
Implementation of Block Matching

Algorithms on

CUDA

By

Chhaya Patel

10MCEC29

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2012

2

Implementation of Block Matching

Algorithms on

CUDA

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

PREPARED BY :

Chhaya Patel

10MCEC29

GUIDED BY :

Prof. Samir Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD

3

DECLARATION

I, Chhaya C. Patel, 10MCEC29, give undertaking that the Major Project entitled

”Implementation of Block Matching Algorithms on CUDA” submitted by me,

towards the partial fulfillment of the requirements for the degree of Master of Technology

in Institute of Technology of Nirma University, Ahmedabad, is the original work carried

out by me and I give assurance that no attempt of plagiarism has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

Chhaya Patel

4

DEDICATION

This thesis is dedicated to my father, who taught me that even the largest task can be

accomplished if it is done one step at a time. It is also dedicated to my husband, who

taught me that the best kind of knowledge to have is that which is learned for its own sake.

I would also like to dedicate this thesis to my family, who passed on a love of read-

ing and respect for education, who have never failed to give me moral support, for giving

all my need during the time I developed system.

5

CERTIFICATE

This is to certify that the Major Project, entitled Implementation of Block Matching

algorithms on CUDA, submitted by Ms. Chhaya C. Patel [10MCEC29], towards the

partial fulfillment of the requirements for the degree of Master of Technology in Computer

Science and Engineering of Nirma University of Science and Technology, Ahmedabad is

the record of work carried out by her under my supervision and guidance. In many

opinion, submitted work has reached a level required for being accepted for examination.

The result embodied in this major project, to the best of my knowledge,haven’t been

submitted to any other university or institution for award of any master degree.

Prof. Samir Patel Dr. S.N.Pradhan

Guide and Professor, Professor,P.G. Coordinator,

Department of Computer Engineering, Department of Computer Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Prof. D. J. Patel Dr. Ketan Kotecha

Professor and Head, Director,

Department of Computer Engineering, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

6

ABSTRACT

With the increasing popularity of technologies such as Internet streaming video and video

conferenting, video compression has became an essential component of broadcast and en-

tertainment media. Motion Estimation (ME) and compensation techniques, which can

eliminate temporal redundancy between adjacent frames effectively, have been widely ap-

plied to popular video compression coding standards such as MPEG4 AVC/H.264. The

use of a high-level parallelism of GPU architecture for the high definition images and

video processing give high performance and high speed of data processing. Due to its

object based nature, MPEG4 AVC is good candidate for parallelism. Among all steps of

encoder, motion estimation is very time consuming step. The wide range of memories

offered by the GPU architecture has been exploited to a large extent and a significant

speedup of motion estimation on the GPU as compared to the serial implementation.

The use of texture memory for accessing the periphery of the frames prevents the out of

bound references and contributes to the speedup achieved. The use of shared memory

for processing current frame and reference frame exploit significant speed for temporal

redundancy. The parallel versions of Full search and Diamond search are implemented

on Tesla C2070 on Ubuntu OS using CUDA4.0 technology. The results are presented

along with methodology used for parallelization of code for NVIDIA GPU. We also ob-

tain increased performance by reordering accesses to off-chip global memory to combine

requests to the same or contiguous memory locations and apply classical optimizations

to reduce the number of executed operations.

7

ACKNOWLEDGEMENT

It gives me pleasure in expressing thanks and profound gratitude to Prof. Samir Patel,

Department of Computer Science and Engineering, Institute of Technology, Nirma Uni-

versity, Ahmedabad for his valuable guidance and continual encouragement throughout

the Major Project. I heartily thankful to him for his time to time suggestion and clarity

of the concepts of the topic that helped me a lot during my project work.

I like to give my special thanks to Dr. S. N. Pradhan, P.G. Coordinator, Depart-

ment of Computer Science and Engineering, Institute of Technology, Nirma University,

Ahmedabad for his continual kind words of encouragement and motivation throughout

the project.

I would like to thanks Dr. Ketan Kotecha, Hon’ble Director, Institute of Technology,

Nirma University, Ahmedabad for his unmentionable support, providing basic infrastruc-

ture and healthy research environment. I would also thank my Institution, all my faculty

members and my colleagues without whom this project would have been a distant reality.

The blessing of God and my family members makes the way for completion of the project.

I am very much grateful to them. The friends, who always bear and motivate me through-

out the project,I am thankful to them.

Chhaya Patel

10MCEC29

Contents

Certificate 5

Abstract 6

Acknowledgement 7

Contents 8

List of Tables 10

List of Figures 11

Abbreviation Notation and Nomenclature 12

1 Introduction 14

1.1 General . 14

1.2 Motivation of Project . 15

1.3 Objective of Study . 15

1.4 Scope of Work . 16

1.5 Thesis Organization . 16

2 Literature Survey 18

2.1 Introduction to NVIDIA CUDA . 18

2.2 CUDA Hardware: Memory Model . 19

2.3 CUDA Hardware: Execution Model . 22

2.4 CUDA Programming Model . 22

2.4.1 Executing Code on the GPU . 23

2.5 Performance Optimization Strategies . 26

2.5.1 Maximize Utilization . 26

2.5.2 Maximize Memory Throughput 28

2.5.3 Maximize Instruction Throughput 29

8

CONTENTS 9

2.6 CUDA Installation . 29

2.6.1 CUDA Compiler - NVCC . 31

2.6.2 Build Configurations . 32

2.6.3 CUDA Occupancy Calculator . 33

2.7 Related Work . 36

3 Motion Estimation of Video Compression 38

3.1 Introduction of Video Compression . 38

3.2 Motion Estimation . 39

3.3 Block Matching Methods . 40

3.3.1 Block Matching . 42

3.3.2 Matching Criteria for Motion Estimation 42

3.3.3 Block Size . 43

3.3.4 Search Range . 44

3.3.5 Quality Judgment . 44

3.4 Block Matching Algorithms . 45

4 Implementation 49

4.1 Full Search Block Matching Algorithm 49

4.1.1 One Kernel Approach . 50

4.1.2 Three Kernel Approach . 51

4.2 Diamond Search Block Matching Algorithm 53

4.2.1 Two Kernel Approach . 53

5 Implementation Results 54

5.1 Test Video and Machine Configuration 54

5.2 Speedup Rate Analysis . 56

6 Conclusion and Future Scope 60

6.1 Conclusion . 60

6.2 Future Work . 60

A List of Publication 61

References 61

List Of Useful Web-sites 61

List of Tables

2.1 Characteristics of CUDA memories . 21

5.1 CPU Configuration . 55

5.2 GPU Configuration . 55

5.3 Performance of Full Search Block Matching Algorithm 57

5.4 Performance of Diamond Search Block Matching Algorithm 58

5.5 Performance comparison of Diamond Search with different Video Frame size 59

10

List of Figures

2.1 CUDA Software Stack . 19

2.2 CUDA Memory Model . 20

2.3 CUDA Programming/Execution Model. 23

2.4 Complete Programming Process on CPU and GPU 24

2.5 CUDA Software Development . 30

2.6 CUDA Compiler . 31

2.7 Device Query Output . 34

2.8 CUDA Occupancy Calculator . 35

3.1 A time line chart of MPEG4 compression technique 39

3.2 Video Frames . 40

3.3 Motion Vector information . 40

3.4 Block-matching Motion Estimation . 41

3.5 Macroblock sizes . 44

3.6 Full Search Block Matching Algorithm 45

3.7 Three Step Search Block Matching Algorithm 46

3.8 Four Step Search Block Matching Algorithm 46

3.9 Diamond Search Block Matching Algorithm 47

3.10 Comparison of Block Matching Algorithms [26] 47

3.11 Average values of PSNR (dB) Block Matching Algorithms [26] 48

5.1 Performance Chart of Full Search Block Matching Algorithm 57

5.2 Performance Chart of Diamond Search Block Matching Algorithm 58

5.3 Performance chart of Diamond Search with different Video Frame size . . 59

11

LIST OF FIGURES 12

Abbreviation Notation and Nomenclature

API . Application Program Interface

ALU .Arithmetic Logic Units

BMA . Block Matching Algorithm

BMME . Block Matching Motion Estimation

CPU .Central Processing Unit

CUDA . Compute Unified Device Architecture

CUDA FFT .CUDA Fast Fourier Transform

CUBLAS . CUDA Basic Linear Algebra Subroutine

CUP . Clean-Up Pass

DCT . Discrete cosine transform

DS .Diamond Search Block Matching Algorithm

DRAM . Dynamic RAM

DVD . Digital Versatile Disc

ES . Exhaustive Search

4SS .Four Step Search

FS . Full Search Block Matching Algorithm

GCC .GNU Compiler Collection

GFLOPS .Million Floating Point Instructions Per Second

GPGPU . General Purpose Graphics Processing Units

GPU . Graphics Processing Unit

IEEE . Institute of Electrical and Electronics Engineers

LDSP . Large Diamond Search Pattern

MIMD . Multiple Instruction, Multiple Data

MSE .Mean of Squared Error

MPEG .Motion Picture Experts Group

NVCC . CUDA Compiler

PSNR . Peak Signal to Noise Ratio

PTX . Parallel Thread Execution

MP . Multiprocessors

SAD . Sum of Absolute Difference

SDK . Software Development Kit

SDSP .Small Diamond Search Pattern

SP . stream processors

SIMD . Single Instruction, Multiple Data

LIST OF FIGURES 13

SIMT . Single Instruction, Multiple Threads

3SS . Three Step Search

Chapter 1

Introduction

1.1 General

H.264 (MPEG-4 Part 10/MPEG-4 AVC) is a standard for video compression, and is

currently one of the most commonly used formats for the recording, compression, and

distribution of high definition video. However, a lot more computation power is required

to encode the video, and it often takes hours to encode DVD-quality video clips in H.264

even on a high-performance desktop machine [1]. From all steps of video encoding, the

motion estimation function, which is known to be the most computationally intensive

section of the code. A motion estimation algorithm exploits redundancy between frames,

which is called temporal redundancy. A video frame is divide into macroblocks,each mac-

roblocks movement from a previous frame (reference frame) is represented as a vector,

called motion vector. Storing this vector and residual information instead of the complete

pixel information greatly reduces the amount of data used to store the video [2]. Motion

estimation require more than 75% of encoding time to reduce temporal redundancy [3].

In the past few years new heterogeneous architectures have been introduced in high-

performance parallel computing. Examples of such architectures include Graphics Pro-

cessing Units(GPUs). GPUs are small devices with hundreds of computing cores which

are designed for high performance computing. GPU computing is the use of a GPU

(graphics processing unit) as a co-processor to accelerate CPUs for general purpose sci-

entific and engineering computing. The GPU accelerates applications running on the

CPU by offloading some of the compute-intensive and time consuming portions of the

code. The rest of the application still runs on the CPU. From a users perspective, the

application runs faster because it is using the massively parallel processing power of the

GPU to boost performance. This is known as heterogeneous or hybrid computing [4].

14

CHAPTER 1. INTRODUCTION 15

The Compute Unified Device Architecture(CUDA) parallel computing platform provides

a set of abstractions that enable expressing fine-grained and coarse-grained data and task

parallelism into thousands of simultaneous threads. CUDA is a general purpose parallel

computing architecture with a new parallel programming model and instruction set ar-

chitecture that leverages the parallel compute engine in NVIDIA GPUs to solve many

complex computational problems in a more efficient way than on a CPU. CUDA comes

with a software environment that allows developers to use C as a high-level programming

language. CUDA core are three key abstractions a hierarchy of thread groups, shared

memories, and barrier synchronization that are simply exposed minimal set of language

extensions [5].

At this point, this thesis presents an implementation of a part of the motion estima-

tion algorithm in a GPU as a coprocessor to assist the Central Processing Unit (CPU).

Our Block Matching algorithms are optimized for CUDA by using a hundred number of

threads that can execute on parallel in GPU and can make an efficient use of the shared

memory to reduce global memory access.

1.2 Motivation of Project

As multicore processors become more pervasive in electronics products - PCs, mobile

phones, gaming systems, network equipments and now even medical devices - the de-

mands of developing software for these systems has become a primary concerns in the

electronics industry. The advantages of multicore architectures are many, such as higher

performance, lower power consumption lower cost and more flexibility but can be realized

only if the corresponding software is developed to unlock these benefits. Many software

developers in today’s electronics industry lack the skills to write software optimized for

multicore. Furthermore multicore architectures can become exponentially complex as

the number of cores increases, that is traditional means of development no longer scale.

The motivation behind doing this research is the need to develop a ”Block matching

algorithms for motion estimation of video compression technique MPEG-4AVC/H.264”

a more efficient and optimized way for multicore architecture using CUDA, which best

utilizes the available core and other resources on GPUs.

1.3 Objective of Study

The objective of the dissertation work can be summarized as:

CHAPTER 1. INTRODUCTION 16

• Study and configure CUDA for NVIDIA GPUs for the project work. Study the

architecture, programming model, memory model, execution model etc. of NVIDIA

GPUs. Next objective is to study CUDA, a new programming language used on

GPUs. We need to study basic APIs of CUDA as well as advance API used to

optimize the performance of any algorithm.

• The next objective is to study different block matching algorithms and implement

same on NVIDIA GPUs using CUDA. We need to alter the algorithm so that it

can be run in parallel. Next step is to choose the best API for our algorithm so

that algorithm can run in minimum time, and best utilize the available resources.

• Finally, the objective is to measure the time required for algorithms on CUDA and

compare the time with other C implementation, while preserving the video/image

quality, and estimation basic feature.

1.4 Scope of Work

The experimental setup, prepared for the dissertation work, includes installation of CUDA

on NVIDIA GPUs, on Ubuntu 11.10. A preliminary investigation includes the study

of GPUs, programming language CUDA, and CUDA APIs, which can be used for the

implementation and optimization of any algorithm. In this project we focus on the task of

parallelization of the algorithms rather than spending time on their implementation. For

that we need to manage the resources, the resources include the number of registers and

the amount of on-chip memory used per thread, number of threads per multiprocessor,

and global memory bandwidth. Out of the various estimation algorithms, the work

focuses on the detailed implementation of block matching algorithms of compression

technique on CUDA, and execution time comparison done with other C implementations.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2, Literature survey on CUDA describes history of CUDA. It also describes

CUDA Programming Model, Memory Architecture, Hardware implementation, CUDA

Occupancy Calculator, CUDA Visual Profiler,Performance Optimization Strategies, CUDA

Installation, Related Work etc...

Chapter 3, Motion Estimation of Video Compression describes overview of Video Com-

pression, Motion Estimation, Criteria for Motion Estimation, and Block Matching algo-

rithms.

CHAPTER 1. INTRODUCTION 17

Chapter 4, Implementation, describe CUDA implementation of Full search block match-

ing algorithm and Diamond search block matching algorithm.

Chapter 5, Implementation Results includes speedup rate analysis of Block Matching

algorithms on CUDA, and Compare the result with existing implementation on C. Im-

plementation Results also includes consistency checking for compressed video frames.

Chapter 6, Conclusion & Future Scope describes concluding remarks and scope for future

is presented.

Chapter 2

Literature Survey

2.1 Introduction to NVIDIA CUDA

NVIDIA introduced CUDA (Compute Unified Device Architecture), a general purpose

parallel computing architecture [5] with a new parallel programming model and instruc-

tion set architecture - that leverages the parallel compute engine in NVIDIA GPUs to

solve many complex computational problems in a more efficient way than on a CPU.

NVIDIA GPUs with the new Tesla unified graphics and computing architecture run

CUDA C programs and are widely available in laptops, PCs, workstations, and servers.

The CUDA model is also applicable to other shared-memory parallel processing architec-

tures, including multicore CPUs [6].

NVIDIA CUDA SDK has been designed for running parallel computations on the de-

vice hardware: it consist of a compiler, host and device runtime libraries and a driver API.

CUDA software stack is composed of several layers: a hardware driver (CUDA Driver), an

API and its runtime (CUDA Runtime), two higher-level mathematical libraries (CUDA

Libraries) of common usage as shown in figure 2.1.

GPU performance is influenced by the architectural organization of the hardware

platform. NVIDIA suggests that achieving the highest GPU occupancy and optimizing

the use of the memory hierarchy are the two main factors behind GPU performance

[7]. In fact, both of them are related since maximizing the occupancy can help to cover

latency during global memory loads. We present several experiments aimed at analyzing

their relative importance. Our results indicate that code that target efficient memory

usage are the major determinant of actual performance. Overall, they ensure the best

performance even if some resources remain un utilized. Therefore, maximizing occupancy

should be examined at a later stage in the compilation process, once data related issues

have been properly addressed.

18

CHAPTER 2. LITERATURE SURVEY 19

Figure 2.1: CUDA Software Stack

2.2 CUDA Hardware: Memory Model

CPU and GPU have separate memory spaces. CPU memory known as host memory

and GPU memory known as Device memory. CUDA offers different types of memories

with different configuration. The local, global, constant and texture spaces are regions of

device memory [5]. Each multiprocessor has following memory space as shown in figure

2.2

• Local Memory: is small volume of memory, which can be accessed only by one

streaming processor. The local memory space resides in device memory, so local

memory accesses have same high latency and low bandwidth as global memory ac-

cesses. Local memory accesses only occur for some automatic variables. Automatic

variables that the compiler is likely to place in local memory are [5]:

– Arrays for which it cannot determine that they are indexed with constant

quantities,

– Large structures or arrays that would consume too much register space,

– Any variable if the kernel uses more registers than available (this is also known

as register spilling).

• Global Memory: the largest volume of memory available to all multiprocessors

in a GPU, from 256 MB to 1.5 GB in modern solutions (and up to 4 GB in Tesla).

It offers high bandwidth, over 100 GB/s for top solutions from NVIDIA, but it

suffers from very high latencies (several hundred cycles). Non-catchable supports

general load and store instructions, and usual pointers to memory.

CHAPTER 2. LITERATURE SURVEY 20

Figure 2.2: CUDA Memory Model

Global memory resides in device memory and device memory is accessed via 32, 64,

or 128-byte memory transactions. These memory transactions must be naturally

aligned: Only the 32, 64, or 128-byte segments of device memory that are aligned to

their size (i.e. whose first address is a multiple of their size) can be read or written

by memory transactions.

• Shared Memory: is 16-KB memory shared between all streaming processors in a

multiprocessor. Because it is on-chip, the shared memory space is much faster than

the local and global memory spaces.

To achieve high bandwidth, shared memory is divided into equally-sized memory

modules, called banks, which can be accessed simultaneously. Any memory read or

write request made of n addresses that fall in n distinct memory banks can therefore

be serviced simultaneously, yielding an overall bandwidth that is n times as high

as the bandwidth of a single module.

• Constant Memory: is a 64 KB, read only memory for all multiprocessors. It’s

cached by 8 KB for each multiprocessor. The constant memory space resides in de-

vice memory. A constant memory request for a warp is first split into two requests,

one for each half-warp, that are issued independently. A request is then split into

CHAPTER 2. LITERATURE SURVEY 21

Memory Location Cached Access Scope

Register On-Chip NO Read/Write One Thread
Local Off-Chip NO Read/Write One Thread

Global Off-Chip No Read/Write All Threads + Host

Constant Off-Chip YES Read All Threads + Host

Texture Off-Chip YES Read All Threads + Host

Table 2.1: Characteristics of CUDA memories

as many separate requests as there are different memory addresses in the initial re-

quest, decreasing throughput by a factor equal to the number of separate requests.

The resulting requests are then serviced at the throughput of the constant cache in

case of a cache hit, or at the throughput of device memory otherwise. This memory

is rather slow latencies of several hundred cycles, if there are no required data in

cache.

• Texture Memory: space resides in device memory and is cached in texture cache,

so a texture fetch costs one memory read from device memory only on a cache miss,

otherwise it just costs one read from texture cache. The texture cache is optimized

for 2D spatial locality, so threads of the same warp that read texture addresses

that are close together in 2D will achieve best performance. Also, it is designed for

streaming fetches with a constant latency; a cache hit reduces DRAM bandwidth

demand but not fetch latency.

CHAPTER 2. LITERATURE SURVEY 22

2.3 CUDA Hardware: Execution Model

CUDA Execution model consist of Grid, ThreadBlocks, and Threads.

• Grid : GPU: An entire grid is handled by a single GPU chip.

• ThreadBlocks : MP: The GPU chip is organized as a collection of multiproces-

sors (MPs), with each multiprocessor responsible for handling one or more blocks

in a grid. A block is never divided across multiple MPs.

• Threads : SP: Each MP is further divided into a number of stream processors

(SPs), with each SP handling one or more threads in a block.

2.4 CUDA Programming Model

A CUDA program consists of one or more phases that are executed on either the host

(CPU) or a device such as a GPU. The GPU is viewed as a compute device : that is a

coprocessor to the CPU(host), has its own DRAM(device Memory), Runs many threads

in parallel [8] . Data parallel portion of application are executed on the device as kernels

which run in parallel on many threads. Difference between GPU and CPU thread are:

• GPU threads are extremely lightweight and requires very little creation overhead.

• GPU needs 1000s of threads for full efficiency where as multicore cpu needs only a

few.

A kernel is executed as a grid of thread blocks. A thread block is a batch of thread that

can cooperate with each other by efficiently sharing data through shared memory, and

synchronizing there execution for hazard free shared memory accesses. There is a limit

to the number of threads per block, since all threads of a block are expected to reside

on the same processor core and must share the limited memory resources of that core.

Blocks are organized into a one-dimensional or two-dimensional grid of thread blocks as

illustrated by figure 2.3. The number of thread blocks in a grid is usually dictated by the

size of the data being processed or the number of processors in the system. It must be

possible to execute thread block in any order, in parallel or in series. This independence

requirement allows thread blocks to be scheduled in any order across any number of

cores, enabling programmers to write code that scales with the number of cores. For

efficient cooperation, the shared memory is expected to be a low-latency memory near

each processor core (much like an L1 cache) and thread synchronization is expected to

be lightweight.

CHAPTER 2. LITERATURE SURVEY 23

Figure 2.3: CUDA Programming/Execution Model.

2.4.1 Executing Code on the GPU

Initially program execution start from CPU,serial portion of code are run on CPU and

parallel portion are transfer to GPU. it means computionally intensive part are transfer

to the GPU and are execute with number of threads. figure 2.4. shows execution on CPU

and GPU [9].

Program execution steps [5]:

1. First program execution start from CPU.

2. Allocate memory on host and device. for memory allocation on CPU, malloc()

and calloc() functions are used. for memory allocation on GPU, cudaMalloc() and

cudaMemset() functions are used. for example.

cudaMalloc(void **pointer, size_t nbytes)

cudaMemset(void *pointer, int value, size_t count)

3. Initialize data.

int n = 1024;

int nbytes = 1024*sizeof(int);

int *d_a = 0;

4. Copy form HOST to DEVICE using cudaMemcpy().

CHAPTER 2. LITERATURE SURVEY 24

Figure 2.4: Complete Programming Process on CPU and GPU

cudaMemcpy(void *dst, void *src, size_t nbytes,

enum cudaMemcpyKind direction);

• direction specifies locations device of src and dst.

• enum cudaMemcpyKind may be one of the following.

– cudaMemcpyHostToDevice

– cudaMemcpyDeviceToDevice

5. Executing code on GPU.

__global__ void assign2D(int* d_a, int w, int h, int value)

{

int iy = blockDim.y * blockIdx.y + threadIdx.y;

int ix = blockDim.x * blockIdx.x + threadIdx.x;

int idx = iy * w + ix;

d_a[idx] = value;

}

...

...

C functions knows as Kernels are executing on GPU with some restrictions.

• Can only access GPU memory

CHAPTER 2. LITERATURE SURVEY 25

• Must have void return type

• No variable number of arguments

• Not recursive

• No static variables

Function arguments automatically copied from CPU to GPU memory. C functions

can be declared with a qualifier:

• global : invoked by CPU and execute on GPU,cannot be called from GPU and

must return void

• device : called from other GPU functions,cannot be called from host (CPU).

code

• host : can only be executed by CPU, called from host

All global and device functions have access to following automatically defined vari-

ables.

• gridDim: This variable is of type dim3 and contains the dimensions of the

grid.

• blockIdx: This variable is of type uint3 and contains the block index within

the grid.

• blockDim: This variable is of type dim3 and contains the dimensions of the

block.

• threadIdx: This variable is of type uint3 and contains the thread index

within the block.

• WarpSize: This variable is of type int and contains the warp size in threads.

6. Lunching Kernel Kernel is lunch by following code:

kernel<<<dim3 grid, dim3 block>>>()

Execution configuration:

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block>>>(...);

kernel<<<32, 512>>>(...);

7. Copy form DEVICE to HOST using cudaMemcpy().

CHAPTER 2. LITERATURE SURVEY 26

cudaMemcpy(void *dst, void *src, size_t nbytes,

enum cudaMemcpyKind direction);

• direction specifies locations host of src and dst.

• enum cudaMemcpyKind is the following.

– cudaMemcpyDeviceToHost

8. Free HOST and DEVICE memory using free() and cudaFree().

Free(void *pointer)

cudaFree(void *pointer)

2.5 Performance Optimization Strategies

Performance optimization revolves around three basic strategies [5] :

• Maximize parallel execution to achieve maximum utilization

• Optimize memory usage to achieve maximum memory throughput

• Optimize instruction usage to achieve maximum instruction throughput

2.5.1 Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes as

much parallelism as possible and efficiently maps this parallelism to the various compo-

nents of the system to keep them busy most of the time.

Application Level

At a high level, the application should maximize parallel execution between the host, the

devices, and the bus connecting the host to the devices, by using asynchronous functions

calls and streams. It should assign to each processor the type of work it does best:

serial workloads to the host; parallel workloads to the devices [10]. For parallel execution

program is divided into threads, this threads need to share data with each other, there

are two cases:

• If this threads belong to same block, they should use syncthreads() and share data

through shared memory.

• If threads belong to different blocks, they must share data through global memory.

In this case two separate kernel invocations are required, one for writing to and one

for reading from global memory.

CHAPTER 2. LITERATURE SURVEY 27

The second case adds extra overhead of kernel invocations and also increase global mem-

ory traffic. Its occurrence should therefore be minimized by mapping the algorithm to the

CUDA programming model in such a way that the computations that require inter-thread

communication are performed within a single thread block as much as possible.

Device Level

At a lower level, the application should maximize parallel execution between the multi-

processors of a device. For devices of compute capability 1.x, only one kernel can execute

on a device at one time, so the kernel should be launched with at least as many thread

blocks as there are multiprocessors in the device. For devices of compute capability 2.x,

multiple kernels can execute concurrently on a device, so maximum utilization can also

be achieved by using streams to enable enough kernels to execute concurrently [5].

Multiprocessor Level

At an even lower level, the application should maximize parallel execution between the

various functional units within a multiprocessor. To maximize utilization, a GPU multi-

processor relies on thread-level parallelism to maximize utilization of its functional units.

Utilization is therefore directly linked to the number of resident warps. At every in-

struction issue time, a warp scheduler selects a warp that is ready to execute its next

instruction, if any, and issues the instruction to the active threads of the warp. The

number of clock cycles it takes for a warp to be ready to execute its next instruction is

called latency, and full utilization is achieved when the warp scheduler always has some

instruction to issue for some warp at every clock cycle during that latency period, or in

other words, when the latency of each warp is completely hidden by other warps. How

many instructions are required to hide latency depends on the instruction throughput.

The number of blocks and warps residing on each multiprocessor for a given kernel call

depends on the execution configuration of the call, the memory resources of the multipro-

cessor, and the resource requirements of the kernel. To assist programmers in choosing

thread block size based on register and shared memory requirements, the CUDA Software

Development Kit provides a spreadsheet, called the CUDA Occupancy Calculator, where

occupancy is defined as the ratio of the number of resident warps to the maximum num-

ber of resident warps. The performance of an application is also depends on the kernel

code. The number of threads per block should be chosen as a multiple of the warp size to

avoid wasting of computing resources with under-populated warps as much as possible.

CHAPTER 2. LITERATURE SURVEY 28

2.5.2 Maximize Memory Throughput

Memory optimizations are the most important area for performance. The goal is to

maximize the use of the hardware by maximizing bandwidth. Bandwidth is best served

by using as much fast memory and as little slow-access memory as possible. This section

discusses best way to set up data items to use the memory effectively.

Data Transfer between Host and Device

There are various ways to transfer data between host and device, which method provides

best performance depend on the type of application and type of data, the application has

to process.

Global Memory

The global memory space resides in device memory, so global memory accesses have high

latency and low bandwidth accesses and are subject to the requirements for memory

coalescing. To achieve high bandwidth we can use following options:

• Minimize data transfer between the host and the device:

Applications should be structure in such a way that minimize data transfer between

the host and the device.

• Group transfers:

Also, because of the overhead associated with each transfer, batching many small

transfers into a single large transfer always performs better than making each trans-

fer separately.

• Page-Locked Data Transfers:

On systems with a front-side bus, higher performance for data transfers between

host and device is achieved by using page-locked host. In addition, when using

mapped page-locked memory, there is no need to allocate any device memory and

explicitly copy data between device and host memory. Data transfers are implic-

itly performed each time the kernel accesses the mapped memory. For maximum

performance, these memory accesses must be coalesced as with accesses to global

memory. Assuming that they are and that the mapped memory is read or written

only once, using mapped page-locked memory instead of explicit copies between

device and host memory can be a win for performance.

Allocating too much page-locked memory can reduce overall system performance,

so we need to test our system and application to find their limits.

CHAPTER 2. LITERATURE SURVEY 29

Shared Memory

To achieve high bandwidth, shared memory is divided into equally-sized memory modules,

called banks, which can be accessed simultaneously. Any memory read or write request

made of n addresses that fall in n distinct memory banks can therefore be serviced

simultaneously, yielding an overall bandwidth that is n times as high as the bandwidth

of a single module.

Texture Memory

Textures are always read-only. You cannot write to a texture memory (which is actually

bound to global memory). Texture cache is present in every multi-processor. Texture

should be used when threads of a block accesses different areas of the bound-global

memory in a non-orderly fashion. However if they exhibit spatial locality (2D or 1D)

then you need to bind your texture in an appropriate way (1D or 2D) to take advantage.

here are cases where multiple blocks operating in a multi-processor taking advantage of

the caches done by the other concurrently executing block on that MP. When accessing

2D arrays in global memory, using the Texture Cache has many benefits, like filtering

and not having to care as much for memory access patterns. Textures can be faster, the

same speed, or slower than ”naked” global memory access. There are no general rules of

thumb for predicting performance using textures, as the speed up (or lack of speed up)

is determined by data usage patterns within your code and the texture hardware being

used.

2.5.3 Maximize Instruction Throughput

To maximize instruction throughput the application should :

• Minimize the use of arithmetic instructions with low throughput; this includes

trading precision for speed when it does not affect the end result, such as using

intrinsic instead of regular functions, single-precision instead of double-precision,

or using re-normalized numbers to zero.

• Reduce the number of instructions, for example, by optimizing out synchronization

points whenever possible.

2.6 CUDA Installation

CUDA installation consists of

1. Driver : Required component to run CUDA applications.

CHAPTER 2. LITERATURE SURVEY 30

2. CUDA Toolkit (compiler,libraries): The CUDA Toolkit is a C language de-

velopment environment for CUDA-enabled GPUs. The CUDA development

• NVCC compiler

• CUDA FFT and BLAS libraries for the GPU

• gdb debugger for GPU

• CUDA runtime driver is included into the standard NVIDIA driver

• NVCC Profiler

3. CUDA SDK (example codes): The CUDA Developer SDK provides examples

with source code to help

• Parallel bitonic sort

• Matrix multiplication

• Parallel prefix sum (scan) of large arrays

• CUDA BLAS and FFT library usage examples

• Device query etc

Figure 2.5: CUDA Software Development

As figure 2.5 shows, CUDA includes C/C++ software development tools, function li-

braries, and a hardware abstraction mechanism that hides the GPU hardware from de-

velopers. Although CUDA requires programmers to write special code for parallel pro-

cessing, it doesn’t require them to explicitly manage threads in the conventional sense,

which greatly simplifies the programming model. CUDA development tools work along

side a conventional C/C++ compiler, so programmers can mix GPU code with general-

purpose code for the host CPU [1].

CHAPTER 2. LITERATURE SURVEY 31

2.6.1 CUDA Compiler - NVCC

• Any source file containing CUDA language extensions (.cu) must be compiled with

nvcc.

• NVCC is a compiler driver works by invoking all the necessary tools and compilers

like cudacc, g++, cl etc

• NVCC can output:

– Either C code (CPU Code) - To be compiled with the rest of the application

using another tool.

– Or PTX object code directly.

• An executable with CUDA code requires:

– The CUDA core library (cuda)

– The CUDA runtime library (cudart)

Figure 2.6: CUDA Compiler

Figure 2.6 shows CUDAs compilation process. Source code written for the host CPU

follows a fairly traditional path and allows developers to choose their own C/C++ com-

piler, but preparing the GPUs source code for execution requires additional steps. Among

CHAPTER 2. LITERATURE SURVEY 32

the unusual links in the CUDA tool chain are the EDG preprocessor, which separates

the CPU and GPU source code; the Open64 compiler, originally created for Itanium;

and NVIDIAs PTX -to-Target Translator, which converts Open64s assembly- language

output into executable code for specific NVIDIA GPUs.

2.6.2 Build Configurations

• nvcc filename.cu[-o executable]

Builds release mode.

• nvcc -g filename.cu

Builds debug mode can debug host code but not device code.

• nvcc -deviceemu filename.cu

Builds device emulation mode.

All code runs on CPU, no debug symbols.

• nvcc -deviceemu -g filename.cu

Builds debug device emulation mode.

All code runs on CPU, with debug symbols.

Now following code find GPU device on machine.

// CUDA Device Query

#include <stdio.h>

// Print device properties

void printDevProp(cudaDeviceProp devProp)

{

printf("Major revision number:%d\n", devProp.major);

printf("Minor revision number:%d\n", devProp.minor);

printf("Name:%s\n", devProp.name);

printf("Total global memory:%u\n", devProp.totalGlobalMem);

printf("Total shared memory per block:%u\n", devProp.sharedMemPerBlock);

printf("Total registers per block:%d\n", devProp.regsPerBlock);

printf("Warp size: %d\n", devProp.warpSize);

printf("Maximum memory pitch: %u\n", devProp.memPitch);

printf("Maximum threads per block: %d\n", devProp.maxThreadsPerBlock);

for (int i = 0; i < 3; ++i)

printf("Maximum dimension %d of block: %d\n", i, devProp.maxThreadsDim[i]);

for (int i = 0; i < 3; ++i)

printf("Maximum dimension %d of grid: %d\n", i, devProp.maxGridSize[i]);

CHAPTER 2. LITERATURE SURVEY 33

printf("Clock rate: %d\n", devProp.clockRate);

printf("Total constant memory: %u\n", devProp.totalConstMem);

printf("Texture alignment: %u\n", devProp.textureAlignment);

printf("Concurrent copy and execution:%s\n",(devProp.deviceOverlap?"Yes":"No"));

printf("Number of multiprocessors: %d\n", devProp.multiProcessorCount);

printf("Kernel execution timeout:%s\n",(devProp.kernelExecTimeoutEnabled?Yes":"No"));

return;

}

int main()

{

// Number of CUDA devices

int devCount;

cudaGetDeviceCount(&devCount);

printf("CUDA Device Query...\n");

printf("There are %d CUDA devices.\n", devCount);

// Iterate through devices

for (int i = 0; i < devCount; ++i)

{

// Get device properties

printf("\nCUDA Device #%d\n", i);

cudaDeviceProp devProp;

cudaGetDeviceProperties(&devProp, i);

printDevProp(devProp);

}

printf("\nPress any key to exit...");

char c;

scanf("%c", &c);

return 0;

}

figure 2.7 shows output of above code.

2.6.3 CUDA Occupancy Calculator

CUDA Occupancy calculator used for finding occupancy of CUDA resources. Thread

instructions are executed sequentially, so executing other warps is the only way to hide

latencies and keep the hardware busy [11]. Occupancy = Number of warps running

concurrently on a multiprocessor divided by maximum number of warps that can run

concurrently.

CHAPTER 2. LITERATURE SURVEY 34

Figure 2.7: Device Query Output

• Limited by resource usage: 1.Registers 2.Shared memory

• Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

Facilitates coalescing

• More threads per block always not higher occupancy

• Granularity of allocation

Eg. compute capability 1.1 (max 768 threads/multiprocessor)

512 threads/block = 66

256 threads/block can have 100

• Heuristics

Minimum: 64 threads per block - Only if multiple concurrent blocks

192 or 256 threads a better choice -Usually still enough registers to compile and

invoke successfully.

In this figure 2.8 display the CUDA Occupancy Calculator. Which we can measure the

resource usage. Here we can input the resource usage like, number of thread blocks used,

number of registers per thread block and shared memory per block in bytes. So as per

the compatibility of GPU it gives the GPU occupancy of data like active threads per

multiprocessor, active warps per multiprocessor and thread blocks per multiprocessor.

CHAPTER 2. LITERATURE SURVEY 35

So we can get the occupancy of each multiprocessor. Also in this calculator, as per the

resource usage graphs are plotted for measuring the occupancy. Your chosen resource

usage is indicated by the red triangle on the graphs. The other data points represent the

range of possible block sizes, register counts and shared memory allocation.

Figure 2.8: CUDA Occupancy Calculator

CHAPTER 2. LITERATURE SURVEY 36

2.7 Related Work

Following recent work has been focused on GPU to perform ME in H.264 video encoding.

• In this work authors implemented a BMA with an FS over all possible candidate

vectors on a regular grid [12]. The multicore GPU implementation has two relevant

stages:

– Start a thread to work with quadruplet (k,l,m,n) where k and l are image block

identifiers and m and n are identifiers of one candidate displacement vectors.

Each thread will compute the jk,l(V m,n),defined as SAD, for the Bk,l block

and the displacement candidate, ,and store it to a global memory. So for each,

, block we will have a total of M*N threads computing all possible values of

Jk,l(Vm,n).

– Next a trivial thread is launched to find the minimum,Jk,l(Vm,n) , value over

m=1,2,....,M,n=1,2...,N,(M*N), , stored values. Global memory access is one

of the main GPU bottlenecks. To minimize this, in Code 1 we use two mech-

anisms: 1) the reference,It(i,j) , and target,It+1(i,j), images are stored in 2D

cached texture memory, 2) all other variables are stored in fast register mem-

ory associated with the processor, and only one write to global memory is done

at the thread end in order to store the calculated value of Jk,l(Vm,n).

The GPU execution time, for HDTV images, was 7.23 seconds whereas for CPU

implementation it was 8025.00 seconds or 2 hours 13 min 45 seconds, so the speedup

for processing images in HDTV resolution was almost 1110 fold.

• In this paper [13], author proposed a CUDA based parallelized approach to im-

plement the most time consuming H.264 coding process, FS motion estimation.

CUDA is a powerful GPU architecture, which offers parallel computation capabil-

ity through hundreds of highly decoupled processing cores to accelerate arithmetic

intensive applications. In proposed algorithm, whole full-pixel motion estimation

for a MB is integrated in a single CUDA kernel, parallel calculating and comparing

variable block-size SAD values. At the same time, this method takes full advantage

of high-speed on-chip memory of GPU, such as registers and shared memory to

minimize the amount of device DRAM access. Experimental results show that the

proposed approach can be 50 times faster than the traditional CPU implementation;

and even 4CIF sequences are close to real-time applications. For the performance

comparison author might not consider memory transfer for GPU to CPU.

CHAPTER 2. LITERATURE SURVEY 37

• Y Lin et al. [14] proposed a multi-pass algorithm to accelerate the motion esti-

mation on traditional GPU architecture. With the multi- pass method to unroll

and rearrange the multiple nested loops in motion estimation, about 2 times and 14

times speed-up can be achieved for integer-pixel ME and half-pixel ME respectively.

However, the multi-pass algorithm based on traditional GPU architecture cannot

take full use of the powerful computing resources of GPU.

• In [15] the authors were able to achieve 1.47 times speed up for H.264/AVC motion

estimation.A serial dependence between motion estimation of macro blocks in a

video frame is removed to enable parallel execution of the motion estimation code.

Although this modification changes the output of the program, it is allowed within

the H.264 standard.

• In [16] the authors were used texture memory to store current frame and reference

frame instead of global memory. The texture memory space is cached so a texture

fetch costs one memory read from device memory only on a cache miss, otherwise it

just costs one read from the texture cache. The source and reference frames are first

stored in texture memory in each iteration. This speeds up the memory transfer

for SAD-Calculation,while authors did not take advantage of shared memory to

preloaded the needed pixel values.

Chapter 3

Motion Estimation of Video

Compression

3.1 Introduction of Video Compression

In order to understand what ’Motion Estimation’ is, it is essential to first have an overview

of video encoding process of MPEG4 AVC/H.264 [2] [19]. MPEG4 AVC/H.264 thus has

the following scopes of video encoding:

• Step 1: Reduction of the Resolution

• Step 2: Motion Estimation

• Step 3: Discrete Cosine Transform (DCT)

• Step 4: Quantization

• Step 5: Entropy Coding

Among all video encoding steps, motion estimation is very time consuming step. from

JM reference 12 [3] we analyze that motion estimation require about 75% time of whole

compression technique. figure 3.1 shows time line chart of video encoding. Up to this

point we are considering only motion estimation step thus it is require lots of time for

comparison and computation.

38

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 39

Figure 3.1: A time line chart of MPEG4 compression technique

3.2 Motion Estimation

Video are basically consists of images/frames. figure 3.2 shows video with 5 frames. these

five frames having lots of similarity between frames and within frames [17]. There are

two redundancy reduction principles used:

• Spatial redundancy (Intra-frame prediction)

• Temporal redundancy (Inter-frame prediction)

Motion Estimation is a part of ’Inter-frame prediction’ technique. Inter coding refers

to a mechanism of finding ’co-relation’ between two frames (still images), which are not

far away from each other as far as the order of occurrence is concerned, one called the

reference frame and the other called current frame, and then encoding the information

which is a function of this ’co-relation’ instead of the frame itself. Motion Estimation is the

basis of inter coding, which exploits temporal redundancy between the video frames, to

scope massive visual information compression [18]. Changes between frames are mainly

due to the movement of objects. for the current processing frame find movement of

object form reference frame is known as motion estimation. as output it find motion

vectors of objects and it is used for further processing. The encoder then uses this

motion information to move the contents of the reference frame to provide a better

prediction of the current frame. This process is known as motion compensation (MC),

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 40

Figure 3.2: Video Frames

and the prediction so produced is called the motion-compensated prediction (MCP) or

the displaced-frame (DF). figure 3.3 shows process of motion estimation.

Figure 3.3: Motion Vector information

3.3 Block Matching Methods

In a typical Block Matching Algorithm, each frame is divided into blocks, each of which

consists of luminance and chrominance component blocks. Usually, for coding efficiency,

motion estimation is performed only on the luminance component. Each luminance block

in the present frame is matched against candidate blocks in a search area on the reference

frame. These candidate blocks are just the displaced versions of original block. The best

candidate block is found and its displacement (motion vector) is recorded. In a typical

interframe coder, the input frame is subtracted from the prediction of the reference frame.

Consequently the motion vector and the resulting error can be transmitted instead of the

original luminance block; thus interframe redundancy is removed and data compression

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 41

is achieved. At receiver end, the decoder builds the frame difference signal from the

received data and adds it to the reconstructed reference frames. figure 3.4 shows process

of block-matching algorithm. This algorithm is based on a translational model of the

Figure 3.4: Block-matching Motion Estimation

motion of objects between frames. It also assumes that all pixels within a block undergo

the same translational movement. There are many other ME methods, but BMME is

normally preferred due to its simplicity and good compromise between prediction quality

and motion overhead.

There are many other approaches to motion estimation, some using the frequency or

wavelet domains, and designers have considered scope to invent new methods since this

process does not need to be specified in coding standards. The standards need only

specify how the motion vectors should be interpreted by the decoder. Block Matching

(BM) is the most common method of motion estimation. Typically each macro block (

8× 8 pixels) in the new frame is compared with shifted regions of the same size from the

previous decoded frame, and the shift which results in the minimum error is selected as

the best motion vector for that macro block. The motion compensated prediction frame

is then formed from all the shifted regions from the previous decoded frame [20].

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 42

3.3.1 Block Matching

Block-matching motion estimation (BMME) is the most widely used motion estimation

method for video coding. Interest in this method was initiated by Jain and Jain and

he proposed a block-matching algorithm (BMA)in 1981 [17]. The current frame is first

divided into blocks of M ×N pixels. The algorithm then assumes that all pixels within

the block undergo the same translational movement. Thus, the same motion vector is

assigned to all pixels within the block. This motion vector is estimated by searching for

the best match block in a larger search window (double then the size of macroblocks),

pixels centered at the same location in a reference frame.

3.3.2 Matching Criteria for Motion Estimation

Inter frame predictive coding is used to eliminate the large amount of temporal and spatial

redundancy that exists in video sequences and helps in compressing them. In conventional

predictive coding the difference between the current frame and the predicted frame is

coded and transmitted. The better the prediction, the smaller the error and hence the

transmission bit rate when there is motion in a sequence, then a pixel on the same part

of the moving object is a better prediction for the current pixels. There are a number of

criteria to evaluate the goodness of a match. Three popular matching criteria used for

block-based motion estimation are

• Mean of Squared Error (MSE)

• Sum of Absolute Difference (SAD)

MSE Criterion

Considering (k-l) as the past references frame l ¿ 0 for backward motion estimation, the

mean square error of a block of pixels computed at a displacement (i, j) in the reference

frame is given by:

MSE(i, j) =
1

N2

N−1∑
n1=0

N−1∑
n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)]2

Consider a block of pixels of size N×N in the reference frame, at a displacement of, where

i and j are integers with respect to the candidate block position. The MSE is computed

for each displacement position (i, j),within a specified search range in the reference image

and the displacement that gives the minimum value of MSE is the displacement vector

which is more commonly known as motion vector.

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 43

The MSE criterion requires computation of N2 subtractions, N2 multiplications (squar-

ing) and (N2−1) additions for each candidate block at each search position. This is com-

putationally costly and a simpler matching criterion, as defined below is often preferred

over the MSE criterion.

SAD Criterion

Like the MSE criterion, the sum of absolute difference (SAD) too makes the error values

as positive, but instead of summing up the squared differences, the absolute differences

are summed up. The SAD measure at displacement (i, j) is defined as

SAD(i, j) =
1

N2

N−1∑
n1=0

N−1∑
n2=0

[s(n1, n2, k) − s(n1 + i, n2 + j, k − l)]

SAD find displacement vector of block with respect to current frame and reference

frame. The SAD criterion requires N2 computations of subtractions with absolute values

and additions N2 for each candidate block at each search position. The absence of

multiplications makes this criterion computationally more attractive and facilitates easier

for implementation.

3.3.3 Block Size

Important factor of the BMA is the block size. If the block size is smaller, it achieves

better prediction quality, because a smaller block size reduces the effect of the accuracy

problem.Since a smaller block size means that there are more blocks (and consequently

more motion vectors) per frame, this improved prediction quality comes at the expense

of a larger motion overhead. Most video coding standards use a block size of 16 × 16 as

a compromise between prediction quality and motion overhead. A number of variable-

block-size motion estimation methods have also been proposed in the literature. H.263

and MPEG AVC standards allows adaptive switching between block sizes of 16× 16 and

8×8 on an Macroblock (MB) basis. Motion compensation for each 16×16 macroblock can

be performed using a number of different block sizes and shapes. The original luminance

component of each macroblock (16×16) may be spilt into 4 kinds of size: 16×16, 16×8,

8 × 16, 8 × 8, as shown in figure 3.5 Each of the sub-divided regions is a macroblock

partition. If the 8 × 8 mode is chosen, each of the four 8 × 8 may be spilt into 4 kinds of

size: 8 × 8, 8 × 4, 4 × 8, 4 × 4. These partitions and sub-partitions compose to a large

number to a large number of possible combinations [21].

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 44

Figure 3.5: Macroblock sizes

3.3.4 Search Range

The maximum allowed search range, has a direct impact on both the computational

complexity and the prediction quality of the BMA. A small search range results in poor

compensation for fast-moving areas and consequently poor prediction quality. A large

search range, results in better prediction quality but leads to an increase in the compu-

tational complexity. A larger search range can also result in longer motion vectors and

consequently a slight increase in motion overhead. In general,search range is double then

the size of macroblock, so can get better compensation result with low computational

complexity.

3.3.5 Quality Judgment

The quality of a video scene can be determined using both objective and subjective

approaches. The most widely used objective measure is the Peak-Signal-to-Noise- Ratio

(PSNR) which is defined as:

PSNR = 10log10[
(peaktopeakvalueoforiginaldata)2

MSE
]

where the MSE is the Mean Square Error of the decoded frame and the original frame.

The peak value is 255 since the pixel value is 8 bits in size. The higher the PSNR,

the higher the quality of the encoding. The PSNR and bit-rate are usually conflicting,

the most appropriate point being determined by the application. Although PSNR can

objectively represent the quality of coding, it does not equal the subjective quality. Sub-

jective quality is determined by a number of human testers and a conclusion is drawn

based on their opinions. There exist cases for which high PSNR results in low subjective

quality. However, in most cases, PSNR provides a good approximation to the subjective

measure[2].

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 45

3.4 Block Matching Algorithms

• Full Search(Exhaustive Search (ES)) Full Search block matching algorithm, is

the most computationally expensive block matching algorithm of all. This algorithm

calculates the cost function at each possible location in the search window. As a

result of which it finds the best possible match and gives the highest PSNR amongst

any block matching algorithm. The obvious disadvantage to FS is that the larger

the search window gets the more computations and more compression it requires

[13]. figure 3.6 shows full search block matching algorithm.

Figure 3.6: Full Search Block Matching Algorithm

• Three Step Search (3SS) Three Step search algorithm starts with the search

location at the center and sets the step size say S = 4, for a usual search parameter

value of 7. It then searches at eight locations +/- S pixels around center(0,0). From

these nine locations searched so far select one having least cost and makes it the

new search center. It then sets the new step size S = S/2, and repeats similar search

for two more iterations until S = 1. At that point it finds the location with the

least cost function and the macro block at that location is the best match.It will be

used for best motion vector information [22][26]. figure 3.7 shows four step search

block matching algorithm.

• Four Step Search (4SS) Four Step search,pattern size S=2 at the first step,and

looks at 9 locations in a 5x5 window. If the least weight is found at the center of

search window the search jumps to fourth step. If the least weight is at one of the

eight locations except the center, then we make it the search origin and move to the

second step. The search window is still maintained as 5x5 pixels wide. Depending

on where the least weight location was, we might end up checking weights at 3

locations or 5 locations. Once again if the least weight location is at the center of

the 5x5 search window we jump to fourth step or else we move on to third step. The

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 46

Figure 3.7: Three Step Search Block Matching Algorithm

third is exactly the same as the second step. IN the fourth step the window size is

dropped to 3x3, i.e. S = 1. The location with the least weight is the best matching

macro block and the motion vector for that block [24][26]. figure 3.9 shows full

search block matching algorithm.

Figure 3.8: Four Step Search Block Matching Algorithm

• Diamond Search (DS) Diamond Search, where the search is diamond, and there

is no limit on the number of steps that the algorithm can take. DS uses two different

types of fixed patterns, one is Large Diamond Search Pattern (LDSP) and the other

is Small Diamond Search Pattern (SDSP). At the first step uses LDSP and if the

least weight is at the center location we jump to fourth step. The consequent steps,

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 47

except the last step, are also similar and use LDSP, but the number of points where

cost function is checked are either 3 or 5 and are illustrated in second and third

steps of procedure shown in Fig.9. The last step uses SDSP around the new search

origin and the location with the least weight is the best match. As the search

pattern is neither too small nor too big and the fact that there is no limit to the

number of steps, this algorithm can find global minimum very accurately. The end

result should see a PSNR close to that of ES while computational expense should be

significantly less [23]. figure 3.9 shows diamond search block matching algorithm.

Figure 3.9: Diamond Search Block Matching Algorithm

Figure 3.10: Comparison of Block Matching Algorithms [26]

Figure 3.10 shows the average of search points per macroblock for tested sequences ob-

tained for a search window size of 7x7. While the ES test around 205 search points per

macro-block, the other ME algorithms accomplish a good performances with a higher

CHAPTER 3. MOTION ESTIMATION OF VIDEO COMPRESSION 48

speed-up ratio. For all algorithms, even if the number of comparison required per macro-

block is clearly reduced by reference to ES, an average of 15 search points for DS, so we

conclude that ES(Full Search) is very time consuming and DS is related require less time.

Figure 3.11: Average values of PSNR (dB) Block Matching Algorithms [26]

Figure shows 3.11 average values of PSNR obtained for each video sequence. Results

demonstrate that the algorithm DS have nearly same results as the ES algorithm for the

four sequences and achieves consistent improvement in PSNR over the TSS algorithm.

improvement in PSNR over the TSS algorithm. Quality of FS and DS are relatively the

same still FS require more time then DS. so as part of thesis we implemented worst case

and best case of block matching algorithm using CUDA.

Chapter 4

Implementation

4.1 Full Search Block Matching Algorithm

Following code shows serial C implementation:

for(rows of macro blocks)

{

for(columns of macro blocks)

{

for(rows of template)

{

for(columns of template)

{

SAD computation;

SAD comparison; (Find Minimum SAD)

}

}

}

}

For parallel CUDA implementation we drawn two approach, one kernel approach and

three kernel approach. with threads and threadblock configuration we used different types

of memory for further optimization. CUDA having different types of memories, to use

texture memory for image reading, the image data needs to be bind to a texture.Location

of image remains off-chip memory,only a type of memory will change.Texture memory is

read-only and cache so first data loaded into texture memory. in block matching algorithm

data will be re-use within threadblock, so use of texture give better performance then

global memory. off-chip shared memory is faster then global memory. access speed of

49

CHAPTER 4. IMPLEMENTATION 50

shared memory is same as registers. here shared memory used when data is re-used

within threads in a threadblock. Also, the shared memory can be used (together with

a synchronization barrier) to communicate data over threads, as is done for parallel

reduction. and shared memory can be used as an extension to the register file, providing

more storage space.

4.1.1 One Kernel Approach

First frame are divide equal size of marcroblocks known as candidate block. choose

reference block size for example 16×16 pixels. These blocks are mapped to threadblocks,

so number of threads are equals to the number of reference blocks. Now each threadblock

represent all processing part of reference block. following steps are performed in one

kernel approach.

• Now task of each thread are calculate SAD value,comparing candidate blocks with

reference blocks. In this way, the reference block is stored once in fast shared

memory and can be shared among each thread. In order to do so, each thread loads

zero or more pixels from the reference block into the shared memory.

• After the first step all threads have SAD value. so total SAD values are equal to

number of threads in threadblocks. Now find minimum SAD value from all SAD

in a threadblocks,By using parallel reduction find minimum SAD value from all,

this method known as Tree Structure Motion Estimation. As the starting of the

parallel reduction is half the number of candidate blocks, half of the threads are

completely idle during the whole task, while other threads are partially idle. The

shared memory is used again here, this time to communicate all the resulting SAD

values and make the comparisons. Apart from the shared memory, grouping threads

into threadblocks makes synchronization between threads possible.

• After finding minimum SAD candidate, values are returns to intermediate frames.

Ideally, one thread should write one pixel,the number of threads in a threadblock

cannot change within one kernel, it is equal to the number of candidate blocks and

not to the number of pixels in a reference block. so at time of parallel reduction

some threads will me idles.

Parallel CUDA implementation

for all threadblocks

for all threads

SAD_calculation = SAD(reference block , candidate block)

CHAPTER 4. IMPLEMENTATION 51

end

Minimum_SAD = parallelReduction (SAD_calculation)

for all threads

writedata(Minimum_SAD)

end

end

Drawback of one kernel approach

One kernel is designed with three steps, so kernel having bug task to do. while CUDA

programming guide [5] suggest small kernel with hundreds of threads rather than few big

threads. we cannot change threads within kernel so in the second and third step some

threads will be idle and some. this drawback resolved by three kernel approach.

4.1.2 Three Kernel Approach

This approach designed three kernel having small task rather than one kernel with big

task. same as one kernel approach, first frame are divide equal size of marcroblocks

known as candidate block. choose reference block size for example 16 × 16 pixels. These

blocks are mapped to threadblocks. following are pseudo-code for three kernel approach.

Parallel CUDA implementation

for all reference blocks

CUDAkernel1()

CUDAkernel2()

CUDAkernel3()

end

Steps for processing

• CUDAKernel1: Now, each SAD value is calculated by one threadblock , which is

divided into threads according to the number of pixels in a candidate block. Each

thread has a light weight task, calculating one absolute difference value between

the reference block and its candidate block. When all threads calculated their

absolute difference value, the sum must be taken to obtain the SAD value. This is

done using parallel reduction The goal of the first kernel is to obtain the required

4x4 SAD costs, which are needed to build the structured motion tree in the next

kernel. search area are double then size of macro block. The search area positions

distribution follows a spiral pattern A GPU thread is generated for each position in

CHAPTER 4. IMPLEMENTATION 52

the search area for each MB in a frame. 256 GPU threads are grouped into a GPU

thread block, obtaining the SAD costs for correlative positions inside the search

area; one thread block calculates the SAD costs for positions 0-255, another for

positions 256-511 and so on. GPU threads use 16 registers and no shared memory,

obtaining a 100% GPU occupancy factor. The SAD value is obtained for 4x4 blocks,

so each MB is divided into sixteen 4x4 blocks for each search area, and each thread

calculates the 16 4x4 SAD costs of its associated position. These 16 SAD value are

the basic data to build the structured motion tree in the next step, and they are

stored in the GPU global memory. following are CUDAkernel1 code.

//CUDAkernel 1

for all threadBlocks

for all threads

absolute difference_4x4 (referenceblock , candidateblock)

end

sum of absolute difference = parallelreduction (absolute difference)

end

• CUDAKernel2: Result of kernel 1 is used by kernel 2. the second kernel is

to build the structured motion tree, obtaining in this way the SAD costs for all

subpartition. kernel 2 makes a first reduction of the generated data. As input,

kernel2 takes the motion information of 16 4x4 blocks of a MB for 64 positions

and produce the motion information for all partition combinations, and reduces the

amount of information, obtaining the best motion vector for each subpartition of

the 64 positions. so here, 64 GPU threads are grouped into a thread block, each

of them building the SAD costs for a position for all subpartitions. Intermediate

results are stored in multiprocessor shared memory. following are CUDAkernel2

code.

//CUDAkernel 2

for all threads within threadblock

writedata_8x8(Minimum_SAD)

• CUDAKernel3: In order to obtain the motion information for the 4x8 and 8x4

subpartitions it is only necessary to add 2 4x4 SAD costs, for the 8x8 partitions it

is only necessary to add 2 4x8 SAD costs, for the 8x16 and 16x8 partitions it is only

necessary to add 2 8x8 SAD costs, and finally to obtain the motion information

for the 16x16 partition it is only necessary to add 2 8x16 SAD costs. Intermediate

results for all partitions/subpartitions are stored in the global memory. after all

CHAPTER 4. IMPLEMENTATION 53

three kernel execution finally SAD value calculated by GPU will copy form DEVICE

to HOST. following are CUDAkernel3 code.

//CUDAkernel 3

for all threads within threadblock

writedata_16x16(Minimum_SAD)

4.2 Diamond Search Block Matching Algorithm

4.2.1 Two Kernel Approach

For diamond search algorithm we drawn 2 kernel approach. here we designed 2 kernel,

one for SAD calculation of LDSP and SDSP pattern, and second find minimum SAD

from first kernel result. with threads and threadblock configuration we used different

types of memory for further optimization. CUDA having different types of memories, to

use texture memory for image reading, the image data needs to be bided to a texture.

Location of image remains off-chip memory,only a type of memory will change. Tex-

ture memory is read-only and cache so first data loaded into texture memory. in block

matching algorithm data will be re-use within threadblock, so use of texture give better

performance then global memory. off-chip shared memory is faster then global memory.

access speed of shared memory is same as registers. here shared memory used when

data is re-used within threads in a threadblock. Also, the shared memory can be used

(together with a synchronization barrier) to communicate data over threads, as is done

for parallel reduction. and shared memory can be used as an extension to the register

file, providing more storage space.

Steps for processing

• CUDAkernel1: Every threads in threadblock loads its candidate vector from off-

chip memory. for candidate vector perform blockmatching with shared memory.

then synchronize all threads and continue with one thread. then make summation

of all threads and result stored in global memory.

• CUDAkernel2: like full search code, make parallel reduction for finding best

candidate that will become motion information.

Finally motion information calculated by GPU will copy form DEVICE to HOST.

Chapter 5

Implementation Results

5.1 Test Video and Machine Configuration

We have used some video frames for testing of our system. To measure the timing of CPU

and GPU implementation, we have chosen very small video frame and big video frame

for testing, still big video frame are useful to get reasonable time value. These video

frame are taken from https://trace.eas.asu.edu/yuv/. we perform different type of

analysis based on its values. The evaluation of the sample can be done in several ways:

• The speedup rate analysis : Each implementation outputs the pure process-

ing timing for input/output and motion estimation. The speedup rate can be

measured as the ratio of timings of reference CPU implementation and of CUDA

implementation.

• Consistency Checking: The consistency checking is the assurance that both

CPU and GPU (CUDA) implementations of the same approach produce the same

output given the same input. To compare the performance of implementation by

considering both estimation quality and computation time, we use, for each test

sequence, the average value of the obtained PSNR (given in 3.3.5). we checked for

PSNR value of CPU implementation and of CUDA implementation, by using MSU

Video Quality Measurement Tool, we achieved approximate same PSNR value of

both implementation.

54

https://trace.eas.asu.edu/yuv/

CHAPTER 5. IMPLEMENTATION RESULTS 55

Processor Intel i3-550

Clock Speed 3.2GHz
System Type 64 bit OS

RAM 6GB

Cores 2

OS Ubuntu 11.10

Table 5.1: CPU Configuration

Processor Tesla C2070

CUDA Driver Version CUDA4.0

Global Memory 4096 MB

Shared Memory per Threadblock 40152Bytes

Number of Thread per Threadblock 1024

GPU Clock Speed 1.15GHz

CUDA Cores 448

Multiprocessors 14(each have 32 cores)

OS Ubuntu 11.10

Table 5.2: GPU Configuration

Table 5.1 and 5.2 shows CPU and GPU configuration, we used to test application. In

this section, we present evaluation results of the proposed CUDA based implementation

in comparison with CPU based implementations.

CHAPTER 5. IMPLEMENTATION RESULTS 56

5.2 Speedup Rate Analysis

We have calculated the processing time for input/output and computation time on GPU

also compute total processing time including memory transfer time for CPU and GPU

version. At least, we have a look at how fast the different parts of the motion estimation

are running on different CPU implementation and also on the GPU (CUDA) implemen-

tation.

CHAPTER 5. IMPLEMENTATION RESULTS 57

Platform Execution Time Speed Up

CPU 3.00s -

GPU One Kernel Approach 1.43s 2.1

GPU Three Kernel Approach 1.32s 2.3

Table 5.3: Performance of Full Search Block Matching Algorithm

Figure 5.1: Performance Chart of Full Search Block Matching Algorithm

Performance of Full Search Block Matching Algorithm are given on table 5.3. perfor-

mance is measured with video frame of size 1280× 720. Naive sequential implementation

of the algorithm is executed on a mid-range CPU, configuration given in table 5.1. naive

serial implementation extended with CUDA, the usage of the texture cache, parallel

control, the grouping of pixels and the usage of shared memory. parallel CUDA imple-

mentation of the algorithm is executed on a high range GPU,configuration given in table

5.2. by using one kernel approach we achieved 2.1 speed up as compared to CPU. and

by using three kernel approach we achieved 2.3 speed up as compared to CPU.

CHAPTER 5. IMPLEMENTATION RESULTS 58

Platform Execution Time Speed Up

CPU 0.180s -

GPU Two Kernel Approach 0.055s 3.36

Table 5.4: Performance of Diamond Search Block Matching Algorithm

Figure 5.2: Performance Chart of Diamond Search Block Matching Algorithm

Performance of Diamond Search Block Matching Algorithm are given on table 5.4.

performance is measured with video frame of size 1280 × 720. Naive sequential imple-

mentation of the algorithm is executed on a mid-range CPU, configuration given in table

5.1. naive serial implementation extended with CUDA, the usage of the texture cache,

parallel control, the grouping of pixels and the usage of shared memory. Parallel CUDA

implementation of the algorithm is executed on a high range GPU,configuration given in

table 5.2. by using two kernel approach we achieved 3.36 speed up as compared to CPU.

CHAPTER 5. IMPLEMENTATION RESULTS 59

Video Frame Size CPU Time GPU Time Speed Up

1280 × 720 0.185s 0.055s 3.36

512 × 512 0.06s 0.019s 3.15

176 × 144 0.0056s 0.0036s 1.55

Table 5.5: Performance comparison of Diamond Search with different Video Frame size

Figure 5.3: Performance chart of Diamond Search with different Video Frame size

Performance of Diamond Search Block Matching Algorithm with different video frame

size are given on table 5.5. performance is measured with large video frame of size

1280 × 720, medium video frame size 512 × 512 and small video frame size 176 × 144.

with small frame size we achieved 1.55 speed up, while for medium frame size achieved

3.15 and for large video frame size achieved 3.36 speedup.

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

Motion estimation constitutes one of the most time consuming and compute intensive

parts of video compression. For motion estimation require lots of SAD calculation and

compression. as part of dissertation we implemented Full search and Diamond search

block matching algorithms,in full search algorithm whole full-pixel motion estimation for a

MB is integrated in a one CUDA kernels and three CUDA kernels, parallel calculating and

comparing variable block-size SAD values. While in diamond search algorithm motion

estimation for a MB is integrated in a two CUDA kernels. At the same time, this method

takes full advantage of high-speed on-chip memory of GPU, such as registers and shared

memory to minimize the amount of device DRAM access. Experimental results show that

the proposed full search algorithm achieved 2.3 speedup and diamond search algorithm

achieved 3.36 speed up as compare to traditional CPU implementation.

6.2 Future Work

In the future we intend to explore other block based motion estimation algorithms like

TSS, 4SS, on the GPU architecture using CUDA and compare the portability of all the

algorithms on the GPU architecture. also we intend to explore 3D video compression

standard in CUDA.

60

Appendix A

List of Publication

1. Chhaya patel, Block Matching Algorithm on CUDA Multicore Processors

of the 1st National Conference on Emerging Vistas on Technology in 21st century

NCEVT12, organized by Gujarat Technological University, Ahmedabad, India, 14-

15 April 2012. published in the special issue of IJTE and ISTE website

http://www.isteonline.in/. ISSN No: 0971-3034.

• Awarded the Best Research Paper at First Position in CSE/IT track.

• Awarded the Best Presentation during Conference at First Position in CSE/IT

track.

2. Chhaya patel, FullSearch Motion Estimation on Multicore CUDA Archi-

tecture of the 1st National Conference on Advances in Engineering and Technology

NCAVT12, organized by Kalol Institute of Technology & Research Centre, Kalol,

India, 09-10 March 2012.

• Awarded the Best Research Paper at First Position in CSE/IT track.

61

http://www.isteonline.in/

References

[1] Ang, P.H.; Ruetz, P.A.; Auld, D.Video compression makes big gains Spectrum, IEEE

Volume 28, Issue 10, Oct. 1991 Page(s):16 - 19

[2] Iain E G Richardson, H.264 / MPEG-4 Video Compression Video Coding for Next-

generation Multimedia:The Robert Gordon University, Aberdeen, UK; British Li-

brary Cataloguing in Publication Data ;ISBN 0-470-84837-5

[3] Karsten Shring. H.264/AVC Software Coordination.

http://iphome.hhi.de/suehring/tml/.

[4] W.-c. Feng, D. Manocha. ”High-performance computing using accelerators”. Parallel

Computing,vol 33, n. 10-11, pp 645-647, November 2007.

[5] NVIDA, CUDA Compute Unified Device Architecture-Programming Guide, Version

4.0, August 2009.

[6] Shane Ryoo , Christopher I. Rodrigues , Sara S. Baghsorkhi , Sam S. Stone , David

B. Kirk , Wen-mei W. Hwu, Optimization principles and application performance

evaluation of a multithreaded GPU using CUDA, Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, February

20-23, 2008, Salt Lake City, UT, USA.

[7] Javier Setoain1, Christian Tenllado1, Manuel Arenaz, and Manuel Prieto1, ”To-

wards Automatic Code Generation for GPU architectures”, Computer Architec- ture

Group, Department of Electronics and Systems, University of A Coruna, Spain.

[8] B. R. Neha Patil, ”Fast and parallel implementation of image processing algo- rithm

using cuda technology on gpu hardware”, tech. rep., Department of Elec- trical and

Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY

12180-3590.

[9] D. L. N. Research, ”nvidia gpu architecture & implications”, NVIDIA Corporation

2007.

62

REFERENCES 63

[10] N. P. Karunadasa & D. N. Ranasinghe, ”On the Comparative Performance of Par-

allel Algorithms on Small GPU/CUDA Clusters”, University of Colombo School of

Computing, Sri Lanka,2008

[11] JAshwin Aji, Mayank Daga, and Wuchun Feng. Bounding the Effect of Partition

Camping in GPU Kernels. In ACM International Conference on Computing Frontiers

(To appear), 2011.

[12] Francesc Massanes, Marie Cadennes and Jovan G. Brankov, ”CUDA implementa-

tion of a block-matching algorithm for Multiple GPU cards”, Illinois Institute of

Technology, Medical Imaging Research Center, Chicago IL 60616, USA

[13] Jiao Liangbao, Zhou Jing, Shu Xiao,”Parallelized Block Match Algorithm on Multi-

core Processors”,International Journal of Advancements in Computing Technology

Volume 3, Number 6, July 2011

[14] Y. Lin, P. Li, C. Chang, C. Wu, Y. Tsao, and S. Chien. ”Multi-Pass algorithm

of motion estimation in video encoding for generic GPU”, In Proceedings of IEEE

International Symposium.

[15] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.Stone, David B.

Kirk, and Wen-mei W. Hwu, ”Optimization principles and application performance

evaluation of a multithreaded gpu using cuda”, In PPoPP ’08: Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel program-

ming, New York, NY, USA, 2008. ACM., pp. 73-82.

[16] Dishant Ailawadi, Milan Kumar Mohapatra, Ankush Mittal, ”Frame-Based Par-

allelization of MPEG-4 on Compute Unified Device Architecture (CUDA)”, De-

partment of Electronics & Computer Engineering, Indian Institute of Technology

Roorkee, India.

[17] J. R. Jain, A. K. Jain, Displacement Measurement and Its Application in Interframe

Image Coding, IEEE Trans. Communications, vol. COM-29, no. 12, pp. 1799-1808,

Dec. 1981.

[18] Y.-C. Lin, S.-C. Tai, Fast Full-Search Block-Matching Algorithm for Motion-

Compensated Video Compression, IEEE Trans. Communications, vol. 45, no. 5,

pp. 527-531, May 1997.

[19] Yun Q.Shi and Huifang Sun, Image and Video Compression for Multimedia Engi-

neering: Fundamentals, Algorithms, and Standards, CRC press, 2000.

REFERENCES 64

[20] T. Ha, S. Lee, and J. Kim, Motion compnesated frame interpoaltion by new block-

based motion estimation algorithm, IEEE Trans. Consum. Electron., vol. 50, no. 2,

pp. 752759, May 2004.

[21] B.Liu and A.Zaccarin, New fast algorithms for the estimation of block motion vec-

tors, IEEE Trans. Circuits Syst. Video technology, Vol.3, pp.440445,Dec 1995.

[22] R. Li, B. Zeng, and M. L. Liou, A new three-step search algorithm for block motion

estimation, IEEE Trans. Circuits Syst. Video Technol., vol. 4, pp. 438442, Aug. 1994.

[23] S. Zhu and K.-K. Ma, A new diamond search algorithm for fast blockmatchingmo-

tion estimation, in Proc. 1997 Int. Conf. Information Communication and Signal

Processing (ICICS), vol. 1, Sept. 9-12, 1997,pp.292-296.

[24] L. M. Po and W. C. Ma, A novel four-step search algorithm for fast block motion

estimation,IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp. 313317, June 1996.

[25] A. Barjatya, ”Block Matching Algorithms for Motion Estimation”, in Technical Re-

port, Utah State University (2004).

[26] F. BENBOUBKER, F. ABDI and A. AHAITOUF, ”Shape-Adaptive Motion Es-

timation Algorithm for MPEG-4 Video Coding”, IJCSI International Journal of

Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010

List Of Useful Web-sites

[1] developer.nvidia.com/cuda-downloads

[2] http://ixbtlabs.com/articles3/video/cuda-1-p1.html

[3] http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/

NVIDIA_CUDA_Programming_Guide_2.1.pdf

[4] http://www.nvidia.com/object/cuda_get.html http://www.nvidia.com

[5] http://forums.nvidia.com/index.php?showtopic=181472

[6] http://en.wikipedia.org/wiki/Inter_frame

[7] http://gpucoder.livejournal.com/990.html

[8] https://sites.google.com/site/x264cuda/

[9] http://developer.nvidia.com/gpu-computing-webinars

[10] http://en.wikipedia.org/wiki/Inter_frame

[11] http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

[12] http://www.ece.cmu.edu/~ee899/project/deepak_mid.htm

[13] https://github.com/cancan101/h.264-cuda/blob/master/encoder/pyramid/

cuda/cuda-me.cu

[14] http://www.r-tutor.com/gpu-computing/cuda-installation/cuda4.0-ubuntu

[15] http://www.ubuntugeek.com/howto-install-nvidia-drivers-manually-on-ubuntu-10-04-lucid-lynx.

html

[16] developer.nvidia.com/cuda-toolkit-40

[17] https://trace.eas.asu.edu/yuv/

65

developer.nvidia.com/cuda-downloads
http://ixbtlabs.com/articles3/video/cuda-1-p1.html
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/ docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/ docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com
http://forums.nvidia.com/index.php?showtopic=181472
http://en.wikipedia.org/wiki/Inter_frame
http://gpucoder.livejournal.com/990.html
https://sites.google.com/site/x264cuda/
http://developer.nvidia.com/gpu-computing-webinars
http://en.wikipedia.org/wiki/Inter_frame
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://www.ece.cmu.edu/~ee899/project/deepak_mid.htm
https://github.com/cancan101/h.264-cuda/blob/master/encoder/pyramid/cuda/cuda-me.cu
https://github.com/cancan101/h.264-cuda/blob/master/encoder/pyramid/cuda/cuda-me.cu
http://www.r-tutor.com/gpu-computing/cuda-installation/cuda4.0-ubuntu
http://www.ubuntugeek.com/howto-install-nvidia-drivers-manually-on-ubuntu-10-04-lucid-lynx.html
http://www.ubuntugeek.com/howto-install-nvidia-drivers-manually-on-ubuntu-10-04-lucid-lynx.html
developer.nvidia.com/cuda-toolkit-40
https://trace.eas.asu.edu/yuv/

	Certificate
	Abstract
	Acknowledgement
	Contents
	List of Tables
	List of Figures
	Abbreviation Notation and Nomenclature
	Introduction
	General
	Motivation of Project
	Objective of Study
	Scope of Work
	Thesis Organization

	Literature Survey
	Introduction to NVIDIA CUDA
	CUDA Hardware: Memory Model
	CUDA Hardware: Execution Model
	CUDA Programming Model
	Executing Code on the GPU

	Performance Optimization Strategies
	Maximize Utilization
	Maximize Memory Throughput
	Maximize Instruction Throughput

	CUDA Installation
	CUDA Compiler - NVCC
	Build Configurations
	CUDA Occupancy Calculator

	Related Work

	Motion Estimation of Video Compression
	Introduction of Video Compression
	Motion Estimation
	Block Matching Methods
	Block Matching
	Matching Criteria for Motion Estimation
	Block Size
	Search Range
	Quality Judgment

	Block Matching Algorithms

	Implementation
	Full Search Block Matching Algorithm
	One Kernel Approach
	Three Kernel Approach

	Diamond Search Block Matching Algorithm
	Two Kernel Approach

	Implementation Results
	Test Video and Machine Configuration
	Speedup Rate Analysis

	Conclusion and Future Scope
	Conclusion
	Future Work

	List of Publication
	References
	List Of Useful Web-sites

