
Optimization of Automation Environment for
Set-Top Box

By

SUNIL MISHRA

10MCEC28

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2012

Optimization of Automation Environment for
Set-Top Box

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

By

SUNIL MISHRA

10MCEC28

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2012

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technol-

ogy in Computer Engineering at Nirma University and has not been submitted

elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

SUNIL MISHRA

iv

Certificate

This is to certify that the Major Project Part-II entitled ”Optimization of Automation

Environment for Set-Top Box” submitted by Sunil J. Mishra (10MCEC28), towards

the partial fulfillment of the requirements for the degree of Master of Technology in

Computer Science and Engineering of Nirma University of Science and Technology,

Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Prof. Madhuri Bhavasar Dr. S.N. Pradhan

Internal Guide, Professor and Co-ordinator

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University,Ahmedabad Nirma University,Ahmedabad

Prof. D. J. Patel Dr K Kotecha

Professor and Head, Director,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

v

Abstract

Testing is required for every product or s/w, so that the product delivered to the

customer is free from defects, highly stable and reliable. Automated Testing is an

alternative to Manual testing that can reduce the time and cost spent over testing.

Also Regression testing, Stress testing and Stability testing become very easy with

the help of automation.

In the current environment software applications built to do the automated test-

ing are highly dependent on the machine on which they run and the devices they

interact with. Hence failure in either of them can have a high impact on the time and

cost of testing.

The focus of the project is to create an environment where testing applications can

run without being affected by system and network failures. Hence to provide a stable

environment for applications to run without failure, an independent framework has

to be developed which can aid the applications running on top of it, to be reliable and

stable. The framework will handle all the additional tasks like process recovery, error

handling, backup and scheduling, so that the applications can focus on the main task

i.e. of testing.

vi

Acknowledgements

With immense pleasure, I would like to present this report on the dissertation work

related to ”Optimization of Automation Environment for Set-Top Box”. I am very

thankful to all those who helped me for the successful completion of the first phase

of the dissertation and for providing valuable guidance throughout the project work.

I would first of all like to offer thanks to Dr. S. N. Pradhan, Programme Co-

ordinator M.Tech CSE, Institute of Technology, Nirma University, Ahmedabad, Prof.

Madhuri Bhavasar, Guide, Institure of Technology, Nirma University,Ahmedabad

and Mrs. Anitha Pushpanathan, Team-Lead, ATG-SIT, Motorola Mobility India

Pvt. Ltd., Bangalore, whose keen interest and excellent knowledge base helped me to

finalize the topic of the dissertation work.Their constant support and interest in the

subject equipped me with a great understanding of different aspects of the required

architecture for the project work. They have shown keen interest in this dissertation

work right from beginning and have been a great motivating factor in outlining the

flow of my work.

My sincere thanks and gratitude to Mr. Manoj John Gerald, Project Manager,

ATG-SIT, Motorola Mobility India Pvt. Ltd., Bangalore for his continual kind words

of encouragement and motivation throughout the Dissertation work.

I am thankful to Motorola Mobility for providing all kind of required resources. I

would like to thank The Almight and my family, for supporting and encouraging me

in all possible ways. I would also like to thank all my friends who have directly or

indirectly helped in making this dissertation work successful.

- Sunil Mishra

10MCEC28

vii

Abbreviation Notation and Nomenclature

AUT . Application Under Test

DAC . Digital Addressable Controller

GUI . Graphical User Interface

HDD . Hard Disk Drive

NIC . Network Interface Card

SIT .System Integration and Test

STB .Set Top Box

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

Abbreviation Notation and Nomenclature vii

List of Figures x

1 Introduction 1
1.1 Testing . 1
1.2 SIT Testing and Benefits . 2
1.3 Benefits of Automation . 3
1.4 General Approaches to Test Automation 6
1.5 Code-driven testing . 6
1.6 Graphical User Interface (GUI) testing 7
1.7 Framework approach in Automation 8

2 Current Environment 9
2.1 Current Architecture . 9
2.2 Automation Framework . 11

3 Problem in the current environment 14
3.1 Types of Failures . 14
3.2 Statistics . 16
3.3 Previous Work . 17

4 Proposal 18
4.1 A Software Framework . 18

5 Challenges 22

viii

CONTENTS ix

6 Implementation 24

7 Enhancement 28
7.1 Exploratory Testing . 28
7.2 Motivation . 29
7.3 Pros and Cons . 31
7.4 Research Questions . 33
7.5 Rule Based Exploratory Testing - A Custom Approach 34
7.6 Research Questions - Answers . 41

8 Conclusion 43

9 Future Implementation 47

List of Figures

2.1 Architecture of Automation System with Other External Devices . . 10
2.2 Current Automation Framework . 13

3.1 Statistics of Manual vs Automation 16

4.1 Proposed architecture . 19
4.2 Description of Monitors . 20

6.1 Local System View of Monitors . 25
6.2 Remote System View of Monitors . 26

7.1 Architecture of Custom Rule Based Exploratory Testing 38
7.2 Sample Structure of a Rule . 38
7.3 Sample Manual Exploratory Scenario 39
7.4 Sample Manual Exploratory Scenario Execution 39
7.5 Sample Manual Exploratory Scenario Results Screen 40
7.6 Sample Manual Exploratory Scenario Summary 40

8.1 Comparison Between Existing And New Environment 43
8.2 Comparison Between Existing And New Environment 43
8.3 Cumulative Time Saving in the New Environment 44
8.4 Cycle Time Saving in the New Environment 45
8.5 Staff Time Saving in the New Environment 45
8.6 Efficiency of Framework . 46
8.7 Performance of Framework in the New Environment 46

x

Chapter 1

Introduction

1.1 Testing

Testing is the process of executing a program or system with the intent of finding

errors. Or, it involves any activity aimed at evaluating an attribute or capability of

a program or system and determining that it meets its required results.

Testing is an integral part in software or product development. It is broadly de-

ployed in every phase in the development cycle. Typically, more than 50 percent of

the development time is spent in testing.

Testing is an investigation conducted to provide stakeholders with information

about the quality of the product or service under test. Testing can also provide an

objective, independent view of the software to allow the business to appreciate and

understand the risks of software implementation. Test techniques include, but are

not limited to, the process of executing a program or application with the intent of

finding software bugs (errors or other defects).

Testing can be stated as the process of validating and verifying that a software

1

CHAPTER 1. INTRODUCTION 2

program/application/product:

• meets the requirements that guided its design and development;

• works as expected; and

• can be implemented with the same characteristics.

Testing, depending on the testing method employed, can be implemented at any

time in the development process. However, most of the test effort occurs after the

requirements have been defined and the coding process has been completed. As

such, the methodology of the test is governed by the software/product development

methodology adopted.

1.2 SIT Testing and Benefits

SIT is part of the software testing life cycle for collaborative projects. Usually, round

of SIT precedes the user acceptance test (UAT) round. And software providers usu-

ally run a pre-SIT round before consumers run their SIT test cases.

As an example, if integrator (company) is providing an enhancement to customer’s

existing solution, then they integrate the new application layer and the new database

layer with existing customer’s application and existing database layers. After the

integration completes, users use the new part (extended part) of the integrated appli-

cation to update data. Along they use old part (pre-existing part) of the integrated

application. A process should exist to exchange data imports and exports between

the two data layers. This data exchange process should keep both systems up-to-date.

Purpose of the system integration testing is to make sure whether these systems are

successfully integrated and been up-to-date by exchanging data with each other.

CHAPTER 1. INTRODUCTION 3

Testing is usually performed for the following purposes:

• To improve quality.

– Quality of the product can be increased when the defects in the product

can be identified before the product gets deployed.

• For Verification and Validation

– Testing ensures that the product or the system is in accordance to the

requirements specified and functions exactly the way it needs to.

• For reliability estimation

– The products reliability can be estimated, which indicates the measure of

the stability of the product.

1.3 Benefits of Automation

Testing can be very costly. Automation is a good way to cut down time and cost.

Testing tools and techniques usually suffer from a lack of generic applicability and

scalability. The reason is straight-forward. In order to automate the process, we have

to have some ways to generate oracles from the specification, and generate test cases

to test the target system against the oracles to decide their correctness. Today we

still don’t have a full-scale system that has achieved this goal. In general, significant

amount of human intervention is still needed in testing. The degree of automation

remains at the automated test script level.

Every software development group tests its products, yet delivered software always

has defects. Test engineers strive to catch them before the product is released but

they always creep in and they often reappear, even with the best manual testing

processes. Automated software testing is the best way to increase the effectiveness,

CHAPTER 1. INTRODUCTION 4

efficiency and coverage of your software testing. Manual software testing is performed

by a human sitting in front of a computer carefully going through application screens,

trying various usage and input combinations, comparing the results to the expected

behavior and recording their observations. Manual tests are repeated often during

development cycles for source code changes and other situations like multiple operat-

ing environments and hardware configurations. An automated software testing tool

is able to playback pre-recorded and predefined actions, compare the results to the

expected behavior and report the success or failure of these manual tests to a test

engineer.

Once automated tests are created they can easily be repeated and they can be ex-

tended to perform tasks impossible with manual testing. Because of this, savvy

managers have found that automated software testing is an essential component of

successful development projects. The benefits of automation are:

Automated Software Testing Saves Time and Money

Software tests have to be repeated often during development cycles to ensure quality.

Every time source code is modified software tests should be repeated. For each release

of the software it may be tested on all supported operating systems and hardware

configurations. Manually repeating these tests is costly and time consuming. Once

created, automated tests can be run over and over again at no additional cost and

they are much faster than manual tests. Automated software testing can reduce the

time to run repetitive tests from days to hours. A time savings that translates directly

into cost savings.

Automated Software Testing Improves Accuracy

Even the most conscientious tester will make mistakes during monotonous manual

CHAPTER 1. INTRODUCTION 5

testing. Automated tests perform the same steps precisely every time they are exe-

cuted and never forget to record detailed results.

Automated Software Testing Increases Test Coverage

Automated software testing can increase the depth and scope of tests to help im-

prove software quality. Lengthy tests that are often avoided during manual testing

can be run unattended. They can even be run on multiple computers with different

configurations. Automated software testing can look inside an application and see

memory contents, data tables, file contents, and internal program states to determine

if the product is behaving as expected. Automated software tests can easily execute

thousands of different complex test cases during every test run providing coverage

that is impossible with manual tests. Testers freed from repetitive manual tests have

more time to create new automated software tests and deal with complex features.

Automated Software Testing Does What Manual Testing Cannot

Even the largest software departments cannot perform a controlled web application

test with thousands of users. Automated testing can simulate tens, hundreds or thou-

sands of virtual users interacting with network or web software and applications.

Automated Software Testing Helps Developers and Testers

Shared automated tests can be used by developers to catch problems quickly be-

fore sending to QA. Tests can run automatically whenever source code changes are

checked in and notify the team or the developer if they fail. Features like these save

developers time and increase their confidence.

Automated Software Testing Improves Team Morale

CHAPTER 1. INTRODUCTION 6

This is hard to measure but weve experienced it first hand, automated software test-

ing can improve team morale. Automating repetitive tasks with automated software

testing gives your team time to spend on more challenging and rewarding projects.

Team members improve their skill sets and confidence and, in turn, pass those gains

on to their organization

1.4 General Approaches to Test Automation

Code-driven testing

The public (usually) interfaces to classes, modules or libraries are tested with a vari-

ety of input arguments to validate that the results that are returned are correct.

Graphical user interface testing

A testing framework generates user interface events such as keystrokes and mouse

clicks, and observes the changes that result in the user interface, to validate that the

observable behavior of the program is correct.

1.5 Code-driven testing

A growing trend in software development is the use of testing frameworks such as the

xUnit frameworks (for example, JUnit and NUnit) that allow the execution of unit

tests to determine whether various sections of the code are acting as expected under

various circumstances. Test cases describe tests that need to be run on the program

to verify that the program runs as expected. Code driven test automation is a key

feature of Agile software development, where it is known as Testdriven development

(TDD). Unit tests are written to define the functionality before the code is written.

CHAPTER 1. INTRODUCTION 7

Only when all tests pass is the code considered complete. Proponents argue that it

produces software that is both more reliable and less costly than code that is tested

by manual exploration. It is considered more reliable because the code coverage is

better, and because it is run constantly during development rather than once at the

end of a waterfall development cycle. The developer discovers defects immediately

upon making a change, when it is least expensive to fix. Finally, code refactoring

is safer; transforming the code into a simpler form with less code duplication, but

equivalent behavior, is much less likely to introduce new defects.

1.6 Graphical User Interface (GUI) testing

Many test automation tools provide record and playback features that allow users to

interactively record user actions and replay them back any number of times, compar-

ing actual results to those expected. The advantage of this approach is that it requires

little or no software development. This approach can be applied to any application

that has a graphical user interface. However, reliance on these features poses major

reliability and maintainability problems. Relabelling a button or moving it to another

part of the window may require the test to be re-recorded. Record and playback also

often adds irrelevant activities or incorrectly records some activities. A variation on

this type of tool is for testing of web sites. Here, the ”interface” is the web page.

This type of tool also requires little or no software development. However, such a

framework utilizes entirely different techniques because it is reading HTML instead

of observing window events.

Another variation is scriptless test automation that does not use record and play-

back, but instead builds a model of the Application Under Test (AUT) and then

enables the tester to create test cases by simply editing in test parameters and con-

ditions. This requires no scripting skills, but has all the power and flexibility of a

scripted approach. Test-case maintenance seems to be easy, as there is no code to

CHAPTER 1. INTRODUCTION 8

maintain and as the AUT changes the software objects can simply be re-learned or

added. It can be applied to any GUI-based software application. The problem is

the model of the AUT is actually implemented using test scripts, which have to be

constantly maintained whenever there’s change to the AUT.

1.7 Framework approach in Automation

A framework is an integrated system that sets the rules of Automation of a specific

product. This system integrates the function libraries, test data sources, object details

and various reusable modules. These components act as small building blocks which

need to be assembled to represent a business process. The framework provides the

basis of test automation and simplifies the automation effort.

Chapter 2

Current Environment

2.1 Current Architecture

The current existing automation architecture in the organization is given in the figure

2.1:

Description of the devices is given below:

System PC

The system used for automation, on which automation tool and other necessary

drivers are installed.

DAC (Digital Addressable Controller)

A headend device which is used to stream videos to the set-top box and do other

functions like initializing the box, resetting the box, etc.

Webcam/Video Capture Card

9

CHAPTER 2. CURRENT ENVIRONMENT 10

Figure 2.1: Architecture of Automation System with Other External Devices

CHAPTER 2. CURRENT ENVIRONMENT 11

Output device used to capture video and images from the STB.

STB (Set Top Box)

The device under test

Knox Switch

Switch that is used to connect multiple STB’s to capture the composite output.

IrNetBox

A switch that is used for transferring IR commands from the System PC.

Comtrol Switch

A switch used to communicate between the STB using serial port and Ethernet port

of System PC.

2.2 Automation Framework

The current automation framework in use is as shown in figure 2.2

It is a complicated test-framework, consisted of several components:

• Configuration component - is used for logical and physical devices setup

• Test creator component - is used for test designing and modification

• Test session scheduler component - is used for defining executing tests set,

execution date and time, and set of testing devices

CHAPTER 2. CURRENT ENVIRONMENT 12

• Background service component - monitors the list of scheduled test-sessions

and drives corresponding session from the queue to run

• Driver engine monitor component - allows user to observe the current

status of all scheduled test-sessions in the real-time mode

• Verification system - is used for gathered data review and verification.

CHAPTER 2. CURRENT ENVIRONMENT 13

Figure 2.2: Current Automation Framework

Chapter 3

Problem in the current

environment

The current applications used for automated testing mainly focus on simulating the

test cases on the systems. They are not able to handle the errors arising due to system

or network failures. This results into the failure of the applications and the testing

time is increased along with the cost.

There are situations where the test cases are scheduled to be running on the weekend.

In these cases if the pc crashes or due to any network or external device issue, the

application fails, then the whole weekend is spoiled and the test engineers have to

do the test cases again. This can heavily impact the organization as the deployment

time will be delayed as the test cases have to be scheduled again.

3.1 Types of Failures

• Application fails at night It may happen due to any of the hardware or the

newtork issues, that the application may fail at midnight. This will lead to the

14

CHAPTER 3. PROBLEM IN THE CURRENT ENVIRONMENT 15

scheduled test cases to stop. Hence the next day the test engineer comes and

restarts the application. This may decrease the cycle time savings that should

be acheived with Automation.

• System Crash The system may crash due to low memory or low virtual mem-

ory. This will also affect the cycle time as the test engineer has to restart the

pc during such cases or may require reparing of the system.

• Network Error There may arise some issue in the network. All the scripts are

stored in a database in a server, and loaded when they are used. If any network

issue happens, the execution will fail, and the test engineer has to reschedule

the remaining test cases again.

• HDD Failure During execution we are caputring video and images from the

STB, which contains both SD and HD. Both the video types consume lot of

memory. It may happen that during a overnight execution the HDD may get

full and may lead to the failure of the application.

• External Device Failure Similarly it may happen that the external devices

attached to the system might fail. Hence they need to be refreshed and intialized

again before they could be used.

CHAPTER 3. PROBLEM IN THE CURRENT ENVIRONMENT 16

3.2 Statistics

Figure 3.1 shows the comparision of manual testing with automated testing with

failures.

Figure 3.1: Statistics of Manual vs Automation

CHAPTER 3. PROBLEM IN THE CURRENT ENVIRONMENT 17

3.3 Previous Work

Application specific plug-in had been developed. The plug-in was attached to the

application. It could monitor the test cases executing in the environment and was

able to report the errors back to the user. No corrective measures could be taken by

the plug-in.

The plug-in developed was tightly coupled with the application, hence if the ap-

plication failed the plug-in also failed.

Other monitoring softwares Softwares available in market are only for moni-

toring purposes. They cannot handle the failures of the automation application and

the automation environment.

Chapter 4

Proposal

4.1 A Software Framework

A software framework is a universal, reusable software platform used to develop ap-

plications, products and solutions. Software Frameworks include support programs,

compilers, code libraries, an application programming interface (API) and tool sets

that bring together all the different components to enable development of a project

or solution.

Software Frameworks are designed to facilitate the development process by allow-

ing designers and programmers to spend more time on meeting software requirements

rather than dealing with the more tedious details of providing a working system.

Software frameworks allow developers to spend less time coding, less time developing

and debugging and more time on value-added development and concentrating on the

business-specific problem at hand rather than on the plumbing code behind it result-

ing, faster time to market.

Software frameworks are used to develop device-to-enterprise applications, Internet-

enabled products and automation system solutions.

18

CHAPTER 4. PROPOSAL 19

An application framework needs to be developed which can help the applications

running on top of it, without worrying about the system or network errors.

The architecture of the framework is shown below

Figure 4.1: Proposed architecture

System - PC on which automated testing applications run

Monitors - Independent Modules

Resource Manager - Resource Manager Keeps a track of all the available resources

and which process is currently using it. It also helps in proper allocation of resources

to every running process.

Recovery Manager - It gets the data from the monitors and keeps on track on

all the active processes. When any process fails, it takes the corrective action like

restarting the process and then schedules it with the help of the scheduler. It also

restarts the execution of the automated test cases from where it stopped.

Scheduler - It assists the recovery manager by scheduling the processes on the

CHAPTER 4. PROPOSAL 20

Figure 4.2: Description of Monitors

CHAPTER 4. PROPOSAL 21

system. It is capable of starting, stopping and restarting the processes.

Backup Manager - It periodically takes the backup of the executed test cases so

that in case of failures the execution can be rolled up to the last consistent state.

Applications - Independent automated test solutions developed to run over the

framework.

API’s - These are the application interfaces exposed to the developers to interact

with the framework.

Application Specific Plug-in - These use the exposed API’s and are developed to

perform application specific tasks.

Chapter 5

Challenges

• Determining the frequency at which the monitor should get the information

about the system and the devices.

• Determining the threshold values for each monitor, i.e. at which point the

monitor should report to the upper layer, so that corrective actions can be

taken.

• Controlling the threads - Each monitor is working on a separate thread; hence

the threads must be running without affecting the work of the other thread.

• Prevent Starvation - The framework monitors the system, processes and the

external devices. The framework should be such that it does not use much of

the CPU cycles, hindering other important processes.

• Recover and Restart - Once the application failed, the application needs to be

restarted and recovered to the consistent state before which it failed.

• Rescheduling - Once we have recognized that the application has failed, the

next question arises how do you schedule the failed test cases. Either stop the

current on going execution and re run it or re-schedule the failed test cases once

all the test cases have completed

22

CHAPTER 5. CHALLENGES 23

• Monitoring the external devices attached and resetting them when required.

• Backup - We need to take the backup of the test cases so that upon failure,

they could be re-run from the same place where the application failed.

• Generic - The framework should not be restricted for only kind of automation

environment, it should be generic enough to handle other automation environ-

ment with ease.

• API’s - Exposing well defined API’s so that new programmers can build their

own logic and add it to the framework.

• Remote configuration - Provide a mechanism of monitoring and recovering the

failure of the application from remote system.

• Retrying - How many times to retry, after a failure has happened is a challenging

task.

Chapter 6

Implementation

• All monitors implemented for remote as well as local pc

The monitors are interconnected to the system and the devices as shown below

in figure 7.1 and figure 7.2.

• API related to monitors are exposed

All the necessary API for the monitoring purpose like get the information from

CPU, HDD status, Process Status have been exposed for the programmers to

use and implement according to their need. The API information can also be

found in the Help file shipped with the software.

• Recovery Manager, Resource Manager and Scheduler

– Common issues like HDD failure due to lack of space in the PC have been

handled by transferring the stored content to some other location on the

fly. Also if necessary the application will be paused for proper recovery to

take place.

– Power failure issues have been handled by scheduling the complete test

suite again.

– The monitor threads are made such that they do not starve any other

processes, using proper sleep and wake-up mechanisms.

24

CHAPTER 6. IMPLEMENTATION 25

Figure 6.1: Local System View of Monitors

CHAPTER 6. IMPLEMENTATION 26

Figure 6.2: Remote System View of Monitors

CHAPTER 6. IMPLEMENTATION 27

– The threshold values of the monitors are calculated relatively to the sys-

tem’s resources during the run time. Hence the monitors can be used on

any PC without any modifications.

– Scheduler is able to schedule the failed test cases successfully.

Chapter 7

Enhancement

Automated Exploratory Testing is being currently implemented as an enhancement

over the existing software.

7.1 Exploratory Testing

Exploratory testing is an approach that does not rely on the documentation of test

cases prior to test execution. This approach has been acknowledged in software test-

ing books since the 1970’s [7]. However, authors have usually not presented actual

techniques or methods for performing exploratory testing; instead treating it as an

’ad hoc’ or error guessing method.

Exploratory testing is an approach to software testing that is concisely described

as simultaneous learning, test design and test execution. Cem Kaner, who coined

the term in 1983, now defines exploratory testing as ”a style of software testing that

emphasizes the personal freedom and responsibility of the individual tester to con-

tinually optimize the quality of his/her work by treating test-related learning, test

design, test execution, and test result interpretation as mutually supportive activities

that run in parallel throughout the project.”

28

CHAPTER 7. ENHANCEMENT 29

While the software is being tested, the tester learns things that together with ex-

perience and creativity generates new good tests to run. Exploratory testing is often

thought of as a black box testing technique. Instead, those who have studied it con-

sider it a test approach that can be applied to any test technique, at any stage in the

development process.

7.2 Motivation

Exploratory testing lacks scientific research [9]. While test case design techniques set

the theoretical principles for testing, it is too straightforward to ignore all the factors

that can affect testing activities during test execution work.

In the context of verifying executable specifications Houdek et al. [8] have per-

formed a student experiment comparing reviews, systematic testing techniques and

the exploratory (ad-hoc) testing approach. The results showed that the exploratory

approach required less effort, and there was no difference between the techniques

with respect to defect detection effectiveness. None of the studied techniques alone

revealed a majority of the defects and only 44 percent of the defects were such that

the same defect was found by more than one technique.

Some research on exploratory testing can be found in end-user programming con-

text. Rothemel et al. [11] reported benefits of supporting exploratory testing tasks

by a tool that is based on formal test adequacy criteria. Phalgune et al. have found

that oracle mistakes are common and should be taken into account in tools support-

ing end-user programmer testing [10]. Oracle mistakes, meaning that a tester judges

incorrect behavior correct or vice versa, could be an important factor affecting the

effectiveness of exploratory testing and should be studied also in the professional soft-

ware development context.

CHAPTER 7. ENHANCEMENT 30

Even though the efficiency and applicability of exploratory testing lacks reliable re-

search, there are anecdotal reports listing many benefits of this type of testing. The

claimed benefits, summarized in [9] include, e.g., effectiveness, the ability to uti-

lize tester’s creativity and non-reliance on documentation [12,13]. Considering the

claimed benefits of exploratory testing and its popularity in industry, the approach

seems to deserve more research. The exploratory approach lets the tester freely

explore without being restricted by pre-designed test cases. The aspects that are

proposed to make exploratory testing so effective are the experience, creativity, and

personal skills of the tester. These aspects affect the results, and some amount of

exploratory searching and learning exists, in all manual testing; perhaps excluding

the most rigorous and controlled laboratory settings. Since the effects of exploratory

approach and the strength of those effects have not been studied and are not known,

it is hard to draw strong conclusions on the performance of manual testing techniques.

We recognize that planning and designing test cases can provide many other benefits

besides defect detection effectiveness. These include, e.g., benefits for test planning,

test coverage, repeatability, and tracking.

Exploratory Testing Can be used when

• You need to provide rapid feedback on a new product or feature.

• You need to learn the product quickly.

• You have already tested using scripts, and seek to diversify the testing.

• You want to find the single most important bug in the shortest time.

• You want to check the work of another tester by doing a brief independent

investigation.

• You want to investigate and isolate a particular defect.

CHAPTER 7. ENHANCEMENT 31

• You want to investigate the status of a particular risk, in order to evaluate the

need for scripted tests in that area.

• Improvising on scripted tests.

• Interpreting vague test instructions.

• Product analysis and test planning.

• Improving existing tests.

• Writing new test scripts.

• Regression testing based on old bug reports.

• Testing based on reading the user manual and checking each assertion.

7.3 Pros and Cons

Pros

• Checks application usability

– This of course depends on how the tester is sensitive to usability. Usually,

however, something that is understandable for the developer and the robot,

it is not obvious to the tester. Because exploratory tests are treated as a

whole, it is easier to see the wrong assumptions in cross-section of multiple

modules or functions.

• Helpful with a lack of documentation, requirements, test cases, etc

– There are situations when we get application to test without any documen-

tation, test cases or automation scripts. Natural way is, of course, writing

the test scenarios first, however, I recommend to pre-order exploratory

tests. Soon we will have the information about the quality level of the

CHAPTER 7. ENHANCEMENT 32

product - our benchmark. Testers will have a good basis to start writing

the missing parts. So this kind of testing allows you to get temporary

salvation and able to maintain the expected quality in short term.

• Find holes in requirements

– Exploratory tester usually report many errors caused by wrong require-

ments or documentation. What is interesting is such errors are usually

reported as critical. As mentioned earlier, deduction across whole applica-

tions have no small importance here. Exploratory testing can upset upside

down some of the assumptions.

Cons

• We do not need test scenarios, unit tests, test automation, etc.! We have skilled

testers!

– The situation is often encountered in smaller firms where there is no ded-

icated quality assurance teams. Tester is a programmer, a tester is a

business owner, a secretary, all strive to perform exploratory tests. At the

end of their testing, it becomes a set of performed routinely activities. For

larger companies, we also deal with the syndrome, ”Our application is free

of errors!”.

• Poor detection of minor issues

– Exploratory tester is focused on finding gaps in mainstream business pro-

cess covered by tested application. But of course there are also deviations

in the other side, in example : focusing on the type of error - whether it

is possible to enter a negative value in the field, which should has only

positive values. Fields validation is a role of automated or unit testing.

• Exploratory testers can get into a routine

CHAPTER 7. ENHANCEMENT 33

– Described methodology is based on the deduction, which degrades when

is constantly exposed to the same experience. Tester which is extensively

used in this way, often becomes an automation robot that uses a memorized

test script. As team leaders we have seen this phenomenon in advance.

The easiest way to counteract this situation is to apply the testers and

test applications rotation.

Thus exploratory testing is a ”must have” methodology in testing process. In

larger teams it may be a group of dedicated testers, the smaller one or two people

with extensive experience.

7.4 Research Questions

We study the effects of using predesigned test cases in manual functional testing

at the system level. Due to the scarce existing knowledge, we focus on one research

problem: What is the effect of using predesigned and documented test cases in manual

functional testing with respect to defect detection performance?

Based on existing knowledge we can pose two alternative hypotheses. First, be-

cause almost all research is focused on test case design issues we could hypothesise

that the results are better when using predesigned test cases. Second, from the prac-

titioner reports and case studies on exploratory testing we could draw a hypothesis

that results are better when testing without predesigned test cases. The research

questions and the hypotheses of this study are presented below.

• Research question 1: How does using predesigned test cases affect the number

of detected defects?

– Hypothesis H10: There is no difference in the number of detected defects

between testing with and without predesigned test cases.

– Hypothesis H11: More defects are detected with predesigned test cases

than without predesigned test cases.

CHAPTER 7. ENHANCEMENT 34

– Hypothesis H12: More defects are detected without predesigned test cases

than with predesigned test cases.

• Research question 2: How does using predesigned test cases affect the type of

defects found?

– Hypothesis H20: There is no difference in the type of the detected defects

between testing with and without predesigned test cases.

• Research question 3: How does using predesigned test cases affect the number

of false defect reports?

– Hypothesis H30: There is no difference in the number of produced false

defect reports between testing with and without predesigned test cases.

False defect reports refer to reported defects that cannot be understood, are du-

plicates, or report nonexisting defects. This metric is used to analyze how using test

cases affects the quality of test results.

7.5 Rule Based Exploratory Testing - A Custom

Approach

The first step to combining these two methods is to record the interactions performed

by a human tester during an exploratory test session as a replay able script. This can

be accomplished using a capture/replay tool (CRT) - a tool that records interactions

with an application as a script and can later replay these actions as an automated test.

Next, a human tester defines a set of rules that can be used to define the expected

(or forbidden) behavior of the application. The rules and script are then combined

into an automated regression test which increases the state space of the system that

is tested. This approach allows a human tester to use exploratory tests to identify

regions of the state space of the system that need to be subjected to more rigorous

CHAPTER 7. ENHANCEMENT 35

rule-based testing, which, in effect, identifies an important subset of the system under

test on which testing should focus. At the same time, this subset is tested thoroughly

using automated rules in order to verify this subset more thoroughly than would be

possible with exploratory testing alone.

It has been suggested that manual exploratory testing could benefit from the ad-

dition of automated support. In light of this, we propose that manual exploratory

test sessions be recorded in a replay able format, and then enhanced with short, au-

tomated rules that increase the amount of verification performed when that test is

replayed. In this way, only a subset of the state space of the application under test

in which a human has expressed interest will receive additional automated scrutiny.

The additional verifications provided by these rules will increase the parts of the state

space that are tested, but only in that same subset identified by the human tester. In

this way, we aim to create strong, relevant tests by relying on the repeatability and

verification ability of rule-based testing as well as the intelligence of human testers.

The fact that rules contain preconditions also makes it less likely that rule-based

tests will falsely report failures when the STB environment changes - instead, they

will simply not fire when they are not applicable.

We enhanced the tool, to enable us to test out the concept of R-BET. The over-

all structure of enhanced feature is shown in Figure 8.1.

Next, the tool can be used to create rules - short verifications that will interact

with a system to ensure that a specific property is always (or never) true. Each rule

takes the form of an ”if try catch” statement. The ”if,” or precondition, of a rule

makes sure that it will only fire under certain circumstances.

For instance, if a rule should only ensure that the box is in standby mode, a pre-

condition for this rule might be ”if the STB is in standby.” If a rule has multiple

preconditions, then all of these must be met before a rule will fire, because the pre-

CHAPTER 7. ENHANCEMENT 36

conditions are connected with a logical AND. The same precondition can be used by

more than one rule. The ”try,” or action, represents the main body of the rule, and

will be executed when all preconditions are met. In the previous example, the action

might be ”assert that the STB is in standby mode.” An action can be as simple as

a verification of a single property or as complex as a series of interactions with the

application under test. The ”catch,” or consequence, determines what should happen

if the action fails or throws an exception. This allows test authors to distinguish be-

tween failures that indicate bugs and warnings that represent that a coding standard

has not been met. In the previous example, it might not be necessary to fail the

entire test if the STB was in on state, but it might be helpful to log this warning so

that developers will be made aware of its existence.

The rules are combined with recorded exploratory tests as a TestRunner - an program

that combines a recorded exploratory test with a set of rules. A TestRunner runs a

test script one step at a time and checks each rule against the system under test after

each of step. In this way, testers are able to define rules that will help explore the

state space of the application under test more thoroughly. In the example used in

the previous paragraph, a rule can be defined that will check that each STB in the

rack is not both enabled and in standby mode. This could be checked manually by a

human tester, but it would be a tedious task. Creating a rule to test for this behavior

will reduce the amount of work that must be done by human testers at the same

time as increasing the number of different states from which this verification can be

performed. Additionally, rules can be defined to test for typical errors that a human

tester may overlook, may not have time to test for, may not be experienced enough

to know about. Automated, rule-based verification not only allows a system to be

tested more thoroughly than would otherwise be possible within a given timeframe,

but also frees up human testers to perform more interesting testing.

Structure of a rule designed to detect standby mode of STB that should not respond

CHAPTER 7. ENHANCEMENT 37

to simulated user input is shown below in figure 8.2

The below figure shows the implementation of generating manual exploratory

scenarios. However, these generated scenarios will run in automated way. We have

favorites tab on the top, which has scripts to perform one set of complete action. We

have the remote control image map on the right side, which allows user to perform all

the actions, which he can do using a STB remote. The test engineer can create his

exploratory scenarios, run it and save it for further use. Upon successful execution of

the scenario, the tool will give graphical results, showing which steps failed/passed,

along with a personal mail to the test engineer.

The below figure shows the automation framework screen, which shows that the

exploratory scenario is being run for the particular STB. User can pause, cancel and

stop the ongoing execution if needed.

Once the execution is finished, the detailed description of the exploratory scenario

can be found in the automation framework as shown below in figure 8.5

And the summary of the results is shown in the exploratory framework, as shown in

figure 8.6

CHAPTER 7. ENHANCEMENT 38

Figure 7.1: Architecture of Custom Rule Based Exploratory Testing

Figure 7.2: Sample Structure of a Rule

CHAPTER 7. ENHANCEMENT 39

Figure 7.3: Sample Manual Exploratory Scenario

Figure 7.4: Sample Manual Exploratory Scenario Execution

CHAPTER 7. ENHANCEMENT 40

Figure 7.5: Sample Manual Exploratory Scenario Results Screen

Figure 7.6: Sample Manual Exploratory Scenario Summary

CHAPTER 7. ENHANCEMENT 41

7.6 Research Questions - Answers

• Research question 1. How does using predesigned test cases affect the number

of detected defects?

– In this experiment, the subjects found less defects when using predesigned

test cases. The difference between the two approaches was not statistically

significant, and does not allow rejecting the null hypothesis that assumes

there is no difference in the number of detected defects when testing with

or without test cases. Although we cannot reject the null hypothesis, the

results strengthen the hypotheses of the possible benefits of exploratory

testing.

• Research question 2. How does using predesigned test cases affect the type of

found defects?

– We analyzed the differences in the types of the detected defects from three

viewpoints; severity, type, and detection difficulty. Based on the data, we

can conclude that testers seem to find more of both the most obvious de-

fects, as well as the ones most difficult to detect when testing without test

cases. In the terms of defect type, the testers found more user interface

defects and usability problems without test cases. More technical defects

were found using test cases. When considering defect severity, the data

shows that more low severity defects were found without test cases. The

statistical significance of the differences in all these defect characteriza-

tions is low. We must be cautious of drawing strong conclusions based

on the defect classification data even though the results show a significant

difference in the numbers of usability and minor defects detected between

the two approaches.

– The differences in the defect types and severities suggest that testing with-

out test cases tend to produce larger amounts of defects that are obvious to

CHAPTER 7. ENHANCEMENT 42

detect and related to user interface and usability issues. These differences

could be explained by the fact that test cases are typically not written to

test obvious features and writing good test cases for testing many details of

a graphical user interface is very laborious and challenging. On the other

hand, subjects testing without test cases found more defects that were dif-

ficult to detect, which supports the claims that exploratory testing makes

better use of tester’s creativity and skills during test execution. The higher

amount of low severity defects detected without test cases suggests that

predesigned test cases guide the tester to pay attention on more focused

areas and thus lead to ignoring some of the minor issues.

• Research question 3. How does using predesigned test cases affect the number

of false defect reports?

– The purpose of this research question was to provide an understanding on

the effects of the two approaches from the test reporting quality viewpoint.

The data shows that testers reported around twice as many, false defect

reports when testing with test cases than when testing without test cases.

This difference is statistically significant. This issue raises the more general

question of the consequences of following predesigned test cases in manual

test execution. Test cases are used to guide the work of the tester and more

studies are needed to better understand how different ways of documenting

tests and guiding testers’ work affect their behavior in performing the tests

and the results of testing efforts.

Chapter 8

Conclusion

The below figure, shows that using the above mentioned mechanism, the current

automation environment has been optimized to perform in a better way. The data

was captured by executing the same test cases in all the three forms, i.e. Manually,

Automated Without Our Tool in Use and Automated With Our Tool in Use.

Figure 8.1: Comparison Between Existing And New Environment

Figure 8.2: Comparison Between Existing And New Environment

43

CHAPTER 8. CONCLUSION 44

Performance in the form of Time Savings of the new environment vs the existing

envrionment is as shown below.

Figure 8.3: Cumulative Time Saving in the New Environment

CHAPTER 8. CONCLUSION 45

Figure 8.4: Cycle Time Saving in the New Environment

Figure 8.5: Staff Time Saving in the New Environment

CHAPTER 8. CONCLUSION 46

The below figure shows that the efficiency of the framework is more than 80

percent.

Figure 8.6: Efficiency of Framework

Figure 8.7: Performance of Framework in the New Environment

Thus, the implemented solution is able to reduce the cycle time, and thus increas-

ing the productivity along with increasing the stability of the automation environment

for STB’s.

Chapter 9

Future Implementation

• Automatic validation of the test cases which are generated using Automatic

Generation Feature.

– In the implemented solution, once the exploratory scenario is generated,

the test engineer has to verify the generated scenario. In special cases like,

stability and stress testing, this verification is also not required.

– Currently there is no way to deduce that whether the automatically gen-

erated exploratory scenarios are valid or not. This can be implemented

using a machine learning mechanism, where the tool can understand the

pattern in which test engineer creates manual exploratory scenario’s and

then use the learning in creating its own valid exploratory scenario.

47

References

[1] Software Testing by Jiantao Pan, Carnegie Mellon University

[2] Exploratory Testing Explained, James Bach

[3] Black, Rex; (2002). Managing the Testing Process (2nd ed.). Wiley Publishing.

ISBN 0-471-22398-0

[4] Digital CM. http://digitalcm.corp.mot.com/default.asp

[5] Compass. http://compass.mot-mobility.com

[6] Myers, G. J., The Art of Software Testing, John Wiley and Sons, New York, 1979.

[7] Houdek, F., T. Schwinn, and D. Ernst, ”Defect Detection for Executable Specifi-

cations - An Experiment”, IJSEKE, vol. 12(6), 2002, pp. 637-655.

[8] Itkonen, J. and K. Rautiainen, ”Exploratory Testing: A Multiple Case Study”,

in Proceedings of ISESE, 2005, pp.84-93.

[9] Phalgune, A., C. Kissinger, M. M. Burnett, C. R. Cook, L. Beckwith, and J. R.

Ruthruff, ”Garbage In, Garbage Out? An Empirical Look at Oracle Mistakes by

End-User Programmers”, in IEEE Symposium on Visual Languages and Human-

Centric Computing, 2005, pp. 45-52.

[10] Rothermel, K., C. R. Cook, M. M. Burnett, J. Schonfeld, Green, Thomas R.

G., and G. Rothermel, ”WYSIWYT Testing in the Spreadsheet Paradigm: An

Empirical Evaluation”, in Proceedings of ICSE, 2000, pp. 230-239.

48

REFERENCES 49

[11] Bach,J., ”Exploratory Testing”, in The Testing Practitioner, Second ed., E. van

Veenendaal Ed., Den Bosch: UTN Publishers, 2004, pp. 253-265.

[12] Bach, J., ”Session-Based Test Management”, STQE, vol.2, no. 6, 2000,

[13] Kaner, C., J. Bach and B. Pettichord, Lessons Learned in Software Testing, John

Wiley and Sons, Inc., New York, 2002.

[14] Lyndsay, J. and N. van Eeden, ”Adventures in Session- Based

Testing”, 2003, Accessed 2007 06/26, http://www.workroom-

productions.com/papers/AiSBTv1.2.pdf.

[15] Vga,J. and S. Amland, ”Managing High-Speed Web Testing”, in Software Qual-

ity and Software Testing in Internet Times, D. Meyerhoff, B. Laibarra, van der

Pouw Kraan,Rob and A. Wallet Eds., Berlin: Springer-Verlag, 2002, pp. 23-30.

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Abbreviation Notation and Nomenclature
	List of Figures
	Introduction
	Testing
	SIT Testing and Benefits
	Benefits of Automation
	General Approaches to Test Automation
	Code-driven testing
	Graphical User Interface (GUI) testing
	Framework approach in Automation

	Current Environment
	Current Architecture
	Automation Framework

	Problem in the current environment
	Types of Failures
	Statistics
	Previous Work

	Proposal
	A Software Framework

	Challenges
	Implementation
	Enhancement
	Exploratory Testing
	Motivation
	Pros and Cons
	Research Questions
	Rule Based Exploratory Testing - A Custom Approach
	Research Questions - Answers

	Conclusion
	Future Implementation

