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Abstract

The amount of raw data being accumulated in the databases is increasing at an incon-

ceivable rate. However, these data-rich databases are poor in providing substantial

information. This is where data mining comes into picture. Specifically, data mining

is “the process of extracting or mining information from large amount of data”. Data

classification has been an active area of research in data mining. It consists of assign-

ing a data instance to one of the predefined classes/groups based upon the knowledge

gained from previously seen (classified) data.

Real world problems demand classifiers that are accurate as well as easy to inter-

pret. Traditional comprehensible classifiers like decision trees are very accurate at

classifying new instances, but with increase in the size of datasets and/or the number

of classes, and/or with increase in number of attributes, the trees induced are very

large in size and hence difficult to interpret. On the other hand, evolutionary algo-

rithms like Genetic Programming(GP) when applied to classification problems give

trees that have smaller size but are not very accurate.

Thus the work proposes an algorithm GPeCT, that employs GP as an optimiza-

tion technique to yield efficient and effective classification. The goal is to evolve a

classifier that performs a trade-off between accuracy and comprehensibility in order

to produce an optimal decision tree classifier (for n-class where n>=2) using GP.

When evaluated on some benchmark datasets, the proposed algorithm obtained by

merging Genetic Programming and decision tree outperforms the traditional classifi-

cation techniques in terms of a combination of accuracy and comprehensibility.

Keywords: Accuracy, Classification Trees, Comprehensibility, Genetic Programming,

Multi-class classification.
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Chapter 1

Introduction

The digital revolution has brought an explosion of stored data to our world, and it’s

increasing at an ever faster rate. This collection of data is quickly outpacing the

ability for humans to understand or make use of it. Scientists across the world have

joined in the hunt to discover valuable knowledge from this digital information[1].

Data mining is a field that was born to deal with these difficulties. Defined as “the

process of extracting or mining knowledge from large amounts of data”[2], data min-

ing techniques go through large volumes of data quickly and attempt to transform

that data in a way that will enhance the discovery of new knowledge. Data mining

uses a combination of many disciplines: from statistics and pattern recognition to

artificial intelligence and machine learning.

Though data mining has been successful in many of its applications, it is still a

relatively new field. New techniques and innovations are found frequently, and yet

there is much potential for growth.

This introduction chapter presents the motivation source of the work carried out,

the scope of the work, followed by some basics of data mining and machine learning.



CHAPTER 1. INTRODUCTION

1.1 Motivation

Classification is a form of data analysis that can be used to extract models describing

important data classes or to predict future data trends. Such analysis can help to

provide us a better understanding of the data at large. A lot of research has been

done to develop an efficient classification technique for a problem with binary classes.

However, in real world, the problems are scattered into multiple classes which is a

field rarely touched by researchers.

Further, classification algorithms generally yield results in either symbolic or non-

symbolic form. Algorithms that provide non-symbolic results only assign class labels

to the data instances and do not convey the reason as to why the algorithm led to

that classification. Examples include Bayesian classifiers, k Nearest Neighbor (kNN)

classifier, Neural Networks, etc. However in real world applications, it is also required

to know the reasons behind classifying any data into a particular class. Algorithms

that provide such reasons fall in the category of symbolic classifiers.

Decision trees are symbolic classifiers, i.e. they have high comprehensibility and are

accurate too. But, with increase in number of classes or when training data becomes

very large, size of the tree increases considerably. This leads to loss of “comprehen-

sibility”, which was considered as one of the best properties of decision tree.

Evolutionary algorithms like Genetic Algorithms (GA) and Genetic Programming

(GP) have been found successful in solving numerous classification problems. Also,

tree structures are an encoding scheme for GP individuals. The classification trees

generated using GP have smaller number of nodes and hence are more comprehensible.

Hence the need to develop an optimal multiclass classifier that performs a trade-off

between accuracy and comprehensibility has been the motivation of the work.

2



CHAPTER 1. INTRODUCTION

1.2 Scope of the work

To achieve the objective of developing an evolutionary algorithm for effective classi-

fication, the work seeks to develop an optimal decision tree classifier using Genetic

Programming: a subset of evolutionary algorithms. The parameter for optimization

is the accuracy and additionally, the size of the decision tree so as to address the

important issue of ease in model-interpretation and comprehension. The approach

considers designing a n-class (n>=2) classifier. Thus the scope is limited to proposing

a new classification algorithm that is a hybrid of DT and GP.

1.3 Fundamentals of Data Mining

In data mining or machine learning, the general goal is to find some implicit knowledge

from a set of data. Various learning strategies are used, depending on the data used

for training the algorithm.

1.3.1 Learning Strategies

Learning strategies include: supervised, reinforcement, unsupervised, and hybrid.

• Supervised Learning Strategy

In supervised learning, the system is provided with the correct answer for each training

example. The task of the system is to learn the relationship between the input

examples, and the answers. For example, a system could be shown a number of

images of faces, each with a name. The system could then be shown a different image

of one of the faces, and would output the name of the face[3].

• Reinforcement Learning Strategy

In reinforcement learning, the system is provided with hints toward the correct an-

swers, but not the exact answers. The aim of the system is to use the hints over time,

3



CHAPTER 1. INTRODUCTION

which point toward the correct answers or actions. For example, an elevator could be

given a reward each time it correctly predicts which floor to go to[4][3].

• Unsupervised Learning Strategy

In unsupervised learning, the system is not provided with any answers, or correct

outputs. The learning process usually aims to find patterns and correlations in the

data. For example, a shop could record the items that people buy; a learning system

could then find correlations between different items that are bought together[3].

• Hybrid Learning Strategy

Hybrid learning involves a mixture of the previous strategies[3].

This work is related to supervised learning, that is, the class labels of the train-

ing data are already available and are used to built a classifier that will predict the

class labels of the test data.

1.3.2 Testing Methods

Cross-Validation[5] is a common method to test the performance of a classifier. For

N-fold cross validation the data set is partitioned into N separate, equal-sized groups.

Training occurs N times, with each using a different group as the test set, and the

other N - 1 groups as the training set. The performance of the system is then the

average performance of the N trainings.

Another method used is the Holdout method[2]. Here, the given data are randomly

partitioned into two independent sets, a training set and a test set. Typically, two-

thirds of the data are allocated to the training set, and the remaining one-third is

allocated to the test set. The training set is used to derive the model, whose accuracy

is estimated with the test set. Throughout the work, holdout method is used for

testing the performance of classifiers.

4



CHAPTER 1. INTRODUCTION

1.4 Organization of Thesis

Following this introduction, chapter 2 presents an overview of the traditional classifi-

cation techniques, followed by introduction of evolutionary algorithms and its appli-

cation in classification. The chapter also shows the implementation results of these

traditional techniques.

Chapter 3 presents a literature survey of previous work to date in the domains of

genetic programming and decision tree that is relevant to the work presented in the

remainder of the thesis.

Chapter 4 proposes an algorithm Genetic Programming based Evolution of Clas-

sification Tree(GPeCT) accompanied with the detailed explanation of the algorithm.

Chapter 5 describes the methodology used in implementing each step of the algo-

rithm whereas chapter 6 shows the experimental results and proves how the proposed

algorithm outperforms GP and Decision Tree on benchmark datasets.

The thesis ends with discussing the conclusions derived from the work and explores

some future enhancements that can be made to the algorithm.

5



Chapter 2

Classification and Evolutionary

Algorithms

Classification has been an active area of research in data mining. It is a form of data

analysis that can be used to extract models describing important data classes and

can help provide us with a better understanding of the data at large. Classification

predicts categorical (discrete, unordered) classes, given any unseen data.

Evolutionary algorithms (EAs) are stochastic optimization techniques that imitate

some aspects of natural evolution. They try to obtain good solutions by creating

a population of data structures that represent them, and evolve that population by

changing those solutions, combining them to create new ones, and, on average, mak-

ing the better-suited survive and the discarding worst-suited individuals. EAs are a

set of modern met heuristics used successfully in many applications with very high

complexity.

This chapter presents some of the fundamental concepts of classification and evo-

lutionary algorithms that form the basis of the work. The chapter is ordered into five

major sections. Section 2.1 presents an introduction to classification followed by a
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brief review of the traditional techniques in section 2.2. Section 2.3 and 2.4 respec-

tively cover the basics and types of evolutionary algorithms. Section 2.5 describes the

implementation of the traditional methods used for classification.

2.1 Introduction to Classification

Classification is a task of assigning a data instance to one of the predefined classes/groups

based upon the knowledge gained from previously seen (classified) data.

Basically, classification is a two step process. First, a training set consisting of records

whose class labels are known must be provided. The training set is used to induce a

classification model, which is subsequently applied to the test set consisting of records

with unknown class labels[1]. Figure 2.1 shows this two-step classification process.

Evaluation of the performance of a classification model is based on the counts of test

records correctly and incorrectly predicted by the model.

Classification plays a major role in numerous practical situations such as classify-

ing e-mails as spam or not spam, for a bank in classifying loan applications as either

safe or risky, diagnosing medical conditions, categorizing news stories as finance,

weather, business, entertainment, sports, etc. There are numerous methods used to

build classifiers. A selected few are briefly described in the following section.

2.2 Brief Review of Classification Techniques

This section presents a brief review of traditional classification techniques. More

emphasis is laid on Decision Trees, which is described in subsection 2.2.1, whereas

the rest of the techniques are described in brief in subsection 2.2.2

7
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Figure 2.1: Illustrating Classification Task[1]

2.2.1 Decision Tree

A decision tree (or classification tree) is a flowchart-like tree structure where the non-

terminal nodes (root and other internal nodes) contain attribute test conditions to

separate records that have different characteristics. Each branch represents an out-

come of the test and each terminal node (leaf) holds a class label.

While applying decision trees for classification, instances are classified by applying

test conditions, starting at the root node and following the appropriate branch based

on the outcome of the test. The branch may lead to another internal node for which

a new test condition is applied or to a leaf node. In the latter case, the class label

associated with the leaf node is applied to the instance[1].

8
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A decision tree is constructed by recursively dividing the training data into suc-

cessively purer partitions. A partition is pure if all the tuples in it belong to the same

class[2]. The basic strategy is as follow[2][1]:

a. The tree starts with a single node representing all the training instances.

b. If all these instances belong to the same class, then the node becomes a leaf

and is labeled with that class. If the instances belong to more than one class,

an attribute that best classifies the examples is selected and child nodes are

created corresponding to each outcomes of test conditions on that attribute.

For categorical attributes, the outcomes of the test at node correspond directly

to the known values of the attribute whereas continuous-valued attributes may

be discretized to form the test conditions. The instances are distributed to the

children based on these tests.

c. The algorithm is applied recursively until either all of the tuples in a partition

belong to the same class or all the attributes in a path starting from the root

have been tested.

A typical decision tree is shown in Figure 2.2 which represents a case where a bank

loan manager wants to predict whether giving loan to a person is safe or not.

Figure 2.2 is merely an example of decision tree induced from the dataset using the

algorithm Classification And Regression Trees(CART). Practically, there are many

different decision trees possible depending on the attributes selected for classification.

Also, there are several measures[1][6] for selecting the attribute that best divides

the training data such as Information Gain, Gini Index, etc. Throughout the paper,

we have used Gini Index (used by the algorithm CART) as an impurity measure to

induce decision trees and it is described in the following subsection.

9
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Figure 2.2: An example Decision Tree[1]

Gini Index measure for selecting attributes

The Gini index[2] which is used by CART, measures the impurity of D, a data par-

tition or set of training tuples, as shown in equation 2.1:[2]

Gini(D) = 1−
m∑
i=1

p2
i (2.1)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by

|Ci,D|/|D|. The sum is computed over m classes. The Gini index considers a binary

split for each attribute.

The following subsections describe the method of employing Gini index for select-

ing attributes with discrete-value and continuous valued attributes.

Discrete-Valued Attributes

Assume A as a discrete-valued attribute having v distinct values, a1, a2, ..av, occurring

in D. To determine the best binary split on A, all of the possible subsets that can be

formed using known values of A are examined. Each subset, SA, can be considered

10
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as a binary test for attribute A of the form “A ε SA?”. Given a tuple, this test

is satisfied if the value of A for the tuple is among the values listed in SA. When

considering a binary split, a weighted sum of the impurity of each resulting partition

is computed[2]. For example, if a binary split on A partitions D into D1 and D2, the

Gini index of D given that partitioning is as shown in equation 2.2[2]:

GiniA(D) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (2.2)

For each attribute, all the possible binary splits is considered. For a discrete-valued

attribute, the subset that gives the minimum Gini index for that attribute is selected

as its splitting subset.

Continuous-Valued Attributes

For continuous-valued attributes, each possible split-point must be considered. The

midpoint between each pair of (sorted) adjacent values is taken as a possible split-

point. The point giving the minimum Gini index for a given (continuous-valued)

attribute is taken as the split-point of that attribute. For a possible split-point of A,

D1 is the set of tuples in D satisfying A <=split point, and D2 is the set of tuples in

D satisfying A > split point[1][2].

The reduction in impurity that would be incurred by a binary split on a discrete

or continuous-valued attribute A is shown in equation 2.3:[2]

∆Gini(A) = Gini(D)−GiniA(D) (2.3)

The attribute that maximizes the reduction in impurity (or, equivalently, has the

minimum Gini index) is selected as the splitting attribute. This attribute and either

its splitting subset (for a discrete-valued splitting attribute) or split-point (for a con-

tinuous valued splitting attribute) together form the splitting criterion.

11



CHAPTER 2. CLASSIFICATION AND EVOLUTIONARY ALGORITHMS

Decision trees are highly accurate and require less time for construction. Moreover,

the major advantage of decision tree is its comprehensibility, that is, they are easy to

interpret. However, decision trees cannot handle incremental data and are required

to be constructed all again. Also, when the number of outcome classes is more or the

training data is very large (which is apparent in data mining), decision trees induced

are very large. This leads to loss of its comprehensibility[7] and hence this area needs

attention.

2.2.2 Other Classification Techniques

The following section describes few other commonly used classification techniques

with their advantages and open issues.

Naive Bayes Classifier

Naive Bayes[8][9] is a simple but effective classifier based upon the principle of Max-

imum A Posteriori (MAP).

Given a problem with K classes {C1, . . . , CK} with so-called prior probabili-

ties P(C1), . . . , P(CK), class label c can be assigned to an unknown example with

features x = (x1, . . . , xN) such that c = argmaxc P(C = c | x1, . . . , xN),

that is choose the class with the maximum a posterior probability given the observed

data. This a posterior probability can be formulated, using Bayes theorem, as in

equation 2.4 [9]:

P(C = c|x1, ..., xN) =
P(C = c)P(x1, ..., xN|C = c)

P(x1, ..., xN)
(2.4)

In equation 2.4, as the denominator is the same for all classes, it can be dropped

from the comparison. Now, it is required to compute the so-called class conditional

probabilities of the features given the available classes. This can be quite difficult

taking into account the dependencies between features. The Naive Bayes approach

12
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is to assume class conditional independence i.e. the attributes x1, . . . , xN are

independent given the class.

This assumption simplifies the numerator of the above equation to be P(C = c)

P(x1 | C = c) . . . P(xN | C = c), and then choosing the class c that maximizes

this value over all the classes c = 1, . . . , K. Clearly this approach is naturally

extensible to the case of having more than two classes, and was shown to perform

well despite of the underlying simplifying assumption of conditional independence.

The major advantage of the Naive Bayes classifier is that it requires short time for

training the classifier. Also, each training example has an effect on the prediction

and each training example in turn would increase/decrease the probability that a

prediction is correct. However, the assumption of independence among attributes is

not true always and hence the accuracy of Naive Bayes classifier is unstable[7]. An

exception occurs when there is an equal probability for each class label value in the

Naive Bayesian algorithm. In[10], a novel algorithm named NB+ which is an ex-

tended version of the traditional Naive Bayesian algorithm has been presented which

solves this problem.

k Nearest Neighbors Classifier

Nearest neighbor classifiers[2] are based on learning by analogy. The training samples

are described by n-dimensional numeric attributes. Each sample represents a point

in an n-dimensional space. In this way, all of the training samples are stored in an

n-dimensional pattern space. When given an unknown sample, a k-nearest neighbor

classifier searches the pattern space for the k training samples that are closest to the

unknown sample[11]. An unknown sample is assigned the most common class among

its k nearest neighbors. Closeness is defined in terms of a distance metric, such as

Euclidean distance. Attributes may have to be scaled to prevent distance measures

from being dominated by one of the attributes (e.g. height, weight, etc.)[2]. The

value of k is generally determined using a validation set or using cross validation.

13
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Nearest neighbor classifiers are instance-based or lazy learners, in that they store all

of the training samples and do not build a classifier until a new (unlabeled) sample

needs to be classified. This contrasts with eager learning methods, such as deci-

sion tree, which construct a generalization model before receiving new samples to

classify[11]. kNN classifiers require less training time and are also accurate. However,

they are found sensitive to the choice of the similarity function selected for compar-

ing instances. Also, unlike decision tree induction, nearest neighbor classifiers assign

equal weight to each attribute[11]. This may cause confusion when there are many

irrelevant attributes in the data.

In [12], a variant called Genetic k Nearest Neighbor (GkNN) is proposed wherein

genetic algorithm is combined with kNN to improve its classification performance.

Instead of considering all the training samples and taking k-neighbors, the GA is

employed to take k-neighbors straightaway and then calculate the distance to classify

the test samples.

2.3 Introduction to Evolutionary Algorithms

Real world applications are most likely to encounter problems that are hard to solve.

Some examples for these kind of problems are the traveling salesman, knapsack prob-

lem, etc. To approach such hard problems, a couple of concepts were introduced in

the past decades, which were inspired by nature. Some of the more popular and suc-

cessful examples are Neural Networks (NN), Fuzzy Methods (FM) and Evolutionary

Algorithms (EA or also known as Evolutionary Computation), Ant Colony Optimiza-

tion (ACO), etc.

EAs follow the principle of “Survival of the Fittest” laid down by Charles Darwin.

One of the major advantages of EA methods compared to other methods is, that they

14
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only need little problem specific knowledge and that they can be applied on a broad

range of problems. EA methods only need the target (fitness) function for a given

problem, which is to be optimized. EAs differ from more traditional optimization

techniques in that they involve a search from a “population” of solutions, not from a

single point[13].

2.4 Brief Review of Evolutionary Algorithms

Several different techniques are grouped under the generic denomination of EA.

Section 2.4.1 describes Genetic Programming and its applications in classification

whereas the other EAs are discussed in section 2.4.2.

2.4.1 Genetic Programming

Genetic Programming(GP), pioneered by John R. Koza[14], is an evolutionary algo-

rithm that uses variable sized tree structures to codify individuals. This innovative

and flexible technique has been applied to solve numerous real world problems. The

work uses GP to optimize classification techniques described in section 2.2.

The vital features of Genetic Programming are as follow[13]:

a. The use of a population (a group) of individuals that may be regarded as can-

didate or partial solutions, unlike the other techniques that operate on only one

solution.

b. A generational inheritance method. Genetic Operators are applied to the indi-

viduals of a population to give birth to a new population of individuals (hence

developing the next generation). The main genetic operators are reproduction,

crossover and mutation. Crossover swaps some genetic material from two in-

dividuals to form two new offspring for the new population, whereas mutation
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randomly changes a small portion of the genetic material of only one individual

to produce one new offspring.

c. A fitness function is used in order to measure the quality (how well it performs)

of an individual so as to efficiently search for the desired solution. Fitter in-

dividuals are more apt to be selected to take part in the procreation of the

next generation of individuals, thus, increasing the probability that its genetic

material will survive throughout the evolutionary process.
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The basic GP algorithm is explained graphically in Figure 2.3:

Figure 2.3: Flowchart of Genetic Programming

The generation of initial population of a GP run is performed by the random genera-

tion of individuals. The internal nodes of the tree are called functions, while the leaf

nodes of the tree, which take no arguments, are called terminals. Starting from the

root node of a tree, one function from the function set is selected at random to be

the root node. Further, new functions or terminals are selected at random from the

function and terminal sets to form the arguments of the root function[15].
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This process continues until every leaf node of the tree consists of a terminal. The

individuals (trees) developed through this manner undergo genetic operations as de-

scribed above and form the new generation. The new population in turn undergoes

genetic operations until the termination criterion is reached or maximum number of

generations have been developed.

Figure 2.4 shows an example GP tree which is the representation of the program

max(x+x,x+3*y). A set of key parameters are used for deciding the specific charac-

Figure 2.4: An example GP tree[16]

teristics of how the overall GP process operates. These key parameters are described

as follows:

1. Function and Terminal Set

The terminal and function set used in GP is typically driven by the nature of the

problem domain. Terminals are usually some randomly assigned numeric constants

whereas the function set consists of all the fundamental operations which are per-

formed upon the terminal values to produce desired output. To prevent GP trees

from growing to disproportionate sizes, a maximum size of trees is often set[15].
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Table 2.1 and Table 2.2 respectively show a sample of some of the functions and

terminals found in GP literature[16].

Table 2.1: Example of primitives in GP function set

Kind of Primitive Examples

Arithmetic +, *, /

Mathematical sin, cos, exp

Boolean AND, OR, NOT

Conditional IF-THEN-ELSE

Looping FOR, REPEAT

Table 2.2: Example of primitives in GP terminal set

Kind of Primitive Examples

Variables x, y

Constant values 3, 0.45

0-arity functions rand, randbetween

Two conditions must be satisfied to ensure that GP can be successfully applied to

a specific problem: sufficiency and closure. Sufficiency states that the terminals

and nonterminals (in combination) must be capable of representing a solution to the

problem. Closure requires that each function of the nonterminal set should be able

to handle all values it might receive as input. In practice, we often need to evolve

programs that handle values of different types, and this makes it difficult to meet the

closure requirement[13].

2. Population Size

The number of individuals within the evolving population is one of the most important

parameters of a GP run. Simple problems are often solved with small population
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sizes of 50 individuals, whereas difficult problems are approached with population

sizes larger that 10,000[17].

3. Maximum Number of Generations.

The parameter indicates the number of generations to run before stopping. Genera-

tions from less than 20 to many thousands have been used.

4. Initial Population creation method.

There are a number of different approaches for generating this random initial pop-

ulation. Here, two of the simplest (and earliest) methods (the full and grow meth-

ods), and a widely used combination of the two known as Ramped half-and-half is

described[15][18].

In both the full and grow methods, the initial individuals are generated so that they

do not exceed a user specified maximum depth. The depth of a node is the number of

edges that need to be traversed to reach the node starting from the tree’s root node

(which is assumed to be at depth 0). The depth of a tree is the depth of its deepest

leaf.

• Full Method

In the full method (so named because it generates full trees, i.e. all leaves are at the

same depth) nodes are taken at random from the function set until the maximum

tree depth is reached. Beyond that depth, only terminals can be chosen.

• Grow Method

The grow method, on the contrary, allows for the creation of trees of more varied

sizes and shapes. Nodes are selected from the whole primitive set (i.e., functions

and terminals) until the depth limit is reached. Once the depth limit is reached only

terminals may be chosen (just as in the full method).
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• Ramped half and half Method

Because neither the grow or full method provide a very wide array of sizes or shapes

on their own, Koza (1992) proposed a combination called ramped half-and-half. Half

of the initial population is constructed using full method and half is constructed

using the grow method. This is done using a range of depth limits (hence the

term “ramped”) to help ensure that we generate trees having a variety of sizes and

shapes[16].

5. Fitness Function.

The fitness measure specifies what needs to be done. The fitness measure is the

primary mechanism for communicating the high-level statement of the problem’s

requirements to the genetic programming system. The fitness measure implicitly

specifies the search’s desired goal. An effective fitness mechanism for classification is

the accuracy of the individual on the training set[15].

6. Selection Method.

The fitter individuals should contribute more than poorer individuals to later genera-

tions. This is achieved by the selection mechanism, which is used whenever selecting

an individual for use in a new population. Many selection methods could be used,

including proportional, rank, and tournament selection[15].

• Proportional Selection

Proportional selection can be visualized as spinning a roulette wheel. The size of the

segment on the wheel that applies to an individual is proportional to its fitness. As

such, the probability of an individual being selected is proportional to its fitness.

• Rank Selection

When using rank selection, the rank of each individual is found, from first to last in

the population. The probability of an individual being selected is based on a function

of the rank of the individual.
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• Tournament Selection

When selecting an individual using tournament selection, instead of competing for

the selection over the entire scope of the population, few individuals are randomly

selected from the population. The individuals within the tournament then compete

for a chance to be selected to pass genetic material into the next generation.

7. Genetic Operators to be used and their probability.

The genetic operators of GP are described as follow[3]:

• Reproduction

To ensure that the fitness of individual in a population is never less than that of

previous generations, the reproduction, or elitism, operator is used. This consists of

simply copying the best few individuals of a generation’s population directly to the

next.

• Mutation

In mutation, a single individual is selected from the population and copied to a

mating pool. A mutation point is chosen randomly, somewhere in the tree, and

the subtree below the mutation point is replaced with a new, randomly generated

subtree. The new individual is then copied into the new population. This is pictured

in figure 2.5. Mutation is used to ensure diversity of individuals in the population

and for introducing new genetic material.

• Crossover

In crossover (or recombination), two individuals are selected from the population and

copied to a mating pool. A crossover point is randomly chosen in each tree, and the

subtrees below the crossover points are swapped. The two new trees, are then copied

to the new population. This is pictured in figure 2.6.
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Figure 2.5: Subtree Mutation

Figure 2.6: Subtree Crossover
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Above are the basic crossover and mutation operations. Other variants have also been

proposed in the literature. The probabilities of selecting the operators vary with the

nature of the problem. However, in general, GP systems use a high level of crossover,

and lower levels of mutation and reproduction.

8. Termination Criterion.

Another important key parameter, the termination criterion, may include a maximum

number of generations to be run, as well as a problem-specific success predicate. The

single best-so-far individual is then designated as the result of the run[15].

2.4.2 Other EA methods

This section describes three different methods derived from EA along with their area

of application[3][19].

• Genetic Algorithms

Genetic Algorithms(GA) are the most popular type of EA. In GAs, the representation

for solutions is typically a fixed length bit-strings. GAs are well suited for optimizing

combinatorial problems.

• Evolutionary Strategies and Evolutionary Programming

Evolutionary Strategies (ES) and Evolutionary Programming (EP) were both use

vectors of real values to represent individuals. In ES the individuals are used directly

as solutions, in EP the individuals are interpreted as finite-state machines. In both

ES and EP, mutation is often the most important evolutionary operator. ES and EPs

are well suited for optimizing continuous functions.
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2.5 Implementation of Basic Techniques

The above stated methods have been suggested and tested to solve the problem in

the binary classification case. But the multiclass classification has been attempted by

only few researchers. Real world problems generally consists of classifying data into

multiple (more than two) classes. Hence the section shows experiments conducted

on 5 multiclass datasets from various real domains. The aim behind applying the

algorithms to datasets of various domains is to show the consistency of results in

all domains. These datasets are available from machine learning repository of the

University of California at Irvine(UCI). Table 6.1 lists the five datasets used in ex-

perimentation along with their details.

All the algorithms, i.e. Decision Tree (CART), Naive Bayes, kNN have been ap-

plied to test five data sets using Weka, Open Source, Portable, GUI-based workbench

consisting collection of state-of-the-art machine learning algorithms and data pre pro-

cessing tools. Whereas, GP implementation of HeuristicLab 3.5.33, an open source

under GNU General Public License is used. All the experiments are performed on

Windows Platform.

The results of predictive accuracy and comprehensibility on test instances of all the

five data sets are tabulated in figures 2.4 and 2.5 respectively. The experiments

use hold-out method for evaluating the performance of the classifier, where 66% of

dataset was used for training the classifier and the rest was used for testing it.
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Table 2.3: Composition of Data Sets
Attributes Instances Classes

Cardiotocography 21 2126 3

Robot Navigation 24 5456 4

Nursery 8 12960 5

Forest Cover Type 54 581012 7

Poker Hand 10 1025010 10

Table 2.4: Predictive Accuracy (in %) of Five Datasets
Decision Trees Naive Bayes kNN GP

Cardiotocography 92.52 82.15 92.25 63.27

Robot Navigation 98.92 52.35 85.50 71.55

Nursery 72.71 90.67 96.95 59.89

Forest Cover Type 63.49 61.34 63.14 53.07

Poker Hand 66.16 50.06 64.74 50.18

Cardiotocography(CTG) and Robot Navigation are numeric datasets whereas Nurs-

ery and Poker hand are text datasets. Forest cover type is a mixed dataset with

numeric and text attributes together.

The results show that decision trees are on an average best in terms of accuracy.

But, the size of decision tree becomes very large as the number of instances and

classes increase.
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Table 2.5: Comprehensibility (Tree Size)of Five Datasets
Decision Tree Naive Bayes kNN GP

Cardiotocography 101 N/A N/A 66

Robot Navigation 53 N/A N/A 16

Nursery 197 N/A N/A 83

Forest Cover Type 22983 N/A N/A 3984

Poker Hand 137745 N/A N/A 30202

The classification accuracy of Naive Bayes classifiers is not stable due to the as-

sumption of attribute independence.

With the increase in the number of attributes, the accuracy of kNN decreases as

they give equal importance to each attribute.

When GP is used for classification, the size of the tree obtained is quite less compared

to decision tree and is the major advantage of using GP as a classifier.

Real world problems demand a classifier that is not only accurate on classifying

unseen instances, but the classifier should also be easy to interpret. These results

conclude that the decision trees are good at accuracy whereas GP when used for

classification produces trees with noticeably smaller size. This result directs the work

towards combining Decision Tree and GP in order to produce an optimal classifier in

terms of accuracy and comprehensibility.

Few researchers have made proposals of merging genetic programming and decision

tree. The major Reasons for merging GP and Decision Tree [20][21][22]:
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• In literature, Decision Trees have been proved best as far as accuracy and train-

ing time are concerned. However, when training data are given incrementally,

decision trees cannot be used. Collaborating Decision Tree with GP can facili-

tate this

• Moreover, when training data is large or number of classes are more, decision

tree becomes very large. This can be solved using tree size as a fitness measure

in GP and hence the issue of comprehensibility can be addressed

• Tree structures are used as encoding scheme for GP individuals. Hence com-

bining decision tree classifier with GP is an preferable approach

Thus as the experimental and theoretical conclusions suggest that merging GP with

Decision Trees is a preferable approach, the work hereafter focuses on only GP and

Decision Tree. The next chapter shows the work done in literature in concern with

merging GP and DT.
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Chapter 3

Related Work and Issues

The use of evolutionary algorithms for training classifiers has been studied in the past

few decades. Decision trees are one of the most frequently used representations for

classifiers. A vast amount of literature has been devoted to this form of classifica-

tion. Moreover, Genetic programming (GP) is a flexible and powerful evolutionary

technique with some features that can be very valuable and suitable for the evolution

of classifiers. Also, the experimental results and theoretical conclusions derived from

the previous chapter suggest that the application of GP to evolve decision trees seems

to be an obvious approach. Hence this chapter presents a survey on existing litera-

ture about the application of genetic programming to classification (and specifically

decision trees), to show the different ways in which this evolutionary algorithm can

help in the construction of accurate and reliable classifiers.

3.1 Survey

In [23], evolutionary approach based classification model is tested and compared with

non evolutionary approach. The paper concludes that decision trees are better for

classification when a choice is made among non-evolutionary approach based clas-

sification algorithms. EAs have highest predictive accuracy as compared to other

non-evolutionary approach based classification algorithms. In terms of training time,
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EAs are slow but the comprehensibility of EA based classifiers is better compared to

the non-evolutionary approach based classification algorithms. Hence, EA is the best

choice when comprehensibility is a selection criterion and decision tree is the first

choice when training time is a selection criterion.

In [20], design of decision trees through integration of C4.5 and GP is presented where

the population is initialized by C4.5. Specifically, each tree in the initial population

is designed by C4.5, using a part of the training examples. By doing so, relatively

good DTs from the very beginning can be obtained which can be used while waiting

for better DTs to emerge. The design method in an evolutionary process containing

two phases:

a. Select part of the training examples at random from the whole training set, and

design a BDT using C4.5. Repeat this for all trees in the initial population.

b. Evolve the trees using GP.

The paper shows that trees obtained through integration of C4.5 and GP (C4.5 +

GP) are even worse than C4.5. The paper concludes that the approach requires mod-

ification.

In [22], different ways of establishing the classification technique using GP has been

stated and in each method the issues which need to be analyzed for GP are mentioned.

The methods which can be used to create a decision tree are as follows:

a. Each individual in a generation represents a class. It can be carried out in two

ways. One way is to repeat the GP algorithm as many times as the number

of classes for which rules have to be made; we consider a specific class each

time and carry out the GP algorithm for that class only. The second way is to

use a Genetic Program in which the number of individuals in each generation
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is many times bigger than the number of classes, and then in each generation

some individuals are considered for one class.

b. All classed are expressed through one individual. In this case each individual

in a generation covers all the classes.

The paper states that some additional conditions have to be checked which are:

• In the first method where each individual is planned for one class, care should

be taken that the individuals participating in the Crossover belong to the same

class

• When one sub-tree from an individual is exchanged with a sub-tree from another

individual, care should be taken that the established paths from the root toward

the leaf nodes not have contradictory conditions, nor should there be cases of

repetition

Figure 3.1: Example of decision trees created using GP

The paper shows that using while using GP with decision trees, it is possible to com-

pare same-type attributes in data sets in order to create rules of classification in a way

as to reduce the number of rules significantly as compared to the traditional methods

where such a comparison was not possible. This is picturised in figure 3.1
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The paper [24] presents an approach for designing classifiers for a multiclass problem

using Genetic Programming (GP). For a c-class problem, an individual of population

will contain a tree for every class. Hence a multi-tree classifier consisting of c-trees is

evolved. Each tree will represent a classifier for a particular class. Further, the paper

says that when all trees are able to classify a pattern correctly then the said classifier

will recognize the pattern correctly. On the other hand, if there are some unfit trees in

the classifier, they should be given more chance to evolve through genetic operations

in order to improve their performance. Also the selection of trees for the mutation

operation is according to their unfitness, so, the chance of unwanted disruption of

already fit trees is reduced and the chance of evolution of weak trees is increased.

Further, a kind of directed mutation is used, which always accepts mutations that

improve the solution. After mutation, a decision is to be made as to whether the

mutated tree will be retained or ignored.

In [25], an MOGP system designed to optimize two goals is described, but these

goals are not fixed. The authors make a general proposal, allowing for any pair of

goals to be considered. In this paper, a cost-sensitive point of view is adopted, and

related pairs of goals are suggested, such as false negative rate/false positive rate,

sensitivity/specificity, or recall/precision, but any other pair of goals could be em-

ployed.

In [21], decision trees are generated through evolution of training data. Usually,

DTs are designed from fixed data. Decision trees (DTs) are often considered com-

prehensible because there is a reasoning process for each conclusion. When the data

set is large, however, DTs obtained may become very large, and they are no longer

comprehensible. To increase the comprehensibility, it is necessary to reduce the tree

sizes. The papers states that to find the minimum DT is an NP-complete problem.

Hence, the basic idea is to evolve a small data set that can cover the domain knowl-
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edge as good as possible. From this dataset, a small but good DT can be designed.

Here, N training sets are extracted at random from the entire training set D and

a DT from each training set is constructed using C4.5. Fitness of each tree is then

measured using the validation set V (=D here). Genetic operators are further applied

on the training sets(subsets of D) that generate fit decision trees. The rationale is, if

the best training set, after evolution, can cover the domain knowledge well, the DT

designed from it must be good as well.

In [26], the authors investigate the feasibility of using Genetic Programming in dy-

namically changing environments to evolve decision trees for classification problems

and proposes an new version of Genetic Programming called Adaptive Genetic Pro-

gramming. To cope up with the changing environment, a new control parameter

known as culling is introduced.

Culling is a mechanism to jump start the exploration capability of an evolution-

ary algorithm. It was applied by removing a portion of the worst solutions from

a population and replacing these with randomly generated solutions. Replacement

solutions were constructed by generating a pool of trees of size 1, only consisting

of terminal nodes as the root nodes, and then applying the mutational operators to

these solutions, afterwards inserting them into the population.

Also, various mutation operators are explained which are: Growing, Truncation,

Shrinking, Node Altering, Physical swap and Logical Swap.

In [27], GP is employed to achieve a selection of features. Each individual is a

tree encoding a classifier represented as a discriminant function, and classification

accuracy is used as the fitness function. The authors capitalize on the implicit fea-

ture selection ability of GP classifiers by applying GP for classification in a two-stage

scheme. First, a certain number of GP runs are carried out, each one resulting in a

best-of-run classifier. Then, in the second stage, the GP is run again using only the
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features most frequently used in the best classifiers obtained in the previous stage.

However, the goal of the first stage is just to discover the most interesting features,

and the classifiers obtained are discarded. The final classifier is induced in the second

stage using the features selected in the first stage.

Further, [28] presents an analytical study on the influence of the fitness function

and mutation operator on the quality of the decision trees induced, taking into ac-

count both classification accuracy and tree size. One of the main points of interest

when constructing decision trees with GP is how to obtain accurate and parsimonious

classifiers, since simple classifiers are more comprehensible to humans. This concern

is addressed by many researchers, not only when evolving decision trees, but also

when other representation formalisms are employed.

In [29], a new mutation technique called Mutation on RHS has been proposed. Given

a condition, the method consists of changing the right hand side of the condition into

a randomly chosen (allowed) new one. This can either be a value of the attribute or

another attribute. Also, the paper uses pruning as a Genetic Operator.

The potential of GP to include any kind of operation into individuals is used in [30]

in order to evolve oblique decision trees. The paper shows that in GP, individuals

tend to become larger over time. This phenomenon is known as bloat. Disadvan-

tages include overtraining, longer execution time for evaluating individuals and lower

understandability of the trees for humans. Hence in this paper, the fitness func-

tion takes into account not only the classification accuracy but also applies two size

penalty factors, one for the number of nodes and the other for the depth of the tree.

Also, it is examined that the exact amount of mutation and crossover was of no high

importance, as long the mutation rate is larger than 0 percent. Hence the mutation

and crossover rate was set to 0.5 as there was a peak in validation accuracy at 50

percent in the experimentation shown in the paper.
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In [31], a survey of evolutionary algorithms that are designed for decision-tree in-

duction is presented. In this context, most of the paper focuses on approaches that

evolve decision trees as an alternate heuristics to the traditional top-down divide and

conquer approach. Additionally, some alternative methods that make use of evolu-

tionary algorithms to improve particular components of decision-tree classifiers are

shown.

The paper provides an up-to-date overview that is fully focused on evolutionary al-

gorithms and decision trees and does not concentrate on any specific evolutionary

approach.

Also, it provides a taxonomy, which addresses works that evolve decision trees and

works that design decision-tree components by the use of evolutionary algorithms.

Further, the paper addresses some more important issues and open questions that

can be the subject of future research in concern with combining decision tree and

evolutionary algorithms.

In [32], the authors have proposed an algorithm based on genetic programming to

search for an appropriate classification tree according to some criteria. The classi-

fication tree obtained is transferred into a rule set, which can then be fed into a

knowledge base to support decision making and facilitate daily operations. Two new

genetic operators, elimination and merge, are designed in the proposed approach to

remove redundancy and subsumption, thus producing more accurate and concise de-

cision rules than that without using them. The paper also presents experimental

results from the credit card data to show the feasibility of the proposed algorithm.
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3.2 Summary

This extensive literature survey shows various approaches used to merge GP and De-

cision Tree.

In the proposed algorithm, the strategy of using decision trees for producing ini-

tial population instead of initializing the population randomly is adopted. Further,

emphasis is laid on the sayings from [24] that the nature of mutation is destructive

and a solution to this is suggested in the proposed algorithm.

Taking motivation and lessons from this survey, the next chapter proposes a new

algorithm that merges GP to Decision Trees and attempts to produce an optimal

classifier in terms of accuracy and comprehensibility.
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Proposed Algorithm

This chapter proposes a new algorithm named Genetic Programming based Evolution

of Classification Tree (GPeCT) that performs a trade-off between accuracy and

comprehensibility. As the name suggests, the proposed algorithm is a hybrid version

of GP and Classification Tree(Decision Tree).

The algorithm is especially designed for large datasets and for problems involving

multi-class classification because the increase in dataset size or number of classes di-

rectly affects the size of the trees, resulting into trees that are not comprehensible

enough. As a solution to this issue, the proposed approach gives equal importance

to size of the tree and its accuracy by designing the fitness function accordingly. Un-

doubtedly, the approach works perfectly well for binary classification problems and

small datasets.

The proposed algorithm uses some lessons learnt from the literature survey and com-

bines them to produce a new classification technique. The basic approach is to form

a population of decision trees and evolve them using GP with accuracy and number

of nodes as fitness parameters.
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4.1 Algorithm GPeCT

The proposed approach is shown in algorithm 1.

Algorithm 1 GPeCT. Evolves a classification tree.

Input: Data Partition, Dt, which is a set of training instances and their associated
class labels

Output: BEST−SO−FAR, the optimized classification tree
1. for i = 1 to POP−SIZE do // Initial population
2. Create a decision tree from a random subset of Dt

3. end for
4. Evaluate fitness of each individual in the initial population using fitness measure

of Equation 4.1 and Dt

5. while GENERATION < MAX−GENERATIONS or
Termination criterion not satisfied do

6. repeat
7. Perform genetic operations on parent trees to generate offspring trees for the

new population
8. if (Size of Individual < c1 ∗ Size of BEST−SO−FAR ) then
9. Evaluate its fitness and increment NEW−POP−SIZE

10. else if (Accuracy of Individual >
c2 ∗ Accuracy of BEST−SO−FAR ) then

11. Evaluate its fitness and increment NEW−POP−SIZE
12. else
13. Discard the individual
14. end if
15. until POP−SIZE individuals are produced
16. GENERATION ← GENERATION + 1
17. POP−SIZE ← NEW−POP−SIZE
18. end while
19. Save the population of last generation for incremental learning
20. Designate best individual found so far as BEST−SO−FAR
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4.2 Detailed Analysis of GPeCT

The input to the algorithm is the set of training instances along with their as-

sociated class labels. As an output, the algorithm gives us a classification tree

BEST−SO−FAR, which is an optimal classifier in terms of accuracy and comprehen-

sibility. Initially, POP−SIZE is set equal to the desired size of the initial population

and as the name suggests, the parameter MAX−GENERATIONS is set equal to the

number of maximum generations the algorithm is desired to run.

The detailed explanation of the algorithm 1 is as follow:

4.2.1 Initializing Population

The algorithm begins by creating an initial population made up of decision trees.

Forming initial population using decision trees has a plus point over initializing the

population randomly with terminals and functions. The advantage is that initializing

population using Decision Trees would give us good (in terms of accuracy) trees from

the beginning as compared to the random trees[20][33].

Further, to obtain the initial population, the training data is divided into POP−SIZE

random parts. Moreover, it is made sure that each record in the training data is

covered at least once in any of the part. Furthermore, from each part, a decision

tree is formed and added to the population. This is how initial population of size

POP−SIZE is formed.

The algorithm used to create initial decision trees is the CART. The reason for se-

lecting CART as the decision tree algorithm out of the many is as follow:

CART, that uses Gini index as an attribute selection measure forms binary trees.

From the literature survey it is observed that binary trees as preferable for GP as
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most of the researchers have applied evolutionary algorithms on binary decision trees

only. Further, CART has a provision to deal with noisy data. Hence it is preferable

over the highly used C4.5 that uses Gain Ratio as an attribute selection measure, as

C4.5 does not implicitly deal with noise.

The above method of initializing population can be presented in a nutshell in fig-

ure 4.1:

Figure 4.1: Method of Initializing Population in GPeCT

4.2.2 Fitness Measure

The fitness of each individual (tree) is evaluated using the fitness measure shown in

equation 4.1:

Fitness =
Accuracy of the Decision Tree

[Number of nodes in the tree]γ
(4.1)

where γ is a control parameter representing a tradeoff between accuracy and size. Its

value can range from 0.05 to 0.1.

The fitness function is proposed such that a trade off between accuracy and size

of the tree(comprehensibility) can be provided. As the value of γ increases, the value

of the denominator increases, i.e. trees with big size are assigned less fitness. The

impact of trade-off factor γ is shown in Table 4.1.
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Table 4.1: Impact of γ on Fitness Measure
Accuracy No. of Nodes γ [No. of Nodes]γ Fitness Measure

80 100 0.02 1.26 63.49

90 100 0.02 1.26 71.43

90 200 0.02 1.3 69.23

80 100 0.1 1.58 50.63

90 100 0.1 1.58 56.96

90 200 0.1 1.70 52.94

Table 4.1 has been mathematically as well as experimentally proved. The table shows

that, with the same value of γ, when the size of the tree is same but accuracy of one

is more over the other, the fitness of the tree with high accuracy is obtained higher.

On the other hand, if accuracy of two trees are same but size of one is more than

the other, the fitness of tree with smaller size is more. And that does exactly what

the algorithm wants to perform, that is, performs a trade off between accuracy and

comprehensibility.

With less value of γ, the size parameter has less effect. With more value of γ, the

size parameter has higher effect and the fitness obtained is less.

4.2.3 Genetic Operations

The algorithm performs three genetic operations on the parent trees of existing pop-

ulation to generate the new population. They are:

1. Reproduction

2. Crossover

3. Mutation
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The method of selecting individuals for genetic operation, operation probability, etc.

are presented in Table 4.2:

Table 4.2: Parameters concerning genetic operations in GPeCT

Reproduction Crossover Mutation

Probability 0.2 0.6 0.2

Number of individuals
used and produced per
operator

1 2 1

Method used to select
individuals for genetic
operation

Rank
Selection

Tournament
Selection

Reverse Rank
Selection

The probability of reproduction operator is set 0.2. Further, for reproduction, the

best individuals are preferred using the Rank Selection Method. This is to make sure

that the fittest members are more likely to be passed on to the next generation, and

past optimal solutions are not lost[34].

The probabilities of crossover and mutation are set 0.6 and 0.2 respectively. For

crossover, tournament selection is performed and for mutation, Reverse Rank Se-

lection is used. That is, it prefers unfit individuals over the fit individuals. This

is to save good trees from undergoing the random changes of mutation, because as

per[24][34][35], the nature of mutation is destructive at times. Hence, the probabil-

ity of selecting unfit individuals for mutation is set more using Reverse Rank Selection.

As we are using Reverse Rank Selection, assigning the probability of selection of

mutation operator equivalent to (i.e. as high as) reproduction operator is acceptable.
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4.2.4 Validation of Individuals

The paper introduces a new validation process for the individuals produced through

the genetic operations. The individuals with tree size less than c1 times the best so

far are validated. If any individual has size more than it, its accuracy is checked. If its

greater than c2 times the best so far, it is validated. Otherwise it is rejected and its

fitness is not calculated. This allows saving the time in calculating the fitness of al-

ready known bad individuals. The fitness of only validated individuals are calculated.

The individuals who pass the above test and get validated are added to the new

population and the counter of NEW−POP−SIZE is increased by one per individual.

This parameter at the end of the generation gives the new population size which is to

be used for next generation. This way, the algorithm uses variable population size.

However, a generation is incremented only if required amount of individuals are pro-

duced. It does not matter if those individuals are accepted or rejected. Hence, to

check if the generation should be incremented, with every genetic operation, the

count of number of individuals produced is increases accordingly. Once the required

amount of individuals, i.e. POP−SIZE individuals are produced, the next generation

is started. For this new generation, NEW−POP−SIZE becomes POP−SIZE.

4.2.5 Termination Criterion

The algorithm stops when the termination criterion is met or maximum number of

generations have been developed. The termination criterion here is that for p con-

secutive generations, the best q fitness values achieved are the same. For example,

considering p = 2 and q = 3, when the best classifier obtained, second best and the

third best out of the population are same for 2 consecutive generations, the algorithm

terminates.
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Once the termination criterion is met or the maximum number generations have

evolved, the BEST−SO−FAR reported by now is made the output classifier and this

is how the algorithm works.

4.2.6 Incremental Learning

Furthermore, in real world applications, data might be produced incrementally. Hence

any classifier must be capable of incorporating incremental data. However, this is not

possible using only CART or any other decision tree algorithm[36]. The proposed

algorithm has this advantage over the traditional decision tree algorithm that, data

can be given incrementally here. The population of the last generation produced

while evolving the classifier is saved. Later, when new training instances come at

hand, trees induced from this data are added into the population and one more GP

run is conducted. The BEST−SO−FAR obtained after this run becomes the final

classifier. This classifier would incorporate training instances available earlier as well

as the newly arrived instances. Thus the proposed algorithm allows incremental

learning.
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Implementation

This chapter covers the details of the tool used for implementation followed by a

block diagram picturizing the modular flow of the project and other relevant details.

The chapter also presents the snapshots of the running algorithm and explains the

significance of some steps on the final output.

5.1 Tools Used

CART and the proposed algorithm GPeCT have been implemented in MATLAB

7.8.0 (R2009a) whereas GP for classification is implemented in HeuristicLab 3.5.33,

an open source under GNU General Public License. All the experiments are per-

formed on Windows Platform.

The reason behind choosing MATLAB for Implementation of the proposed algorithm

is as follow:

• Interactive interface

• Debugging facilities

• High quality graphics and visualization facility
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• MATLAB’s add on feature in the form of toolboxes: making it possible to

extend the existing capabilities of the language with ease

• Can manipulate large amount of data: which is the basic requirement in Data

Mining

• Researchers in [37] suggest that a way to speed up the GP algorithm is to make

a faster implementation using C/C++/MATLAB rather than JAVA: Hence the

well known tool WEKA is not used.

• MATLAB has an innumerable in-built functions ready in it which makes the

implementation work very easy.

Initially, a plug in toolbox GPlab[38] was to be used for the implementation of the

algorithm. However, the decision trees formed were ordered in BFS manner and

the crossover, mutation, etc. functions used by the toolbox were applicable on trees

ordered in DFS manner of traversal. As combining both of them was not possible,

the toolbox was not used and the sole implementation is done in MATLAB and all

the major required functions were designed explicitly.

5.2 Modular Flow

The block diagram of figure 5.1 shows the modular flow of the project.

In the PreRequisiteCheck stage, the dataset is imported and checked for noisy data.

The algorithm also facilitates selecting few attributes out of many.

In the second stage, initial population is generated and evaluated for their efficiency

using the training data itself. The algorithm practices to keep the best individuals

at the top of array so that its comparison with newly developed individuals can be

done easily. Hence a sort function is used that sorts individuals based on fitness.
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Figure 5.1: Block diagram of modules implemented

The third stage performs the GP runs until the termination criterion is reached and

presents the best solutions at the top of the array. The module GPruns include per-

forming Reproduction with Rank Selection method implemented in it. Further, it

includes Crossover and Mutation functions with the stated sub-functions like swap,

etc. The detailed working of crossover and mutation is explained in section 5.3

The results of the last generation are saved for incremental learning, which occurs

after the algorithm has produced its best classifier and some new training data arrives

at hand. In order to perform incremental learning, one more GP run is conducted on

the saved population. This is why GPruns module is called again from Incremental-

Learning module.
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Finally, the results are shown in form of graphs and the GPeCT classifier is pro-

duced as output in form of a tree structure that is easy to interpret.

5.3 Methodology

The method of implementing each of the above stated modules and their significant

impact on the overall performance of the algorithm is explained in this section.

5.3.1 Pre Requisite Checking

Figure 5.2 shows a GUI that enables selection of the attributes the user wants to

allow for participating in classification. This feature is provided as the data might be

noisy or some attributes may be irrelevant for classification. Such attributes can be

eliminated here.

Figure 5.2: GUI enabling selection of attributes for classification
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The implementation imports data directly from an excel or csv file, using the first

row as attribute names (necessary). The first column is the outcome group which

must be numeric. Although the initial population trees are developed using parts of

dataset, fitness of the classifier is determined using the entire training set.

Hence, the accuracy reflects the effect of applying the classifier on the entire dataset

and not the only part on which it was trained.

5.3.2 Initial Population

Figure 5.3 shows a snapshot of some of the trees of the initial generation.

Figure 5.3: Sample of initial population generated(Decision Trees)

Few best individuals formed as the initial population on the Robot Navigation

dataset described earlier are listed as in table 5.1
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Table 5.1: A list of few Best Individuals

Individual Number Fitness Accuracy No. of Nodes

16 65.710079 74.701472 13

3 63.069364 75.118023 33

71 61.863498 73.451819 31

42 59.618168 70.785893 31

65 58.222897 71.008053 53

84 57.769857 70.952513 61

The results show that by using Decision Trees for creating initial population, gives

good trees from the very beginning which matches the theoretical assumption[33].

5.3.3 Genetic Operations

Once the initial trees have been developed, the next step is to perform crossover,

mutation and reproduction upon them based on the results. Figures 5.5 to 5.8 show

how crossover and mutation is implemented.

Figure 5.8 shows an offspring obtain by performing genetic operation on parents. In

case of crossover, two parents undergo the above stated process whereas for mutation,

one parent is mutated with a randomly created new tree.

Whenever a leaf node is to be swapped with a leaf node, the task becomes very simple

and simply one node swap is required. However, if a node that has branches becomes

the point of crossover or mutation, it is to be pruned first and then swapped with the

crossover or mutation node of the other tree.
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Figure 5.4: Step - 1: Randomly selecting crossover/mutation point

Figure 5.5: Step - 2: Pruning the node undergoing crossover/mutation
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Figure 5.6: Step - 3: Substituting node 2 of Tree 2 at node 5 of Tree 1

Figure 5.7: Step - 4: Addition of new nodes and changing properties of all following
nodes
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If the node that is added has branches, crossover or mutation takes place by finding

the next node with branch and giving the number of its children to children of the

swapped node. All the properties of the nodes that follow are to be changed.

Building crossover and mutation functions have been the heart of the implemen-

tation as it not only involves simple swapping of nodes, but all the properties of the

nodes such as its parent, its children, etc. have to be swapped. Also, crossover and

mutation are responsible for consuming the major time the algorithm runs. Further,

the proposed algorithm works well with both numeric and text data.

5.3.4 Output Classification Tree

An example of the final classification tree developed on the Robot Navigation dataset

is shown in figure 5.9. The view function of MATLAB is used to display the tree.

The final tree is comprehensible enough to analyze on the given dataset.
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Figure 5.8: Step - 5: Addition of new nodes and changing properties of all following
nodes

Figure 5.9: Output Classification Tree
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Results

Chapter 4 proposes an algorithm that merges Decision Tree and GP and the results

of that proposed algorithm are discussed in this algorithm. Here a comparison is

made between the well known Decision Tree algorithm CART, Genetic Programming

as classifier and the proposed algorithm GPeCT.

6.1 Data Sets

To verify the effectiveness of the algorithm proposed in this paper, we conducted

experiments on different datasets from various real domains. The datasets have been

taken from machine learning repository of the University of California at Irvine. These

datasets are the same as described in chapter 2, but they are repeated for better com-

prehensibility.

The aim behind using different datasets for experimentation is to prove the con-

sistency of the proposed algorithm in different domains. The details about these

datasets are listed in Table 6.1. The number of instances in these datasets range

from hundreds to more than a million, verifying the performance of proposed algo-

rithm on datasets with different sizes.
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Table 6.1: Composition of Data Sets
Attributes Instances Classes

Cardiotocography 21 2126 3

Robot Navigation 24 5456 4

Nursery 8 12960 5

Forest Cover Type 54 581012 7

Poker Hand 10 1025010 10

In the experimentations, 66% of each of these datasets have been used for training

the classifier and the rest for testing it. The next section describes in detail the

results of experiments on five datasets, each representing a multi-class problem. The

algorithm has also been tested on many other datasets representing multi-class as

well as binary classification and the test results are shown in Table 6.4 at the end

of the chapter. Although the algorithm has been designed especially for multi-class

classification problems, it works equally well on problems with binary classes. Hence,

experimental results have also been performed on binary classification problems in

order to show the generalized behavior of the proposed algorithm on classification

problems with any number of classes.

6.2 Experimental Results and Findings

Some initial runs were performed to compare settings for tournament size, trade off

factor and validation factors. The results showing fitness, accuracy and number of

nodes of individuals for different values of trade-off factor is shown in Table 6.2. The

results show that 0.05 is the optimal value of trade-off factor γ on the above datasets.

Hence the algorithm uses value of γ as 0.05 throughout the experiments.
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Table 6.2: Optimal value of Trade-off factor γ

Dataset Trade-off factor γ Fitness Accuracy No. of Nodes

Cardiotocography 0.01 92.31 96.56 123
0.05 75.24 94.07 87
0.1 61.35 88.5 39

Robot Navigation 0.01 95.34 99.45 68
0.05 82.86 99.25 37
0.1 56.69 76.86 21

Nursery 0.01 78.86 83.24 223
0.05 62.89 79.65 113
0.1 50.48 72.44 37

Table 6.3 summarizes all the concluded optimal GPeCT parameters used for experi-

ments.

Table 6.3: Optimal values of GPeCT Parameters
Parameter Value

Initial Population Size 100 [17]

Maximum Generations 100 [17]

Tournament Size 7 [17]

Tradeoff Factor γ 0.05

Validation Factor c1 5

Validation Factor c2 0.5

Termination Criterion Same 3 BEST−SO−FAR for 3 con-
secutive generations

The heart of the algorithm are the crossover and mutation operations which lead to

increase in accuracy from a smaller value to significantly high values. The average re-

sults of how the crossover and mutation operations perform on all the stated datasets

is shown in figure 6.1 and 6.2 respectively.
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Figure 6.1: Effect of Mutation

Figure 6.2: Effect of Crossover
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The results show that on an average, mutation raises the accuracy of weak individ-

uals to a higher value whereas crossover increases their accuracy to the highest values.

Figure 6.3 shows how accuracy of the individuals increase with generations. The

results show that after a finitely small number of generations, the termination cri-

terion is reached and the algorithm terminates. In such cases, the graph becomes a

straight line showing that the accuracy is no more increasing.

For Nursery dataset, the fitness becomes stable after 17 generations whereas on Robot

Navigation, it takes 13 generations for fitness to stabilize. On the other hand, GPeCT

runs for 19 generations on Cardiotocography(CTG) dataset to terminate.

Figure 6.3: Increase in Fitness of Individuals with Generations

Figures 6.4 and 6.5 respectively show the results of accuracy (in %) on training

and test instances whereas Figure 6.6 shows the results comprehensibility (number of

nodes) of the classifier on the above stated datasets for the three algorithms CART,

GP for classification and GPeCT. As explained in chapter 2, with increase in number

of classes and length of dataset, CART (i.e. decision tree) performs good in terms
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Figure 6.4: Accuracies of GP, CART and GPeCT on Training instances

of accuracy but comparison of classifier is less, whereas GP produces classification

trees with less number of nodes and hence is highly comprehensible. This can also be

concluded from the results above. Hence the goal of our proposed approach was to

perform a trade-off between accuracy and number of nodes and the results shown in

figure 6.5 and 6.6 verify that we have been successful in performing the trade-off. Not

only a trade-off, in most of the cases, the accuracy has also increased in comparison

to CART.

On training instances, the classifier performs as good as CART in terms of accuracy

whereas the number of nodes have significantly decreased. On the test instances,

GPeCT outperforms GP and CART in most of the cases.

For example, on CTG and Nursery datasets, the accuracy obtained by applying

GPeCT is remarkably more than CART. Moreover, as GPeCT is a result of merging

GP to CART, the number of nodes have also been reduced as compared to CART.

On the other hand, the accuracy of GPeCT on Robot Navigation dataset is almost
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Figure 6.5: Accuracies of GP, CART and GPeCT on Test instances

Figure 6.6: Number of nodes in trees generated by GP, CART and GPeCT
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equivalent to CART, and the number of nodes in the classification tree are convinc-

ingly less than CART resulting into a triumphant trade-off.

The only database on which GPeCT has a notably less accuracy is on the Forest

cover-type database. But, the number of nodes have decreased by approximately

three times and hence the reduction in accuracy is quite acceptable.

Further, the largest dataset used, that is the Poker-hand dataset, is classified the

best with GPeCT as compared to CART and GP. Not only is the accuracy of GPeCT

fairly high, but the number of nodes have also been very significantly decreased (al-

most 6 times). This shows that GPeCT performs at its best when mining interpretable

results from very large datasets.

6.3 Comments on Classification Time

As far as the time complexity is concerned, it is quite obvious that Genetic Pro-

gramming takes more time than CART as it continues for a number of generations.

GPeCT being a combination of CART and GP, clearly takes more time in construc-

tion of the classifier. However, the construction of classifier is a one-time cost and

once generated, what is of importance is the amount of time taken to classify new

instances using that classifier.

As the results show, the tree size of CART is considerably large and hence it takes

considerably high time in classifying the data. GPeCT on the other hand, may take

time in building the classifier, but once trained, the new instances can be classified

quickly as the size of the tree is small (at least smaller than tree developed by CART

or any other decision tree algorithm).

Undoubtedly, pruning[39] the trees developed by decision tree algorithm reduces the
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size, but it happens only by compromising in accuracy to a greater extent. GPeCT,

while performing trade-off, sees to the fact that accuracy remains convincingly high.

GPeCT has been verified on several other datasets representing binary as well as

multiclass problems. The results on some of them are shown in Table 6.4. As the re-

sults of CART and GPeCT are more significant, only they are compared. Further, the

accuracy tabulated is for the test instances as the actual performance of the classifier

can be measured as how efficiently it classifies the unknown instances.

Table 6.4: Experimental results on different datasets

Dataset No. of
Attributes

No. of
Instances

No. of
Classes

Optimization
Parameter

CART GPeCT

Iris 5 150 3 % Accuracy 96.07 98

No. of nodes 9 7

Ecoli 8 336 8 % Accuracy 74.34 81.42
#Nodes 31 23

Diabetes 9 768 2 % Accuracy 74.23 81.54
#Nodes 103 27

Vehicle 18 946 4 % Accuracy 66.43 69.58
#Nodes 121 99

CMC 9 1473 3 % Accuracy 48.8 49.6
#Nodes 249 189

Segment 20 1500 7 % Accuracy 96.17 96.66
#Nodes 77 53

Car 7 1728 4 % Accuracy 95.22 94.2
Evaluation #Nodes 65 39

Spambase 58 4601 2 % Accuracy 80.36 91.59
#Nodes 239 133
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The previous results and the results from this table show that in almost all the cases,

GPeCT outperforms CART in terms of accuracy and comprehensibility.

Further, the results presented are an average of experiments conducted three times

using the same algorithm parameters. The reason for conducting the same experiment

thrice is because GP and hence the algorithm GPeCT has its roots in randomization.

The parts of training data selected for generation of initial population, the selection

of trees for crossover, mutation, etc. is all randomly done. Hence, to assure the

consistency of output, the average of three experimental results is presented.
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Chapter 7

Conclusions and Future Scope

The chapter presents the conclusion derived from the work done and further scope of

the work.

7.1 Conclusions

The work proposes a new algorithm GPeCT developed with an aim to perform a

trade-off between accuracy and comprehensibility of the classifier. The work focuses

on large datasets and multi-class classification. The implementation results show that

the proposed algorithm outperforms the traditional decision tree classifier CART, as

well as GP. Not only has a trade-off been performed, but the accuracy of the GPeCT

classifier is obtained more than decision tree on most of the datasets. The number of

nodes have also been decreased noticeably giving us a comprehensible classifier.

Using CART to produce the initial population has performed a major role in in-

creasing the accuracy, as we have been getting good trees from the very beginning.

Secondly, the fitness measure proposed succeeds in imparting more emphasis on trees

with high accuracy, as well as less nodes, which in turn increases the efficiency of the

algorithm.
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Further, the algorithm uses variable size population by performing an extra step

that simple GP, in which it validates some of the individuals and reject the few. This

extra step saves time required in performing operations on the individuals that can be

rejected at an early stage. Also, it saves a lot of computation involved in calculating

fitness of few so-called “useless” trees

Clearly, with the decrease in population size, the overall running time of algorithm

also decreases. Lastly, using Reverse Rank Selection to select trees that undergo mu-

tation results into a significant increase in accuracy of the weak individuals.

Summarizing it, the proposed algorithm has been successful in attempting to pro-

duce an optimal classifier, that is, a classifier with high accuracy and smaller number

of nodes.

7.2 Future Scope of Work

A number of future directions require investigation. An attempt can be made to

parallelize the initial population generation so as to decrease the running time of the

algorithm.

Few more genetic operators can be added to the algorithm. For example, adding

merge and elimination operators proposed in [32] can increase the performance of the

algorithm.

A variation to the algorithm GPeCT can be adaptive GPeCT, where the probabilities

of crossover and mutation can be made adaptable to the performance of the operators.

Some work in the literature has been done to utilize the feature selection capabil-

ity of GP, which can be incorporated in the algorithm.
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Appendix A

List of Websites

http://en.wikipedia.org/wiki/Evolutionary-algorithm

http://www.cs.sandia.gov/opt/survey/ea.html

http://www.geneticprogramming.com

http://archive.ics.uci.edu/ml

http://www.geneticprogramming.us
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Appendix B

List of Publications

1. R. Kotecha, V. Ukani, and S. Garg, “An empirical analysis of multiclass classifica-

tion techniques in data mining,” in Proceedings of 2nd Nirma University International

Conference on Engineering(NUiCONE), December 2011.

2. R. Kotecha, S. Garg, and V. Ukani, “Genetic Programming based Evolution of

Classification Tree”, in communication with IEEE Transactions on Knowledge and

Data Engineering (TKDE).
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