
Automation of validation environment for ST Microelectronics
Set Top Box Audio Firmware

By

Rahul Goradia

10MCEC23

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2012

Automation of validation environment for ST Microelectronics
Set Top Box Audio Firmware

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science Engineering

By

Rahul Goradia

10MCEC23

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2012

iii

DECLARATION

I, Rahul Goradia, 10MCEC23, give undertaking that the Major Project entitled

”Automation of validation environment for ST Microelectronics Set Top Box

Audio Firmware” submitted by me, towards the partial fulfillment of the requirements

for the degree of Master of Technology in Institute of Technology of Nirma University,

Ahmedabad, is the original work carried out by me and I give assurance that no attempt

of plagiarism has been made. I understand that in the event of any similarity found subse-

quently with any published work or any dissertation work elsewhere; it will result in severe

disciplinary action.

Rahul Goradia

iv

DEDICATION

I would like to dedicate this thesis to my mother TINY , who taught me lessons of love

and kindness. In addition to her I have always been inspired by my father who taught me

to fight against all the odds till the end. Whatever good is in me, I have learnt from you.

v

Certificate

This is to certify that the Major Project entitled ”Automation of validation environ-

ment for ST Microelectronics Set Top Box Audio Firmware” submitted by Rahul Goradia

(10MCEC23), towards the partial fulfillment of the requirements for the degree of Master

of Technology in Computer Science and Engineering of Nirma University of Science and

Technology, Ahmedabad is the record of work carried out by him under my supervision

and guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best of my

knowledge, haven’t been submitted to any other university or institution for award of any

degree or diploma.

Mr. Ayaz Siddiqui Dr. S.N. Pradhan

External Guide, Guide, Professor,

CHD-HED Department, Department Computer Engineering,

ST Microelectronics, Institute of Technology,

Greater Noida Nirma University, Ahmedabad

Prof. D. J. Patel Dr K Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

vi

Abstract

Audio Firmware of Set Top Box needs to go through regression testing and validation

process as per the certification criteria of firmware whenever any audio codec of firmware

is upgraded. Since the amount of work needed to validate these audio components is quite

high, there is a need for a unified validation environment that automates the certification

process and provides detailed reporting of failure and certifiable cases. When cluster of

workstations is available for validation process there is a need of global scheduler which

helps to make effective scheduling decision by predicting resource availability in cluster.

By analyzing the historical CPU load data of workstations a prediction of average CPU

load of workstation can be estimated. Validation process can be hastened by assigning jobs

to available resources . Various linear and non-linear time-series prediction methods are

developed for CPU load prediction where CPU usage data is treated as a time-series. This

thesis devises a CPU load forecast model to predict CPU load from analyzing historical

CPU load data using suffix tree. A probability based one-step ahead prediction table is

prepared according to frequently occurring patterns in time-series data. This probability

based prediction approach is capable for one-step and multi-step ahead prediction with

improving prediction table according to prediction hit-miss. Proposed method has lower

time-complexity, better indexing power compared to other linear and non-linear time-series

forecasting methods.

vii

Acknowledgements

I am deeply indebted to Mr. Ayaz Siddiqui for his constant guidance and motivation.

He has devoted significant amount of his valuable time to plan and discuss the thesis work.

Without his experience and insights, it would have been very difficult to do quality work.

I would also like to extend my gratitude to Dr. S N Pradhan for for his consistent

and invaluable, inspirations, prolific and introspective guidance with constructive sugges-

tions, deliberative discussions and active persuasion encouragement throughout the course

of my study.

I am very thankful to Sanjay Sir, Dixit Sir, Ripinder Sir, Shalabh Sir, Ashwani

Sir and Anuj Sir from Audio Firmware Team at ST Microelectronics, Greater Noida for

their invaluable guidance and support at ST Microelectronics.

I further acknowledge the untiring assistance rendered by my friends Sanket Parmar,

Parth Desai and Bhargav Patel for being a helping hand whenever I am in need and

for their constant inspiration. I am obliged to Amish Parikh, Sunny Sindhy, Vatsal

Shah and Harshit Patel who were always being supportive and encouraging me during

my research work. You are the best friends one can have in his life.

Words felt short to say thanks to my parents, my uncle and aunty, my brother

and my cousins. You put your trust in me and helped me in each way so that I can

achieve my goals.

Last but certainly not the least, I prostrate to Almighty God who made everything

possible, who made everything easy and always showered his blessings on me.

- Rahul Goradia

Contents

Declaration iii

Dedication iv

Certificate v

Abstract vi

Acknowledgements vii

List of Tables x

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 3
1.3 Objective . 3
1.4 Thesis Organization . 4

2 Literature Survey 5
2.1 Non-adaptive time-series forecasting methods 5
2.2 Adaptive time-series forecasting Methods 7
2.3 Tree-based time-series forecasting method 8

3 Validation Environment Detail and Validation Set-up 9
3.1 ST Microelectronics Set top box (STSTB) 9
3.2 Software Build and execution environment 9
3.3 Command-line example . 12

4 Proposed Method 14
4.1 Symbolic representation of time-series . 14

4.1.1 PAA representation . 15
4.1.2 Discretization . 15
4.1.3 Distance Measures . 16

viii

CONTENTS ix

4.2 Training Period : Preparing Prediction Table 16
4.3 Updating Prediction Table . 19
4.4 Prediction . 19

4.4.1 Prediction while training . 19
4.4.2 Single-step prediction . 19
4.4.3 Multi-step prediction . 20

5 Implementation and result 22
5.1 SAX representation . 23
5.2 Implementation Strategy . 24

5.2.1 Symbolic representation without PAA 24
5.2.2 SAX representation . 24

5.3 Implementation Results . 25
5.3.1 Hit-miss feedback implementation 25
5.3.2 Effect of quantization level and pattern length 26

6 Conclusion and Future Scope 31
6.1 Conclusion . 31
6.2 Future Scope . 31

References 33

Index 34

List of Tables

I Prediction Table Entry . 20

I A lookup table that contains the breakpoints that divide a CDF in an
equiprobable area(3 to 10) . 24

II Comparison of hit-miss implementation . 25
III RMSE and hit ratio for different configurations 29

x

List of Figures

3.1 Structure of ST Set Top Box . 10
3.2 Flow chart of testing . 10
3.3 Layered architecture of the system . 11
3.4 Testing Set-up . 12

4.1 Dicretization Process . 16
4.2 Distance between two time-series . 16
4.3 Suffix tree for time series . 18

5.1 CDF plot of CPU-load time-series . 23
5.2 RMSE for different combination of quantization level and pattern length . 26
5.3 Scatter diagram of RMSE relationship with implementation setting 27
5.4 RMSE for different combination of quantization level and pattern length . 28
5.5 Scatter diagram of RMSE relationship with implementation setting 28
5.6 RMSE and Hit-ratio relationship . 29

xi

LIST OF FIGURES xii

Abbreviations

AR . Auto Regression

ARFMA . Auto Regression Fractionally Integrated Moving Average

ARIMA .Auto Regression Integrated Moving Average

ARMA . Auto Regression Moving Average

CPU . Central Processing Unit

DTV . Digital Tele-Vision

MA . Moving Average

MPE . Mean Percentage Error

MSE . Mean Squared Error

NWS . Network Weather Service

PAA . Piecewise Aggregate Approximation

SAX . Symbolic Aggregate aproXimation

STB . Set Top Box

STSTB . ST Microelectronics Set Top Box

Chapter 1

Introduction

Firmware today is facing greater complexity and shorter schedules. As complexity of

firmware increases testing of the firmware is becoming more complex and time consum-

ing, which is the deciding factor of the total cost of the project. Due to low time to market

of a product and technology development firmware needs to be updated frequently and val-

idated after each update. In a grid environment validation can be hastened by developing a

global scheduler which takes care of free computational resources and uses them effectively.

1.1 Introduction

In developing a firmware system, validation and verification are recognized as vital activi-

ties. Validation plays an important role in any firmware design as it starts at the modular

level and works outward towards the integration of the complete system. Validation time

and effort put in validation directly decides the cost of the project. As the new technologies

evolve updates in the software is mandatory to implement and thus frequent changes in the

software are made to implement these updates. These updates are validated by the process

of exhaustive testing of the all test-cases on the firmware, which is called ”Regression test-

ing”. Effective reporting of validation is also equally important because common mistakes

affecting all features of software are easily caught when continuous reporting of validation

is communicated to all the developers and validation team members. Nowadays industries

prefer to automate the test and validation process because

1

CHAPTER 1. INTRODUCTION 2

� Manually testing of all the test cases frequently is a very tedious and time consuming

job.

� Manual testing is also prone to provide more errors.

� Manual testing can only be performed while office hours only.

� In distributed environment where workstations are connected through LAN or other

high speed networks validation can also be hastened by maximizing the usage of

available resources if it is automated.

� Automation is essential to ensure constant communication between testing and devel-

oping efforts.

� Provides quick visibility into code quality.

The distributed computing environment to which all team members have access consist of

a collection of loosely interconnected hosts running different operating systems. As users

run their jobs, the computational load on the individual hosts changes over time. In most

of the cases computational power of the cluster is not used efficiently as global scheduler

is not available which controls job management on different hosts.[1] If the computation

power of whole cluster is utilized effectively the overall load to single user can be minimized

and testing and validation process can be hastened providing better quality in software

development and low time to market.

Global scheduling can be implemented by analyzing statistical property of host load and

finding the best host to handle the job. Scheduling of job becomes even more easier when

average time taken by a job is already known. Analyzing statistical properties of host load

in cluster, method can be formed to predict average load of each host in the cluster for

future time. Most of prediction techniques use historical data to understand trends present

in the historical data and predict the future values. Most widely used prediction method is

to transform the data into time series. Various methods have been developed to represent

continuous as well as discrete time series data in time-domain, frequency domain or modern

data-structures like tree. Each method have its own advantages over other. Similarly various

linear methods, non linear methods and probability base forecasting algorithms have been

CHAPTER 1. INTRODUCTION 3

developed to predict the time-series data.

Peter and David[1, 13] suggested a linear model to predict 1 to 30 second load average on

host machine using AR, MA and ARIMA processes. Last-value predictor method shown

by Harchol-Balter and Downey[12] has low computation and storage overhead compared to

ARIMA processes. L. Yang et al. [6] presented a tendency-based one-step-ahead time series

prediction strategy to follow current trend in time-series. Above described all methods are

static time-series analysis methods and do not predict on basis of whole historical time-series

data. Also they have higher time complexity due to iterative nature. Eamonn Keogh and

et al. [16] showed a new suffix tree based method which provides whole historical coverage

but fails to follow current trend in time-series while prediction.

1.2 Motivation

While validation of the firmware if whole validation is carried out by a single workstation

then the workload of the workstation increases and which increases the time consumed

by the overall validation process. Instead of that if automated validation environment

will schedule the workload in available cluster of workstations and will be able to perform

validation task even in non-office hours. This hastens the validation process, constant and

good reporting can be achieved by the automated validation which increases quality of

designed firmware and cuts the coast of the project.

1.3 Objective

Objective of this thesis is to develop a new probability based time-series tree prediction

method using suffix tree time-series which provides good prediction power and consumes

less computation power. By providing dimensionality reduction to time-series indexing

power is increased in time-series representation. Proposed method provides total historical

coverage for prediction and also provides a mechanism to change prediction according to

changing trend in time-series.

CHAPTER 1. INTRODUCTION 4

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter Two 2, Literature Survey of time-series analysis and prediction, describes vari-

ous linear, nonlinear and probability based attempts to analysis time-series and predict

time-series data.

Chapter Three 3 , Validation Environment Detail and Validation Set-up, explains the

details of the validation environment in which this new approach is developed and

tested. How to set up test environment is described in this chapter.

In chapter Four 4, Proposed Method, an advanced approach using tree based adaptive

time-series representation and probability based forecasting method is explained.

Chapter Five 5, Simulation Methodologies and Performance Evaluation, describes the

methods of implementation. Tools used to implements this method and results achieved

through this implementation.

Finally, in chapter Six6 concluding remarks and scope for future work is presented.

Chapter 2

Literature Survey

As stated in introduction prediction techniques rely on the historical data processing upon

which underlying trend or trends in the historical data are extracted and are used to derive

a forecast decision. These method assumes that trend or trends present in historical data

will be continued into future. Peter A Dinda [2] showed that traces of long, fine grain load

measurements on a wide variety of workstation exhibit low means but very high standard

deviations and maximums which suggests that workstations have plenty of cycles to spare

to execute jobs, but the execution time of these jobs will vary drastically. Load is strongly

correlated over time, but has a broad, almost noise-like frequency spectrum which implies

that history-based load prediction schemes are feasible to effective forecast [1]. The key to

making accurate predictions is to correctly model the relationship of the history data with

the future values.

2.1 Non-adaptive time-series forecasting methods

The oldest and still the most widely used method for forecasting is time-series analysis,

more simply known as trend-extrapolation. The method is often used where time and data

are limited, produces the forecast of a single variable, through the use of historical data

for the particular variable. The historical data can be manipulated through the use of

sophisticated smoothing techniques. Time-series analysis is especially useful in producing

short-term forecasts. The most common methods used for analyzing fluctuating patterns

5

CHAPTER 2. LITERATURE SURVEY 6

were simple and exponential smoothing techniques. As these methods assumes that sta-

tistical property of time series remains constant over time they fail to provide good result

because real time time-series data shows fluctuation in trend and statistical properties may

change over time. To improve the results new methods were developed to normalize the

time-series data by differentiating time series like random walk and then applying basic

time-eries methods.

The last-value predictor method shown by Harchol-Balter and Downey[12] uses the current

measured value as the predicted value of the next measurement. It can be expressed by the

following formula

PT+1 = VT (2.1)

where T = current time, P = predicted value and V = current value.

This method has comparatively low computation and storage overhead and is the default

predictor in several current systems because of its simplicity.

Yule presented the notion of stochasticity in time series by saying that every time series

can be regarded as the realization of a stochastic process[9]. Based on the wold decompo-

sition theorem presented by Yule and walker Box and Jenkinns developed a coherent three

stage iterative cycle for time series identification, estimation and verification. Box-Jenkins

time-series processes Auto Regressive(AR), Moving Average(MA), Auto Regressive Moving

Average(ARMA) and Auto Regressive Integrated Moving Average (ARIMA) were devel-

oped for computation of time-series and predict values[10, 11]. But all regression method

developed on bases of Box-Jenkins are static methods. Co-efficient found from regression

does not change when trend of the time-series changes. Whole iterative process has to

be performed again to update co-efficient values. Even AR process find co-efficient of the

model in deterministic time but MA process does not find co-efficient value in deterministic

time. However there is no unique algorithm to specify model uniquely. Most resent ver-

sion of ARIMA models X-12-ARIMA handles seasonality better for econometric time-series.

As one of the most famous resource prediction strategies, Network Weather Service

(NWS) [3, 4, 5] is a distributed system that provides one step ahead prediction. It monitors

CHAPTER 2. LITERATURE SURVEY 7

the CPU load periodically and performs a short-term forecast dynamically based on the

history data. NWS maintains a set of various predictive models. To generate a forecast,

the predictive models in the set are used simultaneously. The one with the lowest prediction

error is chosen to predict the next value. This method of dynamically identifying a forecast-

ing model can select the best model in the set and generate the most accurate prediction

value.

Dinda et al. evaluated multiple linear models, including autoregressive (AR), moving

average (MA), autoregressive moving average (ARMA), autoregressive integrated moving

average (ARIMA), and autoregressive fractionally integrated moving average (ARFIMA)

models [13]. Their results show that the simple AR model (also used in NWS) is the best

model of this class because of its good predictive power and low overhead. More complex

liner models are expensive to fit and hence difficult to use in a dynamic or real-time setting.

In [6] L. Yang et al. presented a tendency-based one-step-ahead time series prediction

strategy, which assumes that the next value will increase or decrease along the change of

direction, i.e. tendency. Compared to the common methods used in Network Weather Sys-

tem (NWS), tendency-based prediction outperforms in prediction errors with 36% less on

average. However, Yangs approach is based on the linear increment of the last two values.

In order to improve this method, Y.Zhang et al. [7, 8] proposed a strategy based on the

tendency in several past steps and using polynomial fitting to generate the prediction value.

The experimental results show that their method has a much better performance.

2.2 Adaptive time-series forecasting Methods

Above described all methods are not data adaptive means no feedback mechanism is pro-

vided to change the prediction co-efficient found while initial training period as the data

changes. As the data trend changes change in prediction formula is necessary. The Kalman

filter [14] is a set of mathematical relationships that processes the available measurements

optimally (i.e. with the minimum mean squared error) in order to achieve the best pos-

CHAPTER 2. LITERATURE SURVEY 8

sible estimate of the dependent quantities. The filter is simply a sophisticated method

of exponential smoothing that can estimate bias errors and can cancel out much of the

random errors. The basic filtering algorithm consists of forecasting future values of the

dependent quantities, and then processing measurements with the filter in order to update

the estimates of the dependent quantities to reflect the new information contained in the

measurements.

These linear and non-linear approaches work well on time-series but takes a lot of

computation poewr because of iterative calculation needed to perform prediction. Also

decision is taken on the basis of last few historical analysis of time-series whole historical

data is not taken into account. Time-series data falls into real numbers and as time-series

representation method does not provide dimensionality reduction above method can not

provide good indexing power [15, 16]. Eamonn Keogh and et al. showed a new suffix tree

based time-series representation [17] to discover frequently occurring patterns and perform

anomaly pattern detection which used symbolic representation of time-series shown in [18,

19]. Using same tree representation concept Ooi Boon Yaik et al. [20] presented CPU us-

age pattern discovery method using suffix tree to enable the suffix tree to discover variable

length patterns and perform predictions.

2.3 Tree-based time-series forecasting method

Method shown by Ooi Boon Yaik et al. [20] showed good prediction result and higher

computation speed compared to previous methods but is not adaptive method as change in

time-series trend after training period does not reflect in prediction. Rather than pattern

matching approach using suffix tree a probability based approach using suffix tree which

creates prediction table for each pattern occurring in time-series data is represented. One

step ahead or multi step ahead prediction is possible by using prediction table. After train-

ing period also prediction hit and miss is also taken into consideration and prediction table

is changed accordingly.

Chapter 3

Validation Environment Detail and

Validation Set-up

3.1 ST Microelectronics Set top box (STSTB)

A set-top box is a device that enables a television set to become a user interface to the

Internet and also enables a television set to receive and decode digital television (DTV)

broadcasts. DTV set-top boxes are sometimes called receivers. In the DTV realm, a typical

digital set-top box contains one or more microprocessors for running the operating system,

possibly Linux or Windows CE, and for parsing the MPEG transport stream. A set-top

box also includes RAM, an MPEG decoder chip, and more chips for audio decoding and

processing. The contents of a set-top box depend on the DTV standard used.

Audio Firmware Team develops software that is embedded in a ST STB and ports

various kind of Audio Codec with STM STB. These codec are encoders (like AC3, MP3,

MP2A etc), Decoders (like MP3, MP2A, AC3, DTS) and post process (like Bass Mgt, True

Volume, Dolby Volume). Structure of ST STB is shown in figure 3.1

3.2 Software Build and execution environment

Flow chart of validation and testing is shown in figure 3.2.[21] To ease the testing procedure

without relaxing the certification criteria are many software methodologies used as per ease

9

CHAPTER 3. VALIDATION ENVIRONMENT DETAIL AND VALIDATION SET-UP10

Figure 3.1: Structure of ST Set Top Box

Figure 3.2: Flow chart of testing

and the certification requirements. Such an approach would ensure a maintainable, repro-

ducible environment for reporting and publishing the required data. C language is the basic

language which is used to deploy code for the embedded STB environment for its ease of

programming and maintenance of a code base. Cygwin provides a primarily platform to

test for compilation as well as intrinsic mapping errors while porting code for companion

executable. The integrated bash shell provides a plethora of tools that could be used for an

automated testing of the audio firmware.

Typically validation of an audio firmware build involves evaluating bit exactness be-

tween reference and testing platform. Implementation of a decoder or an audio post process

CHAPTER 3. VALIDATION ENVIRONMENT DETAIL AND VALIDATION SET-UP11

Figure 3.3: Layered architecture of the system

under test is abbreviated as DUT, here STSTB firmware. It is an C executable built to

run in Cygwin hence called process.cygwin. Platform specific build of the audio firmware is

called the board executable. It is required to capture the output from the decoder and the

test against a reference implementation. Layered architecture of the whole system is shown

in figure 3.3.

Above all layers the main layer is the operator interface. The command given by op-

erator decides the sequences of tests to be executed on system under test (STSTB). The

operator interface allows the operator to execute, stop and configure test sequence at run-

time. Below operator layer comes the layer of global files and configuration files for system.

Global files contain general codec related test-vector information which is common for all

tests. Configuration files are of two types: test configuration files and hardware configura-

tion files. Test configuration files are operator specific which contains the information of

which test sequences are to be executed and mode of execution. Hardware configuration

files contain configuration data of hardware like IP address of STSTB. According to con-

figuration of test database of test-vector is accessed and libraries and binary file is selected

for multicom. LxAPI code compile for board is loaded in board to carry out processing on

stand-alone codec. To validate audio codec and firmware together companion is loaded on

CHAPTER 3. VALIDATION ENVIRONMENT DETAIL AND VALIDATION SET-UP12

Figure 3.4: Testing Set-up

the board.

In the figure 3.4[22] whole setup of testing on STB board is shown. In this we have Host

PC, Serial cable, Ethernet, JTAG, STMC and ST-7109 Board. All are connected through

the TCP/IP networks. Host PC can also connect to the board with serial cable. We load

the code on board through the networks to STMC and STMC to board. STMC is providing

communication between PC and Board. And through Ethernet the results store in Host

PC or server.

3.3 Command-line example

An example Command-line to run test-vector on STB board is explained below

-process.st231 -mp3 -i mp3TV/test.mp3 -o out st.pcm -le -nch 2 -ws 16 -pcm il

-md5 -no out -flen

In regressing testing above command-line is used to run ”test.mp3” named mp3 test-

vector on board.

where,

a. -mp3 is the codec type

CHAPTER 3. VALIDATION ENVIRONMENT DETAIL AND VALIDATION SET-UP13

b. -i shows the next argument is input path of the test-vector

c. .mp3 is the extension of encoded file type

d. -o indicates that output

e. out st.pcm is the raw PCM file generated by board

f. -le is use for little endian

g. -nch shows the next arguments is no of channel present in the output file

h. -ws shows next argument is word-size of each sample in bits for output file

i. pcm il shows output Channels are in interlace mode (LRC LFE LS RS)

j. -md5 is checksum of output file which is to be calculated

Here in example some command-line options for input mp3 file have been shown. For

different codecs like aac, ddpulse, flac etc command-line options may vary. E.g. for wav

file as an input test-vector instead of -i -iwav is used and for output wave file -owav is used

instead of -o. Some options have finite set of varying values. These all options show the

type of output file system is desired to generate and kind of operation system needs to

perform on the input test-vector.

Chapter 4

Proposed Method

In this chapter probability based CPU load time-series prediction method has been ex-

plained. This prediction approach is based on the observation that, those subsequences

that appear frequent in history have a higher probability of occurring again in the future.

The first stage in this method is to quantized the time-series data for dimensionality reduc-

tion and better indexing power. This quantized time series data is filled into suffix tree for

training period and probability table is prepared for each pattern occurring into time-series.

Thus all historical time-series data is utilized for prediction rather than last few historical

data compared to other methods described in literature survey. Single step or multi step

prediction for particular pattern is done from the probability values stored in prediction

table for particular pattern. Prediction table is dynamically updated on basis of correct or

wrong predicted value.

4.1 Symbolic representation of time-series

A time-series is first converted to Piecewise Aggregate Approximation (PAA) and then it

is converted to a Symbolic aggregate approXimation (SAX).

14

CHAPTER 4. PROPOSED METHOD 15

4.1.1 PAA representation

A time series C of length n can be represented in a w-dimensional space by a vector

c̄ = c̄1,, c̄w. The ith element of C̄ is calculated by the following equation

c̄i =
w

n

n
w
i∑

j= n
w
(i−1)+1

cj (4.1)

Simply stated, to reduce the time series from n dimensions to w dimensions, the data is

divided into w equal sized frames. The mean value of the data falling within a frame is

calculated and a vector of these values becomes the data-reduced representation. The rep-

resentation can be visualized as an attempt to approximate the original time series with a

linear combination of box basis functions.

4.1.2 Discretization

After converting a time series database into PAA, we can apply a further transformation

to obtain a discrete representation. It is desirable to have a discretization technique that

will produce symbols with equiprobability. Given that the normalized time series have

Gaussian distribution, we can simply determine the breakpoints that will produce a equal-

sized areas under Gaussian curve. All break points are mapped to different symbols. The

first smallest break point is mapped to ”a”. all coefficients greater than or equal to the

smallest breakpoint and less than the second smallest breakpoint are mapped to the symbol

b,. This dicretization process is shown in figure.4.1 In the figure 4.1 with n = 128, w = 8

and no. of SAX symbols are 3 namely a, b and c. So the time series is mapped to the word

”baabccbc”

CHAPTER 4. PROPOSED METHOD 16

Figure 4.1: Dicretization Process

Figure 4.2: Distance between two time-series

4.1.3 Distance Measures

Given two time series Q and C of the same length n, Eq. 4.2 defines their Euclidean

distance, and Figure 4.2 illustrates a visual intuition of the measure.

D(Q,C) ≡

√√√√ n∑
i=1

(qi − ci)2 (4.2)

4.2 Training Period : Preparing Prediction Table

After transforming the historical data of time-series into SAX representation next step

is to fill the suffix tree with the data and prepare a prediction table for one-step ahead

CHAPTER 4. PROPOSED METHOD 17

prediction. Suffix tree is is a tree with each node representing a pattern. I prepare a

suffix tree with fixed length pattern. If the pattern length is 3 the suffix tree nodes will

represent all combination of time-series symbols having length 3. Nodes of suffix tree with

pattern length 3 and time-series representing symbols 3 will contain values aaa, aab, aac,

aba, .. , ccc(total 27 pattern combinations). For pattern length 3 and time-series symbols

3 generated tree-structure is shown in figure 4.3.

Each node has 3 branches representing a symbol of time-series and each node represents

a unique combination of 3 symbols. Each leaf has 3 counters representing occurrence of each

symbol after respected pattern.

Sliding window of size 3 slides one step ahead at a time and sub sequence of size 3

is extracted. At each next step counter of the next occurring symbol is increased at the

previously occurred sub sequence. This increases the occurrence of symbol following the

pattern by one step.

e.g. for time series a b c a c b b

� Sub sequences having length 3 are {a b c},{b c a}, {c a c}, {a c b}, {c b b}

� So, sliding window slides across {a b c}, {b c a}, {c a c}, {a c b}, {c b b} one by one

at each step.

� On second step when sliding window extracts sub sequence {b c a} counter of symbol

”a” is increases at leaf having pattern {a b c}

� Similarly on third step when sliding window moves on {c a c} counter of symbol ”c”

is increased at leaf having pattern {b c a}

This process continues throughout the training period. After the training period is over

each leaf has counter showing occurrence of each symbol next to the pattern. A table is

prepared by counting probability of each symbol after each pattern. e.g. Pattern {a a a}

has counters 20, 46, 34 for symbols ”a”, ”b” and ”c” respectively probability of occurring

CHAPTER 4. PROPOSED METHOD 18

Figure 4.3: Suffix tree for time series

CHAPTER 4. PROPOSED METHOD 19

”a”, ”b” and ”c” is 0.2, 0.46 and 0.34 respectively. Thus a table entry for each possible pat-

tern if length equal to depth of tree is prepared and one step symbol occurrence is kept in it.

4.3 Updating Prediction Table

Initially while making the prediction table we stored the frequency of the symbol. Now

we add hit and miss for each entry. Thus each table entry has three elements (prob , hit,

miss). prob is the probability that a symbol occurs after the pattern string (from the root

to leaf) appears in the time series, hit is the times that our prediction succeeds and miss is

that it fails. Intuitively, if the frequency freq of a particular string is high, then it will have

a higher probability of appearing in the future. On the other hand, if our prediction of a

certain string fails quite often, that is, its aggregate miss is large, then we have to lower the

chance of choosing this string as the prediction result. In other words, our prediction error

can be fed back by such aggregates. When prediction hit occurs hit count is increased else

miss count is increased. For each symbol this count is applied and the symbol having the

maximum count is the symbol which may occur after this pattern.

4.4 Prediction

4.4.1 Prediction while training

While training period is going on prediction is performed by moving average of last 10

time-series data values. This is because trend of time-series is best reflected by moving

average method. After the training period is over occurrence of each character after each

pattern is normalized and according to that probability table entry is done.

4.4.2 Single-step prediction

When time-series symbol event occurs, a sub-sequence string of last occurred symbols hav-

ing length equal to depth of suffix-tree is extracted. For that string pattern prediction table

entry is found. For each symbol probability of occurrence is count by (prob)*(hit)/(hit

CHAPTER 4. PROPOSED METHOD 20

Pattern abc

Symbol probability-percentage hit miss

a 40 10 2

b 35 3 6

c 25 2 8

Table I: Prediction Table Entry

+ miss). The symbol having maximum probability count is the symbol most likely to be

appear as the future time-series symbol.

E.g. for pattern length three, quantization level three and sampling time 15 second if

last occurred pattern is a b c Prediction of next value is done through prediction table. An

example of prediction table entry for pattern a b c is shown in I. So considering hit-miss

of each symbol the probability of symbols a, b, c is 0.33, 0.12 and 0.05 respectively. So the

future symbol will be a according to probability table.

Here by emphasizing on prob value importance to historical data is given. While the

trend of time-series changes miss count occurs and for correct prediction when trend is

not changed the count of hit increases. So dynamically prediction mechanism is changed

according to the current trend.

4.4.3 Multi-step prediction

The procedure of n-step multi-step prediction is n times single-step prediction assuming

that the last predicted value is occurred. If CPU-load data is measures at each 15 second

and 1 minute average load prediction is to be done than four one step ahead predictions

are performed and averaged out considering last predicted value has occurred and it is used

for next prediction. E.g. for pattern length three, quantization level three and sampling

time 15 second if last occurred pattern is a b c and prediction table suggest that the most

probable value in next 15 second is b then a second prediction is done for pattern b c b

assuming that b has occurred. Averaging the both predicted output value we can find the

average CPU load for next 30 seconds as two one-step ahead prediction for 15 seconds are

made.

CHAPTER 4. PROPOSED METHOD 21

Prediction table is updated according to single-step prediction hit-miss only because n-

step prediction is calculated from single step calculations only. For each one step prediction

the prediction table is updated. Error in predicting earlier stages propagates into further

prediction.

Chapter 5

Implementation and result

In this chapter implementation methodology is described and result of that implementation

is discussed. To analyze the CPU-load I have measured CPU load of workstations from

validation team at ST Microelectronis. Two days CPU-load analysis of five different work-

stations is tested to produce results. Average CPU-load of 15 seconds represents one sample.

The whole code is written in C-programming language. Gnu Regression, Econometrics and

Time-series Library (gretl) is used to generate results of linear time-series forecasting meth-

ods AR, MA and ARIMA as well as non-linear time-eries forecasting methods GARCH and

VAR.

Accuracy of each prediction method is examined using mean squared error (MSE)

between original value and the predicted value. In case of SAX representation original

value is also mapped to lower bound of PAA representation and euclidean distance is found

for comparison as shown in equation 4.2. So the equation to compare accuracy of t sampled

data-set is

MSEf (t) =
1

t

t∑
i=0

(value(t)− prdiction(t))2 (5.1)

I started with sampling the CPU-load at equidistance time and representing it as CPU-

load time-series. Then implemented PAA and SAX representation of the time-series. After

PAA and SAX representation I produced results with and without implementing hit-miss

updated prediction table structure and compared results. For various quantization levels

and pattern length prediction results are compared in this chapter.

22

CHAPTER 5. IMPLEMENTATION AND RESULT 23

Figure 5.1: CDF plot of CPU-load time-series

5.1 SAX representation

To represent time-series of CPU-load in SAX model equiprobable region of CDF of time-

series has to be found. The CDF of the CPU-load time-series is shown in figure 5.1

Given the CDF distribution of time series, we can simply determine the breakpoints

that will produce a equal-sized areas under CDF. The number of breakpoints is decided by

the number of symbol needed for SAX representation I gives the breakpoints for values of

a from 3 to 10.

For three SAX representation symbols according to table I symbol ”a” will be assigned

to time-series data less than 6. Symbol ”b” will be assigned to data greater than or equal

to 6 but less than 53. Symbol ”c” will be assigned to data greater than or equal to 53. The

similar method can be followed for dividing the time-series in equiprobable area.

CHAPTER 5. IMPLEMENTATION AND RESULT 24

breakpoint 3 4 5 6 7 8 9 10

B1 6 5 4 3 3 3 3 3

B2 53 26 8 6 5 5 4 4

B3 55 53 26 10 7 6 6

B4 55 53 52 26 11 8

B5 57 54 53 50 26

B6 58 55 53 53

B7 59 55 55

B8 60 58

B9 62

Table I: A lookup table that contains the breakpoints that divide a CDF in an equiprobable
area(3 to 10)

5.2 Implementation Strategy

5.2.1 Symbolic representation without PAA

CPU-load was sampled at each 15 second time. This CPU-load time series was then

represented into discrete symbols according to probability distribution. This method of

CPU-load time-series representation is having a drawback that it does not provide good

results when outlier is present in that sampling interval. When sampling interval has an

outlier sampling may fail to represent overall load of the sampling period as average of the

CPU load is not presented by sampling.

5.2.2 SAX representation

To create suffix tree of time-series symbol patterns we have two variables. One is how many

symbols we need to represent the time-series and the second is the length of the symbol

pattern. E.g. If we choose to represent time series in to symbols and pattern length two than

we have four patterns to observe in the time-series. So here I have generated result with

various combination of no of symbol and pattern length. To see the impact of the feedback

based on hit os miss in prediction result considering hit-miss feedback structure and well

as without considering hit-miss feedback structure are compared. For the comparison of

results MSE error is considered as shown in equation 5.1. The result having lower MSE is

better than others.

Training period to fill the tree is kept 6 hours. Average load of 15 seconds is represented

CHAPTER 5. IMPLEMENTATION AND RESULT 25

by a sample. So for training first 1500 samples are used to fill the suffix-tree. After filling

the tree one-step occurrence frequency of each symbol is normalized. After normalization

process prediction of the symbols is performed. If hit-miss structure is to be considered

than hit-miss counters are updated according to prediction hit-miss and while prediction

hit-miss ratio is also considered as described i 4.4.2.

5.3 Implementation Results

5.3.1 Hit-miss feedback implementation

3 Quantization levels 4 Quantization levels 5 Quantization levels

6 Quantization levels 7 Quantization levels 8 Quantization levels

These figures show prediction hit ratio for 52416
predictions using different quantization levels with 3-10
pattern length. Red bar shows hit-ratio with hit-miss
feedback implementation and blue bar shows hit-ratio

without hit-miss feedback implementation. X-axis
shows pattern length and Y-axis shows hit-ratio

9 Quantization levels

Table II: Comparison of hit-miss implementation

To see the effect of feedback based hit-miss implementation prediction is performed us-

ing hit-miss implementation as well as without using hit-miss implementation was done.

As seen from the figures of table II where hit-ratio of predicting correct quanta for one

CHAPTER 5. IMPLEMENTATION AND RESULT 26

Figure 5.2: RMSE for different combination of quantization level and pattern length

step ahead prediction for various pattern length is shown. Blue bar shows hit-ratio with-

out hit-miss feedback implementation and red bar shows hit-ratio with hit-miss feedback

implementation. Implementation with hit-miss feedback performs better in each case. It is

observed that for long pattern matching or for higher quantization levels feedback mecha-

nism performs far better than the implementation without hit-miss feedback.

5.3.2 Effect of quantization level and pattern length

To find the effect of different combination of quantization level and pattern length on predic-

tion accuracy I have used two parameters. One parameter is to analyze RMSE of prediction

and the second parameter is hit-ratio of prediction. These both parameters reflects effect

of quantization level and pattern length respectively. As quantization level decreases even

for successful prediction hit RMSE may higher. On the contrary even for wrong predic-

tion RMSE may be very small because of higher quantization levels. So analysis of both

parameters presented here is done through the result generated by hit-miss feedback imple-

mentation for one-step ahead prediction.

CHAPTER 5. IMPLEMENTATION AND RESULT 27

Figure 5.3: Scatter diagram of RMSE relationship with implementation setting

RMSE analysis

Figure 5.2 shows the RMSE value for different combinations of quantization level and pat-

tern length. In figure X-axis data shows the quantization level as well as pattern length

and Y-axis shows RMSE. Here Q3 P4 means quantization level is 3 and pattern length is

4. From figure 5.2 we can see that for lower quantization levels 3, 4, 5 short pattern lengths

and very long pattern lengths have higher RMSE. But lower quantization with medium

range pattern lengths like 3, 4, 5 has lower RMSE compared to other pattern lengths. To

see this clearly figure 5.3 provides scatter diagram of RMSE value for differen configura-

tion of implementation. Lower quantization levels start with higher RMSE value, moves

towards lower RMSE as pattern length increases but for higher pattern length the again

start moving to ward higher RMSE value. On the contrary higher quantization levels like

8, 9, 10 starts with lower RMSE for shorter pattern length and RMSE increases as pattern

length increases.

Hit-ratio analysis

Figure 5.4 shows the hit-ratio of one-step ahead prediction for different combination of

quantization level and pattern length. In figure X-axis data shows the quantization level as

well as pattern length and Y-axis shows hit-ratio. Here Q3 P4 means quantization level is 3

CHAPTER 5. IMPLEMENTATION AND RESULT 28

Figure 5.4: RMSE for different combination of quantization level and pattern length

Figure 5.5: Scatter diagram of RMSE relationship with implementation setting

CHAPTER 5. IMPLEMENTATION AND RESULT 29

Config RMSE Hit-Ratio Config RMSE Hit-Ratio Config RMSE Hit-Ratio Config RMSE Hit-Ratio

Q3 P3 13.48 0.87 Q4 P7 17.67 0.83 Q6 P5 18.90 0.84 Q8 P4 20.93 0.59

Q3 P4 24.46 0.92 Q4 P8 17.89 0.88 Q6 P6 18.63 0.76 Q8 P5 22.37 0.80

Q3 P5 24.72 0.88 Q5 P3 31.32 0.68 Q6 P7 18.17 0.75 Q8 P6 21.58 0.76

Q3 P6 24.63 0.90 Q5 P4 22.84 0.68 Q6 P8 20.79 0.73 Q8 P7 23.62 0.67

Q3 P7 24.44 0.88 Q5 P5 21.73 0.86 Q7 P3 29.43 0.60 Q8 P8 24.61 0.60

Q3 P8 24.78 0.91 Q5 P6 22.64 0.84 Q7 P4 25.84 0.65 Q9 P3 25.14 0.55

Q4 P3 20.72 0.67 Q5 P7 23.80 0.79 Q7 P5 21.92 0.83 Q9 P5 27.08 0.73

Q4 P4 14.33 0.77 Q5 P8 25.37 0.81 Q7 P6 23.12 0.81 Q9 P6 23.57 0.64

Q4 P5 17.49 0.79 Q6 P3 28.43 0.62 Q7 P7 22.05 0.74

Q4 P6 17.38 0.81 Q6 P4 25.61 0.60 Q8 P3 22.59 0.55

Table III: RMSE and hit ratio for different configurations

Figure 5.6: RMSE and Hit-ratio relationship

and pattern length is 4. For lower quantization medium higher pattern length gives higher

hit ratio. Whereas for higher quantization level very short and very long pattern length

gives lower hit-ratio. From scatter diagram 5.5 it is visible that higher quantization level

have lower hit-ratio for shorter pattern length, it increases until very long pattern length

comes and for very long pattern length it again approaches towards lower hit-ratio.

Combined analysis of hit-ration and RMSE

The relationship of RMSE and hit-ratio for different configuration setting of quantization

level and hit-ratio is shown in figure 5.6. Configurations like Q3 P3, Q4 P4 have lower

CHAPTER 5. IMPLEMENTATION AND RESULT 30

RMSE and higher hit-ratio. Configurations like Q8 P3 and Q9 P3, though provides com-

paratively lower RMSE has very low hit-ratio. Configuration of pattern length 3 has very

high RMSE except pattern length 3. The best choice is to have configuration with lower

RMSE and higher hit-ratio. Most of higher quantization configuration provides low hit-ratio

but Some of them have very low RMSE too. So for Higher accuracy prediction we can apply

high quantization levels and higher pattern length as increasing pattern length in higher

quantization level increases hit-ratio. But in applications like CPU-load qunata prediction

we can go for lower quantization levels with neither long nor small pattern lengths as the

hit ration for them is high as shown in figure 5.6.

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

In this dissertation, a probabilistic approach which extracts the symbolic representation

of historical CPU load subsequences as well as their aggregate information is proposed, to

predict the future symbols with probabilities based on aggregates that summarize the entire

historical data, and finally output future subsequences for similarity search. The experi-

ments were done to predict one-step ahead prediction of time-series data. The results of

RMSE and hit-ratio of prediction for various quantization levels and pattern length with

hit-miss feedback implementation shows that for lower quantization levels hit-ratio is high

and RMSE value is low for higher pattern length. So this probabilistic approach can be

used to predict the CPU load quanta. This method however fails to predict accurate results

when quantization level is increased. So to predict results having very low RMSE, this

method does not provide good performance.

6.2 Future Scope

� There is no method to determine the quantization level and pattern length which

produces best results for given historical time-series data. A dynamic method can be

developed to determine the quantization level and pattern length.

31

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 32

� This analysis was done only on bases of CPU-load measurement. A multivariate

analysis method can be developed to see the effect of other parameters like memory

usage on overall CPU-load.

� Time-series representation can be improved by taking MAXIMA and MINIMA into

consideration for better performance for outliers in time-series.

References

[1] P. A. Dinda and D. R. O’Hallaron, ”The Statistical Properties of Host Load,” presented
at Fourth Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers (LCR 98), Pittsburgh, PA, 1998.

[2] R. Wolski, N. Spring, and J. Hayes, ”Predicting the CPU availability of Time-shared
Unix Systems,” presented at Proceedings of 8th IEEE High Performance Distributed
Computing Conference (HPDC8), 1999.

[3] R. Wolski, Dynamically Forecasting Network Performance Using the Network Weather
Service, Journal of Cluster Computing, 1998.

[4] R. Wolski, N. Spring, and C. Peterson, Implementing a Performance Forecasting Sys-
tem for Metacomputing: The Network Weather Service, Proceedings of SC97, 1998.

[5] R. Wolski, N.T. Spring, and J. Hayes, The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing, Future Generations of
Computer Systems, 1999.

[6] L. Yang, I. Foster, and J.M. Schopf, Homeostatic and Tendency-based CPU Load
Predictions, Intl Parallel and Distributed Processing Symp. (IPDPS03), pp. 42-50,
2003.

[7] Y. Zhang, W. Sun, and Y. Ingonuichi, CPU Load Predictions on the Computational
Grid,” IEICE Trans. Inf. and Syst., Vol. E90-D, No. 1, January 2007.

[8] Y. Zhang, W. Sun, and Y. Inoguchi, Predict task running time in grid environments
based on CPU load predictions, Future Generation Computer Systems Volume 24,
Issue 6, pp. 489-497, July 2008.

[9] Yule, G. U. (1927). ”The method of investigating periodicities in disturbed series, with
special reference to Wolfer’s sunspot numbers”. Philosophical Transactions of the Royal
Society London, Series A, 226, 267 298.

[10] Box, G. E. P., Jenkins, G. M. (1970).” Time series analysis: Forecasting and control”.
San Francisco7 Holden Day (revised ed. 1976).

[11] Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (1994).” Time series analysis: Forecasting
and control” (3rd ed.). Englewood Cliffs, NJ7 Prentice Hall.

33

REFERENCES 34

[12] M. Harchol-Balter and A. Downey, ”Exploiting Process Lifetime Distributions for Dy-
namic Load Balancing,” presented at Proceedings of ACM Sigmetrics’ 96 Conference
on Measurement and Modeling of Computer Systems, Philadelphia, PA, 1996.

[13] P. A. Dinda and D. R. O’Hallaron, ”An Evaluation of Linear Models for Host Load
Prediction,” presented at Proceedings of the 8th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-8), Redondo Beach, CA, 1999.

[14] Harvey, A. C. (1989). ” Forecasting, structural time series models and the Kalman
filter”. Cambridge7 Cambridge University Press.

[15] Henrik Andre-Jonsson, ”Indexing Strategies for Time Series Data”, Linkping Studies
in Science and Technology, Linkping University, Sweden.

[16] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, Sharad Mehrotra, ”Dimen-
sionality Reduction for Fast Similarity Search in Large Time Series Databases”,IN
4TH PACIFIC-ASIA CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA
MINING, 2000

[17] Jessica Lin, Eamonn Keogh, ”Visually Mining and Monitoring Massive Time Series”,
KDD’04, August 22-25, 2004, Seattle, Washington, U.S.A.

[18]]Keogh Eamonn, Kaushik Chakrabarti,”Dimensionality Reduction for Fast Similarity
Search in Large Time Series Databases”, Journal of Knowledge and Information Sys-
tems, 3(3):263–286, 2000.

[19] Jessica Lin, Eamonn Keogh, ”A Symbolic Representation of Time Series, with Impli-
cation for Streaming Algorithms”, 8th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery 2003.

[20] Ooi Boon yaik, Chan Huah Yonh and Fazilah Haron, ”CPU Usage Pattern Discovery
Using Suffix Tree”, IEEE, 2006, School ofComputer Science, Malaysia

[21] Data sheet of ST Set-top Box, STMicroelectronics.

[22] Set-Top Box ; by Dr. P. C. Jain, STMicroelectronics

Index

Command Line Testing Example, 12

Lower Bounding Time-series, 16

PAA time-series, 15

Prediction Method, 19

Multi step prediction, 20

Single step prediction, 19

Prediction Table, 17

SAX time-series, 15

STSTB Structure, 9

Time-series Suffix Tree, 17

Validation Layered Architecture, 11

35

	Declaration
	Dedication
	Certificate
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Introduction
	Motivation
	Objective
	Thesis Organization

	Literature Survey
	Non-adaptive time-series forecasting methods
	Adaptive time-series forecasting Methods
	Tree-based time-series forecasting method

	Validation Environment Detail and Validation Set-up
	ST Microelectronics Set top box (STSTB)
	Software Build and execution environment
	Command-line example

	Proposed Method
	Symbolic representation of time-series
	PAA representation
	Discretization
	Distance Measures

	Training Period : Preparing Prediction Table
	Updating Prediction Table
	Prediction
	Prediction while training
	Single-step prediction
	Multi-step prediction

	Implementation and result
	SAX representation
	Implementation Strategy
	Symbolic representation without PAA
	SAX representation

	Implementation Results
	Hit-miss feedback implementation
	Effect of quantization level and pattern length

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References
	Index

