wtc... [[E [net... | B scre.

Figure 5.4: Log file at receiver side

€9 Applications Places System (L) @ (¢ [# = root Mon Apr16, 8:20 PM o)

log.txt (~/C/a4th sem/2-3) - gedit
Fle Edit View Search Tools Documents Help

O & &8 8 24
New Open Save | Print... Find Replace
| log.txt 3¢
IP Header
|-IP Version : 4
|-IP Header Length : 36 Bytes I
|- Type Of Service ;0
|-IP Total Length : 72 Bytes(Size of Packet)
|-Identification ;14440
|-TTL ;255
|-Protocol : 6
|-Checksum : 26918
|-Source IP : 16.1.3.18
|-Destination IP : 10.1.3.14
TCP Header
|-Source Port 1 1234
|-Destination Port : 8080
| -Sequence Number 1 285212672 3
| -Acknowledge Number : 16777216
| -Header Length : 5 DWORDS or 20 BYTES
| -Window 1 32767
| -Checksum : 65535
|-Urgent Pointer : @
|-doff : 20
DATA Dump
IP Header
45 00 00 48 38 68 00 00 FF 06 69 26 QA 0L 03 12 E..HBh....1i&. ..
OA 0L 03 OE 10 64 35 37 32 38 38 66 33 6L 64 35 d57288f3ads
50 10 32 36 P.26
Data in the options field
10 64 35 37 32 38 38 66 33 61 64 35 50 10 32 36 .d57288f3ad5P. 26
TCP Header
04 D2 1F 90 11 00 0G GO0 Ol 0O 0O @@ 50 10 7JF FF P[4, ~
Ln 17, Col 36 INS
(B3] (@ user... | @ root-... |[E [root... |l [ethl... [l [Grap... |[E 2-3-... | | Netw... || [ates... |[[Z log.tx.

Figure 5.5: Log file at receiver side for encrypted data

46

e [have captured packets sent by sender using sniffer program and two packet sniffing
tools tcpdump and wireshark. Figures 5.6, 5.7, 5.8 shows the output of them

respectively.

BAppIicatiuns Places System @ e @ Iz g root Wed Feb 29, 5:59 PM ﬁﬂlu:l

log.txt (~/C/4th sem/25-2) - gedit

Fle Edit View Search Tools Documents Help

& | #

Paste Find Replace

L] -
New Open Save

< || readercopy.c 3¢ | | optionsdata.txt 32 | | optionsdata693.txt 3¢ 7] log.txt # || | SOCK_RAW.txt 3¢ | | tepdumpl.txt 3 >
wWhole packet 1A

45 00 00 78 38 C7 00 00 FF 06 68 97 BA 0L 03 12 E..x8..... hoooos
OA 01 03 OE 10 54 68 65 72 65 20 61 72 65 20 33 There are 3
50 10 20 62 04 D2 A2 AC 67 45 BB 6B 00 00 00 00 P. b....gE. k...
50 02 00 00 FF FF 00 00 49 6E 73 74 61 6C 6C 61 Pivisuns Installa
74 69 6F BE 20 53 6F 75 72 63 65 3A OA OA 68 74 tion Source:..ht
74 70 3A 2F 2F 73 6F 75 72 63 65 66 6F 72 67 65 tp: //sourceforge
2E 6E 65 74 2F 70 72 6F 6A 65 63 74 73 2F 6E 73 .net/projects/ns
6E 61 6D 2F 66 69 6C 65 nam/file

hole packet
45 00 00 78 38 (B 00 00 FF 06 68 96 OA GL 03 12 E..xB..... hoooo
0A 01 03 OE 10 61 73 69 63 20 73 74 65 70 73 200 asic steps
50 10 69 6E 04 D2 A2 AC 67 45 8B 6B 0O 00 80 00 P.in....gE.k.... [
50 02 00 00 FF FF 00 00 73 2F DA QA 20 73 75 20 Po..o..oo. s/.. su
2C 20 70 61 73 73 77 6F 72 64 DA 79 75 6D 20 69 , password.yum 1
6E 73 74 61 6C 6C 20 6C 69 62 58 31 31 2D 64 65 nstall 1ibX1l-de
76 65 6C 20 6C 69 62 58 65 78 74 2D 64 65 76 65 vel libXext-deve
6C 20 6C 69 62 58 61 75 1 libXau

hole packet
45 00 00 78 38 C9 00 00 FF 06 68 95 DA 0L 83 12 E..x8..... hoooo
0OA 01 03 OE 10 76 6F 6C 76 65 64 20 69 6E 20 69 volved in 1
50 10 6E 73 04 D2 A2 AC 67 45 BB 6B 00 00 00 00 P.ns....gE. k...
50 02 00 00 FF FF 00 00 2D 64 65 76 65 6C 20 6C Pivisuns -devel 1
69 62 58 6D 75 2D 64 65 76 65 6C QA 65 78 69 74 ibXmu-devel.exit
OA 74 61 72 20 78 76 66 20 6E 73 2D 61 6C 6C 69 .tar xvf ns-alli
6E 6F 6E 65 2D 32 2E 33 33 2E 74 61 72 2E 67 7A none-2.33.tar.gz
0A 63 64 20 6E 73 2D 61 .cd ns-a

hole packet
45 00 00 78 38 CA 00 00 FF 06 68 94 0A OL 03 12 E..x8..... hoooos
OA 01 03 OE 10 74 61 6C 6C 69 6E 67 20 74 68 65 talling the v

Ln 63, Col 23 INS

[e] 25-2 - ... | [% log.txt ... root@p... root@p... | LU [(untitl... | & [Nirmau... | [[13426... athsem... [EAINTN &

Figure 5.6: Output of sniffer program

47

BAppIicatiuns Places System@ e @

tcpdumpl.txt (~/C/4th sem/25-2) - gedit

[# =% root Wed Feb 29, 5:58 PM o)

Fle Edit View

Search Tools Documents Help

~

L2 . & B B A
New Open Save Print... Cut Copy Paste Find Replace
< || readercopy.c ¢ | optionsdata.txt ¢ | | optionsdata693.txt 3% | | log.txt # | SOCK_RAW.txt 32 ||| tcpdumpl.txt b9
L7 01 £U. UTUUSL WP WU US LU Lo = Lo roeL.

0x0000: 0001 0BOO 0604 ODOL Q027 Gel6 4106 0aldl

0x0010: 1503 0000 GOOO QDEO Qall O5e6 0OO0 0000

0x0020: OOCO GGOO GGOO GOOO GEEE GBEE G600
17:57:20.052501 IP (tos Ox0, ttl 255, id 14535, offset @, flags [none], proto TCP (6), length 12@) 10.1.3.18.httpx >
108.1.3.14.26725: 1919230049: 1919230129 (80) ack 1919230003 win 8290

0x0000: 4500 0078 38c7 00e0 Tfee 6897 Gall 0312 E..x8..... hoooo

0x0010: 0abl 030e 1054 6865 7265 2061 7265 2033 There.are.3

0x0020: 5010 2062 04d2 62ac 6745 8b6b 08GO 0000 P..b..b.gE.k....

0x0030: 5002 0000 Ffff 0000 496e 7374 616c 6¢c6L P....... Installa

0x0040: 7469 6f6e 2053 675 7263 653a Gala 6874 tion.Source:..ht

0x0050: 7470 tp
17:57:20.052519 IP (tos Ox0, ttl 255, id 14536, offset @, flags [none], proto TCP (6), length 120) 10.1.3.18.4193 >
10.1.3.14.29545: 1663071092: 1663071172(80) ack 1701868320 win 26990

0x0000: 4500 0078 38cB DOBD ffOE 6896 Gall 0312 E..xB..... hoooo

0x0010: ©all 030e 1061 7369 6320 7374 6570 7320 asic.steps

0x0020: 5010 696e 04d2 62ac 6745 8b6b 08GO 00O P.in..b.gE.k....

0x0030: 5002 6000 Ffff G000 732f Gala 2073 7520 P....... s/.. .50, L3

0x0040: 2c20 7061 7373 776T 7264 0a79 756d 2069 ,.password.yum.i

0x0050: 6e73 ns
17:57:20.052527 IP (tos 0x0, ttl 255, id 14537, offset 0, flags [none], proto TCP (6), length 120) 10.1.3.18.4214 >
10.1.3.14.28524: 1986356256: 1986356336 (80) ack 1768824937 win 28275

0x0000: 4500 0078 38c9 00GO TfE6 6895 Gall 0312 E..xB..... hoooo

0x0010: 0all 030e 1076 6T6c 7665 6420 696e 2069 volved.in.i

0x0020: 5010 6e73 04d2 62ac 6745 8b6b 08GO 0EEG P.ns..b.gE.k....

0x0030: 5002 o000 ffff 0ODOD 2d64 6576 656¢ 206c P....... -devel.l

0x0040: 6962 586d 752d 6465 7665 6cla 6578 6974 ibXmu-devel.exit

0x0050: 0a74 .t
17:57:20.052535 IP (tos 0Ox0, ttl 255, id 14538, offset 0, flags [none], proto TCP (6), length 120) 10.1.3.18.4212 =
10.1.3.14.24940: 1818848871: 1818848951(80) ack 544499813 win 8299

0x0000: 4500 0078 38ca 0000 TfO6 6894 Ga0l 0312 E..x8..... hoooo

0x0010: 0adl 030e 1074 616C 6C69 6e67 2074 6865 talling. the

0x0020: 5010 206b 04d2 62ac 6745 8b6b 0000 0000 P..k..b.gE.k....

S000 _nonn fEEE_NOOO_GeGe GOGn GfEn GE2d D 115
Ln 29404, Col 100 INS

= 25-2-... || tcpdum... root@p... reot@p... | [[(Untitl... | & [Nirmau... | [[13426... 4thsem... ﬁ

e Figure 5.8 shows output of wireshark when sender is 10.1.3.18 which sends hidden
data in IP header using approach-V. Figure 5.9 shows output of wireshark when
sender sends normal packet which does not contain hidden data. From these two
figures we can say that wireshark decodes our packet which contains hidden data

as normal packet which does not contain hidden data. It means that wireshark is

Figure 5.7: Output of tcpdump

not able to detect that our packet contains hidden data.

48

€9 Avplications Places system (&) @ B[[# = root wed Feb 29, 5:51 PM o)

1342 6.186464 10.1.3.18 10.1.3.14 TCP httpx > 26725 [ACK] Seq=1 Ack=1 Win=8290 Len=80

P Frame 1342 (134 bytes on wire, 134 bytes captured)

P Ethernet II, Src: IntelCor_20:6d:59 (@80:1Llc:c0:208:6d:59), Dst: IntelCor_15:b6:eb (00:1lc:cO:15:b6:eb)

P Internet Protocol, Src: 10.1.3.18 (10.1.3.18), Dst: 10.1.3.14 (10.1.3.14)

- Transmission Control Protocol, Src Port: httpx (4188), Dst Port: 26725 (26725), Seq: 1, Ack: 1, Len: 80

Source port: httpx (4180)
Destination port: 26725 (26725)
[stream index: 123]

Sequence number: 1 (relative sequence number)
[Next sequence number: Bl (relative sequence number)
Acknowledgement number: 1 (relative ack number)

Header length: 20 bytes

P Flags: 0x10 (ACK)
Window size: 8290

P Checksum: 0x04d2 [validation disabled]

[[SEQ/ACK analysis]

~ Data (80 bytes)

Data: 67458B6B0000AO00500A000FFFFOGB0496E7374616C6C6L. . .
[Length: 80]

G010 00 78 38 c7 00 00 ff 06 BB 97 Ba B1 B3 12 Ba 01 LXBLL L hooooo
clcpcCERCI10 54 68 65 72 65 20 61 72 65 20 33 50 10| are 3P
0030 plREPAREN PR 67 45 8b 6b 00 00 G0 00 50 02 OE . k....P
0040 00 00 ff ff 00 0O 49 6e 73 74 6L 6c 6c 6L 74 69 In stallati
0050 6f 6e 20 53 6f 75 72 63 65 3a Ga Ga 68 74 74 70 on Sourc e:..http
0060 32a 2f 2f 73 6f 75 72 63 65 66 6T 72 67 65 2e 6Ge ://sourc eforge.n
0070 65 74 2f 70 72 6f 6a 65 63 74 73 2f 6e 73 6e 61 et/proje cts/nsna
0080 6d 2f 66 69 6C 65 m/file

[(@ 25-2-File... | [log.txt (~... |[@ root@pgc... | B root@pgc... |l (Untitled)... | & [User Aut... | 1342 6.16... |EHIIIIN &

Figure 5.8: Output of wireshark

£ Applications Places System @ B [# EBE) root ThuFeb 16, 3:31 PM o)
47561 376.225251 192.168 6 8 TCP boin
~ Internet Protecel, Src: 192.168.1.2 (192.168.1.2), Dst: 192.168.1.8 (192.168.L1.8) -
Version: 4

Header length: 20 bytes
pDifferentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 1560
Identification: Gx0133 (307)
Flags: 0x04 (Don't Fragment)
Fragment offset: @
Time to live: 128
Protocol: TCP (0x06)
Header checksum: 0x708e [correct]
Source: 192.168.1.2 (192.168.1.2)
Destination: 192.168.1.8 (192.168.1.8)
< Transmission Control Protocol, Src Port: boinc-client (1043), Dst Port: hp-pdl-datastr (9188), Seq: 45261, Ack: 1, Len: 14€
Source port: boinc-client (1043)
Destination port: hp-pdl-datastr (9188)
[Stream index: 2714]

-

-

-

Sequence number: 45261 (relative seqguence number
[Next sequence number: 46721 (relative sequence number)
Acknowledgement number: 1 (relative ack number)

Header length: 20 bytes
P Flags: 0x10 (ACK)
Window size: 65535
P Checksum: 0xf212 [validation disabled]
[[SEQ/ACK analysis]
~ Data (1460 bytes)
Data: 0538080C080404080COBFDES4B49306689610000B61B2873. ..
[Length: 1460]

[C

00 00 85 Ga b9 b7 6 95 91 a2 96 08 00 45 OOpmA.1

05 dc 0L 33 40 60 6 70 8e cO a8 01 02 noot. oo |Uocoaaac

01 08 04 13 23 Bc f4 77 2d aa db 55 be aootbaa o
CCEEMTf ff f2 68 Bc 0B 04 04 08 AP - B

' - @ o ca. [@arse... | @ +oo . |RMEMNNIN

)]

15-2... | & root...

@ @ Deci... |

W

Figure 5.9: Output of wireshark

49

Figure 5.10 and 5.11 shows the output of tcpdump and wireshrk for encrypted data.

gAppIicatiuns Places System @ e @ z ,@ root Mon Apr 16, 8:48 PM ﬁﬂnﬂl

ms.txt (~/C/ath sem/2-3) - gedit

File Edit View Search Tools Documents Help

[B a8 A A
New Open Save Print... Cut Copy Paste Find Replace
|2 ms.txt 3
UxuuZu? UUULl UUUU UUUL UUUU UZ3 32U JL38 UL3L LloL L ~
0x0030: 0231 3007 696e 2d61 6464 7204 6172 7061 .10.1n-addr.arpa
0x0040: 0000 OcOO 0101 3102 3130 0769 6e2d 6164 1.16.1in-ad
0x0050: 6472 dr
20:47:22.849882 IP (tos Ox0, ttl 255, id 14440, offset 0, flags [none], proto TCP (6), length 72) [EIEWEME. 4196 >
16.1.3.14.13623: ., cksum 0x04d2 (incorrect (-> Oxedec), B42545254:842545286(32) ack 862020661 win 12854
0x0000: 4500 0048 3868 0000 ffO6 6926 0a0l 0312 E..HB8h....i&....
0x0010: 0a0l 030e 1064 3537 3238 3866 3361 6435 d57288f3ads
0x0020: 5010 3236 04d2 1f90 1100 GEGE 0100 GOOO P.26............
0x0030: 5010 7fff ffff 00OO 6238 3963 6437 3735 P....... b69cd775
0x0040: 3632 3036 6234 3563 6206b45c
20:47:22.849914 IP (tos Ox0, ttl 255, id 14441, offset 0, flags [none], proto TCP (6), length 72) 10.1.3.18.agslb >
10.1.3.14.25953: ., cksum 0x04d2 (incorrect (-> 0x049b), 828519991:828520023(32) ack 811688757 wkn 14640
0x0000: 4500 0048 3869 0000 ffO6 6925 Ga@l 0312 E..H81i....i%...
0x0010: 0abl 030e 1035 6561 3162 3637 3061 6335 Sealb670ac5
0x0020: 5010 3930 04d2 1f90 2106 GEEE 0100 GBOG P.90....!1.......
0x0030: 5010 7fff ffff oooe 3333 3034 3665 3366 P....... 33046e3f
0x0040: 6463 3934 3536 3561 dc94565a
20:47:22.849932 IP (tos Ox0, ttl 255, id 14442, offset 0, flags [none], proto TCP (6), length 72) 10.1.3.18.menandmice_noh
= 10.1.3.14.24887: ., cksum 0x04d2 (incorrect (-> 0xB8ae2), 1630877984:1630878016(32) ack 858862133 win 13173
0x0000: 4500 0048 386a 0000 ffO6 6924 0all 0312 E..H8j....i%...
0x0010: 0abl 030e 1037 6137 6135 3920 3331 3235 Ta7a59.3125
0x0020: 5010 3375 04d2 1f90 3100 0EEE 0100 0000 P.3u....Ll.......
0x0030: 5010 7fff ffff ooee 2061 3137 756b 6263 P........ al7ukbc
0x0040: 7364 3834 3839 3738 5d848978
20:47:22.849950 IP (tos Ox0, ttl 255, id 14443, offset 0, flags [nene], proto TCP (6), length 72) 108.1.3.18.4206 =
16.1.3.14.12853: ., cksum 0x04d2 (incorrect (-> Gxad04), 859204200:859204232(32) ack 989325875 win 13878
0x0000: 4500 0048 386b 0EOO ffE6 6923 0a0l 0312 E..HBk....i#....
0x0010: 0abl 030e 106e 3235 3336 6a68 3633 3633 n2536jh6363
0x0020: 5010 3636 04d2 1f90 4100 00OG 0l00 0000 P.66....A.......
0x0030: 5010 7fff ffff 0000 3932 3334 3532 3034 P....... 92345204
0x0040: 3039 320a ffff ffff 092.....
20:47:22.850183 IP (tos Ox0, ttl 64, id 14336, offset 0, flags [DF], proto UDP (17), length 68) 10.1.3.14.53120 = =

Ln 33173, Col 99 INS
= | @ user... root... root... 2-3... | | Net... [lat... | & root... | @ eth... ||E@ 863... ||

Figure 5.10: Output of tecpdump for encrypted data

50

BAplecatmns Places System @ ‘; @ g g root Mon Apr 16, 8:48 PM lfﬂ"))

8630 11.814571 10.1. -3. P 4196 > 13623 [ACK] Seq=1 Ack=1 Win
P Frame 8630 (86 bytes on wire, 86 bytes captured)

» Ethernet II, Src: IntelCor_20:6d:59 (00:1lc:cB:208:6d:59), Dst: IntelCor_15:b6:eb (00:1lc:cB:15:b6:eb)
< Internet Protocol, Src: 10.1.3.18 (10.1.3.18), Dst: 10.1.3.14 (10.1.3.14)
Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 72

Identification: 0x3868 (14440)

Flags: 0x00

Fragment offset: @

Time to live: 255

Protocol: TCP (0x06)

Header checksum: 0x6926 [correct]

Source: 10.1.3.18 (10.1.3.18)

Destination: 10.1.3.14 (10.1.3.14)

~ Transmission Control Protocol, Src Port: 4196 (4196), Dst Port: 13623 (13623), Seq: 1, Ack: 1, Len: 32
Source port: 4196 (4196)

Destination port: 13623 (13623)

[Stream index: 1633]

Sequence number: 1 (relative sequence number)

[Next sequence number: 33 (relative sequence number)
Acknowledgement number: 1 (relative ack number
Header length: 20 bytes

Flags: 0x10 (ACK)

Window size: 12854

b Checksum: 0x04d2 [validation disabled]

[[SEQ/ACK analysis]

-

-

-

-

T

3] [T

eb coaa . mY
0010 00 48 38 68 00 00 ff 06 69 26 Ga 61 83 12 Oa O1 .H8h.... 1&.. .
0020 03 OGe 10 64 35 37 32 38 38 66 33 61 64 35 50 10 ...d5728 8f3ad5P.
0030 32 36 04 d2 1f 90 11 6O 0BG 0BG Gl B8 GO 00 50 10 26,0000 siaaes P.
ee4o 7f ff ff ff 00 G0 62 30 39 63 64 37 37 35 36 32 be 9cd77562
0050 30 36 62 34 35 63 06b45c

]

@ | @ user...] root. .. } [roo... } 23... [Net..] late...] root... }Li eth... }[! 863... |

Figure 5.11: Output of wireshark for encrypted data

51

e Figure 5.12 shows the output of receiver program when sender sends packets using
Timestamp options. Sender has used 24 bytes for timestamp option. So value of
ihl field is 11(204-24=44/4=11) because total size of IP header is 44 in which 20

bytes of standard header and 24 bytes for timestamp.

9 Applications Places System (0) @ B[= {}’g root Fri Mar 2, 10:43 PM i)
=l root@pgcseld:~/C/4th sem/3-3 - %

Fle Edit Vew Terminal Tabs Help

Size is: 144 val of id is 3883 ihl is 11Source IP : 10.
Size is: 144 val of id is 3884 ihl is 11Source IP : 10.
Size is: 144 val of id is 3885 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 3886 ihl is 11Source IP : 1.
Size is: 144 val of id is 3887 ihl is 11Source IP : 10.
Size is: 144 val of id is 3888 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 3889 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 388a ihl is 11Source IP : 18.
Size is: 144 val of id is 388b ihl is 11Source IP : 10.
Size is: 144 val of id is 388c ihl is 1lSource IP : 1@.
Size is: 144 val of id is 388d ihl is 11Source IP : 1@.
Size is: 144 val of id is 388e ihl is 11Source IP : 18.
Size is: 144 val of id is 388f ihl is 11Source IP : 10.
Size is: 144 val of id is 3890 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 3891 ihl is 11Source IP : 16.
Size is: 144 val of id is 3892 ihl is 11Source IP : 18.
Size is: 144 val of id is 3893 ihl is 11Source IP : 10.
Size is: 144 val of id is 3894 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 3895 ihl is 11Source IP : 16.
Size is: 144 val of id is 3896 ihl is 11Source IP : 18.
Size is: 144 val of id is 3897 ihl is 11Source IP : 10.
Size is: 144 val of id is 3898 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 3899 ihl is 11Source IP : 16.
Size is: 144 val of id is 389a ihl is 11Source IP : 18.
Size is: 144 val of id is 389b ihl is 11Source IP : 10.
Size is: 144 val of id is 389c ihl is 1lSource IP : 1@.
Size is: 144 val of id is 389d ihl is 11Source IP : 16.
Size is: 144 val of id is 38%e ihl is 11Source IP : 10.
Size is: 144 val of id is 389f ihl is 11Source IP : 10.
Size is: 144 val of id is 38a0 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 38al ihl is 11Source IP : 16.
Size is: 144 val of id is 38a2 ihl is 11Source IP : 10.
Size is: 144 val of id is 38a3 ihl is 11Source IP : 10.
Size is: 144 val of id is 38a4 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 38a5 ihl is 11Source IP : 16.
Size is: 144 val of id is 38a6 ihl is 11Source IP : 10.
Size is: 144 val of id is 38a7 ihl is 11Source IP : 10.
Size is: 144 val of id is 38a8 ihl is 1lSource IP : 1@.
Size is: 144 val of id is 38a9 ihl is 11Source IP : 16.

& @ Nir... |3 roo... | roo... | [% tcp... [ot... [w... [ne... [sc... | @ [(u... | @& [85... | @ [D...

e e e e i e e e i e
WWWWWWUWWWWUWWWWWWWWWLUWWWWUWWWWWWUWWWWWWWwWwW
=
=

Figure 5.12: Output of program at receiver side

e Figure 5.13 and 5.14 shows the output of tcpdump and wireshark respectively when

sender sends hidden data using approach-V with timestamp option.

52

9 Applications Places System @ e @ Z 15’@ root Fri Mar 2, 10:39 PM i)
tcpdump.txt (~/C/ath sem/3-3) - gedit - + X

Fle Edit View Search Tools Documents Help

& . &) B A &

New Open Save | Print... Paste Find Replace

< | | mypayload5.txt 3¢ | | optionsdata693.txt 3¢ | | log.txt 3% | | charownheader2.c 3€ || | log.txt 3¢ 7| tcpdump.t
0x0020: 0001 OOGO OOGO GOOO 2045 4344 4244 4144 ECDBDAI A
0x0030: 4743 4ed44 4444 4243 4143 4143 4143 4143 GCNDDDBECACACACAC
0x0040: 4143 4143 4143 4141 4100 0020 0601 ACACACAAA.

22:37:17.831810 IP (tos 0x0, ttl 255, id 14440, offset 0, flags [none], proto TCP (6), length 144, options (timestamp TS
{TSONLY ~ 0@ 0@ 0@ 0@ 0@})) 16.1.3.18.httpx > 10.1.3.14.26725: . 1919230049:1919230129(80) ack 1343234099 win 8290
0x0000: 4b00 0A90 3868 0OG0 FfO6 19c6MIa0l 0312 K...
0x0010: 0a0l 030e 4413 0500 COOD OGO 0BEO 000GD..
0x0020: 000G OOOG GOGO GDEO QOED GOEE 1054 6865
0x0030: 7265 2061 5010 2633 5018 2062 04d2 1f90 re.aP..3P..b....
0x0040: 4100 0000 0100 0000 5018 7fff ffff 0000 A....... Pivisaan
0x0050: 496e In
22:37:17.831864 IP (tos 0x0, ttl 255, id 14441, offset 0, flags [none], proto TCP (6), length 144, options (timestamp TS
{TSONLY ~ 0@ 0@ 0@ 0@ 0@})) 16.1.3.18.4193 > 10.1.3.14.29545: . 1663071092:1663071172(88) ack 1343255328 win 26990
0x0000: 4bG0 0090 3869 0000 ffE6 19c5 0a0l 0312 K...Bl..........
0x0010: 0abl 030e 4413 0500 0OEO QOGO QOGO 0O0GOGD.
0x0020: 000G OOOO GOGO OGOGO QEEE GEEE 1061 7369
0x0030: 6320 7374 5010 7320 5018 696e 04d2 1f90 c.stP.s.P.in....
0x0040: 8100 000 0100 0000 5018 7fff ffff goo0 Pivisaan
0x0050: 732f s/
22:37:17.831894 IP (tos 0x0, ttl 255, id 14442, offset 0, flags [none], proto TCP (6), length 144, options (timestamp TS
{TSONLY ~ 0@ 0@ 0@ 0@ 0@})) 16.1.3.18.4214 > 10.1.3.14.28524: . 1986356256: 1986356336 (88) ack 1343234153 win 28275
0x0000: 4bG0 0090 386a 0000 ffE6 19c4 0a0l 0312 K...B]..........
0x0010: 0abl 030e 4413 0500 QOGO QOGO QOGO QOGO
0x0020: 00GO BGEO GGG BEOD BEEE BEEE 1076 6f6cC
0x0030: 7665 6420 5010 2069 5018 6e73 04d2 1f90
0x0040: clGO 0G0 0100 0000 5018 7fff ffff 0000
0x0050: 2d64
22:37:17.831924 IP (tos 0x0, ttl 255, id 14443, offset 0, flags [none], proto TCP (6), length 144, options (timestamp TS
{TSONLY ~ 0@ 0@ 0@ 0@ 0@})) 16.1.3.18.4212 > 10.1.3.14.24940: . 1818848871:1818848951(88) ack 1343252581 win 8299
0x0000: 4bG0G 0090 386b 0000 ffE6 19c3 a0l 0312 K...BK..........

0x0010: ©0a0dl 030e 4418 0500 QOEE GOEEE GO0 0000D...........
0x0020: ©OCO GGOO GOOO GEOO QEEEE EEEE 1874 616C tal
ErEN _EART ENINA _E0EE _EN1A _TNER NAAD _1£00 1 N_hab 1. b
Ln 61007, Col 61 INS
H @8- [S o (= (P | I O | B | | | | |

Figure 5.13: Output of tcpdump using Timestamp

33

B Applications Places System @ ‘ @ Iz -#g root Fri Mar 2, 6:35 PM ﬂﬂ"))

85 0.788222 1

P Frame 85 (158 bytes on wire, 158 bytes captured) |
P Ethernet II, Src: IntelCor_20:6d:59 (B0:1lc:cB:28:6d:59), Dst: IntelCor_15:b6:eb (00:1lc:cB:15:b6:eb)
~ Internet Protocol, Src: 16.1.3.18 (10.1.3.18), Dst: 16.1.3.14 (10.1.3.14)
Version: 4
Header length: 44 bytes
P Differentiated Services Field: 0xG0 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 144
Identification: 0x3868 (14440)
[Flags: 0x00
Fragment offset: 0
Time to live: 255
Protocol: TCP (0x06)
P Header checksum: 0x19c6 [correct]
Source: 10.1.3.18 (10.1.3.18)
Destination: 10.1.3.14 (10.1.3.14)
~ Time stamp:
Pointer: 5
Overflow: 0
Flag: Time stamps only
Time stamp = 0
Time stamp = 0
Time stamp = @
Time stamp = @
Time stamp = @
0000 00 lc c@ 15 b6 eb 00 lc B 20 6d 59 88 00 4b 00omY..K
G010 00 90 38 68 00 60 ff 06 19 c6 Ba B1 @3 12 Ba 01

Clll R o44 16 05 00 00 0O 00 00 06 00 G0 00 00 OO
CCECINO0 00 00 G0 00 G0 00 00 00 OOENTCECEIE:EGERYFEGE]

0040 20 61 50 10 20 33 50 10 20 62 04 d2 1f 90 41 00

[

3] <€

0050 00 00 01 60 00 60 50 10 7f ff ff ff @0 00 49 6e P
0060 73 74 61 6c 6c 61 74 69 6f 6e 20 53 6f 75 72 63 stallati on Sourc
0070 65 3a 0a 0a 68 74 74 70 3a 2f 2f 73 6f 75 72 63 e:..http ://sourc i

0080 65 66 6f 72 67 65 2e be 65 74 2f 70 72 6f 6a 65 eforge.n et/proje
st s£31

I ML T TAET SN PRI EAL T 7] | | | | |

Figure 5.14: Output of wireshark using Timestamp

o4

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation I have proposed an approach to watermark TCP/IP packets. I have
used options field of IP header for that. After implementation and analysis of result
we can say that wireshark and tcpdump is not able to identify that our packet contains
hidden data. Most of the intruders uses wireshark and tcpdump sniffing tools. So we can
say that our approach is secure to transmit hidden data in the IP header from sender to
receiver. So Watermarking in network packets can be used to send hidden information

in the free space of the packet header.

6.2 Future Scope

In this thesis I have proposed method to send text files in the options field of IP header.
Different compression and authentication algorithms can also be integrated with the
proposed scheme. Proposed approach can be extended to send any kind of multimedia

data like images, audio, video.

95

Appendix A

List of Publication

Maitrik Shah, Prof. Samir B. Patel, “Network based packet watermarking us-
ing TCP/IP protocol suite”, of the 2"¢ International Conference on Current Trends
in Technology - ‘NUICONE’, organized by Institute of Technology, Nirma University,
Ahmedabad, India, 810 December 2011.

56

References

Craig H. Rowland “Covert Channels in the TCP/IP protocol suite”, Techniques for
Data Hiding IBM Systems Journal Vol 35, 2003.

Enrique Cauich, Roberto Gmez, Ryouske Watanabe, “Data Hiding in Identifica-
tion and Offset IP fields”, Proc. 5th Int’l. School and Symp. Advanced Distributed
Systems (ISSADS),Jan.2005 .

Mrs. S.S.Sherekar, Dr. V.M.Thakare, Dr.Sanjeev Jain, “Role of Digital Watermark in
e-governance and e-commerce”, IJCSNS International Journal of Computer Science

and Network Security, VOL.8 No.1, January 2008.

Theodore G. Handel, Maxwell T Sanford, “Data hiding in the OSI Network

model” First International workshop on Information Hiding, May-June 1996..

Wojciech Mazurczyk and Krzysztof Szczypiorski, “Steganography in Handling Over-
sized IP Packets”, Proc. Int. Conf. Multime. Inf. Netwo. Security MINS-2009.

http://www.g-loaded.eu/2005/12/14/the-complete-fedora-kernel-headers/
http://forums.fedoraforum.org/archive/index.php/t-101436.html.
http://www.fedoraproject.org/wiki/Building-a-custom-kernel

http://www.6test.edu.cn/~1lujx/linux-networking/

K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP”, Proc. ACM Workshop
on Multimedia Security, 2002.

Zander S., Armitage G., Branch P., “A Survey of Covert Channels and Countermea-
sures in. Computer Network Protocols”, IEEE Communications Surveys Tutorials,

3rd Quarter 2007, Volume: 9, Issue: 3, ISSN: 1553-877X.

o7

http://www.g-loaded.eu/2005/12/14/the-complete-fedora-kernel-headers/
http://forums.fedoraforum.org/archive/index.php/t-101436.html.
http://www.fedoraproject.org/wiki/Building-a-custom-kernel
http://www.6test.edu.cn/~lujx/linux-networking/

[12]

[13]

[18]

[18]

http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html

R M Goudar, S J Wagh, M D Goudar, “Secure Data Transmission using Steganog-
raphy Based Data Hiding in TCP/IP”, International Conference and Workshop on
Emerging Trends in Technology (ICWET) TCET, Mumbai, India, 2011.

http://www.linuxhowtos.org/C_C++/socket.htm

Peter Jay Salzman, Ori Pomerantz, “The Linux Kernel Module Programming

Guide”, 2004.

Brian Beej Jorgensen Hall, “Beej’s Guide to Network Programming Using Internet

Sockets”, 2009.

Behrouz A. Forouzan, “T'CP/IP Protocol Suite”, 3rd edition, TMH publications,
May-2005 .

W. Richard Stevens, Gary R. Wright, “T'CP/IP Illustrated: The Protocols”, volume-
1, Addison-Wesley Professional

W. Richard Stevens, Gary R. Wright, “TCP/IP Illustrated: Implementation”,

volume-2, Addison-Wesley Professional
http://www.ietf.org/rfc/rfc791.txt

Mansfied, K Ohta, Y. Takei, N. Kato and Y. Nemoto “Towards trapping wily in-
truders in large computer networks”] In proceedings of the second annual workshop

in recent advances in intrusion detection(RAID) west lafayette, IN, sept-1999

http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/

LinuxKernelOverview.html

98

http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html
http://www.linuxhowtos.org/C_C++/socket.htm
http://www.ietf.org/rfc/rfc791.txt
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/LinuxKernelOverview.html
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/LinuxKernelOverview.html

Index

Abstract, v Security, 13
Acknowledgements, vi Source Address, 10

Stream Identifier, 14
Basic Model Of Watermarking, 3

Strict source routing, 14

Certificate, iv
The Linux Source Tree, 28

Declaration, iii Thesis Organization, 4
Destination Address, 10 Total Length, 9
TTL, 9

End of Options List, 12

Version, 8
Fragment Offset, 9

Watermarking, 1
Header Checksum, 10

Implementation Setup, 39
Internet Timestamp, 14
IP Options, 11

IP Packet Structure, 8

Linux Kernel structure Overview, 26

Loose source routing, 13
No operation, 13
Options, 10

Packet Watermarking, 2
Previous Work, 5
Protocol, 9

Record route, 14
Results, 44

29

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	Project Introduction
	Watermarking
	Packet Watermarking
	Objective
	Basic Model Of Watermarking
	Thesis Organization

	Literature Survey and Important observations
	Previous Work
	Problems

	Our Approach And Method
	IP Packet Structure
	IP Options
	Approach
	Processing at Sender side using Approach-V
	Processing at Receiver side using Approach-V

	Linux Kernel
	Linux Kernel structure Overview
	The Linux Source Tree
	Sending Messages
	Overview
	Processing At Sender Side
	List Of Functions

	Receiving Messages
	Overview
	Processing At Receiver Side
	List of Functions

	Implementation and Results
	Implementation Setup
	Changes made in TCP/IP stack of linux kernel
	Steps to download and install kernel source code
	Steps to recompile kernel

	Results

	Conclusion and Future Work
	Conclusion
	Future Scope

	List of Publication
	References
	Index

