A systematic approach in driving the model for
optimization and efficiency improvement in
Ingredients and Platform Validation for Intel Client
Platforms(2012-13)

Prepared By

Manthan V. Shah
10MCEC16

UNI VERSITY

T [

gNR A

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NIRMA UNIVERSITY
AHMEDABAD-382481

May 2012

A systematic approach in driving the model for
optimization and efficiency improvement in
Ingredients and Platform Validation for Intel Client
Platforms(2012-13)

Major Project
Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

Prepared By

Manthan V. Shah
10MCEC16

GUIDED BY :
Mukesh Kothari
S Ravishankar

ma 2 e

UNIVERSITY

'I' b

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
NIRMA UNIVERSITY
AHMEDABAD-382481

May 2012

111

DECLARATION

I, Manthan Shah, 1I0MCEC16, give undertaking that the Major Project enti-

tled ” A systematic approach in driving the model for optimization and
efficiency improvement in Ingredients and Platform Validation for Intel
Client Platforms(2012-13)” submitted by me, towards the partial fulfillment of
the requirements for the degree of Master of Technology in Institute of Technology of
Nirma University, Ahmedabad, is the original work carried out by me and I give as-
surance that no attempt of plagiarism has been made. I understand that in the event
of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

Manthan Shah

Certificate

This is to certify that the Major Project entitled “A systematic approach in driv-
ing the model for optimization and efficiency improvement in Ingredients
and Platform Validation for Intel Client Platforms(2012-13)” submitted by
Manthan V. Shah (10MCEC16),towards the partial fulfillment of the require-
ments for the degree of Master of Technology in Computer Science and Engineering
of Nirma University , Ahmedabad is the record of work carried out by him under my
supervision and guidance. In my opinion, the submitted work has reached a level
required for being accepted for examination. The results embodied in this major
project, to the best of my knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

Mukesh Kothari Prof. Tejal Upadhyay

Project Manager, Internal Guide,

Intel Technology India Pvt. Ltd. Institute of Technology,

Bangalore Nirma University, Ahmedabad

S Ravishankar Prof. S. N. Pradhan

Project Guide, Professor,PG Coordinator,

Intel Technology India Pvt. Ltd. Computer Science and Engineering Department,
Bangalore Nirma University, Ahmedabad

Dr. Ketan Kotecha Prof. D. J Patel

Director, Professor, HOD,

Institute of Technology, Computer Science and Engineering Department,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Abstract

Today, the complexity of the computer has grown, with processors and chipsets incor-
porating millions of the transistors and compatible with dozens of operating system,
hundreds of platform components and thousands of hardware devices and software
applications. Thus complexity of a platform has created an astronomical number
of possible test cases for a platform level validation Process. The coverage includes
interoperability with many devices, operating system and components thus raising
the number of the test cases to near infinity. Compatibility is also a major issue
with all components as platform must be compatible with thousands of third party

components.

Clearly, there is no way to test each and every possible combination. Validation
test plan must include only set of test cases that are important and can be covered
during specified time line because Time to market is crucial factor for any product.
Also Test plan must be complete enough to achieve better quality product as the aim
of the ingredient and platform validation is to achieve Quality, Compatibility and

Reliability across all PC platforms.

In this thesis report, our proposal is to define a systematic approach to achieve opti-
mization and efficiency improvement by considering overall validation process , Test
content optimization and Test content Automation for Ingredients and Platform val-

idation (for Intel client platforms) so as to achieve better Quality end products.

vi

Acknowledgements

[am deeply indebted to my thesis supervisor S, Ravishankar for his constant
guidance and motivation. He has devoted significant amount of his valuable time to
plan and discuss the thesis work. Without his experience and insights, it would have

been very difficult to do quality work.

I would also like to extend my gratitude to my project manager Mukesh Kothari
for his constant support.Without his support and motivation , it would have been

very difficult to achieve quality results.

I would also like to thank Prof D. J. Patel , Head of Department Computer Sci-
ence , DR. Ketan Kotecha , Director of Nirma University ,Prof S. N. Pradhan
, PG Coordinator Computer Science and also my college Internal Guide Prof. Tejal
Upadhyay for their constant support and allowing me to do internship in such a

big and reputed Organization.

Last, but not the least, no words are enough to acknowledge constant support and
sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Manthan V. Shah
10MCEC16

Contents

[Declarationl iii
Certificate iv
[Abstractl v
[Acknowledgements| vi
[List of Figures| 1
1__Introduction to Post Silicon Validationl 2
(L1 Problem Statment] 7
(1.2 Thesis Organization|. 7

2 Literature Survey| 9
2.1 Intel Architecture - Platform Overview 2] 9

2.2 Platform Controller Hub (PCH) Architecture Overview| 11
2.3 Platform Software Architecture Overviewl 14
231 Firmward 14

2.3.2 Software Stack Overviewl 15

[2.4 Scope of System BIOS on Plattorm Validationl 16
[2.4.1 System BIOS| 16

[2.4.2 Major features of System BIOS| 19

243 Power-on self-test| 21

[3 BIOS Validation Analysis| 22
[3.1 Coverage Matrix] 22
[3.2 Coverage Gaps and Test Case Derivation| 22
3.2.1 MBR Register Level Testing| 23

3.2.2 UEFTI (Unified Extensible Firmware Interface)]. 24

3.2.3 Port 80h POST Codes| 27

3.2.4 SMBIOS 29

13.2.5 Advance Configuration and Power Management (ACPI) Tables |

[Verificationl 30

vil

CONTENTS

[4 Platform Stress Analysis|
[4.1 Stress Testingl oo
[4.1.1 Stress testing in terms of Hardware]
[4.2 Load Testing]
[4.2.1 User Experience under Load test|
[4.3 Existing Stress Test Content Analysis|.
[4.4 Problem Statement Based on Existing Stress Content Analysis|

[> Background Into Methodology|
(b.1 Performance Counters,
[5.2 Stress Evaluation using Performance Counters|
[5.3 Time Based Sampling Exampled||
[5.4 Stress Evaluation of SATA Interface using Methodology|.

[6_ Results
[6.1 Case Study : SATA Interface]
[6.2 Case Study : SATA and USB Intertacel
[6.3 Case Study : PCle Intertace]

[7 Recommendation and Approach|

[8 Conclusion and Future Scope|

viil

32
32
32
33
34
34
35

37
37
39
40
43

44
44
47
48

49

List of Figures

[2.1 High-level block diagram of Chief River / Maho Bay platforms| 11
22 PCHInferfaces 14
2.3 Software Stack Overview| L. 16
[3.1 Coverage Matrix] 23
5.1 Performance Counter[6]]. 38
52 Command Flow[5l[. 40
6.3~ Performance Counter Structure 41
(.4 Time Based Sampling Example] 42
6.1 SATA Throughput when SATA is stressed with [Ometer| 44
6.2 SATA Throughput when SATA is stressed with I[Ometer with different [

Access Specifications| 45
6.3 SATA and USB Throughput when other Components are Stressed| . . 47
[6.4 LAN (via PCle)Throughput| 48

Chapter 1

Introduction to Post Silicon

Validation

Post-silicon validation[I] is the last step in the development of a semiconductor in-
tegrated circuit. During the pre-silicon process, engineers test devices in a virtual
environment with sophisticated simulation, emulation, and formal verification tools.
In contrast, post-silicon validation tests occur on actual devices running at-speed in

commercial, real-world system boards using logic analyzer and assertion-based tools.

Large semiconductor companies spend millions creating new components; these are
the "sunk costs” of design implementation. Consequently, it is imperative that the
new chip function in full and perfect compliance to its specification, and be delivered
to the market within tight consumer windows. Even a delay of a few weeks can cost
tens of millions of dollars. Post-silicon validation is therefore one of the most highly

leveraged steps in successful design implementation.

Compatibility and reliability issues are found and resolved early, and the results
are used to further refine Intel’s design and manufacturing tools and processes. As a

result, the quality and reliability of Intel platforms and components have improved

CHAPTER 1. INTRODUCTION TO POST SILICON VALIDATION 3

steadily, even as performance and complexity have continued to climb. There are

basically five stages in Intel’s comprehensive post silicon validation program:

Stage 1: System Validation

Stage 2: Analog Validation

Stage 3: Compatibility Validation

Stage 4: Software Validation

Stage 5: Product Qualification

Stage 1: System Validation

System validation puts the actual component through a comprehensive suite of tests
in a real platform environment. The test suites are applied to the Intel CPU, chipset
and graphics subsystem, frequency and temperature conditions are intensified to test

performance at the extreme corners of the component’s specifications.

CPUs

System validation stresses both the architectural and micro-architectural features
of the processor, with a focus on cache coherency and multiprocessor environments.
Both systematic and random tests are used to cover very deep data space and inten-
sive floating-point demands. System validation tests for the Intel Pentium 4 processor

offer a good example of the scope and intensity of the process:

e 2,450 CPU feature tests; 2,000 ancestral architectural tests

e Random instruction testing, 1 trillion instructions per week

CHAPTER 1. INTRODUCTION TO POST SILICON VALIDATION 4

e Focused tests (I/O stress testing, millions of chipset feature permutations)
e Manipulate any piece of memory by any CPU in a multiprocessor environment

Chipsets

All chipset features are tested using custom-built system validation boards and test
cards running custom software to stress each interface of the chipset. Performance
parameters are pushed to extreme limits on all cards and busses concurrently, to val-

idate performance limits and to verify bus compatibility.

Graphics

Specialized tools and test suites are employed for validation testing of the graph-
ics subsystem in all Intel chipsets with integrated graphics. Special test images are
created to ensure a rigorous baseline for automated testing. If a test reports even a
single wrong bit, the root cause is determined by a validation engineer, so that the

problem can be fully resolved to ensure outstanding visual quality with no defects.

Stage 2: Analog Validation

As PC performance demands continue to climb, the electrical integrity of proces-
sors and chipsets is vital to ensure reliable operation at high frequencies. Intel’s
analog validation testing finds failures that can happen in just trillionths of a sec-
ond. Components are stressed to failure at the extremes of temperature, voltage and
frequency. Issues are resolved, and findings are shared with design and production

engineers in order to improve Intel’s design and production methods.

There are two major aspects to analog validation: Circuit Marginality Validation

and Analog Integrity Engineering.

CHAPTER 1. INTRODUCTION TO POST SILICON VALIDATION 5

Circuit Marginality Validation (CMYV)

During CMV, the test suites that were used during pre-silicon simulation of Intel
processors are applied again, but this time with a focus on reliability and perfor-
mance under extreme operating conditions. Both commercial and custom tests are
used to test voltage, frequency and temperature extremes, and to ensure reliable op-

eration within the product’s specifications.

Analog Integrity Engineering (AIE)

ATE tests the integrity of the chipset, to make sure the entire platform is electri-
cally robust. Performance is validated under a wide variety of worst-case scenarios.
The electrical robustness of the chipset and processor is validated under real world

scenarios.

Stage 3: Compatibility Validation

A key advantage of Intel architecture is its wide compatibility with third-party hard-
ware components, software applications and operating systems. Intel components
and platforms undergo exhaustive compatibility, stress and concurrency testing with
over 20 operating systems, numerous motherboards and add-in cards, more than 150
peripherals, and more than 400 applications. OS testing includes multiple versions
of Microsoft Windows, NetWare, SCO, UnixWare and Linux. Application testing in-
cludes many of the world’s most popular business and multimedia programs, as well
as numerous games, industry benchmarks and industry hardware tests. A comprehen-
sive suite of tests is also applied to the component in a heavily networked environment.
Massive file transfers and broadcasts test performance and data coherency using a

wide range of protocols, including Ethernet, Fast Ethernet, Gigabit Ethernet, and

CHAPTER 1. INTRODUCTION TO POST SILICON VALIDATION 6

FibreChannel. In addition to these well-known hardware and software products and
protocols, the component is tested with specially designed cards that push test pa-
rameters beyond conventional limits, to ensure superior performance under worst-case
conditions. For example, multimedia traffic is increased to the bandwidth limit of the

PCI bus, to verify that audio and video signals do not break up under peak workloads.

Stage 4: Software Validation

Intel develops all core software components for its PC and server platforms. This
includes the BIOS and the drivers that are used for graphics, storage and LAN con-
nectivity. Throughout this process, software validation is tightly integrated with hard-
ware validation to ensure that hardware and software components operate smoothly
together. This is essential to validate that the total platform will deliver top perfor-

mance and reliability in the widest possible range of environments.

Microsoft WHQL Certification testing is performed on all Intel software that is spec-
ified for use in a Microsoft Windows operating environment. The WHQL test suite
is used in addition to Intel’s proprietary tests, to certify Intel drivers and to ensure
exceptionally strong validation with Microsoft applications and operating systems.
Thanks to Intel’s software validation expertise and established processes, WHQL cer-

tification throughput has been reduced from weeks to days on most driver releases.

Stage 5: Product Qualification

This is a final phase in Validation cycle, in this stage all the subsystems like graphics,
PCI devices are brought together on platform and the behavior of silicon is tested.
The compatibility and interoperability of all components on a platform is validated
and any customer issues will be resolved. During this final stage, component capabil-

ities are also compared with current end-user expectations. If a product successfully

CHAPTER 1. INTRODUCTION TO POST SILICON VALIDATION 7

passes this testing, it is ready to enter the marketplace.

1.1 Problem Statment

Today, the complexity of the computer has grown, with processors and chipsets incor-
porating millions of the transistors and compatible with dozens of operating system,
hundreds of platform components and thousands of hardware devices and software
applications. Thus complexity of a platform has created an astronomical number of
possible test cases in platform level validation. The coverage includes interoperability
and compatibility with many devices, operating system and components thus raising
the number of the test cases to near infinity. Clearly, there is no way to test every

possible combination.

Test plan must cover all functional areas and also test plan must include limited
set of test cases that are important and can be covered in specified time line and with
minimum effort. We have to define and prioritize set of test cases that are important
and must be included in test plan. We have to define test case based on various
factors like different features, customer bus escapes and gaps in various functional

areas to achieve full coverage.

So key challenge here is to define and develop effective methodology for complete

Platform Validation and finding key defects to ensure the health of the platform.

1.2 Thesis Organization
The rest of the thesis is organized as follows.

Chapter 2| Literature Survey, describes the basic architecture of Intel Platform and

different platform Ingrediants/Components.

CHAPTER 1. INTRODUCTION TO POST SILICON VALIDATION 8

Chapter [3| BIOS Validation Analysis, presents the initial problem definition for
the BIOS validation and solutions targeting those problems.

In Chapter Platform Stress Analysis, a new problem statement for platform

stressing is identified based on existing stress test content analysis.

Chapter [5| Background Into Methodology, describes the new methodology for plat-

form level stressing.

Chapter [6] Results, will cover the case studies carried out using presented method-

ology.

Chapter [7] Recommendation and Approach,will cover recommendations for opti-

mizations and improvements in the areas of platform stressing.

Finally, in Chapter [8| concluding remarks and scope for future work is presented.

Chapter 2

Literature Survey

2.1 Intel Architecture - Platform Overview [2]

The platform is complex with lots of components on it. Every component must work
as designed and there shouldn’t be any conflicts between the devices on it. The fig-
ure below shows the typical diagram of Intel Client platform 2012(Chief River/Maho
Bay).

The Chief River platform is a new Tick CPU and PCH hardware architecture, suc-
ceeding the Huron River platform. The CPU code name is Ivy Bridge. The PCH
code name is Panther Point. The wireless solutions are likely to be Kilmer Peak and

Puma Peak. The GbE Ethernet controller is called Lewisville.

The Ivy Bridge CPU is Intel’s next generation Tock architecture. IVB features a
22nm Hi-K, 1270 process. It has fully integrated graphics on the same 22nm Hi-K
process. The TA core has Intel hyper threading technology, and the next generation
turbo boost technology. The Ivy Bridge CPU consists for 5 separate dies spanning
the extreme edition, mainstream, and Value solutions. A new segment, consumer

ULV also has a dedicated Ivy Bridge Die.

CHAPTER 2. LITERATURE SURVEY 10

The basis for the mobile platform is the combination of the Ivy Bridge CPU (dual or
quad core) with Panther Point PCH. It will also include Lewisville for GbE LAN and
802.3az and Kilmer Peak half minicard for WIFI, WiMax combo. Figure below2.1]
shows the block diagram of 2012 platforms. Some of the significant changes from the
2011 Huron River platform include the following.

e Generation 7 graphics support including DX11, DX10.1, DX10, and DX9, with

3DMark06 performance increase of 20
e PCle Gen3 support on IVB to support high end discrete Gfx cards

e DDR3 memory technology at 1067TMHz 1333MHz in a one DIMM per Channel
(1IDPC). Off roadmap support for 1067 and 1333 exists for 2DPC on quad core

Processors.
e New Super Speed USB3 and XHCI host controller

e The Legacy PCI bus interface is removed from the mobile PCH.
e USB3 and an XHCI supports 4 dedicated USB3 ports

e 6 Serial ATA (SATA) with 2 FIS based port multiplier support and command-
based port multiplier support for all the ports. SATA 6Gbis implemented on
two of the non-FIS port.

e 8 PCIE 5Gbports
e Visual quality enhancements - meeting consumer expectations for HD displays

e Wireless Display- for viewing content on TV over wireless from notebook

CHAPTER 2. LITERATURE SURVEY 11

. DDSFPortB |

A8 oosPronc oy

DOSFPonD o I>=> PcleGen2
PRESS

4xSATA 2.0
2XSATA 2.0

1% PCle Gen?
T g
(8xusEz0__[_@m] 8x USB 2.0

GxUSB 2.0
Zx PCle Gen 2/USB 3.0

HD Audio
L

4xUSB 30

Figure 2.1: High-level block diagram of Chief River / Maho Bay platforms

2.2 Platform Controller Hub (PCH) Architecture

Overview

Platform Controller Hub (PCH) is a family of Intel microchips employed in redesigned
Intel Hub Architecture chipsets. PCH-based chipsets are designed to address the
eventual problem of a bottleneck between the processor and the motherboard. As
processing speeds/cores keep increasing, the bandwidth connection between the CPU
and the motherboard would reach full capacity and a bottleneck would occur. The
speed would be limited by the FSB. As a solution, the new PCH-oriented platform
architecture transferred several functions, connections, and controllers belonging to

the traditional northbridge and southbridge chipsets and rearranged them between a

CHAPTER 2. LITERATURE SURVEY 12

new central hub called the PCH and the CPU. In summary, the PCH takes over most
of the traditional roles of the southbridge and the few remaining roles traditionally

in the northbridge that have not been incorporated into the CPU package.

Before the Platform Controller Hub, a motherboard would have a two piece chipset
consisting of an northbridge chip called the MCH and a southbridge chip. The north-
bridge, later called an memory controller hub (MCH), would have the highest band-
width functions. The CPU, memory, and AGP or PCI Express graphics slot, if
present, would connect to it directly. The northbridge’s connection with the CPU,
called the front-side bus (FSB), and connection to RAM, called the back-side bus,
were each described by data transfer speeds. The southbridge chip, later called an
I/O controller hub (ICH), would connect the northbridge to all other lower bandwidth
peripherals such as hard drives, CD and floppy drives, Ethernet, keyboard/mouse,
PCI cards, system clock, and PCI graphics cards. As CPUs gained more speed and
more cores, the connection between the CPU and the northbridge chip would soon be
unable to keep up with the CPU thereby slowing the system down. So the connection
needed a bigger pipeline.

Several changes have taken place with the evolution to PCH-based chipsets in com-
parison to the earlier MCH plus ICH based chipsets. The primary change is that
the northbridge has been eliminated completely and most of its functions, e.g., the
integrated memory controller (IMC) and integrated graphics device (IGD), are now
incorporated into the CPU package (often on the same die). Secondly, the PCH now
becomes the southbridge and incorporates all of its functions as well as a few of the
remaining northbridge functions not subsumed by the CPU (e.g., clocking). Before,
the memory RAM and the graphics card would communicate with the northbridge
chipset which in turn would communicate with the CPU. Now, memory and graphics
card communicate with the CPU within the same package, thereby relieving much

of the bandwidth between the processor and the PCH. This means that the PCH is

CHAPTER 2. LITERATURE SURVEY 13

not connected to the memory or the PCI-Express graphics (PEG) slot. However, the
PCH still does have a display controller and a connection to the integrated graphics
display if one exists. In addition, the system clock is not a connection any longer and
instead fused in with the PCH. Two different connections exist between the PCH and
the CPU: Flexible Display Interface (FDI) and Direct Media Interface (DMI). The
FDI only exists if an integrated graphics device (IGD) is in the CPU package.

Panther Point PCH is the next generation Platform Controller Hub for the 2012
Platforms and represents the functions that Cougar Point had in the 2011 platform.
Panther Point is a minor HW change over Cougar Point, mainly enabling USB 3 sup-

port. Following diagram shows all the major interfaces supported by the PCH.

Internally, the PCH has following components:
e Power management logic
e System management (TCO reduction) logic

e PC-compatible DMA (8237), Interrupt (8259/APIC), Timer (8245), and Real-
Time Clock

e Integrated thermal sensor
e Manageability Engine integrated into Panther Point with Intel iIAMTS support
e Virtualization Engine integrated

e LaGrande Technology support for TPM

CHAPTER 2. LITERATURE SURVEY 14

14 USEZ ports, el ® Flexibile Display iterace
durenomed U 5ES port=s

1xHC| 2 EHCL F UHC|

Ml Gand

Il

Panthier Point
PCH

Kew F
BGT =)

e
—
—
FCILE x1 @)
m——
e

CM Bus 2.0

Irvienr aberd
WA o s

bl £ HEO Fuma Perak
A el

LWDSACRT et

LRC LF

[t AT D0 plany b2 cores:

{HIOEA, D, 0P, &0

Figure 2.2: PCH Interfaces

2.3 Platform Software Architecture Overview

2.3.1 Firmware

The definition of firmware on PC is instructions (with data) that are consumed by
non-TA execution engines associated with a non-CPU hardware device. There are

three main categories of firmware:

e Fixed embedded firmware: contained in ROM and hidden from platform view.

e Upgradeable embedded firmware: contained in built-in non-volatile memory

with default image (code/data); upgradable during life cycle.

CHAPTER 2. LITERATURE SURVEY 15

e Externally stored firmware: storage of the code/data is outside of the device
package that executes the firmware. The external storage is likely in non-volatile

memory form. Patches for embedded firmware falls into this category.

No action is required on platform SW to support fixed embedded firmware. Examples

of embedded firmware components are:

e CPU microcode, uncore firmware
e ME ROM code

Upgradeable embedded firmware is presumed to be functional at platform build time.
Discrete graphics card firmware is in this category. Upgrade tool is expected to be
available for at least one of the user’s SW environment. There is no known ingredient

with firmware in this category.

2.3.2 Software Stack Overview

The software stack of the modern operating system has also become complex, just like
its hardware counterpart. The diagram below depicts how various software execution
environments relate to each others. At platform level, today’s software execution

environment is more than just BIOS and OS applications.

The software stack consists of BIOS over which Operating system is booted. The
BIOS maybe be common for all the Operating system. The drivers that OS boots in-
teracts with BIOS, thus making complex software architecture. The figure below

refers to the modern day software stack and each and every component is important.

CHAPTER 2. LITERATURE SURVEY 16

User User Interface
! Host CPU SW ¢ Virtualization
| Managed Plugin
i 0s App; Widget
I native ‘Web Application
App hManaged) -
Pre-05| Shm funtime browser | “irtualization
shell | (BIOS
run-time)
Operating System
Loadable Ao
Machine
oo System BIOS + device OROM Wirtualization
r +
Eirrnsisnen
Firmware W Platform Harduware
ok pr Partitionin
HW Ingredient Hardware m———oomng
HW Ingredient
A

.

Figure 2.3: Software Stack Overview

2.4 Scope of System BIOS on Platform Validation

BIOS is the first code run by a PC when powered on. As BIOS initialize the various
platform components like CPU initialization, Core initialization, memory and chipset
initialization etc. it is considered as a main Ingredient in ingredients and platform

validation.

2.4.1 System BIOS

The basic input/output system (BIOS), also known as the System BIOS or ROM

BIOS, is a de facto standard defining a firmware interface.

The BIOS software is built into the PC, and is the first code run by a PC when

CHAPTER 2. LITERATURE SURVEY 17

powered on (’boot firmware’). The primary function of the BIOS is to set up the
hardware and load and start a boot loader. When the PC starts up, the first job
for the BIOS is to initialize and identify system devices such as the video display
card, keyboard and mouse, hard disk drive, optical disc drive and other hardware.
The BIOS then locates software held on a peripheral device (designated as a 'boot
device’), such as a hard disk or a CD/DVD, and loads and executes that software,
giving it control of the PC. This process is known as booting, or booting up, which

is short for bootstrapping.

BIOS software is stored on a non-volatile ROM chip built into the system on the
motherboard. The BIOS software is specifically designed to work with the particular
type of system in question, including having knowledge of the workings of various
devices that make up the complementary chipset of the system. In modern computer
systems, the BIOS chip’s contents can be rewritten, allowing BIOS software to be

upgraded.

BIOS will also have a user interface (or UI for short). Typically this is a menu
system accessed by pressing a certain key on the keyboard when the PC starts. In

the BIOS UI, a user can:
e configure hardware
e set the system clock
e enable or disable system components
e select which devices are eligible to be a potential boot device

e Set various password prompts, such as a password for securing access to the
BIOS UI functions itself and preventing malicious users from booting the system

from unauthorized peripheral devices.

CHAPTER 2. LITERATURE SURVEY 18

The BIOS provides a small library of basic input/output functions used to operate
and control the peripherals such as the keyboard, text display functions and so forth,
and these software library functions are callable by external software. In the IBM
PC and AT, certain peripheral cards such as hard-drive controllers and video display
adapters carried their own BIOS extension Option ROM, which provided additional
functionality. Operating systems and executive software, designed to supersede this
basic firmware functionality, will provide replacement software interfaces to applica-

tions.

BIOS is primarily associated with the 16-bit, 32-bit, and the beginning of the 64-bit
architecture eras, while EFT is used for some newer 32-bit and 64-bit architectures.
Today BIOS is primarily used for booting a system and for video initialization; but
otherwise is not used during the ordinary running of a system, while in early sys-
tems (particularly in the 16-bit era), BIOS was used for hardware access - operating
systems (notably MS-DOS) would call the BIOS rather than directly accessing the
hardware. In the 32-bit era and later, operating systems instead generally directly

accessed the hardware using their own device drivers.

The role of the BIOS has changed over time; today BIOS is a legacy system, super-
seded by the more complex Extensible Firmware Interface (EFI), but BIOS remains
in widespread use, and EFI booting has only been supported in Microsoft’s operating
system products supporting GPT and Linux kernels 2.6.1 and greater builds (and in
Mac OS X on Intel-based Macs). However, the distinction between BIOS and EFT is
rarely made in terminology by the average computer user, making BIOS a catch-all

term for both systems.

CHAPTER 2. LITERATURE SURVEY 19

2.4.2 Major features of System BIOS

Here is a (not exhaustive) list of the major features in the platform BIOS (not in

execution order):
e Core initialization
e CPU initialization (Multi-core, multi-threading)
e CPU microcode update
e Memory initialization (DDR3)
e Chipset initialization (PCI, USB, etc.)
e ME boot handshakes
e BIOS setup and update facilities with protection
e Various pre-OS devices
e User Inputs (keyboard, mouse, PS/2, USB, ...)
e VBIOS (discrete, integrated, switchable)
e MEBx, AMT (Advanced Management Technology)
e RST (was IMSM) OROM, including RAID and Braidwood (NAND)
e Security
e BIOS, HDD password
e UPEK fingerprint sensor
o TXT
e TPM measurement, including iTPM

e DTBx (PBA or DTAM)

CHAPTER 2. LITERATURE SURVEY

e TDT

e Configuration, power and thermal management setup

e ACPI

e APM

e DPPM (Camarillo)

e VT-d tables

e Wake from S-state

e DPST

e Run-time service installation (SMM handler)

e Docking

e Hot keys

e Digital temperature sensors

e Boot select

e Optical drive

e USB

e SATA, SSD

e Boot manager, User OS, EFI Shell, VMM, recovery OS.

20

CHAPTER 2. LITERATURE SURVEY 21

2.4.3 Power-on self-test

Power-On Self-Test (POST) refers to routines run immediately after power is applied,
by nearly all electronic devices. Perhaps the most widely-known usage pertains to
computing devices (personal computers, PDAs, networking devices such as routers,
switches, intrusion detection systems and other monitoring devices). Other devices
include kitchen appliances, avionics, medical equipment, laboratory test equipment —
all embedded devices. The routines are part of a device’s pre-boot sequence. Once

POST completes successfully, bootstrapping code is invoked.

POST includes routines to set an initial value for internal and output signals and
to execute internal tests, as determined by the device manufacturer. These initial
conditions are also referred to as the device’s state. They may be stored in firmware
or included as hardware, either as part of the design itself, or they may be part of
semiconductor substrate either by virtue of being part of a device mask, or after being

burned into a device such as a Programmable Logic Array (PLA).

Test results may be enunciated either on a panel that is part of the device, or output
via bus to an external device. They may also be stored internally, or may exist only
until the next power-down. In some cases, such as in aircraft and automobiles, only
the fact that a failure occurred may be displayed (either visibly or to an on-board
computer) but may also upload detail about the failure(s) when a diagnostic tool is
connected. POST protects the bootstrapped code from being interrupted by faulty
hardware. Diagnostic information provided by a device, for example when connected
to an engine analyzer, depends on the proper function of the device’s internal compo-
nents. In these cases, if the device is not capable of providing accurate information,
subsequent code (such as bootstrapping code) may not be permitted to run. This is

done to ensure that, if a device is not safe to run, it is not permitted to run.

Chapter 3

BIOS Validation Analysis

As BIOS is identified as an important ingredient of platform , coverage analysis of
BIOS validation is presented here to identify major gaps in BIOS validation and

recommendations for improving coverage.

3.1 Coverage Matrix

According to product requirement document (PRD)[3] various features are identified
and test cases are mapped to relevant features to identify current coverage.Based on
current coverage various functional areas are identified where coverage is less and

both current coverage level and expected coverage levels are defined.

The following chart |3.1|shows the Coverage matrix to show current BIOS test coverage

and expected coverage.

3.2 Coverage Gaps and Test Case Derivation

This section describes the coverage gaps found for BIOS validation and also covers

the set of example test cases to fill those coverage gaps.

22

CHAPTER 3. BIOS VALIDATION ANALYSIS 23

L3
E 114, EIOE Corr [CORE|
H 112, AU
113, Eysicm Agoaiia)
114, Mamany |MERT
114, Incemal Graphics (HaFx)
TAAT Siwnbhiive Ciphasy
114, PCH
TART [Eh)
TARL SAdA
TARL A
TLRL TAN I 1
TiRA (R
TARR (R eICELT
147, Powcr Marapemens |TH)
113, Themal Marapemans [TAT
110, Oecrrieckng (00)
1140 Gencral (GEH)
1111, Mlatformn [PLAT)
TA1LL sy
TATLE Segwr W01 CHH
111z Specs
TATRL NMIHEY
1143 Manzagrabilty Engine [ME)
TAALYL M7 owvw
TATLE WA
1144 Vinalzadon Technologs 0eT)
1145 Toos
1116 LightPe

T T A e e s

AA8EEEEEEEEEREEEAEE

HoA b k| e Valelal e Coverange T

Figure 3.1: Coverage Matrix

3.2.1 MSR Register Level Testing

Machine state register, also known as model specific register (MSR) is a fea-
ture Intel implemented in their X86 and X86-64 family processors which provides the
option to control and receive information regarding the CPU performance. All the
MSRs registers handle only system functions and cannot be accessible by application

programs.

The CPU uses Read from Model-Specific Register and Write to Model-Specific Reg-
ister instructions which are used in turn to modify or read from the MSR registers.
The operating system usually modifies the MSR registers during the early staging of

the boot process.

As a Example consider MSR (1A0h) TA32_ MISC_ENABLES can be used
to check Turbo Mode capability (Turbo Boost Technology) of the processor.

CHAPTER 3. BIOS VALIDATION ANALYSIS 24

Bit 38 (Turbo Mode Disable Bit) of MSR 1A0h can be used to check whether
Turbo mode is enabled or not. If Bit 38 is 0 then we can ensure that Turbo mode is
enabled and if Bit 38 is 1 then we can ensure that turbo mode is disabled.

Example Test Case:

Test case title: Intel Turbo Boost Technology

Test Case Description: Verifies processor Turbo Boost function by enable/disable

this feature.

Test Case Procedure:

e Disable Turbo Boost technology for BIOS and verify Bit 38 of MSR (1AOh)
is set to 0 or not. Also verify that frequency of the processor is below turbo

frequency.

e Now enable Turbo boost technology and verify that Bit 38 of MSR (1A0h) is
set to 1 or not. Apply hig load on system and verify frequency of the processor
is set to turbo frequency.

Advantage of MSR Level Testing:

e The main advantage of MSR level testing is that it can provide next level of

details at the time of debugging.

e Another advantage is MSR level testing is that it can be fully Automated easily.

3.2.2 UEFI (Unified Extensible Firmware Interface):

The Unified Extensible Firmware Interface (UEFI) is a specification that de-

fines a software interface between an operating system and platform firmware. UEFI

CHAPTER 3. BIOS VALIDATION ANALYSIS 25

is a more secure replacement for the older BIOS firmware interface, present in all

IBM PC-compatible personal computers, which is vulnerable to bootkit malware.

The original EFI (Extensible Firmware Interface) specification was developed by In-
tel. In 2005, development of the EFI specification ceased in favour of UEFI, which had
evolved from EFI 1.10. The UEFT specification is being developed by the industry-
wide organization Unified EFI Forum. UEFI is not restricted to any specific processor

architecture and can run on top of, or instead of, older BIOS implementations.

The interface defined by the EFI specification includes data tables that contain plat-
form information, and boot and runtime services that are available to the OS loader

and OS. UEFI firmware provides several technical advantages:

e Ability to boot from large disks (over 2 TiB)

Faster boot-up

CPU-independent architecture

CPU-independent drivers

Flexible pre-OS environment, including network capability

Modular design

Some existing enhancements to PC BIOS, such as the Advanced Configuration and
Power Interface (ACPI) and System Management BIOS (SMBIOS), are also present

in EFI, as they do not rely on a 16-bit runtime interface.

CHAPTER 3. BIOS VALIDATION ANALYSIS 26

Services

EFT defines two types of services: boot services and runtime services. Boot services
are only available while the firmware owns the platform (before the ”ExitBootSer-
vices” call). Boot services include text and graphical consoles on various devices and
bus, block and file services. Runtime services are still accessible while the operating

system is running; they include services such as date, time and NVRAM access.

Booting

UEFI does not rely on a working boot sector only, but needs a special partition table
referring to a special partition containing a specially located file with a standardized
name depending on the actual architecture to boot ([architecture name].efi). Boot
loaders are a class of UEFI applications. As such, they are stored as files on a file
system that can be accessed by the firmware. Boot variables, stored in NVRAM, in-
dicate the paths to the loaders. Boot loaders can also be auto-detected by firmware,

for instance to enable booting on removable devices.

It is common for UEFI firmware to include a boot manager, to allow the user to

select and load the operating system among the possible options.

The EFI shell

EFT provides a shell environment.The shell can be used to execute other EFI appli-
cations.
As UEFI is becoming more and more popular and also UEFI is must for latest oper-

ating system Microsoft Windows 8 to support "UEFI Secure Booting”, it is necessary

CHAPTER 3. BIOS VALIDATION ANALYSIS 27

to validate complete BIOS settings and Platform under UEFT shell.

In EFT shell using different commands we can check whether correct BIOS settings

are populated or not.

Example Test Cases

e Test Case 1: Using "memmap” command we can verify whether system re-

ports correct memory count under EFI shell or not.

e Test Case 2: Using "PCI” command we can verify whether system reports all

connected PCI-E devices under EFI shell or not.

e Test Case 3: "dmpstore” command can be used to verify all NVRAM vari-

ables.

e Test Case 4: "Drivers” command can be used to verify list of drivers that

follow EFI driver model.

e Test Case 5: "smbiosview” command can be used to verify whether correct

hardware information is populated in SMBIOS tables or not.

3.2.3 Port 80h POST Codes

During the Power-On Self Test (POST), the BIOS sends progress codes (POST
codes) to I1/O port 80h. If the POST fails, the last POST code generated is left at
port 80h. This code can be used to find out why the error occurred.

CHAPTER 3. BIOS VALIDATION ANALYSIS 28

Typical Port 80h POST Sequence:

Port 80h code values typically increase during the boot process. The early codes
are for subsystems closer to the processor and the later codes are for peripherals.
Generally, the order of initialization is Processor,Memory,Busses,Output/Input De-

vices,Boot Devices. The sequence of POST is system-specific.
All post codes are very well defined but we should manually generate failure and

verify that whether BIOS is sending correct POST error codes or not at time of fail-

ure.

Example Test Cases

Test Case Title: No Memory

Test Case Description: Verifies that the system does not boot and gives the cor-

rect beep codes and POST Codes when no memory is present in the system

Test Case Procedure:

Power on the system with no memory located in any of DIMM slot.

Verify that system emits three consecutive beeps and fails to boot.

Check POST code LEDs shows DD53(for Mobile Board) and 53 (for Desktop
board).

Now install proper memory in each slots and verify system boots properly.

Advantage of POST Code Level Testing

e It can also provide next level of information at the time of debugging.

CHAPTER 3. BIOS VALIDATION ANALYSIS 29

3.2.4 SMBIOS

System Management BIOS (SMBIOS) specification defines data structures (and
access methods) in a BIOS which allows a user or application to store and retrieve

information specifically about the computer in question.

The SMBIOS Specification addresses how motherboard and system vendors present
management information about their products in a standard format by extending the
BIOS interface on x86 architecture systems. The information is intended to allow
generic instrumentation to deliver this information to management applications that
use DMI, CIM or direct access, eliminating the need for error prone operations like

probing system hardware for presence detection.

This specification is intended to provide enough information that BIOS developers
may implement the necessary extensions to allow the hardware on their products and
other system-related information to be accurately determined by users of the defined
interfaces. In addition, in cases where the implementer has provided write access to
non-volatile storage on the system, some information may be updated by manage-
ment applications after a system is deployed in the field to record data that persists

between system starts.

SMBIOS contains different types of Table as listed below and according to type of

table hardware information is populated in that table.

Type 0 BIOS Information

Type 1 System Information

Type 2 Mainboard Information

Type 3 Enclosure/Chasis Information

CHAPTER 3. BIOS VALIDATION ANALYSIS 30

Type 4 Processor Information

Type 7 Cache Information

Type 9 System Slots Information

Type 16 Physical Memory Array

Type 17 Memory Device Information

Type 19 Memory Mapped Device Mapped Address’s
e Type 32 System Boot Information

We must verify whether correct hardware information is populated into SMBIOS ta-

bles or not.

Example Test Cases:

e Test case 1: Verify that the SMBIOS Type 0 structure BIOS ID string coin-
cides with that of the BIOS string that is on the system.

e Test Case 2: Verify that the SMBIOS Type 2 structure Product Name String
coincides with BIOS Product Specification.

e Test Case 3: Verify whether correct memory details are populated in SMBIOS
structure type 16, type 17 and type 19 or not.

3.2.5 Advance Configuration and Power Management (ACPI)
Tables Verification
The Advanced Configuration and Power Management Interface (ACPI) specification

[4] contains interfaces that provide standard controls and operation needed to perform

system and device power management. This information is most useful for operating

CHAPTER 3. BIOS VALIDATION ANALYSIS 31

system vendors, OEMs and THVs.

In computing, the Advanced Configuration and Power Interface (ACPI) specifica-
tion provides an open standard for device configuration and power management by
the operating system. ACPI aims to consolidate and improve upon existing power
and configuration standards for hardware devices. It provides a transition from ex-
isting standards to entirely ACPI-compliant hardware, with some ACPI operating
systems already removing support for legacy hardware. With the intention of replac-
ing Advanced Power Management, the Multiprocessor Specification and the Plug and
Play BIOS Specification, the standard brings power management under the control
of the operating system (OSPM), as opposed to the previous BIOS central system,
which relied on platform-specific firmware to determine power management and con-

figuration policy.

The ACPI specification contains numerous related components for hardware and soft-
ware programming, as well as a unified standard for device/power interaction and bus
configuration. As a document that unifies many previous standards, it covers many

areas, for system and device builders as well as system programmers.

As ACPI maintains different tables we must verify all tables are compliance with Spec-
ification or not.We must develope set of test cases to verify different ACPI tables like
DSDT,ECDT,FACS,FADT . HPET,MADT ,MCFG,RSD,PTR,RSDT must be
compliance with ACPI Specification and wether correct information is populated in

those tables or not.

Chapter 4

Platform Stress Analysis

4.1 Stress Testing

Stress testing is a form of testing that is used to determine the stability of a given
system or entity. It involves testing beyond normal operational capacity, often to a

breaking point, in order to observe the results.

4.1.1 Stress testing in terms of Hardware

Reliability engineers often test items under expected stress or even under accelerated
stress. The goal is to determine the operating life of the item or to determine modes

of failure.

Stress testing in general, should put the hardware under exaggerated levels of stress

in order to ensure stability when used in a normal environment.

Example

Computer Processors

When modifying the operating parameters of a CPU, such as in overclocking, un-

32

CHAPTER 4. PLATFORM STRESS ANALYSIS 33

derclocking, overvolting, and undervolting, it may be necessary to verify if the new
parameters (usually CPU core voltage and frequency) are suitable for heavy CPU
loads. This is done by running a CPU-intensive program (usually Prime95) for ex-
tended periods of time, to test whether the computer hangs or crashes. CPU stress
testing is also referred to as torture testing. Software that is suitable for torture
testing should typically run instructions that utilize the entire chip rather than only

a few of its units.

Stress testing a CPU over the course of 24 hours at 100% load is, in most cases,
sufficient enough to determine that the CPU will function correctly in normal usage
scenarios, where CPU usage fluctuates at low levels (50% and under), such as on a

desktop computer.

4.2 Load Testing

Load testing is the process of putting demand on a system or device and measur-
ing its response. Load testing is performed to determine a system’s behavior under
both normal and anticipated peak load conditions. It helps to identify the maximum
operating capacity of an application as well as any bottlenecks and determine which
element is causing degradation. When the load placed on the system is raised beyond
normal usage patterns, in order to test the system’s response at unusually high or
peak loads, it is known as stress testing. The load is usually so great that error con-
ditions are the expected result, although no clear boundary exists when an activity

ceases to be a load test and becomes a stress test.

There is little agreement on what the specific goals of load testing are. The term
is often used synonymously with software performance testing, reliability testing, and

volume testing. Load testing is a type of non-functional testing.

CHAPTER 4. PLATFORM STRESS ANALYSIS 34

4.2.1 User Experience under Load test

User Experience under Load test In the example above, while the device under test
(DUT) is under production load - 100 VUsers, run the target application. The per-
formance of the target application here would be the User Experience under Load.
It describe how fast or slow the DUT responds, and how satisfied or how the user

actually perceives performance.

So as User experience is becoming more and more important we will try to focus
on user experience under specific load/stress conditions.we will check that whether

system is behaving properly or not in specific load /sterss conditions.

4.3 Existing Stress Test Content Analysis

Example Set of Stress Test cases to be run overnight:

S3(Sleep) state - 1000 cycles

e S4(Hibernet) state - 1000 cycles

e S5(system-off) state - 1000 cycles

o FFS(Fast Flash Standby) state - 1000 cycles
e Deep S3 state - 1000 cycles

e Deep 5S4 state - 1000 cycles

e Deep S5 state - 1000 cycles

e Processor Stress Test

e TAT (Thermal Analysis tool) 100

CHAPTER 4. PLATFORM STRESS ANALYSIS 35

e 3D Mark Graphics Benchmark tests

PC Mark System performance Benchmark Test

Memtest (memory stress test)

HDDs (SATA) Stress

USB stress test

4.4 Problem Statement Based on Existing Stress
Content Analysis

o All existing stress test scenarios are Ingredient centric than Platform centric.
It means that stress test cases are not written and executed considering whole

platform or they are more focused on specific feature/capability or Ingredient.

For example if you consider Processor stress test, memory stress test, USB stress
test or SATA stress test they all are targeting specific Ingredient or Specific In-

terface.

e As we can see from above test cases, we are doing rigorous Power management
testing (S3, S4 and S5 cycling 1000 times) for complete platform stress. But
it’s an incorrect assumption as we have to consider all platform components
and their impact on power management. We have to check impact of each and
every Ingredient on power management and also impact of power management

on performance of each and every Ingredient.

e As far as success criteria (Pass/Fail criteria) for stress test is concerned, our suc-

cess criteria is just like there should be no error, No hang and No BSOD (Blue

CHAPTER 4. PLATFORM STRESS ANALYSIS 36

Screen Of Death) during stress testing.But there must be a systemic measure
of stress to identify impact of stress on the system. We must identify more pa-
rameters (like performance parameters) that can be measured and documented

as a part of success criteria.

e Lack of Standardized and more advanced tools for stressing Platform compo-

nents.

Chapter 5

Background Into Methodology

This chapter will describe the methodology developed for stress evaluation for differ-

ent platform Componets/Interfaces.

5.1 Performance Counters

From [5], At the heart of the CHAP counters [Chipset Hardware Architecture

performance counters] functionality are counters, each with associated registers.

Each counter has a corresponding command, event, status, and data register. The
smallest recommended implementation will have 2 counters, but if justified for a
particular product, this architecture can support many more counters. Typically 8
CHAP counters are in an PCH. The primary consideration is available silicon area.
The memory mapped space currently defined can accommodate registers for 256 coun-

ters. It could be configured for more, but that is beyond what is currently practical.

Signals representing events from throughout the chip are routed to the CHAP unit.
Software can select events that will be recorded during a measurement session. The

number of counters in an implementation defines the numbers of events that can

37

CHAPTER 5. BACKGROUND INTO METHODOLOGY 38

1T REGISTFF AOCE3S BUS

1
[|
i | — | 1J8
| By | | commano, [[T
<L iy STATUS, & =
'i% EVERT T0
= % COMTRO. 104
;_2 LOGIC e
= 103 L
~ f'*.‘
E ~CQUNTEA
S
E 107
'_.-
ral
17 |
&

101

Figure 5.1: Performance Counter[6]

be recorded simultaneously. Software and hardware events can control the starting,
stopping, and sampling of the counters. This can be done in a time-based (polling)
or event-based fashion. Each counter can be incremented or decremented by differ-
ent events. In addition to simple counting of events the unit can provide data for
histograms, queue analysis, and conditional event counting (Example: How many

times did event A happen before the first event B took place).

When a counter is sampled, the current value of the counter is latched into the
corresponding data register. The command, event, status, and data registers are ac-
cessible via standard PCI memory mapped registers in order to facilitate high-speed
sampling. This unit is a Plug-and-Play PCI compliant device with a base address

scheme for its memory mapped space.

CHAPTER 5. BACKGROUND INTO METHODOLOGY 39

5.2 Stress Evaluation using Performance Counters

CHAP counters can be programmed to track/count number of events. So first step is
to identify the set of events that an be tracked. Limited events will be available and
also events must be selected according to Interface/component under test. Second
step will be to configure/program CHAP counters to track those events.As command,
event, status, and data registers are accessible via standard PCI memory mapped reg-

isters , we need to program/configure event registers to track specific events.

Next step will be to start the target counters to track those events, and for that

we need to configure command registers.

Once CHAP counters are configures to track events we should generate those events so
that we can track them.In our case after configure and starting counters we should ap-

ply stress on Interface so that we can measure how much stress is applied on Interface.
Now last step will be to sample the counters and read the event counts during specific
Interval[Time based Sampling][6] or read the event counts when some other event

occurs [Event based sampling] [6].

Summary of Steps :

Step 1 : Identify which events are important for test (number of reads , number

of writes , number of interrupts , Cache hits/miss etc.)

Step 2 : Program/Configure CHAP counters to track those events (configure

event registers)

Step 3 : Start the counters to track those events (configure command register)

Step 4 : Generate those events which we want to track

CHAPTER 5. BACKGROUND INTO METHODOLOGY 40

e Step 5 : Sample the counters and read the event counts from data regis-

ters(configure data registers)

(Stop 1

¥
Write Increment /
Decrement Events

:

Start

/ """""" Readof Data
Register happens \

Sample & independently
Sample Restart ________________

Figure 5.2: Command Flow/[5]

5.3 Time Based Sampling Example[5]

The following example has been simplified by using 12 clocks as the sampling pe-
riod. In a real system the sampling would more likely be something like 1 ms. There
is a certain amount of overhead associated with writing and reading to any CHAP
registers. The more frequent the interaction between the CHAP counters and any

software, the larger the margin of error that will be injected into the final results.

CHAPTER 5. BACKGROUND INTO METHODOLOGY

¥
Commands .| Data Reg 0
h=EL S o -
R | Start, A7)
V| E 85 | Sample & Eh
o SE2
£ Restart
— (=]
Signals\ | £
from s
Internal | o
Units | o L 4
— =
o
i =
L 4] &3 //C_c:unt
| £ 0
2
Opcode Target Increment Decrement Trigger
Counter Event Event Event
Write Event 0 Event A Mone (000h)
Register
Start 0 Immed
(000h)
* Gample &] Immed
Restart (000h)
Read Data]
Register

- Wait 12 clocks before returning to * -

Figure 5.3: Performance Counter Structure

41

CHAPTER 5. BACKGROUND INTO METHODOLOGY 42

123 458 728 91011121214 151617181920 21 222324 85257 28 2930

Clock | | | | | [
Event A] [1 .
S0 000 08N E

—
Counter 0 DY AT E T 0T REEOT0NEE

Figure 5.4: Time Based Sampling Example

The sampling period can be controlled by a CPU counter or another CHAP
counter periodically interrupting the system and allowing the software to read data

registers or do whatever else may be desired.

The table above demonstrates: How many times did event A occur

during 12 clocks?

An alternative way to represent the data in the preceding table is as follow:

Write Event Register 0 (Increment = Event A)

Start Counter 0 immediately

Repeat every 12 clocks

Sample Restart Counter 0 (Threshold Condition Code is NA)
Read Data Register 0

End Repeat

CHAPTER 5. BACKGROUND INTO METHODOLOGY 43
5.4 Stress Evaluation of SATA Interface using Method-

ology

Following are the steps for SATA interface stress evaluation using our methodology.

Step 1: For Stress analysis on SATA Interface our interest of events will be number
of read data transfer , number of write data transfer , total data transfer on SATA

Interface.

Step 2 :
e Configure counter 0 for total no of data transfer
e Configure counter 1 for total no of Read data transfer
e Configure Counter 2 for total no of Write data transfer

Step 3 : Start all the counters

Step 4 : Apply Workload/Stress on SATA Interface [Large file copy transfer / Use

stress tools |

Step 5 : Sample and Read the data registers of each counters every second to count

actual data transfer rate(MBps) on SATA Interface

Chapter 6

Results

6.1 Case Study : SATA Interface

SATA Throughput
500
450
400
350
300
E- 250 .
= Write Read Read-Write Total Data Transfered
200
150 F
100
50
[#]
— M M~ I M~ O~ W M < @ M~ U M «~ O M~ L
o I B B IO I |

Figure 6.1: SATA Throughput when SATA is stressed with IOmeter

Above study on SATA Interface shows that different types of traffic generates
different level of Stress on interface.Different type of traffic is generated on SATA

44

CHAPTER 6. RESULTS 45

interface using IOmeter 1/0 stress tool. Different types of traffic includes,
e Read traffic
e Write traffic

e Read-Write traffic.

SATA Data Rates

400
250 | I
300
250 s 5 1k read
——Gdk read
MB/s 200 -
] 38k read
150 —512k read
100 —517k write
50
(0]

125
156
187
218
2449
280
311
342
373
404
435
466
497
528
559
590
621
652
G683
714
745

Figure 6.2: SATA Throughput when SATA is stressed with IOmeter with different
Access Specifications

Also as per above study different Access Specifications generates different level of

stress on interface,
e Transfer Request size (4k, 8k ,12k ,32k,..)
e Random traffic

e Sequential traffic

CHAPTER 6. RESULTS 46

So we must check level of stress applied on interface with different Access Spec-
ifications (4k ,8k ,16k , Random , Sequential etc.) and choose access specification

accordingly to stress interface effectively.

CHAPTER 6. RESULTS 47

6.2 Case Study : SATA and USB Interface

The following study shows the impact of stress on SATA and USB Interface when all
other platform components (Memory, Graphics,CPU, LAN etc.) are heavily stressed.
Based on this type of analysis we can build effective stress scenarios which can ef-
fectively stress all platform components and find defects not detected under normal

stress condition.

The below Study shows the SATA and USB throughput when all other platform

components are heavily stressed.

SATA and USB Data Rates when other
components are stressed

450

350

50

20
39
58

7

a6
115
134
153
172
191
210
229
248
267
286
305
324
343
362
381
400
419
438
457
476
495

300 ‘T |-.-1 | Tullmpl[rﬂ ¥

1 250 vl . o |

2 oo NI Py —s
150 || U
B 7. Impactof Stress

Figure 6.3: SATA and USB Throughput when other Components are Stressed

CHAPTER 6. RESULTS 48

6.3 Case Study : PCle Interface

The following cases study shows how this methodology can be used for tools char-
acterization. Different tools are available for stressing different platform Compo-
nents/Interfaces and as we know different tools stress componets differently. So

there must be a way to figure out amongst all which tool effectively stress com-

ponent/interface.

The below study shows that amongst all LAN stressing tools NTTTCP tool effec-
tively stress LAN Interface. Based on this type of study we can easily figure out

which tool can be used for stressing component /interface effectively.

Level of Stress with different Tools

140

MB/s

= Inbound Data Transfered

IOmeter NTTTCP I Iperf

20 4 .

100
133
166
199
232
265
298
331
364
397
430
463
496
529
562
595
628
G661

Figure 6.4: LAN (via PCle)Throughput

Chapter 7

Recommendation and Approach

e Instead of stressing each Ingredient or component individually (Ingredient cen-
tric testing) develop stress scenarios to exercise concurrency of multiple ingre-

dients/components.

e Based on this type of analysis build stress scenarios which will effectively stress

each platform components/interfaces.

e While Stressing each components/interface use Tools/Access Specifications which

generates Maximum Stress on Interface.

e Also use automated framework to port all the tools and define logic in executing

the stress test.(Parallel,Sequential, Random etc.)

49

Chapter 8

Conclusion and Future Scope

8.1 Conclusion

Our study shows that different Tools or Access Specifications stress platform com-
ponents differently and at different level. By using this type of methodology we must
recommend and also develop Tools which can effectively stress platform components

and find marginal defects not detected under normal stress condition.

Our cases study shows that we can also identify architectural inefficiency of the Com-

ponent /Interface at protocol or hardware level.

8.2 Future Scope

Similar studies needs to be carried out for other platform Components/Interfaces like
Memory , Graphics , CPU etc. to measure the actual impact of stress on compo-

nent /interface and based on that effective stress scenarios can be created.

The overall objective should be to test all platform components effectively and find

architectural defects that are not detected under normal testing.

50

References

[1] Intel Developers,Intel Platform and Component Validation - Whitepaper,Intel
Technology India Pvt. Ltd.

[2] Intel Developers,2012 client Platform Architecture Document(PAD),Intel Tech-
nology India Pvt. Ltd.

[3] Intel Developers,2012 client Product Requirement Document(PRD),Intel Tech-
nology India Pvt. Ltd.

[4] http://www.acpi.info/spec.htm
[5] Intel Developers , CHAP Counters RAS 1.5 , Intel Technology India Pvt. Ltd.

[6] James S. Chapple , Hardware Event Based Flow Control of Counters , Intel Tech-
nology India Pvt. Ltd. , US Patent US6519310 B3 , FEB 11 ,2003

[7] Intel Developers, RS-IvY Bridge Processor Family BIOS Writers
Guide(BWG),Intel Technology India Pvt. Ltd.

[8] http://en.wikipedia.org/wiki/Platform_Controller_Hub
[9] http://en.wikipedia.org/wiki/BIOS
[10] http://en.wikipedia.org/wiki/Model-specific_register

[11] http://en.wikipedia.org/wiki/SMBIOS

51

http://www.acpi.info/spec.htm
http://en.wikipedia.org/wiki/Platform_Controller_Hub
http://en.wikipedia.org/wiki/BIOS
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/SMBIOS

	Declaration
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	Introduction to Post Silicon Validation
	Problem Statment
	Thesis Organization

	Literature Survey
	Intel Architecture - Platform Overview IA
	Platform Controller Hub (PCH) Architecture Overview
	Platform Software Architecture Overview
	Firmware
	Software Stack Overview

	Scope of System BIOS on Platform Validation
	System BIOS
	Major features of System BIOS
	 Power-on self-test

	BIOS Validation Analysis
	Coverage Matrix
	Coverage Gaps and Test Case Derivation
	MSR Register Level Testing
	UEFI (Unified Extensible Firmware Interface):
	Port 80h POST Codes
	SMBIOS
	Advance Configuration and Power Management (ACPI) Tables Verification

	Platform Stress Analysis
	Stress Testing
	Stress testing in terms of Hardware

	Load Testing
	User Experience under Load test

	Existing Stress Test Content Analysis
	Problem Statement Based on Existing Stress Content Analysis

	Background Into Methodology
	Performance Counters
	Stress Evaluation using Performance Counters
	Time Based Sampling ExampleCHAP
	Stress Evaluation of SATA Interface using Methodology

	Results
	Case Study : SATA Interface
	Case Study : SATA and USB Interface
	Case Study : PCIe Interface

	Recommendation and Approach
	Conclusion and Future Scope
	Conclusion
	Future Scope

