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Abstract

The strong need for increased computational performance in science and engineering
has led to the use of heterogeneous computing, with GPUs, acting as coprocessors to
the CPUs for arithmetic intensive data-parallel workloads. CUDA - Compute Uni-
fied Device Architecture is a new industry standard for task-parallel and data-parallel
heterogeneous computing on NVIDIA GPUs. Basic goal of CUDA is to help program-
mers focus on the task of parallelization of the algorithms rather than spending time
on their implementation. Key to performance on this platform is using massive mul-
tithreading to utilize the large number of cores and hide global memory latency. The
main objective of the thesis is to obtain the performance gain in execution speed for
the dynamic algorithms which generally are complex and takes a very long time for
execution and compare results on different gpu processors and CPU and have a com-
parative study of algorithms. It will require running the CUDA C code in sequential
and parallel on GPU consisting of hundreds of core or even more. Also the algo-
rithms C code may require removing dependencies. Hence obtaining all the statistics
of various algorithms and achieve performance gain in execution.The contributions
of this thesis include a programming language approach to providing transforma-
tion abstraction and composition, a unifying framework for general and GPU specific
transformations, and demonstration of the framework on standard benchmarks that
show it capable of matching or outperforming hand-tuned GPU kernels. This thesis
work is mainly concentrated on the computational part of the source code and its op-
timization. Report contains study of the NVIDIA GeForce GPU architecture, CUDA
SDK tool kit, Dynamic Algorithms and different methods to get performance bene-
fit, implementation of intermediate tool to find out functions and their dependencies
from the source code and the implementation of the complete algorithm, testing and

Obtaining statistics for the same.
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Chapter 1

Introduction

1.1 General

In the history of microprocessors, the Central Processing Unit (CPU) processor has
been the focus of the industry for its powerful ability to run general purpose sequen-
tial programs. While hugely successful in meeting the majority of computing needs,
there has also been a legacy of programmable accelerators to improve performance
for specific domains of applications. In the embedded world, Digital Signal Proces-
sors (DSPs) are used to encode and decode audio. In High Performance Computing
(HPC), there have been many examples of coprocessors going back to the 1970s de-
signed for floating point calculations or other specific tasks. In consumer computing,
discrete video processors have long been included to meet specialized needs of ren-

dering images at the demanding rate of stutter-free video.

Under the pressures of the consumer gaming and professional workstation market,
Graphical Processing Units (GPUs) have evolved to deliver ever-increasing amounts
of computational performance. Reacting from the market demand to provide more
direct means of accessing this potential performance, hardware manufacturers start-

ing providing developer SDKs to treat the GPU as a programmable stream processor,



instead of a specialized device only accessible through graphics oriented fixed-function
APIs. This opened to door for GPUs to be used for massively parallel computations
on non graphics data. Scientific computing has had a long history of using copro-
cessors and programmable accelerators to serve its seemingly unbounded need for
computational performance. In fact, modern high end super computers often include
a hybrid of traditional processors and stream processors in the form of GPUs. Today’s
fastest GPUs can deliver a peak performance in the order of 500 GFLOPS, more than

four times the performance of the fastest x86 quad-core processor.

1.2 GPU Hardware Architecture

Present multi-core CPUs usually consist of 2-8 cores. These cores usually work asyn-
chronously and independently. Thus, each core can execute different instructions over
different data at the same time. According to the Flynn’s taxonomy, we are talking
about Multiple Instruction stream, Multiple Data stream (MIMD) class of computer
architectures. On the other hand, GPUs are designed for parallel computing with
an emphasis on arithmetic operations, which originate from their main purpose - to
compute graphic scene which is finally displayed. Current graphic accelerators consist
of several multi- processors (up to 30). Each multiprocessor contains several (e.g., 8,
12 or 16) Arithmetic Logic Units (ALUs). Up to 480 processors is in total on the
current high-end GPUs. Figure 1.1 shows the general overview of the CPU and GPU.

e CPU cores are designed to execute a single thread of sequential instructions
with maximum speed and GPUs are designed for fast execution of many parallel
instruction threads.

e CPUs use SIMD (single instruction is performed over multiple data) vector

3



I L [ ] 1
| i i |
| HEN
| Il il
| [T 11
I I il
| N
| N 1S

b Rl | | | | p—oo| }—

-
[ 1]
| [ ]
| 1]
[ 1]
[ 1]
1 1]
| [ ]

| |
I |
l |
| |
| |
l I
08 i |
I |

|
l
I
|
l
l
l

| ||
L[]
| ||
| 1]
| 1]
[ 11
L1 L
[ 1]

e e
CPU GPU

Figure 1.1: GPU Devoted More Transistor To Data Processing [1]

units, and GPUs use SIMT (single instruction, multiple threads) for scalar

thread processing.

e GPUs contain extensive support of Stream Processing paradigm. It is related

to SIMD ( Single Instruction, Multiple Data) processing.

e CPUs use caches to increase their performance owing to reduced memory access
latencies and GPUs use caches or shared memory to increase memory band-

width.

e There exist a lot of differences in multi-threaded operations. CPUs can execute
1-2 threads per core, while GPUs can maintain up to 1024 threads per each
multiprocessor. Switching from one thread to another costs hundreds of cycles

to CPUs, but GPUs switch several threads per cycle.

e CPUs reduce memory access latencies using large caches as well as branch pre-
diction. GPUs solve the problem of memory access latencies using simultaneous
execution of thousands threads when one thread is waiting for data from mem-

ory, a GPU can execute another thread without latencies.



1.3 Objective of work

The objective of this research is to provide a better utilization of the resources of
CUDA GPU to obtain better performance gain in execution speed of time consuming
and complex dynamic algorithms and hence getting performance gain to a greater

extent.

1.4 Scope of Work

The scope of this work is to optimize Processor elements and to reduce the computa-
tion time with the CUDA enabled GPU which are using Geforce architecture. Work
can be extended by developing the software which may directly convert the sequential

dynamic c code into parallel with removed dependencies.

1.5 Motivation of the Work

As looking at the advantages of multicore architectures are many, such as higher
performance, lower power consumption lower cost and more exibility but can be
realized only if the corresponding software is developed to unlock these benefits.
The motivation behind doing this research is the need to reduce execution time of
complex time consuming dynamic algorithms in a more efficient and optimized way
for multicore architecture using CUDA, which best utilizes the available core and

other resources on GPUs.

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Chapter [2| Literature Survey, Literature survey on CUDA describes history of
CUDA. It also describes CUDA Programming Model, Memory Architecture,

5



Hardware implementation.

Chapter [3| Peformance Optimization Strategies, Performance Optimization Strate-
gies describes various performance optimization strategies specific to CUDA,

which are used to get the maximum utilization of available resources.

Chapter [4], Preliminary Study, Preliminary Study includes Study of CUDA C pro-

gramming language
Chapter [5| Problem Definition , Problem Statement and its Proposed Approach
Chapter [6] Implementation , Implementation Done

Chapter [8] Future Work



Chapter 2

Literature Survey

GPGPU stands for General-Purpose computation on Graphics Processing Units, also
known as GPU Computing. Graphics Processing Units (GPUs) are high-performance

many-core processors capable of very high computation and data throughput.

In November 2006, NVIDIA introduced CUDA(Compute Unified Device Architec-
ture), a general purpose parallel computing architecture with a new parallel pro-
gramming model and instruction set architecture - that leverages the parallel com-
pute engine in NVIDIA GPUs to solve many complex computational problems in a
more efficient way than on a CPU. NVIDIA GPUs with the new Tesla unified graph-
ics and computing architecture run CUDA C programs and are widely available in
laptops, PCs, workstations, and servers. The CUDA model is also applicable to other

shared-memory parallel processing architectures, including multicore CPUs.

GPU performance is influenced by the architectural organization of the hardware
platform. NVIDIA suggests that achieving the highest GPU occupancy and optimiz-
ing the use of the memory hierarchy are the two main factors behind GPU perfor-
mance. In fact, both of them are related since maximizing the occupancy can help to
cover latency during global memory loads. We present several experiments aimed at

analyzing their relative importance. Our results indicate that code transformations

7
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that target efficient memory usage are the major determinant of actual performance.

2.1 NVCC Compilation

The CUDA phase converts a source file coded in the extended CUDA language,into a
regular ANSI C source file that can be handed over to a general purpose C compiler
for further compilation and linking. The exact steps that are followed to achieve this

are displayed in Figure 2.2

2.1.1 Compilation flow

In short, CUDA compilation works as follows: the input program is separated by
the CUDA front end (cudafe), into C/C++ host code and the .gpu device code.
Depending on the value(s) of the -code option to nvce, this device code is further
translated by the CUDA compilers/assemblers into CUDA binary (cubin) and/or
into intermediate ptx code. This code is merged into a device code descriptor which
is included by the previously separated host code. This descriptor will be inspected
by the CUDA runtime system whenever the device code is invoked (‘called’) by the

8
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host program, in order to obtain an appropriate load image for the current GPU.

2.1.2 CUDA frontend

In the current CUDA compilation scheme, the CUDA front end is invoked twice. The
first step is for the actual splitup of the .cu input into host and device code. The
second step is a technical detail (it performs dead code analysis on the .gpu generated

by the first step), and it might disappear in future releases.

2.1.3 Preprocessing

The trajectory contains a number of preprocessing steps. The first of these, on the
.cu input, has the usual purpose of expanding include files and macro invocations
that are present in the source file. The remaining preprocessing steps expand CUDA
system macros in ('C’-) code that has been generated by preceding CUDA compilation
steps. The last preprocessing step also merges the results of the previously diverged

compilation flow.

2.1.4 Using cudafe for preprocessing

Figure 2.2 shows that a full CUDA compilation step requires 4 preprocessing steps,
which are ultimately performed using the platform compiler. An unfortunate side
effect of this on Windows platforms would be a quite noisy CUDA compilation, due
to the fact that cl insists on echoing the name of its input file each time it is invoked.
For this reason, nvce will use cudafe for preprocessing whenever it finds this internal
CUDA tool on the the executable search PATH (which normally is the case in CUDA

releases).

2.2 Advantages

Advantages of CUDA over the traditional approach to GPGPU computing:

10



e More efficient data transfers between system and video memory.
e Faster downloads and read backs to and from the GPU.
e Scattered reads - code can read from arbitrary addresses in memory.

e Shared memory - CUDA exposes a fast shared memory region (16KB in size)
that can be shared amongst threads. This can be used as a user-managed cache,

enabling higher bandwidth than is possible using texture lookups.
e Full support for integer and bitwise operations.
e Support for integer texture lookups.

e Programming interface of CUDA applications is based on the standard C lan-

guage with extensions, which facilitates the learning curve of CUDA.

2.3 Limitation

e Threads should be running in groups of at least 32 for best performance, with
total number of threads numbering in the thousands. Branches in the program
code do not impact performance significantly, provided that each of 32 threads
takes the same execution path; the SIMD execution model becomes a significant

limitation for any inherently divergent task.
e Texture rendering is not supported.

e It uses a recursion-free, function-pointer-free subset of the C language, plus some
simple extensions. However, a single process must run spread across multiple

disjoint memory spaces, unlike other C language runtime environments.

e For double precision there are no deviations from the IEEE 754 standard. In
single precision, Denormals and signalling NaNs are not supported; only two

IEEE rounding modes are supported and those are specified on a per instruction

11
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basis rather than in a control word and the precision of division square root are

slightly lower than single precision.

2.4 CUDA Memory Model

CUDA threads may access data from multiple memory spaces during their execution
as illustrated by Figure 2.3. Each thread has private local memory. Each thread block
has shared memory visible to all threads of the block and with the same lifetime as
the block. All threads have access to the same global memory. There are also two
additional read-only memory spaces accessible by all threads: the constant and tex-
ture memory spaces. The global, constant, and texture memory spaces are optimized
for different memory usages Texture memory also offers different addressing modes,
as well as data filtering, for some specific data formats. The global, constant, and

texture memory spaces are persistent across kernel launches by the same application.

a. Local Memory: : is small volume of memory, which can be accessed only by

12



one streaming processor. The local memory space resides in device memory,
so local memory accesses have same high latency and low bandwidth as global

memory accesses.

. Global Memory : the largest volume of memory available to all multiprocessors
in a GPU, from 256 MB to 1.5 GB in modern solutions (and up to 4 GB in
Tesla). It offers high bandwidth, over 100 GB/s for top solutions from NVIDIA,
but it suffers from very high latencies (several hundred cycles). Non-catchable

supports general load and store instructions, and usual pointers to memory.

. Shared Memory: is 16-KB memory shared between all streaming processors in
a multiprocessor. Because it is on-chip, the shared memory space is much faster

than the local and global memory spaces.

. Constant Memory: is a 64 KB, read only memory for all multiprocessors. It’s
cached by 8 KB for each multiprocessor. The constant memory space resides
in device memory. A constant memory request for a warp is first split into two
requests, one for each half-warp, that are issued independently. A request is
then split into as many separate requests as there are different memory addresses
in the initial request, decreasing throughput by a factor equal to the number of
separate requests. The resulting requests are then serviced at the throughput of
the constant cache in case of a cache hit, or at the throughput of device memory
otherwise. This memory is rather slow latencies of several hundred cycles, if

there are no required data in cache.

. Texture Memory: space resides in device memory and is cached in texture cache,
so a texture fetch costs one memory read from device memory only on a cache

miss, otherwise it just costs one read from texture cache.

13



Chapter 3

Performance Optimization

Strategies

Performance optimization revolves around four basic strategies:

Convert CUDA C code in parallel to reduce time exection.

e Maximize parallel execution to achieve maximum utilization

Try to convert recursion code to Serial code and further parallelize it.

Remove dependencies in CUDA C code.

Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion
of an application depends on the performance limiters for that portion, optimizing
instruction usage of a kernel that is mostly limited by memory accesses will not yield
any significant performance gain. Optimization efforts should therefore be constantly
directed by measuring and monitoring the performance limiters, for example using

the CUDA profiler.

14



3.1 Maximize Utilization

To get the maximum utilization of the available resources, application should be
parallelized in such a way that application keeps various components of the system

busy most of the time.

3.1.1 Application Level

At a high level, the application should maximize parallel execution between the host,
the devices, and the bus connecting the host to the devices, by using asynchronous
functions calls and streams. It should assign to each processor the type of work it

does best: serial workloads to the host; parallel workloads to the devices.

For parallel execution program is divided into threads, this threads need to share

data with each other, there are two cases:

e If this threads belong to same block, they should use syncthreads() and share

data through shared memory.

e If threads belong to different blocks, they must share data through global mem-
ory. In this case two separate kernel invocations are required, one for writing

to and one for reading from global memory.

3.1.2 Device Level

At a lower level, the application should maximize parallel execution between the mul-

tiprocessors of a device.

For devices of compute capability 1.x, only one kernel can execute on a device at
one time, so the kernel should be launched with at least as many thread blocks as

there are multiprocessors in the device. For devices of compute capability 2.0, multi-
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ple kernels can execute concurrently on a device, so maximum utilization can also be

achieved by using streams to enable enough kernels to execute concurrently.

3.1.3 Multiprocessor Level

At an even lower level, the application should maximize parallel execution between

the various functional units within a multiprocessor.

To maximize utilization, a GPU multiprocessor relies on thread-level parallelism.
Utilization is therefore directly dependent on the number of resident warps. At every
instruction issue time, a warp scheduler selects a warp that is ready to execute, if
any, and issues the next instruction to the active threads of the warp. The number
of clock cycles it takes for a warp to be ready to execute its next instruction is called
latency, and full utilization is achieved when the warp scheduler always has some in-
struction to issue for some warp at every clock cycle during that latency period, or in
other words, when the latency of each warp is completely hidden by other warps. How

many instructions are required to hide latency depends on the instruction throughput.

If all input operands are registers, latency is caused by register dependencies. In
the case of a back-to-back register dependency (i.e. some input operand is written
by the previous instruction), the latency is equal to the execution time of the previ-
ous instruction and the warp scheduler must schedule instructions for different warps

during that time.

3.2 Maximize Instruction Throughput

If programmer knows, how instructions are executed then it is possible to apply
low level optimizations that can be useful. It is good practices to apply lower level
optimization after all higher-level optimization have been completed. To maximize

instruction throughput the application should:
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e Minimize the use of arithmetic instructions with low throughput; this includes
trading precision for speed when it does not affect the end result, such as using
intrinsic instead of regular functions, single-precision instead of double precision,

or flushing de normalized numbers to zero.
e Minimize divergent warps caused by control flow instructions.

e Reduce the number of instructions, for example, by optimizing out synchroniza-

tion points whenever possible or by using restricted pointers
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Chapter 4

Preliminary Study of programming

language

4.1 Dynamic Programming

The key idea behind dynamic programming is quite simple. In general, to solve a
given problem, we need to solve different parts of the problem (subproblems), then
combine the solutions of the subproblems to reach an overall solution. Often, many
of these subproblems are really the same. The dynamic programming approach seeks
to solve each subproblem only once, thus reducing the number of computations. This

is especially useful when the number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain calcula-
tions, which are later used again since the completed calculation is a sub-problem of a
larger calculation. Bottom-up dynamic programming involves formulating a complex

calculation as a recursive series of simpler calculations.

18



o6
OR0o

Figure 4.1: The subproblem graph for the Fibonacci sequence. The fact that it is not
a tree indicates overlapping subproblems [6]

4.1.1 Dynamic programming in computer programming

There are two key attributes that a problem must have in order for dynamic program-
ming to be applicable: optimal substructure and overlapping subproblems. However,
when the overlapping problems are much smaller than the original problem, the strat-
egy is called "divide and conquer” rather than ”dynamic programming”. This is why
mergesort, quicksort, and finding all matches of a regular expression are not classified

as dynamic programming problems.

Optimal substructure means that the solution to a given optimization problem can be
obtained by the combination of optimal solutions to its subproblems. Consequently,
the first step towards devising a dynamic programming solution is to check whether
the problem exhibits such optimal substructure. Such optimal substructures are usu-
ally described by means of recursion. For example, given a graph G=(V,E), the
shortest path p from a vertex u to a vertex v exhibits optimal substructure: take any
intermediate vertex w on this shortest path p. If p is truly the shortest path, then the
path pl from u to w and p2 from w to v are indeed the shortest paths between the
corresponding vertices (by the simple cut-and-paste argument described in CLRS).
Hence, one can easily formulate the solution for finding shortest paths in a recursive

manner, which is what the Bellman-Ford algorithm does.
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e Top-down approach: This is the direct fall-out of the recursive formulation
of any problem. If the solution to any problem can be formulated recursively
using the solution to its subproblems, and if its subproblems are overlapping,
then one can easily memoize or store the solutions to the subproblems in a table.
Whenever we attempt to solve a new subproblem, we first check the table to
see if it is already solved. If a solution has been recorded, we can use it directly,

otherwise we solve the subproblem and add its solution to the table.

e Bottom-up approach: This is the more interesting case. Once we formulate
the solution to a problem recursively as in terms of its subproblems, we can
try reformulating the problem in a bottom-up fashion: try solving the subprob-
lems first and use their solutions to build-on and arrive at solutions to bigger
subproblems. This is also usually done in a tabular form by iteratively generat-
ing solutions to bigger and bigger subproblems by using the solutions to small

subproblems.

4.2 CUDA C Programming

4.2.1 General-Purpose Parallel Computing Architecture

The advent of multicore CPUs and many core GPUs means that mainstream proces-
sor chips are now parallel systems. Furthermore, their parallelism continues to scale
with Moores law. The challenge is to develop application software that transparently
scales its parallelism to leverage the increasing number of processor cores, much as 3D
graphics applications transparently scale their parallelism to many core GPUs with
widely varying numbers of cores. CUDAs parallel programming model is designed
to overcome this challenge while maintaining a low learning curve for programmers

familiar with standard programming languages such as C.

At its core are three key abstractions a hierarchy of thread groups, shared mem-
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GPU Computing Applications
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with the CLID Paralief Computing Archiectue

Figure 4.2: CUDA is Designed to Support Various Languages or Application Pro-
gramming Interfaces [§]

ories, and barrier synchronization that are simply exposed to the programmer as a

minimal set of language extensions.

4.2.2 Kernels

C for CUDA extends C by allowing the programmer to define C functions, called
kernels, that, when called, are executed N times in parallel by N different CUDA

threads, as opposed to only once like regular C functions.

A kernel is defined using the global declaration specifier and the number of CUDA

threads for each call is specified using a new

"< >>!

syntax:

Each of the threads that execute a kernel is given a unique thread ID that is
accessible within the kernel through the built-in threadldx variable. As an illustration,
the following sample code adds two vectors A and B of size N and stores the result
into vector C:

Each of the threads that execute VecAdd() performs one pair-wise addition.
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// Kernel definition
__global  wvoid VecAdd(float* A, float* B, float* C)
{

int main{()

{

/{ Kernel invocation
VechAdd<<<l, N>>>(A, B, C);

Figure 4.3: Kernel call [2]

// Kernel definition
__global  wvoid VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;

C[i] = A[i] + BI[il;

int main ()

{

Figure 4.4: Kernel call [2]
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// Kernel definition
__global  woid VecAdd(float* A, float* B, float* C)
{

int 1 = threadIdx.x;

C[i] = A[i] + BI[il;

int main ()

{

Figure 4.5: Kernel call [2]

4.2.3 Thread Hierarchy

For convenience, threadldx is a 3-component vector, so that threads can be identified
using a one-dimensional, two-dimensional, or three-dimensional thread index, forming
a one-dimensional, two-dimensional, or three-dimensional thread block. This provides
a natural way to invoke computation across the elements in a domain such as a vector,
matrix, or field. As an example, the following code adds two matrices A and B of
size NxN and stores the result into matrix C:

Threads within a block can cooperate among themselves by sharing data through
some shared memory and synchronizing their execution to coordinate memory ac-
cesses. More precisely, one can specify synchronization points in the kernel by calling
the __syncthreads() intrinsic function; __syncthreads() acts as a barrier at which all

threads in the block must wait before any is allowed to proceed.

For efficient cooperation, the shared memory is expected to be a low-latency memory
near each processor core, much like an L1 cache, __syncthreads() is expected to be
lightweight, and all threads of a block are expected to reside on the same processor
core. The number of threads per block is therefore restricted by the limited memory
resources of a processor core. On current GPUs, a thread block may contain up to

512 threads.

Thread blocks are required to execute independently: It must be possible to exe-
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cute them in any order, in parallel or in series. This independence requirement allows
thread blocks to be scheduled in any order across any number of cores, enabling

programmers to write code that scales with the number of cores.

4.2.4 Programming Interface

The CUDA driver API is a lower-level C API that provides functions to load kernels
as modules of CUDA binary or assembly code, to inspect their parameters, and to
launch them. Binary or assembly code are usually obtained by compiling kernels

written in C.

C for CUDA comes with a runtime API and both the runtime API and the driver
API provide functions to allocate and deallocate device memory, transfer data be-

tween host memory and device memory, manage systems with multiple devices, etc.
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Chapter 5

Problem Definition

Using GPU architectures for solving large scale or difficult optimization problems
like combinatorial optimization problems is nevertheless a great challenge due to the
specificities of GPU architectures. The main issues that are to be met is performance
issues. In this thesis we will mainly concentrate to some complex algorithms and have
comparative study by implementing it on different GPU’s and obtain the speedup gain

in each case.

5.1 Performance Issues

5.1.1 Communication Bottlenecks

Whether you are on a shared-memory, message-passing or other platform, communi-

cation is always a potential bottleneck:

e On a shared-memory system, the threads must contend with each other in com-
municating with memory.And the problem is exacerbated by cache coherency

transactions.
e On a NOW, even a very fast network is very slow compared to CPU speeds.
e GPUs are really fast, but their communication with their CPU hosts is slow.

25



5.1.2 Load Balancing

Another major issue is load balancing, i.e. keeping all the processors busy as much
as possible. A nice, easily understandable example is shown in Multicore Application
Programming: for Windows, Linux and Oracle Solaris, Darryl Gove, 2011, Addison-
Wesley. There the author shows code to compute the Mandelbrot set. He has a
rectangular grid of points in the plane, and wants to determine whether each point
is in the set or not; a simple but time-consuming computation is used for this deter-
mination. Gove sets up two threads, one handling all the points in the left half of
the grid and the other handling the right half. He finds that the latter thread is very

often idle, while the former thread is usually busy-severe load imbalance.

5.1.3 Embarrassingly Parallel Application

Consider a matrix multiplication application, for instance, in which we compute AX
for a matrix A and a vector X. One way to parallelize this problem would be for
have each processor handle a group of rows of A, multiplying each by X in parallel
with the other processors, which are handling other groups of rows. We call the
problem embarrassingly parallel, with the word ”embarrassing” meaning that the
problem is too easy, with is no intellectual challenge involved. It is pretty obvious
that the computation Y = AX can be parallelized very easily by splitting the rows
of A into groups. By contrast, most parallel sorting algorithms require a great deal
of interaction. For instance, consider Merge sort. It breaks the vector to be sorted
into two (or more) independent parts, say the left half and right half, which are
then sorted in parallel by two processes. So far, this is embarrassingly parallel, at
least after the vector is broken in half. But then the two sorted halves must be
merged to produce the sorted version of the original vector, and that process is not

embarrassingly parallel; it can be parallelized, but in a more complex manner.
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Chapter 6

Implementation

6.1 Binary Search

binary_search(Array[0..N-1], value, low, high):
if (high < low):
return -1 // not found
mid = (low + high) / 2
if (A[mid] > value):
return binary_search(A, value, low, mid-1)
else if (A[mid] < value):
return binary_search(A, value, mid+1, high)
else:

return mid // found
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Figure 6.1: Task graph

6.1.1 Comparative Study for Binary Search

The comparative study include execution of Binary Search algorithm between CPU

and two different GPU’s in parallel forms considering two benchmark criteria.
a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.3 shows the output in which it considers total time for executing the
algorithm on CPU. It takes 592 ms to execute the program by taking the entire

program under consideration and fig. 6.4 shows the output of the part of program
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The number is found

m| s

Press any key to continue . . .

Figure 6.2: Binary Search Output

executed on CPU but it consists of the only that part which gets executed by GPU
without considering memory transfer. We have taken C language time function to get
the time taken for the part of the program to execute and it takes 11ms to execute
the part of the program.

mtechcse@PGGPU-3:~/mituls qcc main.cu
mtechcse@PGGPU-3:~/mituls time .fa.out

omd.592s
ome .004s
om@.092s

Figure 6.3: Binary CPU Time considering entire program

R Turbo C+= IDE

The current time isz: 18:88:53_885

The Time After Binary Search -18:68:53.8%
The difference iz: @:88:88.811

Figure 6.4: Binary CPU Time considering part of the program
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Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 103 ms as shown in
the fig. 6.5 and hence the speed up gain as compared with CPU is 400 ms and the
time taken to execute the program without considering memory transfer is 0.0534 ms
as shown in the fig. 6.6. In order to obtain the result without memory transfer,i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of
CPU.

o

mtechcse@PGGPU-3: ~fmitul

bash: cd: home: No such file or directory
mtechcse@PGGPU-3:~5 1s
De OF examples.desktop HNVIDIA_GPU_Com

itul Plctures
DoW M a Public
mtechcse@PGGPLU ~% cd mitul
~f/mitul5 nvcc main.cu
mtechcse@PGGPU-3:~/mituls time ./a.out

real ome.1683s
user om0 .004s
sSYs ome.092s
mtechcse@PGGPU-3:~/mitul

Figure 6.5: GTX 480 Considering Memory Transfer

profiler output (£ ‘ Summary Table ‘
Method GPU Time (us) CPU Time (us) grid size thread block size  registers per thread

1 memcpy.. 0.704 9.303

2 memcpy.. 0.736 5.454

3 memcpy.. 0.704 4,812

4 memcpy... 67.648 84,369

5 bsearch 5312 96812 [52 1 1] [343 1 1] 8

6 memcpy.. 17.28 128211

Figure 6.6: GTX 480 without considering Memory Transfer
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Implementation on Tesla C2070

The total time considering memory transfer in Tesla GPU is 73 ms as shown in the
fig. 6.7 and hence the speed up gain as compared with CPU is 519 ms and the time
taken to execute the program without considering memory transfer is 0.0453 ms as
shown in the fig. 6.8. In order to obtain the result without memory transfer, i used
the visual studio as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla GPU compared to that of CPU.

L nirma@nirma-desktop: ~/mitul

nirma@nirma-desktop:~/mitul$ nvcc new.c
nirma@nirma-desktop:~/mituls time ./a.out

4

real emo.073s
user Omb.0080s
Sys Bmd.004s
nirma@nirma-desktop:~/mituls c

Figure 6.7: Tesla considering Memory transfer

Profiler Output ) | Summary Table

Method GPU Time CPUTime grid size block size  registers per thread

memcpy... 0.804 22778
memcpy.., 0864 15,719
memcpy.. 0.864 15.719
memcpy... 61328 107.145
bsearch 45,328 107145 [5311] [34311] 5
memcpy... 1.888 107 46

& b B g g

Figure 6.8: Tesla Considering Without Memory Transfer
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Figure 6.9: Graph Comprising of speedup

Quantitative Comparison

e Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(log n) to number of threads in parallel.
e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 0.053 ms
— Grid size: [53 1 1]

— Block size: [342 1 1]
e Limiting factor for GTX 480

— Achieved instruction per byte ratio: 12.21 (Balanced Instruction per byte
ratio: 3.79)
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— Achieved Occupancy: 0.80 (Theoretical Occupancy: 0.92 )

e Also here the limiting factor for GTX 480 GPU is 0.053 milliseconds in which
it occupies maximum utilization of GPU, if there is any alteration of threads
and block size during kernel call performance degrades and also the utilization

of the GPU decreases.

e Summary profiling information of Tesla GPU

Number of calls: 1
— GPU time: 0.045 ms
— Grid size: [53 1 1]
— Block size: [342 1 1]
e Limiting factor for GTX 480
— Achieved instruction per byte ratio: 10.14 (Balanced Instruction per byte
ratio: 3.79)
— Achieved Occupancy: 0.78 (Theoretical Occupancy: 0.92 )
e Also here the limiting factor for Tesla GPU is 0.045 milliseconds in which it
occupies maximum utilization of GPU, if there is any alteration of threads and

block size during kernel call performance degrades and also the utilization of

the GPU decreases.
e Factors that may affect the performance gain:

— The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

— The derived statistics assume all instruction are single precision floating
point instruction. If double precision floating point instruction are used

then the limiting factor may become incorrect.
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Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the tesla
is 2988 MHz, hence more speedup is obtained on the Tesla GPU.

Considering the both the benchmark conditions the best speed up is obtained
on Tesla GPU.

Considering core clock which is highest in Tesla leading to the best performance.

Hence the best result for this algorithm that can be obtained considering both
the benchmark criteria is obtained on Tesla C2070 GPU.

Hence from all the above statics and parameters we can theoretically conclude
that best performance can be obtained on Tesla C2070 GPU, which is proved

practically.
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6.2 Knapsack Algorithm

Function knapsack(w[1l..n],v[1l..n],W)
%hinitialization
for i<-1 upto n do
x[i] <= 0
weight <- 0
sort the objects into descending order of vi/wi
while(weight<W)
i <- select remaining object with maximum vi/wi
if (weight+w[i]<=W) then
x[i] <- 1
weight<- weight + wl[i]
else
x[i] <= (W - weight)/wl[i]
weight <- W

return x
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6.2.1 Comparative Study for Knapsack Algorithm

The comparative study include execution of Knapsack algorithm between CPU and

two different GPU’s in parallel forms considering two benchmark criteria.
a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.10 & fig 6.11 shows the task graph and the output of the program and fig
6.12 shows the output in which it considers total time for executing the algorithm
on CPU. It takes 153 ms to execute the program by taking the entire program under
consideration and fig. 6.13 shows the output of the part of program executed on CPU
but it consists of only that part which gets executed by GPU without considering
memory transfer. We have taken C language time function to get the time taken
by the part of the program to execute and it takes 17 ms to execute the part of the

program.
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# eMCUDA progs\Knapsacksequesntial\Debug\Knapsacksequesntial.exe E@éj
lleight 4; Benefit: ?; To reach this weight I added object 3 (7% 4Kg)> to weight 6|

5; Benefit: ?; To reach this weight I added obhject 3 (7% 4Kg)> to weight 1
{18% 6Kg> to w
€185 6Kgd> to w
{165 8Kgd> to w
(165 BKgd to w

6; Benefit: 18; reach this weight [ added object 2
7; Benefit: 18; reach thiz weight I added object 2
8; Benefit: 16; reach this weight [ added object 1
1

?; Benefit: 16; reach thiz weight I added object

185 Benefit: 17; To reach this weight I added object 2 {18% 6Kg» to weigh

Added obhject 2 (18% 6Kg). Space left: 4
Added ohject 3 (?% 4Kg>. Space left: @
Total value added: 17g

Figure 6.11: Knapsack Output

@S mtechcse@PGGPU-3: ~

bash: Jusrflocal/lib: Is a directory
mtechcse@PGGPU-3:~% gcc knapsack.c
mtechcse@PGGPU-3:~5 time ./a.out

k
real BmB.153s

user eme.118s
sys GmB.815s
mtechcse@PGGPU-3: -

Figure 6.12: knapsack CPU Time considering entire program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 107 ms as shown
in the fig. 6.14 and hence the speed up gain as compared with CPU is 46 ms and
the time taken to execute the program without considering memory transfer is 12.53
ms as shown in the fig. 6.15. In order to obtain the result without memory transfer,
i used the visual studio as the framework and CUDA Visual Profiler gives me the
required output. Hence there is wide gain in speedup on GTX 480 GPU compared
to that of CPU.

38



B Turbo C++ IDE . E=E—

The time hefore is: @A:36:30.828
The time after getting max value is: ©:36:380.837
The difference is: @:080:80.817

Figure 6.13: Knapsack CPU Time considering part of the program

B2 mtechcse @PGGPU-3: ~

mtechcse@PGGPU-3:~5 nvcc main.cu
mtechcse@PGGPU-3:~5 time .fa.out
CUDA initialized.

real eme.107s
user emo . 008s

sys Amo . B88s
mtechcse@PGGPU-3: ~

Figure 6.14: GTX 480 Considering Memory Transfer

Implementation on Tesla C2070

The total time considering memory transfer in Tesla GPU is 90 ms as shown in the
fig. 6.16 and hence the speed up gain as compared with CPU is 63 ms and the time
taken to execute the program without considering memory transfer is 11.97 ms as
shown in the fig. 6.17. In order to obtain the result without memory transfer, i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that
of CPU.
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Profier Output [ | Summary Table
GPU Timesta}'np (us) Method GPU Time (us) CPU Tirme (us) grid size thread block size  registers per thread

10 memcpy.. 0,704 11.87
2 57344 memcpy..  3736.0 5774.0
3 132.864 memcpy.. 37360 5774.0
4 196.352 memcpy.. 3704.0 9303.0
5 278.272 knapsack  12530.7 191267 [3 1] [101 1] 10
6 290.56 memcpy..  1344.0 45516.3

Figure 6.15: GTX 480 Considering Without Memory Transfer

nirma@nirma-desktop: ~fmitulfknapsack

nirma@nirma-desktop:~/mitul/knapsack$ nvcc main.cu
nirma@nirma-desktop:~/mitul/knapsacks time ./a.out
CUDA initialized.

real amd.090s
user GmO.004s
sys emo.034s
nirmagnirma-desktop:~/mitul/knapsacks |

Figure 6.16: Tesla Considering Memory Transfer)

Quantitative Comparison

e Here the CPU takes O(n log n) time time then compared to algorithm executed
on GPU’s which is been reduced to O(n) times.

e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 12.53 ms
— Grid size: [3 1]

— Block size: [10 1 1]

e Limiting factor for GTX 480

— Achieved instruction per byte ratio: 166.50

— Achieved Occupancy: 0.02 (Theoretical Occupancy: 0.04 )
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Profiler Output ﬂ|

GPUTime;tamp Method GPU Time CPUTime gridsize block size registers per thread
10 memcpy.. 0.8 20,531
2 111104 memcpy.. 163257 160454
3 241664 memcpy.. 0.8 16.04
4 358912 memcpy.. 0832 15189
5 144614 knapsack 119704 99446 [3 1] [o11] 7
6 1697.79 memcpy.. 188854 64159
7 1868.03 memcpy.. 188854 55497

Figure 6.17: Tesla Considering Without Memory Transfer
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e Also here the limiting factor for GTX 480 GPU is 12.53 ms in which it occupies
maximum utilization of GPU, if there is any alteration of threads and block size

during kernel call, performance degrades and also the utilization of the GPU

decreases.

Figure 6.18: Graph Comprising of speedup

e Summary profiling information of Tesla C2070 GPU

— Number of calls: 1

— GPU time: 11.37 ms
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— Grid size: [3 1]

— Block size: [10 1 1]
Limiting factor for Tesla C2070 GPU

— Achieved instruction per byte ratio: 173.51

— Achieved Occupancy: 0.167 (Theoretical Occupancy: 0.2 )
Also here the limiting factor for Tesla GPU is 11.37 ms in which it occupies
maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.
Factors that may affect the performance gain:

— The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.
— Also as such as knapsack being converted to iterative form and further to

parallel form, due to some dependencies it may affect speedup performance.

Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the tesla
is 2988 MHz, hence more speedup is obtained on the Tesla GPU.

Considering core clock which is highest in Tesla leading to the best performance.

Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla GPU.

Hence from all the above statics and parameters we can theoretically conclude
that best performance can be obtained on Tesla GPU which is proved practi-

cally.
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6.3 Longest Common Subsequence

LCS-LENGTH(X, Y,m, n)
for i <- 1 tom
do cl[i, 0] <= O
for j <- 0 ton
do c[0, j1<-0
for i <- 1 tom
do for j <-1ton
do if xi = yj
then cl[i, j ] <= c[i . 1, j . 1] + 1
bli, j 1 <= "\"
else if c[i -1, j 1 >= cl[i, j -1 ]
then cl[i, j 1 <-cli -1, j]
bli, j 1 <= "["
else c[i, j 1 <= cli, j - 1]
bli, j 1 <= "<="
return c and b
//
//
PRINT-LCS(b, X, i, j )
ifi=0o0r j=0
then return
if bli, j 1 ="\"
then PRINT-LCS(b, X, i - 1, j - 1)
print xi
elseif b[i, j 1 ="|"
then PRINT-LCS(b, X, i - 1, j )

else
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PRINT-LCS(b, X, i, j - 1)

Yeinitialization
Array & varaible
declaration, memory allocation &
data allocation fo array

string length calculation

creation of 20 matrix
& initially assigning
each value to "0"

kemel calls<<parameters===

Device Execution

for loop(
for loop{}
¥

setting up arraws

2
o(n’) with alphabets

refurn values o host

paraliel code

Index ng

thread 1
thread 2

thread 3

print_les function
prints the common subsequence
of both sequence

print matrix

ngle for loop

Figure 6.19: Task Graph
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Figure 6.20: LCS Output

6.3.1 Comparative Study for Longest Common Subsequence
Algorithm

The comparative study include execution of LCS algorithm between CPU and two

different GPU’s in parallel forms considering two benchmark criteria.
a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.19 & fig. 6.20 shows the task graph and the output of the program and fig.
6.21 shows the output in which it considers total time for executing the algorithm on
CPU. It takes 321 ms to execute the program by taking the entire program under con-
sideration and fig. 6.22 shows the output of the part of program executed on CPU, but
it consists of only that part which gets executed by GPU without considering mem-
ory transfer. We have taken C language time function to get the time taken for the

part of the program to execute and it takes 214 ms to execute the part of the program.

45



@S mtechcse @PGGPU-3: ~

mtechcse@PGGPU-3:~% gcc lcs.c
mtechcse@PGGPU-3:~5 time . /fa.out

real ame.321s
user eme.136s
Sys Omo.004s
mtechcse@PGGPU-3:~$ I

Figure 6.21: LCS CPU Time considering entire program
[ B Turbo C++ IDE (=] B [

The current time is: 12:44:@5.541
The time after calling is:12:44:@5.755
The difference is: B:88:88.214

Figure 6.22: LCS CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 154 ms as shown in
the fig. 6.23 and hence the speed up gain as compared with CPU is 167 ms and the
time taken to execute the program without considering memory transfer is 96.21 ms
as shown in the fig. 6.24. In order to obtain the result without memory transfer,i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of
CPU.

mtechcse@PGGPU-3: ~flcs

mtechcse@PGGPU-3:~/1lcsS nvecc main.cu

mtechcse@PGGPU-3:~/1cs$ time ./ a.out

real omo.154s
user amb.052s
5Yy5 amd. 0965
mtechcse@PGGPU-3:~/1ecsS I

Figure 6.23: GTX 480 Considering Memory Transfer
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profiler output (£ ‘ Summary Table

Method GPU Time (us) CPU Time (us) grid size thread block size  registers per thread

1 memcpy.. 0.736 83417

2 memcpy.. 0704 51334

3 memcpy.. 26241 128321

4 memcpy.. 12832.7

5 kernel £ 5077541 [3 1] [21 1 1] 12
6 memcpy. 1129211

7 memcpy.. 313607 612721

Figure 6.24: GTX 480 Considering without Memory Transfer

Implementation on Tesla C2070

The total time considering memory transfer in Tesla C2070 GPU is 115 ms as shown
in the fig. 6.25 and hence the speed up gain as compared with CPU is 206 ms and
the time taken to execute the program without considering memory transfer is 89.43
ms as shown in the fig. 6.26. In order to obtain the result without memory transfer,
i used the visual studio as the framework and CUDA Visual Profiler gives me the
required output. Hence there is wide gain in speedup on Tesla C2070 GPU compared
to that of CPU.
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F e ]

nirma@nirma-desktop: ~/mitul/lecs

nirma@nirma-desktop:~/mitul/1lcsS nvcc main.cu

nirma@gnirma-desktop:~/mitul/lcss time
real Bmb.115s
user Bmb.004s
s5ys 6mb.102s
nirma@nirma-desktop:~/mitul/lcss I

.fa.out

Figure 6.25: Tesla Considering Memory Transfer

Profiler Output (£ |
GPU Timestamp Methed

10 memcpy... 0.768

2 109.056 memcpy... 0864

3 237.056 memcpy... 78161
4 381.952 memcpy... 24324
5 142352 kernel 894302
6 165632 memcpy... 80164
7 1917.7 memcpy..  71296.2

Figure 6.26:

GPU Time CPUTime gridsize block size

registers per thread

21172
15.119
324
29192
85218
116448
64479

[3 1] [2111] 13

Tesla Considering Without Memory Transfer
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0+ T T 4
CPU GTH 480 Tesla

Figure 6.27: Graph Comprising of speedup

Quantitative Comparison

e Here the CPU takes a lot of time then compared to algorithm executed on

GPU'’s which is been reduced from O(n?) to number O(n).
e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 96.21 ms
— Grid size: [3 1]
— Block size: [21 1 1]
e Limiting factor for GTX 480
— Achieved instruction per byte ratio: 73.88 (Balanced Instruction per byte
ratio: 3.79)
— Achieved Occupancy: 0.02 (Theoretical Occupancy: 0.06 )

e Also here the limiting factor for GTX 480 GPU is 96.21 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block
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size during kernel call performance degrades and also the utilization of the

GPU decreases.
e Summary profiling information of Tesla C2070 GPU

— Number of calls: 1
— GPU time: 89.43 ms
— Grid size: [3 1]

— Block size: [21 1 1]
e Limiting factor for Tesla C2050 GPU

— Achieved instruction per byte ratio: 74.91

— Achieved Occupancy: 0.04 (Theoretical Occupancy: 0.06 )

e Also here the limiting factor for Tesla GPU is 89.43 ms in which it occupies
maximum utilization of GPU, if there is any alteration of threads and block
size during kernel call performance degrades and also the utilization of the

GPU decreases.
e Factors that may affect the performance gain:

— The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

— Longest Common Subsequence algorithm tends to search the longest se-
quence using backtracking method. Here we may not be able to resolve
every dependencies which may lead to lack to optimization and also affect

performance speedup.

e Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the
Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070
GPU.
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e Considering core clock which is highest in Tesla C2070 GPU leading to the best

performance.

e Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla C2070 GPU.

e Hence from all the above statics and parameters we can theoretically conclude
that best performance can be obtained on Tesla C2070 GPU which is proved

practically.
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6.4 Kruskal’s Algorithm

Let G = (V, E) be the given graph, with | V| = n

Start with a graph T = (V,phi) consisting of only the
vertices of G and no edges; /* This can be viewed as n
connected components, each vertex being one connected component */
Arrange E in the order of increasing costs;
for (1 =1, i<n - 1, i + +)
{ Select the next smallest cost edge;
if (the edge connects two different connected components)

add the edge to T;
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Figure 6.28: Task Graph

6.4.1 Comparative Study for Kruskal’s Algorithm

The comparative study include execution of Kruskal’s algorithm between CPU and

two different GPU’s in parallel forms considering two benchmark criteria.
a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.28 & fig 6.29 shows the task graph and the output of the program and fig
6.30 shows the output in which it considers total time for executing the algorithm
on CPU. It takes 833 ms to execute the program by taking the entire program under
consideration and fig. 6.31 shows the output of the part of program executed on CPU
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mtechcse @PGGPU-3: ~/kruskal

5 edge (134,83) =99

7 edge (72,15) =185

edge (

edge (88,67) =118
(10,129) =115
(71,74) =119
(63,67) =120
(58,3) =123
(10,43) =164
(127,81) =185

Minimum cost

Figure 6.29: Knapsack Output

but it consists of only that part which gets executed by GPU without considering
memory transfer. We have taken C language time function to get the time taken by
the part of the program to execute and it takes 739 ms to execute the part of the

program.
1 mtechcse @PGGPU-3: ~/kruskal

mtechcse@PGGPU-3:~/kruskal$ gcc kruskal.c
mtechcse@PGGPU-3:~/kruskals time ./a.out

real
user

Figure 6.30: kruskal CPU Time considering entire program
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R Turbo C++ IDE = | = |

Implementation of Kruskal’'s algorithm

The current time is:- 12:55:86.151

The time after calling is:-12:55:-86_598
The difference iz: @:08:80.7372

Figure 6.31: Kruskal CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 493 ms as shown in
the fig. 6.32 and hence the speed up gain as compared with CPU is 340ms and the
time taken to execute the program without considering memory transfer is 253 ms as
shown in the fig. 6.33. In order to obtain the result without memory transfer, i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of
CPU.

S5 mtechcse@PGGPU-3: ~/kruskal

mtechcse@PGGPU-3:~fkruskal$ nvcc main.cu

./a.omtechcse@PGGPU-3:~/kruskals time ./a.out

real Gmo.493s
user Bmb . 0965
5YS Omb . 096s
mtechcse@PGGPU-3:~/kruskals I

Figure 6.32: GTX 480 Considering Memory Transfer
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Profiler output  [E]] ‘
GPU Time;tamp Method GPU Time CPUTime grid size blocksize registers per thread
10 memcpy... 0.8 20.531
2 111104 memcpy.. 163257 160454
3 2415664 memcpy... 0.8 16.04
4 358912 memcpy... 0.832 15719
5 144614 kernel 2531201 9944611 ([101] [5411] 7
6 1697.79 memcpy.. 1188511 6415924
7 1868.03 memcpy.. 1288511 5549724

Figure 6.33: GTX 480 Considering Without Memory Transfer

Implementation on Tesla

The total time considering memory transfer in Tesla C2070 GPU is 411 ms as shown
in the fig. 6.34 and hence the speed up gain as compared with CPU is 422 ms and the
time taken to execute the program without considering memory transfer is 213 ms as
shown in the fig. 6.35. In order to obtain the result without memory transfer,i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that
of CPU.

mtechcse @PGGPU-3: ~/kruskal

GPU-3:~/kruskalS nvecc main.cu
PU-3:~/kruskal$ time ./a.out

emo. 411s

Bmb.024s

3 amb.096s
mtechcse@PGGPU-3:~/kruskals

Figure 6.34: Tesla Considering Memory Transfer)
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Profiler Output @L
Method GPU Time CPU Time grid size block size  registers per thread

memcpy.. 0.6 20,531

memcpy... 1257 130454

memcpy.. 0.6 16.04

memcpy.. 0832 15719

kernel 2131504 8844611 [10 1] 34111 7

memcpy.. 948911 64158
memcpy.. 1248011 5549724

Figure 6.35: Tesla Considering Without Memory Transfer

Quantitative Comparison

e Here the CPU takes O(n log n) time time then compared to algorithm executed
on GPU’s which is been reduced to O(n) times.

e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 253 ms
— Grid size: [10 1]

— Block size: [53 1 1]
e Limiting factor for GTX 480 GPU

— Achieved instruction per byte ratio: 176.30
— Achieved Occupancy: 0.6 (Theoretical Occupancy: 0.9 )
e Also here the limiting factor for GTX 480 GPU is 253 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.

e Summary profiling information of Tesla C2070 GPU
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Figure 6.36: Graph Comprising of speedup

— Number of calls: 1
— GPU time: 213 ms
— Grid size: [10 1]

— Block size: [53 1 1]
e Limiting factor for Tesla C2070 GPU

— Achieved instruction per byte ratio: 193.51
— Achieved Occupancy: 0.72 (Theoretical Occupancy: 0.91 )
e Also here the limiting factor for Tesla C2070 GPU is 213 ms in which it occupies
maximum utilization of GPU, if there is any alteration of threads and block size

during kernel call performance degrades and also the utilization of the GPU

decreases.
e Factors that may affect the performance gain:

— The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.
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— The derived statistics assume all instruction are single precision floating
point instruction. If double precision floating point instruction are used

then the limiting factor may become incorrect.

Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the
Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070
GPU.

Considering core clock which is highest in Tesla leading to the best performance.

Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla GPU.

Hence from all the above statics and parameters we can theoretically conclude
that best performance can be obtained on Tesla GPU which is proved practi-

cally.
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6.5 Insertion Sort Algorithm

begin

for i := 1 to length(A)-1 do

begin
value := A[i];
joi=1-1;
done := false;
repeat
{ To sort in descending order simply reverse
the operator i.e. A[j] < value }
if A[j] > value then
begin
Alj + 11 := A[j];
joi=3-1;
if j < 0 then
done := true;
end
else
done := true;

until done;
A[j + 1] := value;
end;

end;
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( s ) Parallel code

main program

f
%Initializations
Array & variables declaration
and memory transfers

Allocating elements to O(n)

array in worst case

thread 1

/——[ thread 2

Kemnel call<<<parameters=>= i

1 while loop

s

parallelization Indexing

Device Execution
For loop{
some calculations

while loop{
some calculations

thread 3

return to host (==

Figure 6.37: Task Graph

6.5.1 Comparative Study for Insertion Sort Algorithm

The Comparative study include execution of Insertion Sort algorithm between CPU

and two different GPU’s in parallel forms considering two benchmark criteria.
a. Considering Memory Transfer time.

b. Without considering Memory transfer time.
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EN c\Users\n\Documents\Visual Studio 2008\Projects\insertionsortsequential\Debuglinsertionsartseg... lﬂlﬁ

78 98679 98688 98681 98682 98683 98684 98685 98686 98687 98688 98687 98694 98691"
28692 98693 98694 28695 986976 98697 28698 98699 987080 98741 28702 98743 98744 2
8705 98786 98787 987BE 987A% 98718 98711 98712 98713 98714 98715 98716 98717 987
18 98719 98728 98721 98722 98723 98724 98725 98726 98727 98728 98729 98738 98731
98732 98733 98734 28735 98736 98737 28738 98739 987408 98741 28742 98743 98744 ¢
8745 98746 98747 98748 98749 987LA 98751 98752 98753 98754 98755 98756 98757 987
L8 98759 98768 98761 98762 98763 98764 98765 98766 98767 98768 98769 98778 98771
98772 98773 98774 2877L 98776 98777 28778 298779 98780 98781 28782 98783 98784 ¢
8785 98786 98787 98788 98789 98798 98791 98792 98793 98794 98795 98796 98797 987
98 98799 988PA 988QA1 988G2 988@3 988MA4 988G5 98806 98807 988A8% 988079 98814 98811
98812 98813 98814 28815 98816 98817 98818 98819 988208 98821 98822 98823 98824 ¢
8825 98826 98827 98828 98829 98838 98831 98832 98833 98834 98835 98836 98837 988
38 98839 9884@ 98841 98842 98843 98844 98845 98846 98847 98848 98849 98858 98851
98852 98853 98854 98BLL 98856 98857 98BLE 98859 98860 98861 98862 98863 98864 9
8865 98866 98867 98868 98867 9BB7A 98871 98872 988731 98874 98875 98876 98877 988
78 98879 9888@ 98881 98882 98883 98884 98885 98886 98887 98888 98889 98894 98891
28892 98893 98894 28895 988%6 98897 98898 98899 98980 98941 98982 989A3 98984 9
8205 98986 989@7 98908 989A% 98718 98911 98912 98913 98914 98915 98916 98917 989
18 98919 98928 98921 98922 98923 98924 98925 98926 98927 98928 98929 98938 98931
98932 98933 98934 98935 98936 98937 98938 98939 989408 98941 98942 98943 98944 9
89245 98946 98947 98948 98949 98958 98951 98952 98953 98954 98955 98956 98957 989
L8 98959 98968 98961 98962 98963 98964 98965 98966 98967 98968 98969 98978 98971
98972 98973 98974 28975 98976 98977 28978 98979 989808 98981 298982 98983 98984 9
8985 98986 98987 98988 98987 98998 98991 98992 98993 98994 98995 98996 98997Pres
= any key to continue . . . _ S

Figure 6.38: Insertion Sort Output

Implementation on CPU

The fig. 6.37 & fig. 6.38 shows the task graph and the output of the program and fig.
6.39 shows the output in which it considers total time for executing the algorithm
on CPU. It takes 859 ms to execute the program by taking the entire program under
consideration and fig. 6.40 shows the output of the part of program executed on CPU
but it consists of only that part which gets executed by GPU without considering
memory transfer. We have taken C language time function to get the time taken for
the part of the program to execute and it takes 502 ms to execute the part of the

program.

D2 ® mtechcse@PGGPU-3: ~fmitul

mtechcse@PGGPU-3:~/mituls gcc insert.c
mtechcse@PGGPU-3:~/mituls time ./a.out

6mB . 859s

An0 . B565
sys ).004s
mtechcse@PGGPU-3:~/mituls [

Figure 6.39: Insertion Sort CPU Time considering entire program
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.
f Turbo C++ IDE (=[O s

3.Insertion Sort
Time Before Calling Insertion Sowt: 12:27:29_357

Time After Calling Insertion Sort: 12:27:29.859

The difference is: B:08:80.582

Figure 6.40: Insertion Sort CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 91 ms as shown in
the fig. 6.41 and hence the speed up gain as compared with CPU is 768 ms and the
time taken to execute the program without considering memory transfer is 38.44ms
as shown in the fig. 6.42. In order to obtain the result without memory transfer,
i used the visual studio as the framework and CUDA Visual Profiler gives me the
required output. Hence there is wide gain in speedup on GTX 480 GPU compared
to that of CPU.

5 mtechese@PGGPU-3: ~/mitulfinsert

mtechcse@PGGPU-3:~/mitul/insert$ nvec main.cu

mtechcse@PGGPU-3:~/mitul/inserts time ./a.out
_ k

real Bme .091s

user omo . 084s

SYS omo .080s

mtechcse@PGGPU-3:~/mitul/inserts I

Figure 6.41: GTX 480 Considering Memory Transfer

Profiler Output  [E] | Summary Table

Method GPU Time (us) CPU Time (us) grid size thread block size  registers per thread
1 memcpy.. 164736 93164
2 memcpy.. 0736 5774
3 Isort 316241 [B9 1] [250 1 1] 10
4 memcpy... i 384716

Figure 6.42: GTX 480 Considering Without Memory Transfer

63



Implementation on Tesla C2070

The total time considering memory transfer in Tesla C2070 GPU is 425 ms as shown
in the fig. 6.43 and hence the speed up gain as compared with CPU is 425 ms and
the time taken to execute the program without considering memory transfer is 43.57
ms as shown in the fig. 6.44. In order to obtain the result without memory transfer,
i used the visual studio as the framework and CUDA Visual Profiler gives me the
required output. Hence there is wide gain in speedup on Tesla C2070 GPU compared
to that of CPU.

o nirma@nirma-desktop: ~/mitul/insert

nirma@nirma-desktop:~/mitul/insert$ nvcc main.cu
nirma@nirma-desktop:~/mitul/insert$ time ./a.out

real ome.425s
user Omb . 008s

6me .39
nirma@nirma-desktop:~/mitul/inserts l

Figure 6.43: Tesla Considering Memory Transfer

Profiler Output |
GPU Time;tamp Method GPU Time CPUTime gridsize block size registers per thread
1 memcpy.. 74176 116.448
2 295168 memcpy... 0864 16.36
3 145306 Isort 435702 132488 [89 1] [25011] 5
4 1732.86 memcpy... 62528 34389

Figure 6.44: Tesla Considering Without Memory Transfer
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Figure 6.45: Graph Comprising of speedup

Quantitative Comparison

e Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(log n) to number of threads in parallel.
e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 38.84 ms
— Grid size: [89 1]

— Block size: [250 1 1]
e Limiting factor for GTX 480 GPU

— Achieved instruction per byte ratio: 8.51

— Achieved Occupancy: 0.86 (Theoretical Occupancy: 1.00 )

e Also here the limiting factor for GTX 480 GPU is 38.84 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block
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size during kernel call performance degrades and also the utilization of the

GPU decreases.

e Summary profiling information of Tesla C2070 GPU

Number of calls: 1

— GPU time: 43.57 ms
— Grid size: [89 1]

— Block size: [250 1 1]
e Limiting factor for Tesla GPU

— Achieved instruction per byte ratio: 7.16

— Achieved Occupancy: 0.83 (Theoretical Occupancy: 0.92 )

e Also here the limiting factor for Tesla C2070 GPU is 34.261 ms in which it
occupies maximum utilization of GPU, if there is any alteration of threads and

block size during kernel call performance degrades and also the utilization of

the GPU decreases.
e Factors that may affect the performance gain:
— The derived statistics are collected in different runs of applications. This
may cause some inaccuracy.
— Insertion Sort reduces to O(n), but there are still dependencies which if

removed will lead to performance gain.

e Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the
Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070
GPU.
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e Considering core clock which is highest in Tesla leading to the best performance,
but for the same number of blocks and threads it tends to give best performance

on GTX 480 rather than Tesla GPU.

e Hence the best result for this algorithm that can be obtained considering both
the benchmark criteria is obtained on GTX 480.

e Here if we consider the limiting factor for the Tesla then the best performance is
obtained on tesla with 75 consisting of 230 threads which is the best performance

speedup obtained for this algorithm on this GPU.
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6.6 Selection sort algorithm

Function selection(Array a,n)

{
minindex = i
minvalue = ali]
for(j=i+1 upto n)
{
if (aljl<minval)
{
minval<-al[j]
minindex<-j
}
+

temp<-a[minindex]
a[minindex]<-ali]
alil<-temp

}
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Figure 6.46: Task Graph

6.6.1 Comparative Study for Selection Sort Algorithm

The comparative study include execution of Selection Sort algorithm between CPU

and two different GPU’s in parallel forms considering two benchmark criteria.

a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.46 & fig. 6.47 shows the task graph and the output of the program and fig.

6.48 shows the output in which it considers total time for executing the algorithm

on CPU. It takes 666 ms to execute the program by taking the entire program under

consideration and fig. 6.49 shows the output of the part of program executed on CPU

but it consists of only that part which gets executed by GPU without considering

memory transfer. We have taken C language time function to get the time taken for
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Bl c\Users\n\Documents\Visual Studio 2008\Projects\simplesortsequential\Debug\simplesortsequenti... |E@éj

2498FPress any key to continue

Figure 6.47: Selection Sort Output

the part of the program to execute and it takes 590 ms to execute the part of the

program.

OS5 mtechcse@PGGPU-3: ~/mitul

mtechcse@PGGPU-3:~/mituls gcc select.c
mtechcse@PGGPU-3:~/mituls time ./a.out

real Bmo . 666s
user omo . 660s
5Ys 6mo . 600s
mtechcse@PGGPU-3:~/mituls |

Figure 6.48: Insertion Sort CPU Time considering entire program

78 Turbo C++ IDE = | E jt

2.8election Sort
Time Before Calling Selection Sort: 13:83:8%.822

Time After Calling Selection Sort: 13:83:8%.612

The difference iz: B:880:08.5%0

Figure 6.49: Insertion Sort CPU Time considering part of the program
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Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 105 ms as shown
in the fig. 6.50 and hence the speed up gain as compared with CPU is 561ms and
the time taken to execute the program without considering memory transfer is 27.55
ms as shown in the fig. 6.51. In order to obtain the result without memory transfer,
i used the visual studio as the framework and CUDA Visual Profiler gives me the
required output. Hence there is wide gain in speedup on GTX 480 GPU compared
to that of CPU.

F o

mtechcse@PGGPU-3: ~fmitul/select

mtechcse@PGGPU-3:~/mitulfselects nvcec main.cu
mtechcse@PGGPU-3:~/mitul/selects time ./fa.out

real Bmo.1085s
user omb.012s
SYS Om0.088s
mtechcse@PGGPU-3:~/mitul/selects .

Figure 6.50: GTX 480 Considering Memory Transfer

Profiler Quitput D Summary Table

Method GPU Time (us) CPU Time (us) grid size thread block size  registers per thread

1 memcpy.. 26547 30793

2 memcpy.. 0704 5454.9

3 ssort 27550.7 7568337 [13 1] [B311] 10
4 memcpy.. 336999 763649

Figure 6.51: GTX 480 Considering Without Memory Transfer

71



Implementation on Tesla

The total time considering memory transfer in Tesla GPU is 49 ms as shown in the
fig. 6.52 and hence the speed up gain as compared with CPU is 519 ms and the time
taken to execute the program without considering memory transfer is 12.63 ms as
shown in the fig. 6.53. In order to obtain the result without memory transfer, i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that
of CPU.

F e ]

nirma@nirma-desktop: ~/mitul/select

nirma@nirma-desktop:~/mitul/selppcts nvcc main.cu
nirma@nirma-desktop:~/mitul/select$ time ./a.out

real ome . 0495
user Omb . 000s
Sys Oma.039s
nirma@nirma-desktop:~/mitul/selects l

Figure 6.52: Tesla Considering Memory Transfer

Profiler Output [ |

Metheod GPU Time CPU Time grid size block size registers per thread

memcpy.. 96608 53.593
memcpy... 166438 160478
ssort 126304 322338 [131] [B311] 9
memcpy... 84278 123824

LR Y I I

Figure 6.53: Tesla Considering Without Memory Transfer
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Figure 6.54: Graph Comprising of speedup

Quantitative Comparison

e Here the CPU takes a lot of time then compared to algorithm executed on

GPU'’s which is been reduced from O(n?) to number O(n).
e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 27.55 ms
— Grid size: [13 1]

— Block size: [63 1 1]
e Limiting factor for GTX 480

— Achieved instruction per byte ratio: 14.53

— Achieved Occupancy: 0.091 (Theoretical Occupancy: 0.10 )

e Also here the limiting factor for GTX 480 GPU is 0.053 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block
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size during kernel call performance degrades and also the utilization of the

GPU decreases.
e Summary profiling information of Tesla GPU

— Number of calls: 1

— GPU time: 12.63ms

Grid size: [13 1]

— Block size: [63 1 1]
e Limiting factor for Tesla C2070 GPU

— Achieved instruction per byte ratio: 13.47 (Balanced Instruction per byte
ratio: 3.79)

— Achieved Occupancy: 0.13 (Theoretical Occupancy: 0.20 )

e Also here the limiting factor for Tesla C2070 GPU is 0.045 ms in which it
occupies maximum utilization of GPU, if there is any alteration of threads and

block size during kernel call performance degrades and also the utilization of

the GPU decreases.
e Factors that may affect the performance gain:

— The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.

— Since the loops for the sorting are reduced which obtains the speedup
performance, but also there are dependencies due to which it may not be

possible to achieve prosper GPU utilization.

e Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the
Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070
GPU.
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e Considering core clock which is highest in Tesla C2070 GPU leading to the best

performance.

e Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla C2070 GPU.

e Hence from all the above statics and parameters we can theoretically conclude
that best performance can be obtained on Tesla C2070 GPU which is proved

practically.
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6.7 Bubble Sort algorithm

Function bubble(Array a,i ,j)

for i = i:n,

false

swapped =
for j = n:i+l,
if aljl < alj-1],
swap alj,j-1]

swapped = true

->invariant:a[l...i] in final position

break if not swapped

end

! start |

main program
¥

%lnitializations
Array & variables declaration
and memary transfers

Allocating elements to

array in worst case

Kernel call<<<parametersz==

Parallel code

parallelization Indexing

thread 1

thread 2 -

Device Execution
For loop{
some calculations

For loop{
some calculations

o(n?)

thread 3

return to host

End

O(n)

ingle for loop

Figure 6.55: Task Graph
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BN c\Users\n\Documents\Visual Studio 2008\Projects\bubblesortparallel\Debug\bubblesortparallel.exs |ﬂ|ﬁj

Press any key to continue .

Figure 6.56: Bubble Sort Output

6.7.1 Comparative study for Bubble sort Algorithm

The comparative study include execution of Bubble Sort algorithm between CPU and

two different GPU’s in parallel forms considering two benchmark criteria.
a. Considering Memory Transfer time.

b. Without considering Memory transfer time.

Implementation on CPU

The fig. 6.55 & fig. 6.56 shows the task graph and the output of the program and fig.
6.57 shows the output in which it considers total time for executing the algorithm on
CPU. It takes 1416 ms to execute the program by taking the entire program under
consideration and fig. 6.58 shows the output of the part of program executed on
CPU but it consists of only that part which gets executed by GPU without consider-
ing memory transfer. We have taken C language time function to get the time taken
for the part of the program to execute and it takes 1016 ms to execute the part of

the program.
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M S D mtechcse@PGGPU-3: ~fmitul

mtechcse@PGGPU-3:~/mituls gcc bubble.c
mtechcse@PGGPU-3:~/mituls time ./a.out

real om1.416s

Gml.408s

\ omo .000s
mtechcse@PGGPU-3:~/mituls []

Figure 6.57: Bubble Sort CPU Time considering entire program)
B Turbo C++ IDE = B

1 .Bubble Sort
Time Before Calling Bubble Sowt: 14:87:28.028

The difference is: B:80:81.816

Figure 6.58: Bubble Sort CPU Time considering part of the program

Implementation on GTX 480

The total time considering memory transfer in GTX 480 GPU is 534 ms as shown in
the fig. 6.59 and hence the speed up gain as compared with CPU is 882 ms and the
time taken to execute the program without considering memory transfer is 149 ms as
shown in the fig. 6.60 In order to obtain the result without memory transfer, i used
the visual studio as the framework and CUDA Visual Profiler gives me the required
output. Hence there is wide gain in speedup on GTX 480 GPU compared to that of
CPU.
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mtechcse@PGGPU-
mtechcse@PGGPU-

real BmB.534
user omo . 004
Sys omd . 080
mtechcse@PGGPU -

mtechcse@PGGPU-3: ~/mitul /bubble

3:~/mitul/bubble$ nvec main.cu
3:~/mitul/bubbles time . fa.out

s
S

)

3:~/mitul/bubbles [}

Figure 6.59: GTX 480 Considering Memory Transfer

Profiler Qutput D Summary Table

Method GPU Time (us) CPU Time (us) grid size  thread block size  registers per thread

1 memcpy.. 1938314 314386

2 memcpy.. 0704 54547

3 bsort 1497604 5381414 [13 1] [4311] 10
4 memcpy.. 1938314 165853.1

Figure 6.60: GTX 480 Without Considering Memory Transfer

Implementation on Tesla C2070

The total time considering memory transfer in Tesla C2070 GPU is 497 ms as shown

in the fig. 6.61 and hence the speed up gain as compared with CPU is 919 ms and the

time taken to execute the program without considering memory transfer is 117 ms as

shown in the fig.

the visual studio

6.62. In order to obtain the result without memory transfer, i used

as the framework and CUDA Visual Profiler gives me the required

output. Hence there is wide gain in speedup on Tesla C2070 GPU compared to that

of CPU.

)

nirmag@gnirma-
nirma@nirma

ame.
ome .
\ oma .
nirma@nirma-

nirma@nirma-desktop: ~fmitul/bubble

desktop:~/mitul/bubble$ nvcc main.cu

-desktop:~/mitul/bubbles time ./a.out

497s

017s "

400s
desktop:~/mitul/bubbles [J

Figure 6.61: Tesla Considering Memory Transfer
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Profiler Qutput m Summary Table |:|

Method GPU Time CPUTime grid size block size  registers per thread

1 memcpy.. 1964354 52283934

2 memcpy.. 0864 16.04

3 bsort 1165434 1834954 [131] (43111 5
4 memcpy.. 1424608 965596

Figure 6.62: Tesla Considering Without Memory Transfer
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CPU GTX 480 Tesla

Figure 6.63: Graph Comprising of speedup

Quantitative Comparison

e Here the CPU takes a lot of time then compared to algorithm executed on

GPU’s which is been reduced from O(log n) to number of threads in parallel.
e Summary profiling information of GTX 480

— Number of calls: 1
— GPU time: 534 ms
— Grid size: [13 1]

— Block size: [43 1 1]
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e Limiting factor for GTX 480

— Achieved instruction per byte ratio: 24.29

— Achieved Occupancy: 0.02 (Theoretical Occupancy: 0.06 )

e Also here the limiting factor for GTX 480 GPU is 534 ms in which it occupies
maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.
e Summary profiling information of Tesla GPU

Number of calls: 1

— GPU time: 497 ms
— Grid size: [13 1]

— Block size: [43 1 1]
e Limiting factor for GTX 480

— Achieved instruction per byte ratio: 329.64
— Achieved Occupancy: 0.21 (Theoretical Occupancy: 0.33 )
e Also here the limiting factor for Tesla GPU is 497 ms in which it occupies

maximum utilization of GPU, if there is any alteration of threads and block

size during kernel call performance degrades and also the utilization of the

GPU decreases.
e Factors that may affect the performance gain:

— The derived statistics are collected in different runs of applications. This

may cause some inaccuracy.
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— The derived statistics assume all instruction are single precision floating
point instruction. If double precision floating point instruction are used

then the limiting factor may become incorrect.

Processor clock rate in GTX 480 is 1401 MHz, while in Tesla C2070 is 1494
MHz. Also Memory transfer rate in GTX 480 is 1848 MHz,and that of the
Tesla C2070 is 2988 MHz, hence more speedup is obtained on the Tesla C2070
GPU.

Considering core clock which is highest in Tesla leading to the best performance.

Hence the best result for this algorithm that can be obtained considering both

the benchmark criteria is obtained on Tesla GPU.

Hence from all the above statics and parameters we can theoretically conclude
that best performance can be obtained on Tesla C2070 GPU which is proved

practically.
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6.8 Performance graph
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Figure 6.64: Performance Graph(Parallel)

e The graph shows the time taken to execute the algorithms on the CPU and
GPU’s.

e From the graph, i can conclude that best performance is obtained on Tesla
C2070 GPU in most of the cases with both benchmarks taken under consider-

ation.

e Due to some amount of dependencies present leading to speedup performance

gain can be achieved further by enhancement to the algorithms.
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Chapter 7

Conclusion

By execution of the complex algorithms and obtaining its statistics, i can conclude
that GPU’s having more number of cores with high clock frequency achieves gain in
speedup. The above implementation results concludes that algorithms implemented
on GTX 480 and Tesla C2070 takes less time to execute as compared to CPU leading
to speedup gains in microseconds. Even i can conclude when these algorithms are
optimized by removing dependencies, this enhanced algorithms may achieve more
speedup. Also executions of such combinatorial and complex execution loads on high

end GPU’s leads to more efficient speedup gain.
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Chapter 8

Future Work

e Further enhancement can be done to these algorithms in order to achieve more

speedup.
e Obtaining different methods for solutions.
e Use of such strategic enhancement in the field of Graph Theory.

e Currently only one kernel can run at time on the hardware device, future work
will include extension to multiple kernels simultaneously, so that more paral-

lelism can be achieved.
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