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Abstract

The strong need for increased computational performance in science and engineering

has led to the use of heterogeneous computing, with GPUs, acting as coprocessors to

the CPUs for arithmetic intensive data-parallel workloads. CUDA - Compute Uni-

fied Device Architecture is a new industry standard for task-parallel and data-parallel

heterogeneous computing on NVIDIA GPUs. Basic goal of CUDA is to help program-

mers focus on the task of parallelization of the algorithms rather than spending time

on their implementation. Key to performance on this platform is using massive mul-

tithreading to utilize the large number of cores and hide global memory latency. The

main objective of the thesis is to obtain the performance gain in execution speed for

the dynamic algorithms which generally are complex and takes a very long time for

execution and compare results on different gpu processors and CPU and have a com-

parative study of algorithms. It will require running the CUDA C code in sequential

and parallel on GPU consisting of hundreds of core or even more. Also the algo-

rithms C code may require removing dependencies. Hence obtaining all the statistics

of various algorithms and achieve performance gain in execution.The contributions

of this thesis include a programming language approach to providing transforma-

tion abstraction and composition, a unifying framework for general and GPU specific

transformations, and demonstration of the framework on standard benchmarks that

show it capable of matching or outperforming hand-tuned GPU kernels. This thesis

work is mainly concentrated on the computational part of the source code and its op-

timization. Report contains study of the NVIDIA GeForce GPU architecture, CUDA

SDK tool kit, Dynamic Algorithms and different methods to get performance bene-

fit, implementation of intermediate tool to find out functions and their dependencies

from the source code and the implementation of the complete algorithm, testing and

Obtaining statistics for the same.
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Chapter 1

Introduction

1.1 General

In the history of microprocessors, the Central Processing Unit (CPU) processor has

been the focus of the industry for its powerful ability to run general purpose sequen-

tial programs. While hugely successful in meeting the majority of computing needs,

there has also been a legacy of programmable accelerators to improve performance

for specific domains of applications. In the embedded world, Digital Signal Proces-

sors (DSPs) are used to encode and decode audio. In High Performance Computing

(HPC), there have been many examples of coprocessors going back to the 1970s de-

signed for floating point calculations or other specific tasks. In consumer computing,

discrete video processors have long been included to meet specialized needs of ren-

dering images at the demanding rate of stutter-free video.

Under the pressures of the consumer gaming and professional workstation market,

Graphical Processing Units (GPUs) have evolved to deliver ever-increasing amounts

of computational performance. Reacting from the market demand to provide more

direct means of accessing this potential performance, hardware manufacturers start-

ing providing developer SDKs to treat the GPU as a programmable stream processor,
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instead of a specialized device only accessible through graphics oriented fixed-function

APIs. This opened to door for GPUs to be used for massively parallel computations

on non graphics data. Scientific computing has had a long history of using copro-

cessors and programmable accelerators to serve its seemingly unbounded need for

computational performance. In fact, modern high end super computers often include

a hybrid of traditional processors and stream processors in the form of GPUs. Today’s

fastest GPUs can deliver a peak performance in the order of 500 GFLOPS, more than

four times the performance of the fastest x86 quad-core processor.

1.2 GPU Hardware Architecture

Present multi-core CPUs usually consist of 2-8 cores. These cores usually work asyn-

chronously and independently. Thus, each core can execute different instructions over

different data at the same time. According to the Flynn’s taxonomy, we are talking

about Multiple Instruction stream, Multiple Data stream (MIMD) class of computer

architectures. On the other hand, GPUs are designed for parallel computing with

an emphasis on arithmetic operations, which originate from their main purpose - to

compute graphic scene which is finally displayed. Current graphic accelerators consist

of several multi- processors (up to 30). Each multiprocessor contains several (e.g., 8,

12 or 16) Arithmetic Logic Units (ALUs). Up to 480 processors is in total on the

current high-end GPUs. Figure 1.1 shows the general overview of the CPU and GPU.

• CPU cores are designed to execute a single thread of sequential instructions

with maximum speed and GPUs are designed for fast execution of many parallel

instruction threads.

• CPUs use SIMD (single instruction is performed over multiple data) vector

3



Figure 1.1: GPU Devoted More Transistor To Data Processing [1]

units, and GPUs use SIMT (single instruction, multiple threads) for scalar

thread processing.

• GPUs contain extensive support of Stream Processing paradigm. It is related

to SIMD ( Single Instruction, Multiple Data) processing.

• CPUs use caches to increase their performance owing to reduced memory access

latencies and GPUs use caches or shared memory to increase memory band-

width.

• There exist a lot of differences in multi-threaded operations. CPUs can execute

1-2 threads per core, while GPUs can maintain up to 1024 threads per each

multiprocessor. Switching from one thread to another costs hundreds of cycles

to CPUs, but GPUs switch several threads per cycle.

• CPUs reduce memory access latencies using large caches as well as branch pre-

diction. GPUs solve the problem of memory access latencies using simultaneous

execution of thousands threads when one thread is waiting for data from mem-

ory, a GPU can execute another thread without latencies.
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1.3 Objective of work

The objective of this research is to provide a better utilization of the resources of

CUDA GPU to obtain better performance gain in execution speed of time consuming

and complex dynamic algorithms and hence getting performance gain to a greater

extent.

1.4 Scope of Work

The scope of this work is to optimize Processor elements and to reduce the computa-

tion time with the CUDA enabled GPU which are using Geforce architecture. Work

can be extended by developing the software which may directly convert the sequential

dynamic c code into parallel with removed dependencies.

1.5 Motivation of the Work

As looking at the advantages of multicore architectures are many, such as higher

performance, lower power consumption lower cost and more exibility but can be

realized only if the corresponding software is developed to unlock these benefits.

The motivation behind doing this research is the need to reduce execution time of

complex time consuming dynamic algorithms in a more efficient and optimized way

for multicore architecture using CUDA, which best utilizes the available core and

other resources on GPUs.

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature Survey, Literature survey on CUDA describes history of

CUDA. It also describes CUDA Programming Model, Memory Architecture,

5



Hardware implementation.

Chapter 3, Peformance Optimization Strategies, Performance Optimization Strate-

gies describes various performance optimization strategies specific to CUDA,

which are used to get the maximum utilization of available resources.

Chapter 4, Preliminary Study, Preliminary Study includes Study of CUDA C pro-

gramming language

Chapter 5, Problem Definition , Problem Statement and its Proposed Approach

Chapter 6, Implementation , Implementation Done

Chapter 8, Future Work

6



Chapter 2

Literature Survey

GPGPU stands for General-Purpose computation on Graphics Processing Units, also

known as GPU Computing. Graphics Processing Units (GPUs) are high-performance

many-core processors capable of very high computation and data throughput.

In November 2006, NVIDIA introduced CUDA(Compute Unified Device Architec-

ture), a general purpose parallel computing architecture with a new parallel pro-

gramming model and instruction set architecture - that leverages the parallel com-

pute engine in NVIDIA GPUs to solve many complex computational problems in a

more efficient way than on a CPU. NVIDIA GPUs with the new Tesla unified graph-

ics and computing architecture run CUDA C programs and are widely available in

laptops, PCs, workstations, and servers. The CUDA model is also applicable to other

shared-memory parallel processing architectures, including multicore CPUs.

GPU performance is influenced by the architectural organization of the hardware

platform. NVIDIA suggests that achieving the highest GPU occupancy and optimiz-

ing the use of the memory hierarchy are the two main factors behind GPU perfor-

mance. In fact, both of them are related since maximizing the occupancy can help to

cover latency during global memory loads. We present several experiments aimed at

analyzing their relative importance. Our results indicate that code transformations

7



Figure 2.1: CUDA Software Stack [2]

that target efficient memory usage are the major determinant of actual performance.

2.1 NVCC Compilation

The CUDA phase converts a source file coded in the extended CUDA language,into a

regular ANSI C source file that can be handed over to a general purpose C compiler

for further compilation and linking. The exact steps that are followed to achieve this

are displayed in Figure 2.2

2.1.1 Compilation flow

In short, CUDA compilation works as follows: the input program is separated by

the CUDA front end (cudafe), into C/C++ host code and the .gpu device code.

Depending on the value(s) of the -code option to nvcc, this device code is further

translated by the CUDA compilers/assemblers into CUDA binary (cubin) and/or

into intermediate ptx code. This code is merged into a device code descriptor which

is included by the previously separated host code. This descriptor will be inspected

by the CUDA runtime system whenever the device code is invoked (’called’) by the

8



Figure 2.2: CUDA compilation from .cu to .cu.c [4]
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host program, in order to obtain an appropriate load image for the current GPU.

2.1.2 CUDA frontend

In the current CUDA compilation scheme, the CUDA front end is invoked twice. The

first step is for the actual splitup of the .cu input into host and device code. The

second step is a technical detail (it performs dead code analysis on the .gpu generated

by the first step), and it might disappear in future releases.

2.1.3 Preprocessing

The trajectory contains a number of preprocessing steps. The first of these, on the

.cu input, has the usual purpose of expanding include files and macro invocations

that are present in the source file. The remaining preprocessing steps expand CUDA

system macros in (’C’-) code that has been generated by preceding CUDA compilation

steps. The last preprocessing step also merges the results of the previously diverged

compilation flow.

2.1.4 Using cudafe for preprocessing

Figure 2.2 shows that a full CUDA compilation step requires 4 preprocessing steps,

which are ultimately performed using the platform compiler. An unfortunate side

effect of this on Windows platforms would be a quite noisy CUDA compilation, due

to the fact that cl insists on echoing the name of its input file each time it is invoked.

For this reason, nvcc will use cudafe for preprocessing whenever it finds this internal

CUDA tool on the the executable search PATH (which normally is the case in CUDA

releases).

2.2 Advantages

Advantages of CUDA over the traditional approach to GPGPU computing:

10



• More efficient data transfers between system and video memory.

• Faster downloads and read backs to and from the GPU.

• Scattered reads - code can read from arbitrary addresses in memory.

• Shared memory - CUDA exposes a fast shared memory region (16KB in size)

that can be shared amongst threads. This can be used as a user-managed cache,

enabling higher bandwidth than is possible using texture lookups.

• Full support for integer and bitwise operations.

• Support for integer texture lookups.

• Programming interface of CUDA applications is based on the standard C lan-

guage with extensions, which facilitates the learning curve of CUDA.

2.3 Limitation

• Threads should be running in groups of at least 32 for best performance, with

total number of threads numbering in the thousands. Branches in the program

code do not impact performance significantly, provided that each of 32 threads

takes the same execution path; the SIMD execution model becomes a significant

limitation for any inherently divergent task.

• Texture rendering is not supported.

• It uses a recursion-free, function-pointer-free subset of the C language, plus some

simple extensions. However, a single process must run spread across multiple

disjoint memory spaces, unlike other C language runtime environments.

• For double precision there are no deviations from the IEEE 754 standard. In

single precision, Denormals and signalling NaNs are not supported; only two

IEEE rounding modes are supported and those are specified on a per instruction

11



Figure 2.3: CUDA Memory hierarchy [2]

basis rather than in a control word and the precision of division square root are

slightly lower than single precision.

2.4 CUDA Memory Model

CUDA threads may access data from multiple memory spaces during their execution

as illustrated by Figure 2.3. Each thread has private local memory. Each thread block

has shared memory visible to all threads of the block and with the same lifetime as

the block. All threads have access to the same global memory. There are also two

additional read-only memory spaces accessible by all threads: the constant and tex-

ture memory spaces. The global, constant, and texture memory spaces are optimized

for different memory usages Texture memory also offers different addressing modes,

as well as data filtering, for some specific data formats. The global, constant, and

texture memory spaces are persistent across kernel launches by the same application.

a. Local Memory: : is small volume of memory, which can be accessed only by
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one streaming processor. The local memory space resides in device memory,

so local memory accesses have same high latency and low bandwidth as global

memory accesses.

b. Global Memory : the largest volume of memory available to all multiprocessors

in a GPU, from 256 MB to 1.5 GB in modern solutions (and up to 4 GB in

Tesla). It offers high bandwidth, over 100 GB/s for top solutions from NVIDIA,

but it suffers from very high latencies (several hundred cycles). Non-catchable

supports general load and store instructions, and usual pointers to memory.

c. Shared Memory: is 16-KB memory shared between all streaming processors in

a multiprocessor. Because it is on-chip, the shared memory space is much faster

than the local and global memory spaces.

d. Constant Memory: is a 64 KB, read only memory for all multiprocessors. It’s

cached by 8 KB for each multiprocessor. The constant memory space resides

in device memory. A constant memory request for a warp is first split into two

requests, one for each half-warp, that are issued independently. A request is

then split into as many separate requests as there are different memory addresses

in the initial request, decreasing throughput by a factor equal to the number of

separate requests. The resulting requests are then serviced at the throughput of

the constant cache in case of a cache hit, or at the throughput of device memory

otherwise. This memory is rather slow latencies of several hundred cycles, if

there are no required data in cache.

e. Texture Memory: space resides in device memory and is cached in texture cache,

so a texture fetch costs one memory read from device memory only on a cache

miss, otherwise it just costs one read from texture cache.

13



Chapter 3

Performance Optimization

Strategies

Performance optimization revolves around four basic strategies:

• Convert CUDA C code in parallel to reduce time exection.

• Maximize parallel execution to achieve maximum utilization

• Try to convert recursion code to Serial code and further parallelize it.

• Remove dependencies in CUDA C code.

• Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion

of an application depends on the performance limiters for that portion, optimizing

instruction usage of a kernel that is mostly limited by memory accesses will not yield

any significant performance gain. Optimization efforts should therefore be constantly

directed by measuring and monitoring the performance limiters, for example using

the CUDA profiler.
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3.1 Maximize Utilization

To get the maximum utilization of the available resources, application should be

parallelized in such a way that application keeps various components of the system

busy most of the time.

3.1.1 Application Level

At a high level, the application should maximize parallel execution between the host,

the devices, and the bus connecting the host to the devices, by using asynchronous

functions calls and streams. It should assign to each processor the type of work it

does best: serial workloads to the host; parallel workloads to the devices.

For parallel execution program is divided into threads, this threads need to share

data with each other, there are two cases:

• If this threads belong to same block, they should use syncthreads() and share

data through shared memory.

• If threads belong to different blocks, they must share data through global mem-

ory. In this case two separate kernel invocations are required, one for writing

to and one for reading from global memory.

3.1.2 Device Level

At a lower level, the application should maximize parallel execution between the mul-

tiprocessors of a device.

For devices of compute capability 1.x, only one kernel can execute on a device at

one time, so the kernel should be launched with at least as many thread blocks as

there are multiprocessors in the device. For devices of compute capability 2.0, multi-

15



ple kernels can execute concurrently on a device, so maximum utilization can also be

achieved by using streams to enable enough kernels to execute concurrently.

3.1.3 Multiprocessor Level

At an even lower level, the application should maximize parallel execution between

the various functional units within a multiprocessor.

To maximize utilization, a GPU multiprocessor relies on thread-level parallelism.

Utilization is therefore directly dependent on the number of resident warps. At every

instruction issue time, a warp scheduler selects a warp that is ready to execute, if

any, and issues the next instruction to the active threads of the warp. The number

of clock cycles it takes for a warp to be ready to execute its next instruction is called

latency, and full utilization is achieved when the warp scheduler always has some in-

struction to issue for some warp at every clock cycle during that latency period, or in

other words, when the latency of each warp is completely hidden by other warps. How

many instructions are required to hide latency depends on the instruction throughput.

If all input operands are registers, latency is caused by register dependencies. In

the case of a back-to-back register dependency (i.e. some input operand is written

by the previous instruction), the latency is equal to the execution time of the previ-

ous instruction and the warp scheduler must schedule instructions for different warps

during that time.

3.2 Maximize Instruction Throughput

If programmer knows, how instructions are executed then it is possible to apply

low level optimizations that can be useful. It is good practices to apply lower level

optimization after all higher-level optimization have been completed. To maximize

instruction throughput the application should:
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• Minimize the use of arithmetic instructions with low throughput; this includes

trading precision for speed when it does not affect the end result, such as using

intrinsic instead of regular functions, single-precision instead of double precision,

or flushing de normalized numbers to zero.

• Minimize divergent warps caused by control flow instructions.

• Reduce the number of instructions, for example, by optimizing out synchroniza-

tion points whenever possible or by using restricted pointers

17



Chapter 4

Preliminary Study of programming

language

4.1 Dynamic Programming

The key idea behind dynamic programming is quite simple. In general, to solve a

given problem, we need to solve different parts of the problem (subproblems), then

combine the solutions of the subproblems to reach an overall solution. Often, many

of these subproblems are really the same. The dynamic programming approach seeks

to solve each subproblem only once, thus reducing the number of computations. This

is especially useful when the number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain calcula-

tions, which are later used again since the completed calculation is a sub-problem of a

larger calculation. Bottom-up dynamic programming involves formulating a complex

calculation as a recursive series of simpler calculations.
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Figure 4.1: The subproblem graph for the Fibonacci sequence. The fact that it is not
a tree indicates overlapping subproblems [6]

4.1.1 Dynamic programming in computer programming

There are two key attributes that a problem must have in order for dynamic program-

ming to be applicable: optimal substructure and overlapping subproblems. However,

when the overlapping problems are much smaller than the original problem, the strat-

egy is called ”divide and conquer” rather than ”dynamic programming”. This is why

mergesort, quicksort, and finding all matches of a regular expression are not classified

as dynamic programming problems.

Optimal substructure means that the solution to a given optimization problem can be

obtained by the combination of optimal solutions to its subproblems. Consequently,

the first step towards devising a dynamic programming solution is to check whether

the problem exhibits such optimal substructure. Such optimal substructures are usu-

ally described by means of recursion. For example, given a graph G=(V,E), the

shortest path p from a vertex u to a vertex v exhibits optimal substructure: take any

intermediate vertex w on this shortest path p. If p is truly the shortest path, then the

path p1 from u to w and p2 from w to v are indeed the shortest paths between the

corresponding vertices (by the simple cut-and-paste argument described in CLRS).

Hence, one can easily formulate the solution for finding shortest paths in a recursive

manner, which is what the Bellman-Ford algorithm does.
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• Top-down approach: This is the direct fall-out of the recursive formulation

of any problem. If the solution to any problem can be formulated recursively

using the solution to its subproblems, and if its subproblems are overlapping,

then one can easily memoize or store the solutions to the subproblems in a table.

Whenever we attempt to solve a new subproblem, we first check the table to

see if it is already solved. If a solution has been recorded, we can use it directly,

otherwise we solve the subproblem and add its solution to the table.

• Bottom-up approach: This is the more interesting case. Once we formulate

the solution to a problem recursively as in terms of its subproblems, we can

try reformulating the problem in a bottom-up fashion: try solving the subprob-

lems first and use their solutions to build-on and arrive at solutions to bigger

subproblems. This is also usually done in a tabular form by iteratively generat-

ing solutions to bigger and bigger subproblems by using the solutions to small

subproblems.

4.2 CUDA C Programming

4.2.1 General-Purpose Parallel Computing Architecture

The advent of multicore CPUs and many core GPUs means that mainstream proces-

sor chips are now parallel systems. Furthermore, their parallelism continues to scale

with Moores law. The challenge is to develop application software that transparently

scales its parallelism to leverage the increasing number of processor cores, much as 3D

graphics applications transparently scale their parallelism to many core GPUs with

widely varying numbers of cores. CUDAs parallel programming model is designed

to overcome this challenge while maintaining a low learning curve for programmers

familiar with standard programming languages such as C.

At its core are three key abstractions a hierarchy of thread groups, shared mem-
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Figure 4.2: CUDA is Designed to Support Various Languages or Application Pro-
gramming Interfaces [8]

ories, and barrier synchronization that are simply exposed to the programmer as a

minimal set of language extensions.

4.2.2 Kernels

C for CUDA extends C by allowing the programmer to define C functions, called

kernels, that, when called, are executed N times in parallel by N different CUDA

threads, as opposed to only once like regular C functions.

A kernel is defined using the global declaration specifier and the number of CUDA

threads for each call is specified using a new

"<<<>>>"

syntax:

Each of the threads that execute a kernel is given a unique thread ID that is

accessible within the kernel through the built-in threadIdx variable. As an illustration,

the following sample code adds two vectors A and B of size N and stores the result

into vector C:

Each of the threads that execute VecAdd() performs one pair-wise addition.

21



Figure 4.3: Kernel call [2]

Figure 4.4: Kernel call [2]
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Figure 4.5: Kernel call [2]

4.2.3 Thread Hierarchy

For convenience, threadIdx is a 3-component vector, so that threads can be identified

using a one-dimensional, two-dimensional, or three-dimensional thread index, forming

a one-dimensional, two-dimensional, or three-dimensional thread block. This provides

a natural way to invoke computation across the elements in a domain such as a vector,

matrix, or field. As an example, the following code adds two matrices A and B of

size NxN and stores the result into matrix C:

Threads within a block can cooperate among themselves by sharing data through

some shared memory and synchronizing their execution to coordinate memory ac-

cesses. More precisely, one can specify synchronization points in the kernel by calling

the syncthreads() intrinsic function; syncthreads() acts as a barrier at which all

threads in the block must wait before any is allowed to proceed.

For efficient cooperation, the shared memory is expected to be a low-latency memory

near each processor core, much like an L1 cache, syncthreads() is expected to be

lightweight, and all threads of a block are expected to reside on the same processor

core. The number of threads per block is therefore restricted by the limited memory

resources of a processor core. On current GPUs, a thread block may contain up to

512 threads.

Thread blocks are required to execute independently: It must be possible to exe-
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cute them in any order, in parallel or in series. This independence requirement allows

thread blocks to be scheduled in any order across any number of cores, enabling

programmers to write code that scales with the number of cores.

4.2.4 Programming Interface

The CUDA driver API is a lower-level C API that provides functions to load kernels

as modules of CUDA binary or assembly code, to inspect their parameters, and to

launch them. Binary or assembly code are usually obtained by compiling kernels

written in C.

C for CUDA comes with a runtime API and both the runtime API and the driver

API provide functions to allocate and deallocate device memory, transfer data be-

tween host memory and device memory, manage systems with multiple devices, etc.
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Chapter 5

Problem Definition

Using GPU architectures for solving large scale or difficult optimization problems

like combinatorial optimization problems is nevertheless a great challenge due to the

specificities of GPU architectures. The main issues that are to be met is performance

issues. In this thesis we will mainly concentrate to some complex algorithms and have

comparative study by implementing it on different GPU’s and obtain the speedup gain

in each case.

5.1 Performance Issues

5.1.1 Communication Bottlenecks

Whether you are on a shared-memory, message-passing or other platform, communi-

cation is always a potential bottleneck:

• On a shared-memory system, the threads must contend with each other in com-

municating with memory.And the problem is exacerbated by cache coherency

transactions.

• On a NOW, even a very fast network is very slow compared to CPU speeds.

• GPUs are really fast, but their communication with their CPU hosts is slow.
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5.1.2 Load Balancing

Another major issue is load balancing, i.e. keeping all the processors busy as much

as possible. A nice, easily understandable example is shown in Multicore Application

Programming: for Windows, Linux and Oracle Solaris, Darryl Gove, 2011, Addison-

Wesley. There the author shows code to compute the Mandelbrot set. He has a

rectangular grid of points in the plane, and wants to determine whether each point

is in the set or not; a simple but time-consuming computation is used for this deter-

mination. Gove sets up two threads, one handling all the points in the left half of

the grid and the other handling the right half. He finds that the latter thread is very

often idle, while the former thread is usually busy-severe load imbalance.

5.1.3 Embarrassingly Parallel Application

Consider a matrix multiplication application, for instance, in which we compute AX

for a matrix A and a vector X. One way to parallelize this problem would be for

have each processor handle a group of rows of A, multiplying each by X in parallel

with the other processors, which are handling other groups of rows. We call the

problem embarrassingly parallel, with the word ”embarrassing” meaning that the

problem is too easy, with is no intellectual challenge involved. It is pretty obvious

that the computation Y = AX can be parallelized very easily by splitting the rows

of A into groups. By contrast, most parallel sorting algorithms require a great deal

of interaction. For instance, consider Merge sort. It breaks the vector to be sorted

into two (or more) independent parts, say the left half and right half, which are

then sorted in parallel by two processes. So far, this is embarrassingly parallel, at

least after the vector is broken in half. But then the two sorted halves must be

merged to produce the sorted version of the original vector, and that process is not

embarrassingly parallel; it can be parallelized, but in a more complex manner.

26



Chapter 6

Implementation

6.1 Binary Search

binary_search(Array[0..N-1], value, low, high):

if (high < low):

return -1 // not found

mid = (low + high) / 2

if (A[mid] > value):

return binary_search(A, value, low, mid-1)

else if (A[mid] < value):

return binary_search(A, value, mid+1, high)

else:

return mid // found
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Figure 6.1: Task graph

6.1.1 Comparative Study for Binary Search

The comparative study include execution of Binary Search algorithm between CPU

and two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.3 shows the output in which it considers total time for executing the

algorithm on CPU. It takes 592 ms to execute the program by taking the entire

program under consideration and fig. 6.4 shows the output of the part of program
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Figure 6.2: Binary Search Output

executed on CPU but it consists of the only that part which gets executed by GPU

without considering memory transfer. We have taken C language time function to get

the time taken for the part of the program to execute and it takes 11ms to execute

the part of the program.

Figure 6.3: Binary CPU Time considering entire program

Figure 6.4: Binary CPU Time considering part of the program
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Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 103 ms as shown in

the fig. 6.5 and hence the speed up gain as compared with CPU is 400 ms and the

time taken to execute the program without considering memory transfer is 0.0534 ms

as shown in the fig. 6.6. In order to obtain the result without memory transfer,i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of

CPU.

Figure 6.5: GTX 480 Considering Memory Transfer

Figure 6.6: GTX 480 without considering Memory Transfer

30



Implementation on Tesla C2070

The total time considering memory transfer in Tesla GPU is 73 ms as shown in the

fig. 6.7 and hence the speed up gain as compared with CPU is 519 ms and the time

taken to execute the program without considering memory transfer is 0.0453 ms as

shown in the fig. 6.8. In order to obtain the result without memory transfer, i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla GPU compared to that of CPU.

Figure 6.7: Tesla considering Memory transfer

Figure 6.8: Tesla Considering Without Memory Transfer
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Figure 6.9: Graph Comprising of speedup

Quantitative Comparison

• Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(log n) to number of threads in parallel.

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 0.053 ms

– Grid size: [53 1 1]

– Block size: [342 1 1]

• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 12.21 (Balanced Instruction per byte

ratio: 3.79)
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– Achieved Occupancy: 0.80 (Theoretical Occupancy: 0.92 )

• Also here the limiting factor for GTX 480 GPU is 0.053 milliseconds in which

it occupies maximum utilization of GPU, if there is any alteration of threads

and block size during kernel call performance degrades and also the utilization

of the GPU decreases.

• Summary profiling information of Tesla GPU

– Number of calls: 1

– GPU time: 0.045 ms

– Grid size: [53 1 1]

– Block size: [342 1 1]

• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 10.14 (Balanced Instruction per byte

ratio: 3.79)

– Achieved Occupancy: 0.78 (Theoretical Occupancy: 0.92 )

• Also here the limiting factor for Tesla GPU is 0.045 milliseconds in which it

occupies maximum utilization of GPU, if there is any alteration of threads and

block size during kernel call performance degrades and also the utilization of

the GPU decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

– The derived statistics assume all instruction are single precision floating

point instruction. If double precision floating point instruction are used

then the limiting factor may become incorrect.
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• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the tesla

is 2988 MHz, hence more speedup is obtained on the Tesla GPU.

• Considering the both the benchmark conditions the best speed up is obtained

on Tesla GPU.

• Considering core clock which is highest in Tesla leading to the best performance.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla C2070 GPU.

• Hence from all the above statics and parameters we can theoretically conclude

that best performance can be obtained on Tesla C2070 GPU, which is proved

practically.
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6.2 Knapsack Algorithm

Function knapsack(w[1..n],v[1..n],W)

%initialization

for i<-1 upto n do

x[i] <- 0

weight <- 0

sort the objects into descending order of vi/wi

while(weight<W)

i <- select remaining object with maximum vi/wi

if(weight+w[i]<=W) then

x[i] <- 1

weight<- weight + w[i]

else

x[i] <- (W - weight)/w[i]

weight <- W

return x
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6.2.1 Comparative Study for Knapsack Algorithm

The comparative study include execution of Knapsack algorithm between CPU and

two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.10 & fig 6.11 shows the task graph and the output of the program and fig

6.12 shows the output in which it considers total time for executing the algorithm

on CPU. It takes 153 ms to execute the program by taking the entire program under

consideration and fig. 6.13 shows the output of the part of program executed on CPU

but it consists of only that part which gets executed by GPU without considering

memory transfer. We have taken C language time function to get the time taken

by the part of the program to execute and it takes 17 ms to execute the part of the

program.
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Figure 6.10: Task Graph
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Figure 6.11: Knapsack Output

Figure 6.12: knapsack CPU Time considering entire program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 107 ms as shown

in the fig. 6.14 and hence the speed up gain as compared with CPU is 46 ms and

the time taken to execute the program without considering memory transfer is 12.53

ms as shown in the fig. 6.15. In order to obtain the result without memory transfer,

i used the visual studio as the framework and CUDA Visual Profiler gives me the

required output. Hence there is wide gain in speedup on GTX 480 GPU compared

to that of CPU.
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Figure 6.13: Knapsack CPU Time considering part of the program

Figure 6.14: GTX 480 Considering Memory Transfer

Implementation on Tesla C2070

The total time considering memory transfer in Tesla GPU is 90 ms as shown in the

fig. 6.16 and hence the speed up gain as compared with CPU is 63 ms and the time

taken to execute the program without considering memory transfer is 11.97 ms as

shown in the fig. 6.17. In order to obtain the result without memory transfer, i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that

of CPU.
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Figure 6.15: GTX 480 Considering Without Memory Transfer

Figure 6.16: Tesla Considering Memory Transfer)

Quantitative Comparison

• Here the CPU takes O(n log n) time time then compared to algorithm executed

on GPU’s which is been reduced to O(n) times.

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 12.53 ms

– Grid size: [3 1]

– Block size: [10 1 1]

• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 166.50

– Achieved Occupancy: 0.02 (Theoretical Occupancy: 0.04 )
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Figure 6.17: Tesla Considering Without Memory Transfer

Figure 6.18: Graph Comprising of speedup

• Also here the limiting factor for GTX 480 GPU is 12.53 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block size

during kernel call, performance degrades and also the utilization of the GPU

decreases.

• Summary profiling information of Tesla C2070 GPU

– Number of calls: 1

– GPU time: 11.37 ms
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– Grid size: [3 1]

– Block size: [10 1 1]

• Limiting factor for Tesla C2070 GPU

– Achieved instruction per byte ratio: 173.51

– Achieved Occupancy: 0.167 (Theoretical Occupancy: 0.2 )

• Also here the limiting factor for Tesla GPU is 11.37 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

– Also as such as knapsack being converted to iterative form and further to

parallel form, due to some dependencies it may affect speedup performance.

• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the tesla

is 2988 MHz, hence more speedup is obtained on the Tesla GPU.

• Considering core clock which is highest in Tesla leading to the best performance.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla GPU.

• Hence from all the above statics and parameters we can theoretically conclude

that best performance can be obtained on Tesla GPU which is proved practi-

cally.
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6.3 Longest Common Subsequence

LCS-LENGTH(X, Y,m, n)

for i <- 1 to m

do c[i, 0] <- 0

for j <- 0 to n

do c[0, j ] <- 0

for i <- 1 to m

do for j <- 1 to n

do if xi = yj

then c[i, j ] <- c[i . 1, j . 1] + 1

b[i, j ] <- "\"

else if c[i - 1, j ] >= c[i, j -1 ]

then c[i, j ] <- c[i - 1, j ]

b[i, j ] <- "|"

else c[i, j ] <- c[i, j - 1]

b[i, j ] <- "<-"

return c and b

//

//

PRINT-LCS(b, X, i, j )

if i = 0 or j = 0

then return

if b[i, j ] = "\"

then PRINT-LCS(b, X, i - 1, j - 1)

print xi

elseif b[i, j ] = "|"

then PRINT-LCS(b, X, i - 1, j )

else
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PRINT-LCS(b, X, i, j - 1)

Figure 6.19: Task Graph
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Figure 6.20: LCS Output

6.3.1 Comparative Study for Longest Common Subsequence

Algorithm

The comparative study include execution of LCS algorithm between CPU and two

different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.19 & fig. 6.20 shows the task graph and the output of the program and fig.

6.21 shows the output in which it considers total time for executing the algorithm on

CPU. It takes 321 ms to execute the program by taking the entire program under con-

sideration and fig. 6.22 shows the output of the part of program executed on CPU, but

it consists of only that part which gets executed by GPU without considering mem-

ory transfer. We have taken C language time function to get the time taken for the

part of the program to execute and it takes 214 ms to execute the part of the program.
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Figure 6.21: LCS CPU Time considering entire program

Figure 6.22: LCS CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 154 ms as shown in

the fig. 6.23 and hence the speed up gain as compared with CPU is 167 ms and the

time taken to execute the program without considering memory transfer is 96.21 ms

as shown in the fig. 6.24. In order to obtain the result without memory transfer,i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of

CPU.

Figure 6.23: GTX 480 Considering Memory Transfer
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Figure 6.24: GTX 480 Considering without Memory Transfer

Implementation on Tesla C2070

The total time considering memory transfer in Tesla C2070 GPU is 115 ms as shown

in the fig. 6.25 and hence the speed up gain as compared with CPU is 206 ms and

the time taken to execute the program without considering memory transfer is 89.43

ms as shown in the fig. 6.26. In order to obtain the result without memory transfer,

i used the visual studio as the framework and CUDA Visual Profiler gives me the

required output. Hence there is wide gain in speedup on Tesla C2070 GPU compared

to that of CPU.
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Figure 6.25: Tesla Considering Memory Transfer

Figure 6.26: Tesla Considering Without Memory Transfer
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Figure 6.27: Graph Comprising of speedup

Quantitative Comparison

• Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(n2) to number O(n).

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 96.21 ms

– Grid size: [3 1]

– Block size: [21 1 1]

• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 73.88 (Balanced Instruction per byte

ratio: 3.79)

– Achieved Occupancy: 0.02 (Theoretical Occupancy: 0.06 )

• Also here the limiting factor for GTX 480 GPU is 96.21 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block
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size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Summary profiling information of Tesla C2070 GPU

– Number of calls: 1

– GPU time: 89.43 ms

– Grid size: [3 1]

– Block size: [21 1 1]

• Limiting factor for Tesla C2050 GPU

– Achieved instruction per byte ratio: 74.91

– Achieved Occupancy: 0.04 (Theoretical Occupancy: 0.06 )

• Also here the limiting factor for Tesla GPU is 89.43 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

– Longest Common Subsequence algorithm tends to search the longest se-

quence using backtracking method. Here we may not be able to resolve

every dependencies which may lead to lack to optimization and also affect

performance speedup.

• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the

Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070

GPU.
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• Considering core clock which is highest in Tesla C2070 GPU leading to the best

performance.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla C2070 GPU.

• Hence from all the above statics and parameters we can theoretically conclude

that best performance can be obtained on Tesla C2070 GPU which is proved

practically.
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6.4 Kruskal’s Algorithm

Let G = (V, E) be the given graph, with | V| = n

{

Start with a graph T = (V,phi) consisting of only the

vertices of G and no edges; /* This can be viewed as n

connected components, each vertex being one connected component */

Arrange E in the order of increasing costs;

for (i = 1, i<n - 1, i + +)

{ Select the next smallest cost edge;

if (the edge connects two different connected components)

add the edge to T;

}

}
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Figure 6.28: Task Graph

6.4.1 Comparative Study for Kruskal’s Algorithm

The comparative study include execution of Kruskal’s algorithm between CPU and

two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.28 & fig 6.29 shows the task graph and the output of the program and fig

6.30 shows the output in which it considers total time for executing the algorithm

on CPU. It takes 833 ms to execute the program by taking the entire program under

consideration and fig. 6.31 shows the output of the part of program executed on CPU
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Figure 6.29: Knapsack Output

but it consists of only that part which gets executed by GPU without considering

memory transfer. We have taken C language time function to get the time taken by

the part of the program to execute and it takes 739 ms to execute the part of the

program.

Figure 6.30: kruskal CPU Time considering entire program
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Figure 6.31: Kruskal CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 493 ms as shown in

the fig. 6.32 and hence the speed up gain as compared with CPU is 340ms and the

time taken to execute the program without considering memory transfer is 253 ms as

shown in the fig. 6.33. In order to obtain the result without memory transfer, i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of

CPU.

Figure 6.32: GTX 480 Considering Memory Transfer
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Figure 6.33: GTX 480 Considering Without Memory Transfer

Implementation on Tesla

The total time considering memory transfer in Tesla C2070 GPU is 411 ms as shown

in the fig. 6.34 and hence the speed up gain as compared with CPU is 422 ms and the

time taken to execute the program without considering memory transfer is 213 ms as

shown in the fig. 6.35. In order to obtain the result without memory transfer,i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that

of CPU.

Figure 6.34: Tesla Considering Memory Transfer)
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Figure 6.35: Tesla Considering Without Memory Transfer

Quantitative Comparison

• Here the CPU takes O(n log n) time time then compared to algorithm executed

on GPU’s which is been reduced to O(n) times.

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 253 ms

– Grid size: [10 1]

– Block size: [53 1 1]

• Limiting factor for GTX 480 GPU

– Achieved instruction per byte ratio: 176.30

– Achieved Occupancy: 0.6 (Theoretical Occupancy: 0.9 )

• Also here the limiting factor for GTX 480 GPU is 253 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Summary profiling information of Tesla C2070 GPU
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Figure 6.36: Graph Comprising of speedup

– Number of calls: 1

– GPU time: 213 ms

– Grid size: [10 1]

– Block size: [53 1 1]

• Limiting factor for Tesla C2070 GPU

– Achieved instruction per byte ratio: 193.51

– Achieved Occupancy: 0.72 (Theoretical Occupancy: 0.91 )

• Also here the limiting factor for Tesla C2070 GPU is 213 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block size

during kernel call performance degrades and also the utilization of the GPU

decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.
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– The derived statistics assume all instruction are single precision floating

point instruction. If double precision floating point instruction are used

then the limiting factor may become incorrect.

• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the

Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070

GPU.

• Considering core clock which is highest in Tesla leading to the best performance.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla GPU.

• Hence from all the above statics and parameters we can theoretically conclude

that best performance can be obtained on Tesla GPU which is proved practi-

cally.
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6.5 Insertion Sort Algorithm

begin

for i := 1 to length(A)-1 do

begin

value := A[i];

j := i - 1;

done := false;

repeat

{ To sort in descending order simply reverse

the operator i.e. A[j] < value }

if A[j] > value then

begin

A[j + 1] := A[j];

j := j - 1;

if j < 0 then

done := true;

end

else

done := true;

until done;

A[j + 1] := value;

end;

end;
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Figure 6.37: Task Graph

6.5.1 Comparative Study for Insertion Sort Algorithm

The Comparative study include execution of Insertion Sort algorithm between CPU

and two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.
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Figure 6.38: Insertion Sort Output

Implementation on CPU

The fig. 6.37 & fig. 6.38 shows the task graph and the output of the program and fig.

6.39 shows the output in which it considers total time for executing the algorithm

on CPU. It takes 859 ms to execute the program by taking the entire program under

consideration and fig. 6.40 shows the output of the part of program executed on CPU

but it consists of only that part which gets executed by GPU without considering

memory transfer. We have taken C language time function to get the time taken for

the part of the program to execute and it takes 502 ms to execute the part of the

program.

Figure 6.39: Insertion Sort CPU Time considering entire program
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Figure 6.40: Insertion Sort CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 91 ms as shown in

the fig. 6.41 and hence the speed up gain as compared with CPU is 768 ms and the

time taken to execute the program without considering memory transfer is 38.44ms

as shown in the fig. 6.42. In order to obtain the result without memory transfer,

i used the visual studio as the framework and CUDA Visual Profiler gives me the

required output. Hence there is wide gain in speedup on GTX 480 GPU compared

to that of CPU.

Figure 6.41: GTX 480 Considering Memory Transfer

Figure 6.42: GTX 480 Considering Without Memory Transfer
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Implementation on Tesla C2070

The total time considering memory transfer in Tesla C2070 GPU is 425 ms as shown

in the fig. 6.43 and hence the speed up gain as compared with CPU is 425 ms and

the time taken to execute the program without considering memory transfer is 43.57

ms as shown in the fig. 6.44. In order to obtain the result without memory transfer,

i used the visual studio as the framework and CUDA Visual Profiler gives me the

required output. Hence there is wide gain in speedup on Tesla C2070 GPU compared

to that of CPU.

Figure 6.43: Tesla Considering Memory Transfer

Figure 6.44: Tesla Considering Without Memory Transfer
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Figure 6.45: Graph Comprising of speedup

Quantitative Comparison

• Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(log n) to number of threads in parallel.

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 38.84 ms

– Grid size: [89 1]

– Block size: [250 1 1]

• Limiting factor for GTX 480 GPU

– Achieved instruction per byte ratio: 8.51

– Achieved Occupancy: 0.86 (Theoretical Occupancy: 1.00 )

• Also here the limiting factor for GTX 480 GPU is 38.84 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block
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size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Summary profiling information of Tesla C2070 GPU

– Number of calls: 1

– GPU time: 43.57 ms

– Grid size: [89 1]

– Block size: [250 1 1]

• Limiting factor for Tesla GPU

– Achieved instruction per byte ratio: 7.16

– Achieved Occupancy: 0.83 (Theoretical Occupancy: 0.92 )

• Also here the limiting factor for Tesla C2070 GPU is 34.261 ms in which it

occupies maximum utilization of GPU, if there is any alteration of threads and

block size during kernel call performance degrades and also the utilization of

the GPU decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

– Insertion Sort reduces to O(n), but there are still dependencies which if

removed will lead to performance gain.

• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the

Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070

GPU.
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• Considering core clock which is highest in Tesla leading to the best performance,

but for the same number of blocks and threads it tends to give best performance

on GTX 480 rather than Tesla GPU.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on GTX 480.

• Here if we consider the limiting factor for the Tesla then the best performance is

obtained on tesla with 75 consisting of 230 threads which is the best performance

speedup obtained for this algorithm on this GPU.
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6.6 Selection sort algorithm

Function selection(Array a,n)

{

minindex = i

minvalue = a[i]

for(j=i+1 upto n)

{

if (a[j]<minval)

{

minval<-a[j]

minindex<-j

}

}

temp<-a[minindex]

a[minindex]<-a[i]

a[i]<-temp

}

68



Figure 6.46: Task Graph

6.6.1 Comparative Study for Selection Sort Algorithm

The comparative study include execution of Selection Sort algorithm between CPU

and two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.46 & fig. 6.47 shows the task graph and the output of the program and fig.

6.48 shows the output in which it considers total time for executing the algorithm

on CPU. It takes 666 ms to execute the program by taking the entire program under

consideration and fig. 6.49 shows the output of the part of program executed on CPU

but it consists of only that part which gets executed by GPU without considering

memory transfer. We have taken C language time function to get the time taken for
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Figure 6.47: Selection Sort Output

the part of the program to execute and it takes 590 ms to execute the part of the

program.

Figure 6.48: Insertion Sort CPU Time considering entire program

Figure 6.49: Insertion Sort CPU Time considering part of the program
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Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 105 ms as shown

in the fig. 6.50 and hence the speed up gain as compared with CPU is 561ms and

the time taken to execute the program without considering memory transfer is 27.55

ms as shown in the fig. 6.51. In order to obtain the result without memory transfer,

i used the visual studio as the framework and CUDA Visual Profiler gives me the

required output. Hence there is wide gain in speedup on GTX 480 GPU compared

to that of CPU.

Figure 6.50: GTX 480 Considering Memory Transfer

Figure 6.51: GTX 480 Considering Without Memory Transfer

71



Implementation on Tesla

The total time considering memory transfer in Tesla GPU is 49 ms as shown in the

fig. 6.52 and hence the speed up gain as compared with CPU is 519 ms and the time

taken to execute the program without considering memory transfer is 12.63 ms as

shown in the fig. 6.53. In order to obtain the result without memory transfer, i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that

of CPU.

Figure 6.52: Tesla Considering Memory Transfer

Figure 6.53: Tesla Considering Without Memory Transfer
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Figure 6.54: Graph Comprising of speedup

Quantitative Comparison

• Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(n2) to number O(n).

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 27.55 ms

– Grid size: [13 1]

– Block size: [63 1 1]

• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 14.53

– Achieved Occupancy: 0.091 (Theoretical Occupancy: 0.10 )

• Also here the limiting factor for GTX 480 GPU is 0.053 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block
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size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Summary profiling information of Tesla GPU

– Number of calls: 1

– GPU time: 12.63ms

– Grid size: [13 1]

– Block size: [63 1 1]

• Limiting factor for Tesla C2070 GPU

– Achieved instruction per byte ratio: 13.47 (Balanced Instruction per byte

ratio: 3.79)

– Achieved Occupancy: 0.13 (Theoretical Occupancy: 0.20 )

• Also here the limiting factor for Tesla C2070 GPU is 0.045 ms in which it

occupies maximum utilization of GPU, if there is any alteration of threads and

block size during kernel call performance degrades and also the utilization of

the GPU decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

– Since the loops for the sorting are reduced which obtains the speedup

performance, but also there are dependencies due to which it may not be

possible to achieve prosper GPU utilization.

• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the

Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070

GPU.
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• Considering core clock which is highest in Tesla C2070 GPU leading to the best

performance.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla C2070 GPU.

• Hence from all the above statics and parameters we can theoretically conclude

that best performance can be obtained on Tesla C2070 GPU which is proved

practically.
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6.7 Bubble Sort algorithm

Function bubble(Array a,i ,j)

for i = i:n,

swapped = false

for j = n:i+1,

if a[j] < a[j-1],

swap a[j,j-1]

swapped = true

->invariant:a[1...i] in final position

break if not swapped

end

Figure 6.55: Task Graph
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Figure 6.56: Bubble Sort Output

6.7.1 Comparative study for Bubble sort Algorithm

The comparative study include execution of Bubble Sort algorithm between CPU and

two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.55 & fig. 6.56 shows the task graph and the output of the program and fig.

6.57 shows the output in which it considers total time for executing the algorithm on

CPU. It takes 1416 ms to execute the program by taking the entire program under

consideration and fig. 6.58 shows the output of the part of program executed on

CPU but it consists of only that part which gets executed by GPU without consider-

ing memory transfer. We have taken C language time function to get the time taken

for the part of the program to execute and it takes 1016 ms to execute the part of

the program.
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Figure 6.57: Bubble Sort CPU Time considering entire program)

Figure 6.58: Bubble Sort CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 534 ms as shown in

the fig. 6.59 and hence the speed up gain as compared with CPU is 882 ms and the

time taken to execute the program without considering memory transfer is 149 ms as

shown in the fig. 6.60 In order to obtain the result without memory transfer, i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of

CPU.
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Figure 6.59: GTX 480 Considering Memory Transfer

Figure 6.60: GTX 480 Without Considering Memory Transfer

Implementation on Tesla C2070

The total time considering memory transfer in Tesla C2070 GPU is 497 ms as shown

in the fig. 6.61 and hence the speed up gain as compared with CPU is 919 ms and the

time taken to execute the program without considering memory transfer is 117 ms as

shown in the fig. 6.62. In order to obtain the result without memory transfer, i used

the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that

of CPU.

Figure 6.61: Tesla Considering Memory Transfer
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Figure 6.62: Tesla Considering Without Memory Transfer

Figure 6.63: Graph Comprising of speedup

Quantitative Comparison

• Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(log n) to number of threads in parallel.

• Summary profiling information of GTX 480

– Number of calls: 1

– GPU time: 534 ms

– Grid size: [13 1]

– Block size: [43 1 1]
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• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 24.29

– Achieved Occupancy: 0.02 (Theoretical Occupancy: 0.06 )

• Also here the limiting factor for GTX 480 GPU is 534 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Summary profiling information of Tesla GPU

– Number of calls: 1

– GPU time: 497 ms

– Grid size: [13 1]

– Block size: [43 1 1]

• Limiting factor for GTX 480

– Achieved instruction per byte ratio: 329.64

– Achieved Occupancy: 0.21 (Theoretical Occupancy: 0.33 )

• Also here the limiting factor for Tesla GPU is 497 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.

• Factors that may affect the performance gain:

– The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.
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– The derived statistics assume all instruction are single precision floating

point instruction. If double precision floating point instruction are used

then the limiting factor may become incorrect.

• Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494

MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the

Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070

GPU.

• Considering core clock which is highest in Tesla leading to the best performance.

• Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla GPU.

• Hence from all the above statics and parameters we can theoretically conclude

that best performance can be obtained on Tesla C2070 GPU which is proved

practically.
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6.8 Performance graph

Figure 6.64: Performance Graph(Parallel)

• The graph shows the time taken to execute the algorithms on the CPU and

GPU’s.

• From the graph, i can conclude that best performance is obtained on Tesla

C2070 GPU in most of the cases with both benchmarks taken under consider-

ation.

• Due to some amount of dependencies present leading to speedup performance

gain can be achieved further by enhancement to the algorithms.
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Chapter 7

Conclusion

By execution of the complex algorithms and obtaining its statistics, i can conclude

that GPU’s having more number of cores with high clock frequency achieves gain in

speedup. The above implementation results concludes that algorithms implemented

on GTX 480 and Tesla C2070 takes less time to execute as compared to CPU leading

to speedup gains in microseconds. Even i can conclude when these algorithms are

optimized by removing dependencies, this enhanced algorithms may achieve more

speedup. Also executions of such combinatorial and complex execution loads on high

end GPU’s leads to more efficient speedup gain.
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Chapter 8

Future Work

• Further enhancement can be done to these algorithms in order to achieve more

speedup.

• Obtaining different methods for solutions.

• Use of such strategic enhancement in the field of Graph Theory.

• Currently only one kernel can run at time on the hardware device, future work

will include extension to multiple kernels simultaneously, so that more paral-

lelism can be achieved.
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