
FPGA BASED VIDEO WATERMARKING

BY

PRIYANKA RAVAL

10MCEC30

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2012



FPGA BASED VIDEO WATERMARKING

Project Report

the following student has successfully completed the project

within the given duration in

Master of Technology in Computer Science and Engineering

By

Priyanka Raval

10MCEC30

Guided by

Dr. S.N.Pradhan

Program Coordinator

Department of Computer Engineering

Nirma University

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2012



iii

Declaration

This is to declare that this work has not been submitted elsewhere for the use of

taking diploma or degree certification. I also here by declare that this is my own

work and due acknowledgements and references are cited where ever needed.

Priyanka R. Raval



iv

Certificate

This is to certify that the Major Project entitled ”FPGA Based Video Watermark-

ing” submitted by Priyanka R. Raval(10MCEC30), towards the partial fulfillment of

the requirements for the degree of Master of Technology in Computer Science and

Engineering of Nirma University, Ahmedabad is the record of work carried out by her

under my supervision and guidance. In my opinion, the submitted work has reached

a level required for being accepted for examination. The results embodied in this

major project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Dr. S.N.Pradhan Prof. D.J.Patel

Guide & PG Coordinator HOD, Professor,

Computer Science & Engg. Department, Computer Science & Engg. Department,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr K Kotecha

Director,

Institute of Technology,

Nirma University,Ahmedabad



v

Acknowledgements

With immense pleasure, I would like to present this project report on ’FPGA

Based Video Watermarking’. I am very thankful to all those who helped me for the

successful completion of this Seminar and for providing valuable guidance throughout

the project work.

I would first of all like to offer thanks to Dr. S.N.Pradhan, Program Coor-

dinator, Professor & Guide, Institute of Technology, Nirma University, Ahmedabad

whose keen interest and excellent knowledge base helped me to direct on right line of

thought. His constant support and interest in the subject equipped me with a great

understanding of different aspects of the required architecture for the work.

I am thankful to Prof. Samir Patel who has guided me for watermarking aspects

and helped to narrow down the problem definition. I am also thankful to Asst. Prof.

Aakash Meckwan, EC Department, Nirma Uinversity, who have solved various dif-

ficulties related to electronics hardware and guided me for programming on FPGA kit.

I would like to express my hearty thanks and indebtedness to my parents Mrs.

Daxa Raval & Dr. Rajesh Raval for their continuous encouragement throughout

the course and have always given me a real example of ’Vidya Dadati Vinayam’. They

gave me an opportunity to do my thesis work and provide all resources required for

my project work.

Last but not least I am so much thankful to God for standing with me in every

movement of my life and using me as instrument for his wonderful and divine tasks.

- Priyanka Raval

10MCEC30



vi

Abstract

With the availability of web cameras, high resolution mobile phones and animation

creating softwares, video contents are easy to be created. Various video contents like

movies, video clips, audio-visual chat recordings, games are getting more and more

popularity over internet and other networks. Wide usage of video content demands

effective provision of content ownership and copyright protection.

An effective video processing software should process 24 to 30 frames per second

and deal with the complexity of video watermarking algorithm to produce outcome

with a reliable speed. In real time video applications, coping up with the speed and

complexity makes video watermarking a challenging job.

Most of the research to date for video watermarking has been performed using

general purpose processor, application specific processors and DSP processors too.

However as FPGA’s have grown in capacity, improved in performance and de-

creased in cost they have become a viable solution for performing computationally in-

tensive task with the ability to tackle applications for custom chips and programmable

DSP devices. Though this involves intensive research on the hardware implementa-

tion of video watermarking algorithm.

This project work is mainly based on implementing video watermarking algorithms

in FPGA and come up with an effective embedded solution for video ownership and

copyright protection.



Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

LIST OF ABBREVIATIONS 2

1 Introduction 4
1.1 Watermark Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Survey 7
2.1 Literature Survey for Video Watermarking . . . . . . . . . . . . . . . 7

2.1.1 Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Types of Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Studied Watermarking Techniques . . . . . . . . . . . . . . . . 11
2.1.5 Challenges in Video Watermarking . . . . . . . . . . . . . . . 12
2.1.6 Selected Visible Watermarking Technique . . . . . . . . . . . . 13

2.2 Literature Survey for FPGA Technology . . . . . . . . . . . . . . . . 15
2.2.1 Analysis for Logic Capacity of FPGA . . . . . . . . . . . . . . 15
2.2.2 Exploring FPGA Architecture . . . . . . . . . . . . . . . . . . 17
2.2.3 Exploring Spartan 6 FPGA Specifications . . . . . . . . . . . 20
2.2.4 Spartan SP-605 Configuration Overview . . . . . . . . . . . . 22
2.2.5 Identifying Programming Language and Tools . . . . . . . . . 26
2.2.6 FPGA Programming Process . . . . . . . . . . . . . . . . . . 28

3 Design Details 30
3.1 Design Approach 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Design Approach 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



CONTENTS viii

4 Implementation Details 37
4.1 Implementation Area Identification . . . . . . . . . . . . . . . . . . . 37
4.2 Implementation Details of Modules . . . . . . . . . . . . . . . . . . . 38

4.2.1 Microblaze Processor . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Memory interface . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 PC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 RGB to YUV Conversion . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Discrete Cosine Transform Module . . . . . . . . . . . . . . . 42
4.2.6 Watermark Insertion Unit . . . . . . . . . . . . . . . . . . . . 43
4.2.7 Inverse Discrete Cosine Transform Module . . . . . . . . . . . 43
4.2.8 YUV to RGB Conversion . . . . . . . . . . . . . . . . . . . . 43

4.3 Integration of ISE Modules . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Results and Findings 47
5.1 Resource Utilization Summary . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Comparison with other research works . . . . . . . . . . . . . . . . . 49

6 Conclusion and Future Scope 51
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Future Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Appendix A: Publications of project work 53

8 References 54



List of Figures

2.1 Image Processing Algorithms on Reconfigurable Architecture[16] . . . 8

2.2 Robust FPGA Intellectual Property Protection Through Multiple Small

Watermarks[10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 An overview of threats, attacks and the watermarking security goal of

the proof of authorship[9] . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Figure explaining algorithm execution . . . . . . . . . . . . . . . . . . 13

2.5 Watermark Insertion Unit . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 FPD Categories by Logic Capacity (Spartan 6 - 150,000 logic cells)[3] 15

2.7 Basic FPGA Architecture[2] . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Basic CLB Architecture[7] . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Basic CLB Organization[2] . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 I/O Block Banks[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Spartan-6 FPGA SP605 Board Features[2] . . . . . . . . . . . . . . . 21

2.12 Master Configuration Modes[20] . . . . . . . . . . . . . . . . . . . . . 24

2.13 Slave Configuration Modes[20] . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Single-Device JTAG Programming Connections[20] . . . . . . . . . . 25

2.15 FPGA Programming Process[4] . . . . . . . . . . . . . . . . . . . . . 29

3.1 RTL View of RGB to YUV Module . . . . . . . . . . . . . . . . . . . 31

3.2 Detailed RTL View of RGB to YUV Module . . . . . . . . . . . . . . 32

3.3 Design approach 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 XPS design window snap . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



LIST OF FIGURES 1

3.5 Design Approach 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 SDK Environment Snap . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Identified modules and color scheme notifying where the module will

reside on sp605 board . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Microblaze processor functional diagram[22] . . . . . . . . . . . . . . 39

4.3 Detailed RTL diagram of RGB to YUV conversion module . . . . . . 42

4.4 Detailed RTL diagram of discrete cosine transform module . . . . . . 43

4.5 Detailed RTL diagram of Watermark Insertion module . . . . . . . . 44

4.6 Detailed RTL diagram of inverse discrete cosine transform module . . 45

4.7 Detailed RTL diagram of YUV to RGB conversion module . . . . . . 45

4.8 Unexpanded RTL diagram of integrated system . . . . . . . . . . . . 46

4.9 Expanded RTL diagram of integrated system . . . . . . . . . . . . . . 46



LIST OF FIGURES 2

LIST OF ABBREVIATIONS

ASIC - Application Specific Integrated Circuits

BSP - Board Support Package

CCL - CMOS configuration latches

CFI - Common Flash Interface

CLB - Configurable Logic Block

CPLD - Complex Programmable Logic Devices

DCT - Discrete Cosine Transform

DSP - Digital Signal Processors

EDK - Embedded Development Kit

ELF - Executable Linked Format

EMC - external memory controller

FFT - Fast Fourier Transform

FPGA - Field Programmable Gate Array

FSL - Fast Simplex Link

GPP - General Purpose Processor

GUI - Graphical User Interface

HDL - Hardware Description Language

IDCT - Inverse Discrete Cosine Transform

IOB - Input Output Block

ISE - Integrated Software Environment

ISF - In System Flash

LMB - Local Memory Bus

LUT - Look Up Table

MDM - Microprocessor Debug Module

MFS - Memory File System

OPB - On-chip Peripheral Bus

PLB - Programmable Logic Board



LIST OF FIGURES 3

RAM - Random Access Memory

RTL - Register Transfer Level

SDK - Software Development Kit

SPI - Serial Peripheral Interface

TAP - Test Access Port

XC - Xilinx Chip

XMD - Xilinx Microprocessor Debug Commands

XPS - Xilinx Platform Studio



Chapter 1

Introduction

1.1 Watermark Theory

The process of embedding information into a digital signal which may be used to ver-

ify its authenticity or the identity of its owners is known as Digital watermarking.

An example is a paper bearing a watermark for visible identification. The signal may

be audio, pictures, or video in digital watermarking. The information is also carried

in the copy if the signal is copied. At the same time, a signal may carry more than

one watermark.

In visible digital watermarking, the information is visible in the picture or video.

Typically, the information is text or a logo, which identifies the owner of the media.

A television broadcaster adds its logo to the corner of transmitted video. This is a

visible watermark. The objective of visible watermarking is to attach ownership or

other descriptive information to the signal in a way that is difficult to remove.

In invisible digital watermarking, information is added as digital data to au-

dio, picture, or video, but it cannot be perceived as such (although it may be possible

to detect that some amount of information is hidden in the signal). Invisible water-

4



CHAPTER 1. INTRODUCTION 5

marking is used in copyright protection systems, which are intended to prevent

unauthorized copying of digital media. In this use, a copy device retrieves the water-

mark from the signal before making a copy; the device makes a decision whether to

copy or not, depending on the contents of the watermark.

Another application of invisible watermarking is in source tracing. A watermark is

embedded into a digital signal at each point of distribution. If a copy of the work is

found later, then the watermark may be retrieved from the copy and the source of

the distribution is known. Source of illegally copied movies can be detected by this

technique.

1.2 Motivation

Multimedia applications are increasingly becoming popular nowadays. Sharing of

video information over networks and internet is increasing day by day. To provide

identity and copyrights to these applications is becoming basic need for multimedia

users.

To overcome the challenges in video watermarking and on the parallel

not loosing speed and time boundaries of a system are main motivation

for an external device which can perform video watermarking.

FPGA technology is having benefits like reduced inventory costs, easy prototyping etc

over other technologies like GPP and ASIC. This project utilizes benefits of FPGA

technology and attempts to develop an external embedded solution for video water-

marking requirements.



CHAPTER 1. INTRODUCTION 6

1.3 Scope of Work

The previous sections have given reasons why it is interesting and worthwhile to

investigate further the exploitation of FPGAs for video watermarking applications.

For more detail, the disadvantages of using FPGAs identified previously improve the

video watermarking application developer in several ways:

• The designer has to think in terms of hardware architectures rather than algo-

rithms.

• The designer must be able to use some form of hardware description language.

The lower the level of the HDL, the more detail the developer must expertise.

• The design cycle, with its numerous intermediate stages, can be much slower

than the traditional edit-compile-execute software cycle.

These unfortunate consequences are the underlying motivation for this thesis. The

general goal is to support the video watermarking application developer in exploit-

ing FPGAs by providing more appropriate software tools. In particular, the major

objectives are:

• To provide a high level-programming environment, this will support to bridge

the gap between algorithms and architecture descriptions.

• To hide as much as possible of the details of the FPGA hardware and its envi-

ronment. This in turn will reduce the learning curve.

• To speed up the design cycle by eliminating some of the intermediate stages,

which are currently necessary. This is useful for rapid experimentation, which

is important for developing video watermarking applications.



Chapter 2

Literature Survey

Literature survey for this project work is divided in to two sections. Literature survey

for video watermarking which identifies challenges in video watermarking and litera-

ture survey for FPGA technology which tries to figure out study needs in FPGA.

2.1 Literature Survey for Video Watermarking

This section contains analytical part to find out if real-time video watermarking using

FPGA technology is feasible or not. It also includes study of various attacks and

evaluation criteria for video watermarking. This section briefs about studied video

watermarking techniques which are trying to implement video watermarking using

hardware approach. At last this sections is concluded with identifying challenges in

real-time video watermarking.

2.1.1 Feasibility Analysis

The exact problem in video watermarking is to deal with the complexity of algorithm

and on parallel not loosing the time constraint of real-time video.

If one wants to solve this problem with the help of FPGA technology then one has

to prove that the FPGA approach must be enough faster than current approaches.

7



CHAPTER 2. LITERATURE SURVEY 8

Figure 2.1 is the analysis of a most cited technical paper that shows the fastness of

FPGA approach over GPP for some image processing algorithms. A video is collec-

Figure 2.1: Image Processing Algorithms on Reconfigurable Architecture[16]

tion of number of frames or images passing with a speed so that it creates illusion

of moving picture to the human eyes. So, as per the reference of the paper(figure

2.1), The image processing algorithm can become almost 20 times faster using FPGA

approach with lowest possible frequency in Vertex-E FPGA. This is a good speed up

which creates a hope that video processing also can be made faster enough to solve

real-time needs.

One more obvious speed advantage due to FPGA approach is TRUE parallelism

exposed by FPGA. Figure 2.2 presents increasing number of watermarks inclusion

effects to the video. The table shows that increasing number of watermarks does not

increase the time overhead linearly because various logics could be duplicated to get



CHAPTER 2. LITERATURE SURVEY 9

Figure 2.2: Robust FPGA Intellectual Property Protection Through Multiple Small
Watermarks[10]

the speed benefits.

Conclusion of Feasibility Study:

Above analysis of papers related to Watermarking algorithms and FPGA technol-

ogy shows positive signs for the FPGA approach. It seems feasible to resolve real-

time needs and computational complexity of video watermarking algorithms through

FPGA technology Though proving this needs implementation of a prototype algo-

rithm using FPGA approach.

2.1.2 Types of Attacks

The designer has to think of the attacks to the watermarking techniques to provide the

robustness to the design. Ownership deadlock, counterfeit ownership and forged own-

ership are the possible threats to a watermarking design[9]. Based on these threats,

the attacks can be categorized as ambiguity attack, removal attack, copy attack or

key copy attack.

These all attacks can break the service provided by the watermark design. Figure

2.1 shows brief of these attacks and associated threats. The selection of an algorithm

should be such that it should not be easily braked by any of these attacks.



CHAPTER 2. LITERATURE SURVEY 10

Figure 2.3: An overview of threats, attacks and the watermarking security goal of the
proof of authorship[9]

2.1.3 Evaluation Criteria

There are several criteria to evaluate video watermark. These criteria help in choosing

an effective video watermarking algorithm. These are the common criteria mentioned

in various books and online documents. The video watermark criteria referred in this

project work are as below[8]:

a. Functional correctness: This is the most important criteria. If the watermark

process destroys the functional correctness, it is useless to distribute the core.

b. Resources overhead: Many watermark algorithms need some extra resources.

Some for the watermark itself, some because of the degradation of the optimiza-

tion results from the design tools. language. The lower the level of the HDL,

the more detail the developer must master.

c. Transparency: The watermark procedure should be transparent to the design

tools. It should be easy to integrate the watermarking step into the design flow,

without altering the common design tools.

d. Verifiability: The watermark should be embedded in such a way that sim-

plifies the verification of the authorship. It should be possible to read out the



CHAPTER 2. LITERATURE SURVEY 11

watermark only with the given product without any further information from

the design flow, which must be ordered from the accused company.

e. Difficult to remove: The watermark should be resistant against removal.

The effort to remove the watermark should be greater than an effort needed to

develop a new core or removal of watermark should cause corruptness of the

functionality of the core. Watermarks which are embedded into the function of

the core are more robust against removal than additive watermarks.

f. Strong proof of authorship: The watermark should identify the author

with a strong proof. It should be impossible that other persons can claim the

ownership of the core. The watermark procedure must be resistant against

tampering.

2.1.4 Studied Watermarking Techniques

Below is list of video watermarking papers those are referred during this project work.

Various algorithms are being tried for video watermarking using hardware approach.

Also some techniques are used to optimize video watermarking computations.

a. Use of Multiple small watermarks for more security.[10]

b. Embed the watermark in the place and route phase of the design cycle(Advantage:

No area or timing overhead)[11]

c. Wavelet transform based Visible, invisible, spatial, frequency domain water-

marking techniques(Hardware solution to real time video acceleration)[12]

d. Rate-scalable compression to encode the video(One solution for real-time videos)[13]

e. Use of MMX technique(To decrease processing time: This constraint is used

in various applications with different scopes. The word in our work defines

that a watermark embedding process should not be recognizable during video



CHAPTER 2. LITERATURE SURVEY 12

playing time. That is, watermark embedding time should be shorter than a

frame processing time, so watermarking routine should not make playing time

delayed.)[14]

f. Fragile watermarking[15]

2.1.5 Challenges in Video Watermarking

Based on studied watermarking solutions for the videos, we can summarize video

watermarking challenges as follows:

a. In video watermarking due to high spatial correlation between successive frames.

In most cases, successive frames of video are not independent and have a high

degree of similarity. If independent watermarks are embedded on each frame,

an attacker could perform frame averaging to remove significant portions of the

embedded watermark.

b. Embedding the same watermark in all frames may be insecure, as the attacker

would have a lot of information about the structure of the watermark for esti-

mation and removal.

c. Some applications, such as watermarking live content, embedding copy-control

information, and embedding fingerprints for content tracking, require real-time

watermark embedding.

d. Other applications, such as detecting copy protection information and on-the-fly

video authentication, require real-time watermark detection.

e. Embedding a watermark must not significantly increase the data rate of the

watermarked video stream, especially for streaming video applications where

bandwidth is scarce.



CHAPTER 2. LITERATURE SURVEY 13

2.1.6 Selected Visible Watermarking Technique

After studying general video watermarking techniques, the author has selected[19]

DCT domain video watermarking technique. Figure 2.1 shows the idea of the algo-

rithm.

Figure 2.4: Figure explaining algorithm execution

Input video is first converted to YUV format. YUV frames are then down sam-

pled to 4:2:0 sampling format. The down sampled YUV frames will be processed

block by block bases.

For each 8x8 block 2D DCT coefficient will be found. According to the pixel values,



CHAPTER 2. LITERATURE SURVEY 14

90% of the information will be taken from frame’s coefficient and 10% of the value

will be considered from watermark coefficient and added together to get watermarked

video coefficient. Figure 2.5 shows Watermark Insertion Unit in depth.

Figure 2.5: Watermark Insertion Unit

The reason for selecting DCT domain video watermarking technique is as below:

a. This technique involves enough computational complexity to test whether FPGA

approach can handle complexity of any video watermarking algorithm.

b. It is one of the popular techniques to watermark videos.

c. Calculation of DCT is time consuming process. So if the FPGA approach could

produce watermarked video with reliable speed for this algorithm, then FPGA

approach can be declared as generic approach for video watermarking at least

for speed and complexity criteria.



CHAPTER 2. LITERATURE SURVEY 15

2.2 Literature Survey for FPGA Technology

This section contains analytical part for FPGA Technology. It starts with analyzing

current logic capacity of FPGAs available in the market. It contains basic architecture

detail for FPGA. It focuses on specifications and configurations of spartan 6 FPGA

which is the target hardware being used for this project. This section also introduces

programming language and tools being used in the project work.

2.2.1 Analysis for Logic Capacity of FPGA

A Field-programmable Gate Array (FPGA) is a type of Field Programmable De-

vice(FPD). There are many FPDs available in the market today. According to the

logic capacity they can be categorized as, Simple Programmable Logic Devices(SPLDs),

Complex Programmable Logic Devices(CPLDs) and Field Programmable Gate Ar-

rays(FPGAs). A graph representing logic capacity of each of these programmable

logic devices with reference to their manufacturing firms is shown in figure 2.6.

Figure 2.6: FPD Categories by Logic Capacity (Spartan 6 - 150,000 logic cells)[3]



CHAPTER 2. LITERATURE SURVEY 16

FPGA is a evolving technology since its birth. Efforts are made to grow logic capac-

ity in FPGAs and also to decrease cost of FPGAs. Improvements in FPGAs have

reached to a level so that FPGAs have become a viable solution in computationally

intensive tasks. Figure 2.6 presents a graph showing logic capacity in FPGAs with

respect to other programmable logic devices.

Spartan 6 FPGA is the target hardware to solve video watermarking real-time needs.

It is having almost 1,50,000 logic cells capacity. As per Resource utilization study of

various video processing researches, logic capacity of spartan 6 very well meets the

project requirement.

How FPGAs are advantageous over GPPs and ASICs:

Sr No GPP ASIC FPGA

1 It can be used in Its usage is specific It can be designed

variety of environment to application specific to the application.

2 Slower, Fastest, Between

power hungry lower power GPP and ASIC

3 Such devices are They take months Production slower

ready to use but to be fabricated on than GPP because

general purpose manufacturing line. needs to be configured

but much more

faster than ASIC

4 Uses much more Uses lesser transistors Uses more transistors

number of transistors than ASIC and

than actually required lesser than GPP

by the application

Table I: Advantages of FPGA Technology over GPP and ASIC

The role of FPGA in Embedded Systems is gaining importance due to its increas-

ing capabilities and availability of powerful FPGA design software tools. The digital



CHAPTER 2. LITERATURE SURVEY 17

video applications are driving FPGA market and enabling use of FPGA for broad

range of applications.

FPGA devices have got advantages over General Purpose Processor and Applica-

tion Specific Processor to design an embedded system. Below table tries to describe

some important points among the three technologies.

Moreover,below are some application life-cycle specific advantages of FPGAs[1]:

• No wait for the final design. The design can be programmed and tested into

FPGA immediately.

• FPGA is excellent prototyping vehicle. Because jump from prototype to product

is easier.

• They can be used in several different designs reducing inventory costs.

• Performance gains are obtained by bypassing the fetch-decode-execute overhead

of general purpose processors.

Thus,FPGA offers a compromise between the flexibility of general purpose processors

and the hardware-based speed of ASICs.

2.2.2 Exploring FPGA Architecture

As shown in figure 2.7, an FPGA is a matrix of logic blocks that are connected by

a switching network. The logic blocks and the switching network both are repro-

grammable. This allows application specific hardware to be constructed and allows

to change the functionality of the system with ease.

FPGA is a silicon chip with unconnected logic gates. It is an integrated circuit con-

taining many identical logic cells that can be viewed as standard components. The



CHAPTER 2. LITERATURE SURVEY 18

Figure 2.7: Basic FPGA Architecture[2]

individual cells are interconnected by a matrix of wires and programmable switches.

Field Programmable means that the FPGA’s function is defined by a user’s pro-

gram rather than by the manufacturer of the device. Depending on the particular

device, the program is either ’burned’ in permanently or semi-permanently as part of

a board assembly process, or is loaded from an external memory each time the device

is powered up.

The FPGA has three major configurable elements:

a. configurable logic blocks(CLBs)

b. input-output blocks(IOB)

c. Interconnects



CHAPTER 2. LITERATURE SURVEY 19

Each CLB contains a logic element which is implemented as a lookup table(See figure

2.8). This logic element operates on four one-bit inputs and outputs single data bit.

Using CLB any boolean function of four inputs can be performed.

Figure 2.8: Basic CLB Architecture[7]

The Configurable Logic Block is the basic logic unit in an FPGA. Exact numbers of

CLBs and features of the CLB vary from device to device. Every CLB consists of a

configurable switch matrix with 4 or 6 inputs, some selection circuitry (MUX, etc.),

and flip-flops. The switch matrix is highly flexible and can be configured to handle

combinatorial logic, shift registers or RAM.

Figure 2.9: Basic CLB Organization[2]

FPGAs provide support for various useful I/O standards. I/O in FPGAs is grouped in



CHAPTER 2. LITERATURE SURVEY 20

banks with each bank independently able to support different I/O standards. FPGA

Figure 2.10: I/O Block Banks[2]

architecture supports various kind of interconnects to fulfil interconnection need for

various components on board. Short wires, general-purpose wire, global interconnects

and specialized clock distribution networks are example of such interconnects.

The reason behind why FPGAs need different types of wires is, because wires can

introduce a lot of delay and also wiring networks of different length and connectivity

need different circuit designs.

2.2.3 Exploring Spartan 6 FPGA Specifications

For this project work spartan 6 SP605 board is available target hardware device.

Figure 2.11 represents snapshot of sp605 board with its features labeled on it. Key

features of spartan sp605 board is as below[6]:

Spartan-6 FPGA

• XC6SLX45T-3FGG484 device

Configuration

• Onboard JTAG configuration circuitry



CHAPTER 2. LITERATURE SURVEY 21

Figure 2.11: Spartan-6 FPGA SP605 Board Features[2]

• 8 MB Quad SPI Flash

• 32 MB Parallel (BPI) Flash

• System ACE CF 2 GB CompactFlash (CF) card

Memory

• 128 MB DDR3 Component Memory

• 32 MB Parallel (BPI) Flash (Also available for configuration)

• 8 Kb IIC EEPROM

• 128 MB Quad SPI Flash (Also available for configuration)

Communications and Networking

• 10/100/1000 Tri-Speed Ethernet

• SFP transceiver connector

• GTP port (TX, RX) with four SMA connectors



CHAPTER 2. LITERATURE SURVEY 22

• USB To UART bridge

• PCI Express x1 edge connector

Expansion Connectors

• FMC LPC connector (1 GTP transceiver, 68 single-ended or 34 differential

userdefined signals)

• User GPIO with two SMA connectors

• 4 user I/O (1 x 6 header)

Power

• 12V wall adapter or ATX

• Voltage and current measurement capability of 2.5V, 1.5V, and 1.2V supplies

There are various options to configure sp605 board with the user program bit-stream

file. Section 2.2.4 gives configuration overview of spartan 6 sp605 board.

2.2.4 Spartan SP-605 Configuration Overview

Spartan-6 FPGAs are configured by loading application-specific configuration data

a bitstream into internal memory. Spartan-6 FPGAs can load themselves from an

external nonvolatile memory device or they can be configured by an external smart

source, such as a microprocessor, DSP processor, microcontroller, PC, or board tester.

In any case, there are two general configuration datapaths. The first is the serial

datapath that is used to minimize the device pin requirements. The second datap-

ath is the 8- or 16-bit datapath used for higher performance or access (or link) to

industry-standard interfaces, ideal for external data sources like processors, or x8- or

x16-parallel flash memory.



CHAPTER 2. LITERATURE SURVEY 23

Like processors and processor peripherals, Xilinx FPGAs can be reprogrammed, in

system, on demand, an unlimited number of times.

Because Xilinx FPGA configuration data is stored in CMOS configuration latches(CCLs),

it must be reconfigured after it is powered down. The bitstream is loaded each time

into the device through special configuration pins.

These configuration pins serve as the interface for a number of different configuration

modes:

• JTAG configuration mode

• Master Serial/SPI configuration mode (x1,x2, and x4)

• Slave Serial configuration mode

• Master SelectMAP/BPI configuration mode (x8 and x16)

• Slave SelectMAP configuration mode (x8 and x16)

Master Modes

The self-loading FPGA configuration modes, generically called Master modes. The

Master modes leverage various types of nonvolatile memories to store the FPGA con-

figuration information. In Master mode, the FPGA configuration bitstream typically

resides in nonvolatile memory on the same board, generally external to the FPGA.

The FPGA provides a configuration clock signal called CCLK (the source is from ei-

ther an internal oscillator or an optional external master clock source GCLK0/USERCCLK),

and the FPGA controls the configuration process.

Slave Modes

The externally controlled loading FPGA configuration modes, generically called Slave

modes, are also available with either a serial or byte-wide datapath. In Slave mode,



CHAPTER 2. LITERATURE SURVEY 24

Figure 2.12: Master Configuration Modes[20]

an external intelligent device such as a processor, micro-controller, DSP processor, or

tester downloads the configuration image into the FPGA.

The advantage of the Slave configuration modes is that the FPGA bitstream can

reside almost anywhere in the overall system. The bitstream can reside in flash,

onboard, along with the host processor’s code. It can reside on a hard disk. It can

originate somewhere over a network connection or another type of bridge connection.

Boundary-Scan and JTAG Configuration

Spartan-6 devices support IEEE Std 1149.1, defining Test Access Port (TAP) and

boundary-scan architecture. These standards ensure the board-level integrity of in-

dividual components and the interconnections between them.

In addition to connectivity testing, boundary-scan architecture offers flexibility for

vendor-specific instructions, such as configure and verify, which add the capability



CHAPTER 2. LITERATURE SURVEY 25

Figure 2.13: Slave Configuration Modes[20]

Figure 2.14: Single-Device JTAG Programming Connections[20]

of loading configuration data directly to FPGAs and compliant PROMs. TAP and

boundary-scan architecture is commonly referred to collectively as JTAG.

A typical JTAG setup with the simple connection required to attach a single de-

vice to a JTAG signal header, which can be driven from a processor or a Xilinx

programming cable under control of iMPACT software. TCK is the clock used for

boundary-scan operations.

The TDO-TDI connections create a serial datapath for shifting data through the

JTAG chain. TMS controls the transition between states in the TAP controller.



CHAPTER 2. LITERATURE SURVEY 26

2.2.5 Identifying Programming Language and Tools

In order to create an FPGA design, a designer has several options for algorithm im-

plementation. There exist several high-level hardware description languages(HDLs)

to design FPGAs.

Verilog HDL:

VHDL and Verilog are the basic proprietary hardware design languages. They were

originally came as simulation languages. Verilog is more user friendly compared to

VHDL in terms it is having more C - like syntexts[18].

Handel-C:

Handel-C is a programming language developed by the Hardware Compilation Group

at Oxford University Computing Laboratory, and now sold by Celoxica Ltd. Handel-C

is a C-based language with true parallelism and priority-based channel communica-

tion. It can be compiled to hardware. Handel-C is having capability of optimized

logic synthesis.

Catapult-C:

The Catapult C Synthesis tool from Mentor Graphics. It targets compute-intensive

applications such as wireless communication, satellite communication and video/image

processing etc, in ASICs and FPGAs.

SystemC:

SystemC is a language built in standard C++ by extending the language with the

use of class libraries. SystemC addresses the need for a system design and verifica-

tion language for hardware and software. It is particularly suited to model system’s

partitioning, to evaluate and verify the assignment of blocks and measure the inter-

actions between and among functional blocks. It is used by leading companies for the



CHAPTER 2. LITERATURE SURVEY 27

development of Intellectual Property Cores(IP Cores).

Mitrion-C and Mitrion-IDE:

Mitrion-C is a C-like FPGA programming language that has been developed by Mitri-

onics. It addresses the needs of scientific programmers. The tools provided include

the Mitrion Integrated Development Environment (IDE) and the Mitrion Virtual

Processor. The IDE provides all the tools necessary for synthesizing and simulating

Mitrion-C code as well as standard libraries and libraries for hardware support and

simulation.[5]

Nallatech DIME-C and DIMETalk:

Nallatechs DIME-C language is based on a subset of ANSI-C. This gives it a number

of obvious advantages over both Handel-C and Mitrion-C. Firstly, the programmer

does not need to learn the syntax or semantics of a new language in order to use

DIME-C. They simply have to learn which parts of ANSI-C cannot be used. Sec-

ondly, DIME-C code can be compiled and debugged using a standard C compiler.

Xilinx tools:

The Xilinx tools provide a VHDL and Verilog development environment with a full

range of editing, synthesis, simulation and implementation tools. These tools are re-

quired regardless of whether programmer actually use the editing,synthesis,simulation

parts of the tool suite.

Because all of the tools mentioned above require vendor specific place and route

tools in order to place and route designs onto that vendors FPGAs.

Xilinx Spartan VI - SP605 board is used for having FPGA functionalities during

the project work. Xilinx provide Xilinx ISE 13.2 Design Suite to operate with SP605

board. This tool set supports HDL, VHDL and Verilog languages.



CHAPTER 2. LITERATURE SURVEY 28

Since VHDL/Verilog is having more C like syntaxes than HDL, it will be used as

programming language for this project. There are three reasons to select Verilog and

VHDL as a programming language:

a. It is supported by Xilinx tools available with the Spartan 6 - SP605 board.

b. It is freely available and not proprietary.

c. There is no need of external place and route mechanism is required.

2.2.6 FPGA Programming Process

One can compare various steps of FPGA programming with the corresponding stages

of program development in a microprocessor. Though the first level picture of FPGA

Programming looks similar to the microprocessor programming, the actual program-

ming process is quite different. Figure 2.15 shows the FPGA programming process

in detail.

As depicted in figure 2.15, the output of verilog code compilation is RTL netlist.

When input to a synthesizer, the verilog is converted into a gate-level netlist. It is

capable of being mapped into FPGA hardware. This gate-level verilog can be com-

piled and simulated[17]. so we can debug at the actual gate level.

The simulation of the RTL verilog is called functional simulation, while the simu-

lation of the synthesizer verilog output is called gate-level simulation.

In gate-level simulation, synthesizers can optimize FPGA netlists. Area optimiza-

tion is possible during gate-level simulation which will attempt to use the fewest

number of gates (silicon area) on an FPGA at the expense of execution speed.



CHAPTER 2. LITERATURE SURVEY 29

Figure 2.15: FPGA Programming Process[4]

Delay optimization attempts to maximize the execution speed, even if more FPGA

area is required.That is why the functional code written in verilog at the RTL level

may have different implementations.



Chapter 3

Design Details

This chapter focuses on design details of the project work. With the reference to the

figure 2.4 several modules have been identified for the algorithm. Identification of the

modules is done on the basis of the computational task divided on each stage of the

algorithm.

Below is the list of modules identified.

a. RGB to YUV Conversion

b. Discrete Cosine Transform

c. Watermark Insertion Unit

d. Inverse Discrete Cosine Transform

e. YUV to RGB Conversion

3.1 Design Approach 1

As a very first design approach, xilinx 13.2 Integrate software environment(ISE) was

the tool chosen to implement all the above modules. ISE is a GUI provided by Xilinx

to develop embedded components.

30



CHAPTER 3. DESIGN DETAILS 31

Figure 3.1: RTL View of RGB to YUV Module

The developed module was burnt to the spartan 6 FPGA through iMpact tool that

is part of Xilinx ISE. RTL diagram snapshot of RGB to YUV module designed in

Xilinx ISE 13.2 is depicted in figure 3.1. Detailed RTL view is shown in figure 3.2.

The RGB to YUV module is being tested on ISim simulator provided with xilinx

ISE 13.2 package. ISim is a simulator providing GUI for testing hardware level de-

sign developed using xilinx ISE tool. For the design approach 1, the component level

diagram of fpga on sp605 board will look like figure 3.3.



CHAPTER 3. DESIGN DETAILS 32

Figure 3.2: Detailed RTL View of RGB to YUV Module

Major challenge in design approach 1:

The major challenge in design approach 1 is memory interface. To access differ-

ent fpga board memories from modules developed in ISE, there is no programmable

or customizable interface from ISE. It required to develop a memory interface in

vhdl/verilog language that bridges the gap between ISE and on board fpga memories.

Developing such a memory interface is a time consuming job. It is also not a safe

design to maintain various counters for different memories. It also required memory

initialization and flushing operations to be designed and implemented in xilinx ISE.

To overcome the gap of memory interfacing in design approach 1, a controller module

is needed which can carry out task of memory interface, pc interface and controller

for designed ISE modules. To fulfil these requirements, xilinx supported tools were

studied to find out a customizable core.



CHAPTER 3. DESIGN DETAILS 33

Figure 3.3: Design approach 1

Xilinx provides various customizable cores with the EDK environment those can be

utilized by embedded system designer to design their systems. One such customizable

processor named Microblaze is being introduced in our design and design approach 2

was adopted for the project work.

3.2 Design Approach 2

Looking to the memory management requirement in design approach 1, we have

moved to concept of Microblaze processor which has been depicted as design ap-

proach 2. Purpose of module microblaze is to insert a module that act as a controller

for memory interface and the modules designed using ISE in design approach 1.

Microblaze is a customizable soft processor core designed for Xilinx FPGAs. It is

distributed as a customizable component with the xilinx EDK. It supports library

packages to access all the memories available on SP605 board as well as to support

interface to external environment like user PC.



CHAPTER 3. DESIGN DETAILS 34

Figure 3.4 shows XPS(Xilinx Platform Studio) environment snap. XPS is a GUI

environment provided under Xilinx EDK(Embedded Development Kit). This tool

allows hardware designer to create highly customized embedded processor systems

like microblaze processor and integrate those designs into Xilinx FPGAs.

Figure 3.4: XPS design window snap

While creating design of a microblaze soft processor, XPS allows to choose mem-

ory and peripherals specific to board. External modules developed in ISE can be

imported as peripheral to this soft processor which will be part of a single FPGA

chip.

XPS features include[21]:



CHAPTER 3. DESIGN DETAILS 35

• Base System Builder allows creation of a fully functional processor system.

• System Assembly View allows user to customize and configure design details.

• IP configuration dialogs open automatically when new IP is added to a design

• Auto bus connectivity on AXI based designs.

• Extensive catalog of AXI and PLB based processors, peripherals, and utility IP

• Create / Import IP wizard automates creation of custom IP templates, and

provides mechanism to import user IP into XPS, and Bus Functional Model

simulation support for custom IP.

• Hardware project export to the Software Development Kit (SDK)

• Automatic creation of design documentation

After inclusion of microblaze processor on SP605 FPGA chip in design approach 1,

our design will get modified as shown in figure 3.5. Once the design of microblaze

Figure 3.5: Design Approach 2



CHAPTER 3. DESIGN DETAILS 36

processor is verified, bitstream is generated in XPS and it is verified with the SP605

board, the microblaze design is exported to Xilinx SDK(Software Development Kit).

SDK is Xilinx GUI tool that provides full fledged embedded software development

environment for Xilinx embedded processor. Figure 3.6 shows a SDK window snap.

Figure 3.6: SDK Environment Snap

In SDK, the memory interface for the microblaze processor is implemented. For

each memory SDK provides library support for various memories supported by Spar-

tan 6 SP605 board. Once the memory interface is developed using SDK, the final

design can be deployed to FPGA using ’Program FPGA’ feature of SDK.



Chapter 4

Implementation Details

4.1 Implementation Area Identification

FPGA based video watermarking system is divided into several modules as per the

computational components involved in the algorithm and hardware implementation

while designing the system in chapter 3. In design approach 2, concept of microblaze

processor and memory interface was added which required xilinx XPS and SDK tools.

Figure 4.1 shows an overview of all the modules identified and a color scheme no-

tifying where the module will reside on sp605 board. The modules in blue color

indicates components to be programmed and reside in FPGA chip - XC6SLX45T-

3FGG484 device on SP605 board.

The module in orange indicates memory interface which will utilize on board sp605

memory component. It will reside outside the FPGA chip - XC6SLX45T-3FGG484

and on sp605 board.

The modules in green indicate interface external to the SP605 board. This mod-

ule will utilize IO components of sp605 board and communicate with external device

37



CHAPTER 4. IMPLEMENTATION DETAILS 38

Figure 4.1: Identified modules and color scheme notifying where the module will
reside on sp605 board

to sp605 board. It may utilize one of the configuration options mentioned in section

2.2.4.

4.2 Implementation Details of Modules

This section describes implementation details of all the modules identified in this

project work.



CHAPTER 4. IMPLEMENTATION DETAILS 39

4.2.1 Microblaze Processor

The MicroBlaze embedded processor soft core is a reduced instruction set computer

(RISC) optimized for implementation in Xilinx Field Programmable Gate Arrays

(FPGAs). Figure 4.2 shows a functional block diagram of the MicroBlaze core. The

Figure 4.2: Microblaze processor functional diagram[22]

MicroBlaze soft core processor is highly configurable, allowing user to select a spe-

cific set of features required by user’s design. The fixed feature set of the processor

includes[22]:

• Third party 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• Separate 32-bit instruction and data buses with direct connection to on-chip

block RAM through a LMB(Local Memory Bus).



CHAPTER 4. IMPLEMENTATION DETAILS 40

• 32-bit address bus.

• Sigle issue pipeline

• Hardware debufg logic

• Instruction and Data cache

• FSL (Fast Simplex Link) support

In addition to these fixed features, the MicroBlaze processor is parameterized to allow

selective enabling of additional functionality.

4.2.2 Memory interface

Xilinx EDK supplies libraries and board support packages, in addition to the drivers

for the peripherals, to help the user develop a software platform. The following

is the distribution of the software packages available for the user to include in his

platform[23]:

• Standard C Libraries (libc, libm).

• Standalone Board Support Package (BSP).

• Xilkernel - An embedded Kernel.

• LibXil MFS - A Memory File System.

• LibXil FATFS - A FAT file system.

• LibXil Drivers - Device drivers for supported peripherals.

• LibXil Flash - A library that provides read/write/erase/lock/unlock and device

specific functionalities for parallel flash devices.

• LibXil Isf - In-System-Flash library that supports the Xilinx In System Flash

hardware.



CHAPTER 4. IMPLEMENTATION DETAILS 41

In the current implementation, LibXil Flash is being used to have memory interface

with SPI on board memory. The XilFlash library provides read/write/erase/lock/unlock

features to access a parallel flash device. Flash device family specific functionalities

are also supported by the library. This library requires the underlying hardware plat-

form to contain ’xps mch emc’ or similar core for accessing the flash.

This library implements the functionality for flash memory devices that confirm to the

Common Flash Interface(CFI) standard. CFI allows a single flash library to be used

for an entire family of parts. This library supports Intel and AMD CFI compliant

flash memory devices.

4.2.3 PC Interface

Deployment of the final design to the SP605 board requires support of programming

FPGA. This feature is supported by Xilinx SDK. Using this functionality the .bit,

.elf files are first programmed to FPGA. Then the video and image data are being

burnt in the flash memory using ”Program Flash” option of xilinx SDK tool.

Once these two parts are ready, the program containing algorithm is being run on

hardware. All these process uses JTAG connection of configuring FPGA.

4.2.4 RGB to YUV Conversion

RGB color model is used in computer graphics, YUV model is used in video systems.

Transferring color information from one industry to another requires transformation

from one set of values to another.

Once RGB values of frames are converted to YUV values, luminance component

of an image can be processed without affecting color component. This is the main

reason of YUV conversion in this project work.



CHAPTER 4. IMPLEMENTATION DETAILS 42

Figure 4.3 is the detailed RTL diagram of implemented RGB to YUV conversion

module.

Figure 4.3: Detailed RTL diagram of RGB to YUV conversion module

4.2.5 Discrete Cosine Transform Module

Discrete cosine transform transforms a signal or image from the spatial domain to

the frequency domain. To implement 2D DCT in VHDL, the problem is factorized

to 1D DCT first. 1D DCT is applied to columns first and then again applied DCT

to resultant coefficients.

Figure 4.4 is the detailed RTL diagram of DCT module implementation.



CHAPTER 4. IMPLEMENTATION DETAILS 43

Figure 4.4: Detailed RTL diagram of discrete cosine transform module

4.2.6 Watermark Insertion Unit

For each 8x8 block 2D DCT coefficient will be found. According to the pixel values,

90% of the information will be taken from frame’s coefficient and 10% of the value

will be considered from watermark coefficient and added together to get watermarked

video coefficient. Figure 4.5 shows Watermark insertion unit detailed RTL diagram.

4.2.7 Inverse Discrete Cosine Transform Module

The watermarked DCT coefficient is generated as output of watermark insertion unit.

This DCT coefficient is watermarked coefficient which is used as input to IDCT

module. Figure 4.6 is the detailed RTL diagram of IDCT module.

4.2.8 YUV to RGB Conversion

Finally, the resultant YUV frames are converted to RGB format to get the output

watermarked video. Figure 4.7 depicts detailed RTL view of YUV to RGB module.



CHAPTER 4. IMPLEMENTATION DETAILS 44

Figure 4.5: Detailed RTL diagram of Watermark Insertion module

4.3 Integration of ISE Modules

In xilinx XPS tool, it is possible to integrate a module developed in ISE as a peripheral

to microblaze processor. Instead of adding each module in XPS, all the modules are

being integrated in xilinx ISE and the integrated system is to be integrated in XPS.

Figure 4.8 and 4.9 is the RTL level diagram of integrated modules in xilinx ISE.



CHAPTER 4. IMPLEMENTATION DETAILS 45

Figure 4.6: Detailed RTL diagram of inverse discrete cosine transform module

Figure 4.7: Detailed RTL diagram of YUV to RGB conversion module



CHAPTER 4. IMPLEMENTATION DETAILS 46

Figure 4.8: Unexpanded RTL diagram of integrated system

Figure 4.9: Expanded RTL diagram of integrated system



Chapter 5

Results and Findings

This section includes implementation results of the project work. Resource utilization

is measured for each modules with the help of design summary utility provided by

xilinx Embedded Development Kit(EDK) .

5.1 Resource Utilization Summary

Below is the resource utilization summary and time consumption of each modules.

Modules No. of LUTs used Number of registers used

(%of total LUTs) (%of total registers)

RGB2YUV 132(1%) 174(1%)

DCT 1,073(3%) 1,517(2%)

IDCT 1,732(6%) 2,444(4%)

YUV2RGB 73(1%) 120(1%)

ISE Integration 4,106(15%) 5,506(10%)

Microblaze 9,027(33%) 8,110(14%)

Table II: Resource Utilization Table

47



CHAPTER 5. RESULTS AND FINDINGS 48

As per the above resource utilization summary, total 51.27% LUTs of total LUTs

in XC6SLX45T-3FGG484 FPGA device is being utilized during this implementation.

With the help of design summary utility and isim modulator below worst slack time

is noted for each module.

Modules Worst time slack

(in neno second)

RGB2YUV 0.315

DCT 920

IDCT 1020

YUV2RGB 0.413

Total time Slack 1940.728

Table III: Worst time slack summary of modules implemented

Depending upon above results and the fact that the operating frequency of imple-

mented system is set to 100MHz the overall performance for various MPEG standards

is compared as shown in table IV.

MPEG-1 MPEG-2 MPEG-4

Maximum Video Resolution 352x288 1920x1152 720x576

Frames Processed per Second 325 15 79

Table IV: Performance comparison for various MPEG standards

The project work concentrates on real-time needs of video watermarking. MPEG-4

being the common standard for real-time videos, 79 frames per second is a good per-

formance achievement.

The system processes 15 frames per second for high quality videos of MPEG-2 stan-

dards. This can be improved to a better level by increasing operating frequency up



CHAPTER 5. RESULTS AND FINDINGS 49

to 150MHz of current system.

There are research efforts available in same direction by various researchers using

FPGA technology and other supporting techniques to increase the performance. Com-

parison with the research works is depicted in the next section.

5.2 Comparison with other research works

1 Comparison with paper reference [20]

Referred Paper Data:

a. Video standard: MPEG-4

b. Resolution Selected: 320x240

c. Performance Obtained: 43 frames per second

Our Experiment Results:

a. Video standard: MPEG-4

b. Resolution Selected: 320x240

c. Performance Obtained: 43 frames per second(Calculated with worst

time slack)

2 Comparison with paper reference [14]

Referred Paper Data:

a. Video standard: MPEG-2(Watermark logo insertion)

b. Resolution Selected: 1920x1080

c. Performance Obtained: 30 frames per second

Our Experiment Results:

a. Video standard: MPEG-2(Full frame luminance watermarking)

b. Resolution Selected: 1920x1080



CHAPTER 5. RESULTS AND FINDINGS 50

c. Performance Obtained: 16 frames per second(Calculated with worst

time slack)



Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The conclusion statements are as below:

a. The goal of hardware assisted video watermarking is to achieve low power usage,

real-time performance, reliability, and ease of integration with existing consumer

electronic devices.

b. FPGA technology is a viable solution for video watermarking algorithms. This

has been proven with taking example of frequency domain watermarking algo-

rithm.

c. Verification of logic and verification of design in FPGA is time taking processes.

To figure out boundary conditions and test cases is again complex and time

taking jobs.

d. To implement complex solutions, first designer needs to break down the prob-

lem into simpler forms. Again the way to decompose the design often effects

performance of the system.

e. FPGAs helps in achieving better performance by bypassing the fetch-decode-

execute overhead of general purpose processors.

51



CHAPTER 6. CONCLUSION AND FUTURE SCOPE 52

6.2 Future Scopes

1 Optimization scope through higher frequency:

All the experiments during this project work is carried out using system clock

frequency 100MHz. This frequency can be increased till 150MHz which needs

timing and connection optimizations in the various circuits. One may try for

these optimization to achieve better performance.

2 Optimization through handling memory:

Spartan 6 SP605 board supports various memory types. All the memories are

having speed vs. storage specifications. There is a good scope to effectively

utilize all these memories to optimize time benefits.

3 Optimization through parallelization of design:

Further improvements can be achieved by identifying parallel execution paths

and implement the same in FPGA



Chapter 7

Appendix A: Publications of

project work

A part of this project work is being presented at ’National Conference in Emerg-

ing Vitas of Technology in 21st Century’ and has been published under special issue

’Revolutionary Trends in IT(ISSN 0971-3034)’ of Indian Journal of Technical Edu-

cation(IJTE) promoted by Indian Society for Technical Education(ISTE).

53



Chapter 8

References

1 FPGA-Based System Design, By Wayne Wolf, 2005.

2 http://www.xilinx.com/company/gettingstarted.

3 Stephen Brown, Jonathan Rose. ”Architecture of FPGAs and CPLDs: A Tu-

torial”. University of Toronto,IEEE Design & Test of Computers, July 1996.

4 Ed Klingman. ” FPGA programming step by step”, Embedded System Pro-

gramming (Mar 2004), ArticleID-18201956.

5 Richard Wain, Ian Bush, Martyn Guest, Miles Deegan, Igor Kozin and Christine

Kitchen. ” An overview of FPGAs and FPGA programming; Initial experiences

at Daresbury ”, CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4

4AD, UK, November 2006, Version 2.0.

6 Xilinx Online Document Support, ”Getting Started with the Xilinx Spartan-6

FPGA SP605 Evaluation Kit”, UG525 (v1.1) June 7, 2010.

7 J. Bannur and A. Varma. A VLSI implementation of a square root algorithm,

In IEEE Symposium on Comp. Arithmetic, pages 159-165. IEEE Computer

Society Press, Washington D.C., 1985.

54



CHAPTER 8. REFERENCES 55

8 Daniel Ziener and Jurgen Teich, Evaluation of Watermarking methods for FPGA-

based IP-cores, Hardware/Software Co-Design, University of Erlangen-Nuremberg,

Germany, Co-Design-Report 01-2005, March 1, 2005, http://www12.informatik.uni-

erlangen.de

9 Daniel Ziener, Moritz chmid,Jurgen Teich. ’Robustness Analysis of Water-

mark Verification Techniques for FPGA Netlist Cores’, Published in: ”Design

Methodologies for Secure Embedded Systems”, LNEE 78, pp.105-127, Springer-

Verlag Berlin Heidelberg, 2010

10 John Lach, William H. Mangione-Smith, Miodrag Potkonjak. ’Robust FPGA

Intellectual Property Protection Through Multiple Small Watermarks’, UCLA

EE Department, Los Angeles, CA 90095, 310-794-1630, International Confer-

ence on Multimedia Computing and Systems, 1996.

11 Adarsh K. Jain, Lin Yuan, Pushkin R. Pari, Gang Qu. ’Zero Overhead Water-

marking Technique for FPGA Designs’, University of Maryland, College Park,

GLSVLSI03, April 28-29, 2003, Washington, DC, USA

12 Dr. M. Madhavi Latha, G. Kesavan pillai, K. Anitha Sheela, ’Watermark-

ing based Content Security and Multimedia Indexing in Digital Libraries’, JNT

University, Hyderabad, Andhra Pradesh, India, International conference on En-

abling Technologies for Smart Appliances(ETSA) IEEE, Hyderabad.Jan 2005.

13 Eugene T. Lin, Christine I. Podilchuk, Ton Kalker, Edward J. Delp.’Streaming

video and rate scalable compression: what are the challenges for watermark-

ing?’, Video and Image Processing Laboratory, School of Electrical and Com-

puter Engineering, Purdue University, West Lafayette, IN 47906, Philips Re-

search, NL-5656-AA, Eindhoven, The Netherlands, June 2000.

14 In-Koo Kang, Dong-Hyuck Im, Heung-Kyu Lee, Young-Ho Suh. ’Implementa-

tion of Real-Time Watermarking Scheme for High-Quality Video’, Korea Ad-



CHAPTER 8. REFERENCES 56

vanced Institute of Science and Technology Guseong-dong, Yuseong-GuDeajeon,

Republic of Korea, MM&Sec06, September 2627, 2006, Geneva, Switzerland.

15 S. P. Mohanty, R. Kumara C., and S. Nayak, FPGA Based Implementation of

an Invisible-Robust Image Watermarking Encoder, Lecture Notes in Computer

Science (LNCS), CIT 2004, Springer-Verlag, Vol. 3356, pp. 344-353, 2004.

16 V Muthukumar, Daggu Venkateshwar Rao. ’Image Processing Algorithms on

Reconfigurable Architecture using HandelC’, University of Nevada Las Vegas,

Las Vegas, NV 89154. Proceedings of the EUROMICRO Systems on Digital

System Design (DSD04), 0-7695-2203-3/04.

17 FPGA programming step by step, By Ed Klingman, Courtesy of Embedded

Systems Programming, Mar 4 2004 (14:00 PM), URL: http://www.design-

reuse.com/exit/?url=http://www.embedded.com/showArticle.jhtml.

18 Deepak Kumar Tala. ’Verilog Tutorial’, 25-Oct-2003, Website : http://www.deeps.org.

19 Saraju P. Mohanty, Elias Kougianos. ’Real-time perceptual watermarking archi-

tectures for video broadcasting’,NanoSystem Design Laboratory (NSDL), Uni-

versity of North Texas, Denton, TX 76207, USA. The Journal of Systems and

Software 84 (2011) 724738.

20 Xilinx Online Document Support, ”Spartan 6 FPGA Configuration”, UG380

(v2.3) July 6, 2011

21 http://www.xilinx.com/tools/xps.htm

22 ug081(v9.0)-Microblaze Processor Reference Guide, EDK 10.1i

23 OS and Libraries Document Collection, EDK 10.1, Service Pack 3,September

19, 2008


	Declaration
	Certificate
	Acknowledgements
	Abstract
	LIST OF ABBREVIATIONS
	Introduction
	Watermark Theory
	Motivation
	Scope of Work

	Literature Survey
	Literature Survey for Video Watermarking
	Feasibility Analysis
	Types of Attacks
	Evaluation Criteria
	Studied Watermarking Techniques
	Challenges in Video Watermarking
	Selected Visible Watermarking Technique

	Literature Survey for FPGA Technology
	Analysis for Logic Capacity of FPGA
	Exploring FPGA Architecture
	Exploring Spartan 6 FPGA Specifications
	Spartan SP-605 Configuration Overview
	Identifying Programming Language and Tools
	FPGA Programming Process


	Design Details
	Design Approach 1
	Design Approach 2

	Implementation Details
	Implementation Area Identification
	Implementation Details of Modules
	Microblaze Processor
	Memory interface
	PC Interface
	RGB to YUV Conversion
	Discrete Cosine Transform Module
	Watermark Insertion Unit
	Inverse Discrete Cosine Transform Module
	YUV to RGB Conversion

	Integration of ISE Modules

	Results and Findings
	Resource Utilization Summary
	Comparison with other research works

	Conclusion and Future Scope
	Conclusion
	Future Scopes

	Appendix A: Publications of project work
	References

