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ABSTRACT 

 

This thesis explores the performance characterization of a Static Random Access 

Memory (SRAM), the design validation of the Dual port SRAM, evaluation of Eldo 

Optimizer, evaluation of Multi-threading & Setup for Crosstalk analysis. The SRAM cell 

characterization includes Static Noise Margin, Write Margin, and Discharge Rate. Design 

Validations include Marginality Analysis, Power Estimation, Pin Cap Measurement, 

Leakage Measurement, Tight Stimuli verification. Main focus on optimizing area, delay 

and power at circuit as well as on architectural level. 

                     The key to low power operation in the SRAM data path is to reduce the 

signal swings on the high capacitance nodes like the bitlines and data lines. Clocked 

voltage sense amplifiers are essential for obtaining low sensing power, and accurate 

generation of their sense clock is required for high speed operation. We investigate 

tracking circuits to limit bitline and I/O line swings and aid in the generation of the sense 

clock to enable clocked sense amplifiers. The tracking circuits essentially use a replica 

memory cell and a replica bitline to track the delay of the memory cell over a wide range 

of range of process and operating conditions. We present the low power SRAM by using 

some low power methodologies like page type architecture, divided word line (DWL), 

selective precharging, pre-decoding scheme, two-level multiplexing.  

                  To reduce the power dissipation due to discharge of bitlines from Vdd to 0v 

during the time when word line selected we made use of self-time concept. This can be 

done either by dummy structure approach. The dummy structure approach is more 

immune to process parameter variation because the dummy I/O is similar to normal I/O, 

therefore inter-chip variation is negligible. This SRAM has dummy column discharges 

through the dummy cells. This discharge is faster then normal discharge so the reset 

signal sense amplifier enable signal can be activated before the normal discharge exceed 

voltage difference between bitlines being resolve by sense amplifier. 

                  The basic application of Dualport SRAM is in Video SRAM, which allows 

the memory to allocate one channel to refreshing the screen while the other is focused on 

changing the images on the screen. Since video memory chips are used in much lower 

quantities than main memory chips, they tend to be more expensive 
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Eldo optimizer tool, help in optimization of different circuits, element parameters & 

device lengths, widths & area. This uses Eldo tool for providing inputs & simulation. We 

had used this tool in above Dualport Memory cell analysis & got good results. This tool 

can be very much helpful reduce the time of designing any circuits. The Eldo Multi-

threading methodology is used to distribute work & launch these child processes on 

different processors so the simulation time is drastically reduce. 

                    Crosstalk analysis setup uses Hsim tool for the check of static & dynamic 

crosstalk & noise-sensitivity estimation. The effect is measured according to user-defined 

thresholds for change of characteristic signal for dynamic or coupling ratio for static 

analysis. This is helpful in reducing manual work of finding the nodes where crosstalk 

can be occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

CONTENTS 

 
Certificate             i 

Acknowledgement            ii 

Abstract             iii 

Contents             v 

List of figures                        vii 

 
Chapter 1   Introduction          1     

1.1 Objective and scope of the project     2            

1.2 Definition of problem                3 

1.3 Dualport SRAM                    4 

 

Chapter 2   Exhaustive survey of memory        5 

2.1 Literature survey        6 

2.2 SRAM cell description       17 

2.3 Power consumption in SRAM      23 

2.4 Ultra high density in SRAM      26 

2.5 Low power approaches in SRAM      26 

2.6 Analysis of SRAM architecture      28 

 

Chapter 3   System analysis & design        32 

3.1 User requirements        33 

3.2 Detail life cycle of the project      34 

 

Chapter 4   Implementation          35 

4.1 Introduction         36 

4.2 Memory cell characterization      40 

4.3 Cost and benefit analysis       46 

 

Chapter 5   Evaluation and testinting        47 

5.1 Memcell characterization results       48 

5.2 Stimuli generation approach      49 

5.3 Limitation of the system       50 

 



vi 

 

Chapter 6   Evaluation works          51 

  6.1     ELDO optimizer         52 

   6.1.1 Problem statement        53 

   6.1.2 Optimization Commands       54 

                               6.1.3 Discretization of design variables     59 

   6.1.4 Optimization Options       60 

   6.1.5 Robust optimization using corners     60  

  6.2     MULTI – THREADING        68 

   6.2.1 MTHREAD         68 

   6.2.2 USETHREAD        68 

   6.2.3 MPRUN         69 

   

Chapter 7 Cross-talk setup          76 

  7.1 Dynamic Crosstalk Analysis       77 

  7.2 Static Crosstalk Noise Analysis       84 

   

Chapter 8 Future works           90 

  8.1 Future work/requirements       91  

  8.2 APPLICATIONS         92 

Chapter 9 Conclusion           93  

References             95 

   

 

 

  

 

 

 

 

 

 

 

 



vii 

 

List of figure 
 
Figure 2.1 - Basic classification of Data Storage Devices       6 

Figure 2.2 - Major classes of MOS memories        7 

Figure 2.3 - Typical Memory Organization         9 

Figure 2.4 - Memory existence as a stand-alone component and an embedded block  10 

Figure 2.5 - Typical read cycle diagram for SRAM        12 

Figure 2.6 - Typical write cycle diagram for SRAM       13 

Figure 2.7 – Critical Timing Path for SRAM        15 

Figure 2.8 – Functional SRAM chip model         16 

Figure.2.9 – Basic SRAM cell           17 

Figure 2.10 – Voltage Transfer Characteristics for Basic SRAM cell     17 

Figure.2.11 – Wordline and Dual Bitline configuration       18 

Figure.2.12 – Read Operation in SRAM cell         20 

Figure 2.13 – Read Operation waveforms         21 

Figure 2.14 – Write Operation in SRAM cell for writing 1      22 

Figure.2.15 – Write Operation waveforms         23 

Figure 2.16: Divided Wordline Structure (DWL)        27 

Figure 2.17 – Basic 256 X 256 SRAM Architecture       28 

Figure 2.18 – Split Bank Architecture for 64K SRAM       29 

Figure 2.19 – Page type Architecture for 64K SRAM       30 

Figure.2.20 – Page type Architecture with Global and Local Sections     30 

Figure 2.21 – Bank type Architecture for 64K SRAM       31 

Figure 2.22 –Bank type Architecture with Global and Local Sections     31 

Figure 3.2: Detail life cycle of the project         34 

Figure 4.1: Latch-Type Sense Amplifier        37  

Figure 4.2: Design of Replica Bitline Column.        38 

Figure 4.3: Control circuits for sense clock activation and word line pulse control   39 

Figure 4.4: Delay matching of two buffer chains        40 

Figure 4.5: Conventional 6T CMOS SRAM Cell        41 

Figure 4.6: Static noise margin at different PVT        42 

Figure 4.7: Memcell with static noise voltage sources       43 

Figure 4.8: Write Margin at different PVT         44 

 



viii 

 

Figure6.1-1. Discretization of final parameters        59 

Figure6.1-2. Examples of non smooth problems        62 

Figure6.1-3. Different types of minima         63 

Figure6.1-4. Illustration of the optimality conditions       66 

Figure6.1-5. Illustration of the constraints         66 

Figure7.1 comparing post-layout & prelayout        77 

Figure 7-2.Dynamic Cross Talk Detailed Analysis Flow       82 

Figure 7-3.Fast Rising vs. Slow Falling Path        84 

 
 

 

 

 



1 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

 

 

 



2 

 

1.1 OBJECTIVE AND SCOPE OF THE PROJECT 

  The electronics industry has achieved a phenomenal growth over the last few 

decades, mainly due to the rapid advances in integration technologies and large-scale 

systems design.  

  Complementary metal oxide semiconductor (CMOS) digital integrated 

circuits are the enabling technology for the modern information age. Because of their 

intrinsic features in low-power consumption, large noise margins, and ease of design, 

CMOS integrated circuits have been widely used to develop random access memory 

(RAM) chips, microprocessor chips, digital signal processor (DSP) chips, and 

application-specific integrated circuits (ASIC) chips. The popular use of CMOS circuits 

continues to grow with the increasing demands for low power, low-noise integrated 

electronic systems. 

   For VLSI circuit design, however, it is important that the design be done in 

the context of global optimization with proper boundary conditions. In fact, the beauty of 

integrated circuits is that the final design goal is the concerted performance of all 

interconnected transistors, and not of individual transistors. No matter how well an 

individual transistor performs, if the technology fails to have equally good interconnects, 

the total performance can be very poor due to large parasitic capacitances and resistances; 

these translate into a large delay in the interconnection lines between transistors or logic 

gates. The very important role of computer aided circuit simulation tools in VLSI design 

is well recognized. Computer simulation is, and will continue to be, an essential part of 

the design process, both for performance verification and for fine-tuning of circuits. 

However, the emphasis on simulation must be well-balanced with the emphasis on hands-

on-design and analytical estimates, so that the significance of the later is not 

overwhelmed by the extensive use of computer-aided techniques. 

  Digital systems require the capability of storing and retrieving large amounts 

of information at high speeds. Memories are circuits or systems that store digital 

information in large quantity, hence are vital components in modern integrated circuits. 

Manufacturers of such products demand low-priced memories with low-power 

consumption, high-speed operation, high density, and small package size. 
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  The semiconductor markets have embraced the fact that the architecture of 

the memory structure has a considerable impact on the performance of the system. Over 

the years, technology advances have been driven by memory designs of higher and higher 

density.  

  While designing System-on-Chip (SOC), system architects need to resolve a 

number of complex issues in high-performance system applications. However, one of the 

fundamental problems in these applications is Memories - the bottlenecks and challenges 

of system performance often reside in its memory architecture. As advances in memories 

come to life, system designers are faced with the challenge of selecting the proper 

memory for their application. 

  Memory developers have to design memories to address the issues in 

bandwidth, latency, density, power and cost. Unfortunately, it is not possible for a single 

memory technology to address all these issues with distinct advantages - this translates to 

an arsenal of components available for designers to design their system. 

  The criticality of my project work is to characterize the performance of 

memory cell to achieve the target to adjust the things according to international 

technology roadmap for semiconductor in the field of embedded memory. This is 

somewhat specific to user requirements. 

1.2 DEFINITION OF PROBLEM 

  Dual port SRAM is specialized RAM which is used on video cards. It is dual 

ported RAM which means it can be accessed by two different devices simultaneously. It 

enables data to be read from video RAM and sent to the display devices. At the same 

time data to be written in to video RAM 

  The type and speed of memory used in the video card play an important role 

in the card's performance. Faster technologies mean improved performance in two ways. 

First, the card itself is faster when the memory is faster, leading to better performance 

overall for the Processor. Second, better memory means higher memory bandwidth, 

leading to support for higher resolution and color depths, and better refresh rates. 

 

 



4 

 

DISSERTATION INTENT 

 

I. Performance Characterization of Dual-Port SRAM Cell. 

II. Design Validations to optimize the design to access the entire four axes i.e. Area, 

Power, Speed and Robustness. 

1.3 Dualport SRAM 

  This Dualport SRAM allows simultaneous access of the memory particular 

memory array. This Dualport memory allow two simultaneous read operation but don‟t 

allow simultaneous two write or one read & other write operations. Basically this special 

high-speed type of RAM is used as video memory in which visual information is 

temporarily store & being transferred to the display hardware in a computer. It is used by 

graphics cards for rapid transfer of DATA between the card and CPU. 

   This Dualport SRAM memory is 8T memory which means that it uses eight 

transistor in memcell rather than 10T memory. So this can be design as self-time style in 

which the Tcklh is not constant clock goes low when the read/write operation is done. 

                  This special-purpose RAM with two data paths for access, rather than the one 

path in conventional RAM. The two paths let a DPRAM board handle two functions at 

once: display refresh and processor access. DPRAM doesn't force the system to wait for 

one function to finish before starting the other, so it permits faster operation for the video 

subsystem. 

  This type of computer memory often used for video purposes. Faster than 

normal computer RAM, the amount of DPRAM determines how many colors a given 

video system can display. 
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2.1 LITERATURE SURVEY 

Data storage devices: An overview   

  From the beginning of the electronics industry, storage of data has been a 

major point of consideration. Many storage devices have been developed by now, with 

various working principles and data storage techniques. In general, the data storage 

devices can be classified by a wide variety of aspects, but most frequently, they are 

divided by technology into the semiconductor types and the moving media types, which 

require mechanical equipment for operation. 

 

The five basic semiconductor types are bipolar, N-channel and P-channel MOS and 

complementary MOS. 

 

 

Figure. 2.1 - Basic classification of Data Storage Devices 

 

  The moving media types include magnetic disk, optical disk and holographic 

storage. While magnetic bubbles are not mechanical, they require equipment for 

supplying a magnetic field for operation and are thus considered with the mechanical 

types. Since the semiconductor memories are decreasing in cost per bit faster than the 

other types of data storage, various attempts to configure them for the disk application are 

occurring. 

                   There also exist devices using various combinations of the basic 

semiconductor technologies such as CMOS-NMOS (Mix-MOS) and bipolar-CMOS (BI-

CMOS) and devices made in exotic technologies such are gallium arsenide (GaAs). 
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MOS MEMORIES: INTRODUCTION 

 

  The ideal memory would be low cost, high performance, high density, with 

low power dissipation, random access, non-volatile, easy to test, highly reliable, and 

standardized throughout the industry. 

 

The MOS memories fall into two broad categories: 

 Read-Write memories: Dynamic RAMs and Static RAMs, allow the user both to 

read information from the memory and to write new information into memory 

while it is still in the system. 

 Read Only Memories: ROMs, EPROM‟s, EEPROMs, are used primarily to store 

data; however, the EEPROMs can also be written into a limited number of times 

while in the system. Read-Only memories are non-volatile, that is, they retain 

their information stored in it even if the is turned off. 

 

 

Figure. 2.2 - Major classes of MOS memories 

 

READ-WRITE MEMORIES 

  Read-write random-access memories (RAM) may store information in flip-

flop style circuits or simply as charge on capacitors. Because read-write memories store 

data in active circuits, they are volatile; that is, stored information is lost if the power 

supply is interrupted. The natural abbreviation for read-write memory would be RWM. 

However, pronunciation of this acronym is difficult. Instead, the term RAM is commonly 

used to refer to read-write random-access memories. 



8 

 

  The two most common types of RAMs are the static RAM (SRAM) and the 

dynamic RAM (DRAM). Static RAMs hold the stored value in flip-flop circuits as long 

as the power is on. SRAM tends to be high-speed memories with clock cycles in the 

range of 5 to 50 ns. Dynamic RAMs store values on capacitors. They are prone to noise 

and leakage problems, and are slower than SRAM, clocking at 50 ns to 200 ns. However, 

DRAMs are much denser than SRAMs, up to four times denser in a given generation of 

technology. 

 

READ-ONLY MEMORIES 

  Read-only memories (ROMs) store information according to the presence or 

absence of transistors joining rows to columns. ROMs have read speeds comparable to 

those for read-write memories. All ROMs are nonvolatile, but they vary in the method 

used to enter (write) stored data. The simplest form of ROM is programmed when it is 

manufactured by formation of physical patterns on the chip; subsequent changes of stored 

data are impossible. These are termed mask-programmed ROMs. 

  In contrast, programmable read-only memories (PROMs) have a data path 

present between every row and column when manufactured, corresponding to a stored 1 

in every data position. Storage cells are selectively switched to the 0 state once after 

manufacture by applying appropriate electrical pulses to selectively open (blow out) row-

column data paths. Once programmed, or blown, a 0 cannot be changed to 1. 

  Erasable programmable read-only memories (EPROM‟s) also have all bits 

initially in one binary state. They are programmed electrically (similar to the PROM), but 

all bits may be erased (returned to the initial state) by exposure to ultraviolet (UV) light. 

The packages for these components have transparent windows over the chip to permit the 

UV irradiation. 

  Electrically erasable programmable read-only memories (EEPROM‟s, 

E2PROM, or Esquared PROM‟s) may be written and erased by electrical means. These 

are the most advanced and most expensive form of PROM. Unlike EPROM‟s, which 

must be totally erased and rewritten to change even a single bit, E2PROM‟s may be 

selectively erased. Writing and erasing operations for all PROM‟s require times ranging 
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from microseconds to milliseconds. However, all PROM‟s retain stored data when power 

is turned off; thus they are termed nonvolatile. 

  A recent form of EPROM and E2PROM is termed Flash Memory, a name 

derived from the fact that blocks of memory may be erased simultaneously. Their large 

storage capacity has made this an emerging mass storage medium. In addition, these 

types of memories are beginning to replace the role of ROMs on many chips, although 

additional processing is required to manufacture Flash memories in a standard CMOS 

technology. 

 

MEMORY ORGANIZATION 

   The preferred organization for most large memories is the random-access 

architecture. The name is derived from the fact that memory locations (addresses) can be 

accessed in random order at a fixed rate, independent of physical location, for reading or 

writing.  

                    The storage array, or core, is made up of simple cell circuits arranged to 

share connections in horizontal rows and vertical columns. The horizontal lines, which 

are driven only from outside the storage array, are called wordlines, while the vertical 

lines, along which data flow into and out of cells, are called bitlines. 

 

 

Figure. 2.3 - Typical Memory Organization 
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  A cell is accessed for reading or writing by selecting its row and column. 

Each cell can store 0 or 1. Memories may simultaneously select 4, 8, 16, 32, or 64 

columns in one row depending on the application. The row and column (or columns) to 

be selected are determined by decoding binary address information. 

Memory exists as stand-alone component, but also as embedded blocks in system-onchip.  

 

 

Figure. 2.4 - Memory existence as a stand-alone component and an embedded block 

 

  Memory cell circuits can be implemented in a wide variety of ways. In 

principle, the cells can be based on the flip-flop designs since their intended function is to 

store bits of data. However, these flip-flops require a substantial amount of area and are 

not appropriate when millions of cells are needed. In fact, most memory cell circuits are 

greatly simplified compared to register and flip-flop circuits. While the data storage 

function is preserved, other properties including quantization of amplitudes, regeneration 

of logic levels, input-output isolation, and fanout drive capability may be sacrificed for 

cell simplicity. In this way, the number of devices in a single cell can be reduced to one 

to six transistors. 

                     At the level of a memory, the desired logic properties are recovered through 

use of properly designed peripheral circuits. Circuits in this category are the decoders, 

sense amplifiers, column precharge, data buffers, etc. These circuits are designed so that 

they may be shared among many memory cells. Read-write (R/W) circuits determine 

whether data are being retrieved or stored, and they perform any necessary amplification, 

buffering, and translation of voltage levels. 
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TIMING DIAGRAMS 

 

Timing diagrams specify the minimum required and maximum expected timing 

requirements for system actions. The two sets of timing symbols are self-explanatory, one 

being the standard for timing symbols and the other older one in widespread usage. 

                    The operation of the SRAM starts with the detection of an address change in 

the address register. An address change activates the SRAM circuits, the internal timing 

circuit generates the control clocks, and the decoders select a single memory cell. 

                   At write, the memory cell receives a new datum from the data input buffers; 

at read, the sense amplifier detects and amplifies the cell signal and transfers the datum to 

the output buffer. Data input/output and write/read are controlled by output enable OE 

and write enable WE signals. A chip enable signal CE allows for convenient applications 

in clocked systems. 

                   In some systems, power consumption may be saved by the use of the power 

down signal PD. The power down circuit controls the transition between the active and 

standby modes. In active mode, the entire SRAM is powered by the full supply voltage; 

in standby mode, only the memory cells get a reduced supply voltage. In some designs, 

the memory-internal timing circuit remains powered and operational also during power 

down. 

 

BASICS OF READING TIMING DIAGRAMS 

                  It is important to understand the characteristics of the memories, to understand 

them better. The best indicator of these characteristics is the data sheet specification for 

the particular memory. 

                 In a memory system, there are signals going from the processor via the bus 

into the inputs of the memory and signals coming from the outputs of the memory onto 

the bus and to the processor. 

 

 Inputs from the system processor to the memory include: 

 Addresses, which indicate the memory locations selected. 
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 Write enable, which chooses between read and write mode and controls  

writing of new information into the memory. 

 Chip select(s), which select one memory out of several in a system. If a            

chip select is off, the memory is deselected. 

 Output enable, which can be used to control the output buffer. 

 Data input(s), to be written into the memory 

 

  Outputs from the memory include 

 Data output(s) being read from the memory 

 

Some memories such as SRAM with wider data path can have a common pin for input 

and output. 

 

READ CYCLE TIMINGS 

                   A timing diagram for a basic read cycle during which the system reads out 

information that is stored in a static RAM (in fig. 2.5) for a wide bus, common I/O 

SRAM with chip enable, and output enable functions. It consists of 

 System selects the RAM by turning the chip select on (~CS low). 

 System sets the correct addresses (A set). 

 System turns the output enable on (~OE low). 

 

 

Figure. 2.5 - Typical read cycle diagram for SRAM 
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 System must make sure that the time that old data from other sources is still on             

the common I/O bus is less than the minimum of output enable low to output            

active (tOLZ) or chip enable low to output active (tLZ). 

 The system must wait a minimum time of address access time (tAA) in order to be             

sure of correct data. 

The expansions of the acronyms for read timing parameters are 

TRC : Read Cycle Time 

TAA : Address Access Time 

TACS : Chip Enable Access Time 

TOE : Output Enable Access Time 

TOH : Output Hold from Address Change 

TLZ : Chip Enable Low to Output Enable 

TOLZ : Output Enable Low to Output Enable 

THZ : Chip Enable High to Output Enable - Z 

TOHZ : Output Enable High to Output Enable - Z 

After the maximum required wait time (which is the minimum time the system must 

wait) the system may read the information stored in the memory. 

 

WRITE CYCLE TIMINGS 

A simple write cycle for changing data in an SRAM (writing into it) is shown below.     

 

Figure. 2.6 - Typical write cycle diagram for SRAM 
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It consists of 

 System sets the correct addresses (A set). 

 System selects the RAM by turning the chip select on (~CS low). 

 System waits a minimum required amount of time after changing the addresses             

for the RAM to do internal „set up‟ of the addresses tAS, and then turns the write             

enable on (~WE low). 

 System waits a minimum required amount of time after turning on the write             

enable (tWZ) for the memory to disable the data output driver' Q' in preparation             

for using these lines for data input. 

 System inputs the new data and waits a minimum required amount of time for the             

memory to write the data before turning off the write enable (tDW). 

 System waits a minimum required amount of time after turning the write enable             

on before turning it off (tP). This is to be sure the write enable pulse width is wide             

enough for correctly writing the data into the RAM. 

 System waits a minimum required amount of time after turning the write enable 

Off 

    o Before changing the data (tDH). This is called the 'data hold time', and it 

              ensures that the data is stable during the entire write cycle. 

    o Before changing addresses to start the next cycle (tWR). This is called the 

               'write recovery time' and ensures that the addresses are stable during the 

               entire write cycle. 

    o Makes sure the data have disappeared before the RAM turns the data 

              output drivers back on (tOW). 

The expansions of the acronyms for read timing parameters are 

TWC : Write Cycle Time 

TAS : Address Setup Time 

TAW : Address Valid to End of Write 

TWP : Write Pulse Width 

TDW : Data Valid to End of Write 

TDH : Data Hold Time 

TWZ : Write Enable Low to Output High - Z 
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TOW : Write Enable High to Output Active 

TWR : Write Recovery Time 

 

The RAM is now ready to begin the next cycle. It should be clear that the minimum 

timings are periods when the system must wait for the RAM to do something, and the 

maximum timings are guaranteed limits within which the system will act. 

                      Minimum access times for reading and writing are not necessarily the same, 

but for simplicity of design, most systems specify a single time for both reading and 

writing. For semiconductor read-write memories, the read access time is typically 50 to 

80% of cycle time. 

 

CRITICAL TIMING PATH 

        The critical path determining cycle times comprises the delays through the 

1. Row address buffer                                         2. Row address decoder 

3. Wordline                                                         4. Bitline 

5. Sense amplifier and                                        6. Output buffer circuits 

 

 

Figure. 2.7 – Critical Timing Path for SRAM 

 

Precharge and initiation times for sensing as well as column address buffer and decoder 

delays can be hidden in the critical timing of an SRAM. 

                       The memory clock cycle time, is the minimum time needed to complete 

successive read or write operations. Maximum read access time should not exceed the 

memory cycle time since there are write setup operations needed before each memory 

operation. The cycle time is essentially the reciprocal of the time rate at which address 

information is changed while reading or writing at random locations. 
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FUNCTIONAL SRAM CHIP MODEL 

                  Memories are said to be static if no periodic clock signals are required to 

retain stored data indefinitely. Memory cells in these circuits have a direct path to VDD or 

Gnd or both. Read-write memory cell arrays based on flip-flop circuits are commonly 

referred to as Static RAM‟s or SRAM‟s. 

                 A functional block diagram for the SRAM chip is shown below 

 

Figure. 2.8 – Functional SRAM chip model 

 

1.The address latch block, receives the address. 

2. The higher order bits of the address are connected to the row decoder, which selects a 

row in the memory cell array. 

3. The lower order address bits go to the column decoder, which selects the required 

columns. The number of column selected depends on the data width of the chip, that is 

the number of data lines of chip, which determines how many bits can be accessed during 

a read or write operation 

4. When the read/write line indicates read operation, the contents of the selected cells in 

the memory cell array are amplified by the sense amplifiers, loaded in the data register & 

presented on the data-out line(s). 

5. During a write operation the data on the data-in line(s) are loaded into the data register 

& written in to the memory cell array through the write driver. Usually the data-in & 

data-out lines are combined to form bidirectional data lines, thus reducing the number of 

pins on the chip. 

6. The chip-select line enables the data register, together with read/write line, the write 

driver. 
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2.2 SRAM CELL DESCRIPTION 

                      The basic static RAM cell is consists of two cross-coupled inverters and 

two access transistors. The access transistors are connected to the wordline at their 

respective gate terminals, and the bitlines at their source/drain terminals. 

 

 

Figure. 2.9 – Basic SRAM cell 

                       The wordline is used to select the cell while the bitlines are used to 

perform read or write operations on the cell. Internally, the cell holds the stored value on 

one side and its complement on the other side. For reference purposes, assume that node 

q holds the stored value while node ~q holds its complement. The two complementary 

bitlines are used to improve speed and noise rejection properties. 

 

VOLTAGE TRANSFER CHARACTERISTICS 

                        The Voltage Transfer Characteristics (VTC) conveys the key cell design 

considerations for read and writes operation. In the cross-coupled configuration, the 

stored values are represented by the two stable states in the VTC. 

 

 

Figure. 2.10 – Voltage Transfer Characteristics for Basic SRAM cell 
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The cell will retain its current state until one of the internal nodes crosses the switching 

threshold, VS. When this occurs, the cell will flip its internal state. Therefore, during a 

read operation, its current state must not be disturbed, while during the write operation 

the internal voltage is forced to swing past VS to change the state. 

 

SRAM ARRAY OPERATION 

                        In an array the row select lines, or wordlines, run horizontally. All cells 

connected to a given wordline are accessed for reading or writing. The cells are 

connected vertically to the bitlines using the pair of access devices to provide a switch 

able path for data into and out of the cell. Two column lines, b and ~b, provide a 

differential data path. In principal, it should be possible to achieve all memory functions 

using only one column line and one access device, but due to normal variations in device 

parameters and operating conditions, it is difficult to obtain reliable operation at full 

speed using a single access line. Therefore, the symmetrical data paths b and ~b are 

usually used. 

 

 

Figure. 2.11 – Wordline and Dual Bitline configuration 

 

                          Row selection in CMOS memory is accomplished using the decoders. 

For synchronous memories, a clock signal is used in conjunction with the decoder to 

activate a row only when read-write operations are being performed. At other times, all 

wordlines are kept low. When one wordline goes high, all the cells in that row are 

selected. The access transistors are all turned on and a read or write operation is 
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performed. Cells in other rows are effectively disconnected from their respective 

wordlines. 

                       The wordline has a large capacitance, Cword that must be driven by the 

decoder. It is comprised of two gate capacitances per cell and the wire capacitance per 

cell:                            

Cword = (2 X gate cap + wire cap)   X    no. of cells in row 

 

                         Once the cells along the wordline are enabled, read or write operations are 

carried out. For a read operation, only one side of the cell draws current. As a result, a 

small differential voltage develops between b and ~b on all column lines. The column 

addresses decoder and multiplexer select the column lines to be accessed. The bitlines 

will experience a voltage difference as the selected cells discharge one of the two bit- 

lines. This difference is amplified and sent to output buffers. 

                        It is noted that the bitlines also have a very large capacitance due to the 

large number of cells connected to them. This is primarily due to source/drain 

capacitance, but also has components due to wire capacitance and drain/source contacts. 

Typically, a contact is shared between two cells.  

 

The total bitline capacitance, Cbit, can be computed as follows: 

       

Cbit = (source/drain cap + wire cap + contact cap) X no. of cells in column 

 

During a write operation, one of the bitlines is pulled low if 0 is to be stored, while the 

other one is pulled low if 1 is to be stored. The requirement for a successful write 

operation is to swing the internal voltage of the cell past the switching threshold of the 

corresponding inverter. Once the cell has flipped to the other state, the wordline can be 

reset back to its low value. 

                     The design of the cell involves the selection of transistor sizes for all six 

transistors (rather being symmetric only three transistors M1, M3, and M5 or M2, M4, and 

M6) to guarantee proper read and write operations. The goal is to select the sizes that 
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minimize the area, deliver the required performance, obtain good read and write stability, 

provide good cell read current, and have good soft error immunity. 

 

READ OPERATION 

                             For a “0” is stored on the left side of the cell, and a “1” on the right side 

in the 6T RAM cell, M1 is on and M2 is off. Initially, b and ~b are precharged to a high 

voltage around VDD by a pair of column pull-up transistors. The row selection line, held 

low in the standby state, is raised to VDD which turns on access transistors M3 and M4. 

Current begins to flow through M3 and M1 to ground. The resulting cell current slowly 

discharges the capacitance Cbit. Meanwhile, on the other side of the cell, the voltage on 

~b remains high since there is no path to ground through M2.The difference between b 

and ~b is fed to a sense amplifier to generate a valid low output, which is then stored in a 

data buffer. 

 

Figure. 2.12 – Read Operation in SRAM cell 

 

Upon completion of the read cycle, the wordline is returned to zero and the column lines 

can be precharged back to a high value. 

                          When designing the transistor sizes for read stability, it is ensured that 

the stored values are not disturbed during the read cycle. The problem is that, as current 

flows through M3 and M1, it raises the output voltage at node q which could turn on M2 

and bring down the voltage at node ~q. The voltage at node ~q may drop a little but it 

should not fall below VS. To avoid altering the state of the cell when reading, the voltage 
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at node q is controlled by sizing M1 and M3 appropriately. This is accomplished by 

making the conductance of M1 about 3 to 4 times that of M3 so that the drain voltage of 

M1 does not rise above VTN. In theory, the voltage should not exceed VS, but this design 

must be carried out with due consideration of process variations and noise. In effect, the 

read stability requirement establishes the ratio between the two devices. 

 

 

Figure. 2.13 – Read Operation waveforms 

  

                           The other consideration in the read cycle design is to provide enough 

cell current to discharge the bitline sufficiently within 20 to 30% of the cycle time. Since 

the cell current, Icell, is very small and the bitline capacitance is large, the voltage will 

drop very slowly at b. The rate of change of the bitline can be approximated as follows: 

 

 

 

 

                         Clearly, Icell controls the rate at which the bitline discharges. If a rapid 

full-swing discharge is desired, Icell is made large. However, the transistors M1 and M3 

would have to be larger. Since there are millions of such cells, the area and power of the 

memory would be correspondingly larger. Instead, a different approach is taken, 

attaching a sense amplifier to the bitlines to detect the small difference, V between b 

and ~b and produce full-swing logic high or low value at the output. The trigger point 
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relative to the rising edge of the wordline, t, for the enabling of the sense amplifier is 

chosen by based on the response characteristics of the amplifier. Then 

 

This leads to the cell current value, which, in turn, determines the final transistor sizes for 

M1 and M3. Alternatively, if the transistor sizes are determined to optimize the cell area, 

then the corresponding delay is computed as 

 

In practice, the device sizes are controlled by the RAM cell area constraints. As a rule of 

thumb, typically W1 1.5 X W3 and then the sizes are optimized to provide the proper 

noise margin characteristics.   

 

WRITE OPERATION 

The operation of writing 0 or 1 is accomplished by forcing one bitline, either b or b, low 

while the other bitline remains at about VDD. For SRAM cell taken above, to write 1, b is 

forced low, and to write 0, ~b is forced low. 

 

 

Figure. 2.14 – Write Operation in SRAM cell for writing 1 
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The cell must be designed such that the conductance of M4 is several times larger than M6 

so that the drain of M2 is pulled below VS. This initiates a regenerative effect between the 

two inverters. Eventually, M1 turns off and its drain voltage rises to VDD due to the pull-

up action of M5 and M3. At the same time, M2 turns on and assists M4 in pulling output ~q 

to its intended low value. When the cell finally flips to the new state, the row line can be 

returned to its low standby level. 

The design of the SRAM cell for a proper write operation involves the transistor pair M6-

M4. When the cell is first turned on for the write operation, they form a pseudo- NMOS 

inverter. Current flows through the two devices and lowers the voltage at node ~q from 

its starting value of VDD. The design of device sizes is based on pulling node ~q below VS 

to force the cell to switch via the regenerative action. 

 

 

Figure. 2.15 – Write Operation waveforms 

 

In the switching process is note that the bitline ~b is pulled low before the wordline goes 

up. This is to reduce the overall delay since the bitline will take some time to discharge 

due to its high capacitance. 

The pull-up to pull-down ratio for the pseudo-NMOS inverter can be determined by  

writing the current equation for the two devices and setting the output to VS. To be 

conservative, a value much lower than VS should be used to ensure proper operation in 

the presence of noise and process variations. Based on this analysis, a rule of thumb is 

established for M6-M4 sizing: W4 1.5 X W6 

                             The two ratios M1:M3 and M2:M4 are only estimates. The actual values 

will depend on a number of factors such as area, speed, and power considerations. 
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2.3 POWER CONSUMPTION IN SRAM 

With continuous advancements in technologies, the SRAM memories have undergone 

changes with respect to following parameters: 

Decrease in geometric cell size 

Increased transistor density 

Higher complexities of the peripheral & control circuitry and 

High frequency 

Such circuits consume an excessive amount of power and generate increased amount of 

heat. In case of reduced power processors, memories contribute significantly to the 

system level power consumption by taking a share of 43%-50%. 

                          The circuits with more power dissipation are more susceptible to run-

time failure and reliability problems. In addition, at increased temperatures, high power 

processors tend to create several silicon failures. As per studies, component failure rate 

double every 10C increase in temperature. 

                            The solution for the problem is either to pursue expensive packaging or 

apply cooling strategies. However, another better option is to restrict the extensive heat 

generation. For it, the main power consuming areas are studied and efforts are being 

focused to minimize the same at the extreme nodes. 

                         The power consumption in SRAM can be divided in two modes of its 

operation i.e. Active and Standby. The power consumption in active mode is in the 

following sections 

The core area, it is the main location of power consumption in the SRAM memory. 

Pcore    =bitlines of no. voltage applied e capacitance bitline  

The I/O section which uses power during precharge, multiplexer toggling, sensing and 

output driving also have a significant percentage of power consumption. 

The others sections which include predecoded line toggling and remaining periphery, 

the control and row decoder section have a small usage of power. 

                            During the standby mode, the power consumption is very low which is 

used for the purpose of data retention. The main source in this mode is the leakage 
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current in the Memcell. Static currents from other sources are negligible, sense amplifier 

also being disabled. 

 

The following techniques can be deployed for low power operation of SRAM memories: 

 

1. Capacitance reduction of wordline and bitlines. This helps in reduction of main power 

consumption in the active mode of operation of memory. 

2. Leakage current reduction by utilizing higher threshold voltage devices in the core.  

This factor helps in reduction of power usage in both of the active and standby modes. 

3. Operating voltage reduction. This also needs to improve the periphery circuits 

accordingly. 

4. AC current reduction by using new decoding schemes. 

5. DC current reduction by improving pulse operation techniques for wordlines and 

periphery. 

 

The analysis of SRAM based on various architectures focuses the first point above, i.e. 

the nerve point of maximum power consumption. 

 

Reduction in power dissipation provides following advantages: 

Better system efficiency is achieved. 

Performance of the system is improved. 

Reliability in enhanced. 

Overall cost is reduced. 
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2.4 ULTRA HIGH DENSITY IN SRAM 

                    From user‟s point of view all circuitry other than the memory core is 

redundant. So to have a high-density memory, it is required to have a smaller logic for the 

control, row decoders and the I/O buffers. 

                            Density of memories has a direct link with the technology in use. Each 

technology has its defined limits for the minimum area of various types of memcells. A 

6T, 8T, single and dual ports are few of the types available. Use of a smaller and dense 

memcell has to affect the density of the memory more than small percentage gains by 

reducing the peripheries. However, for receiving gains in density some penalties in speed 

are to be faced. So a balanced approach, as per the requirement in the system, to get the 

required feature of the memory. 

                           A total technology change, i.e. from 130nm to 65nm or further moving 

to 45nm, all together the revolutionary change comes in the sizes and densities of the 

memories. This brings a total change all over the area and density, also affecting the 

periphery circuitry significantly. In this case, there is an achievement in terms of 

operating speed of memories also. 

                          In few technologies, shrinking technology is also used, where to save 

area, the whole memory is shrinked to a fixed percentage. 10% shrinkage gives 10% 

reduction in both of the lengths and widths. Hence, a total gain of 19% in area in 

achieved. 

                          The memory named as DP180nano (Dual Port 180nano) because of some 

methodology used in this design such as port sharing, ultra high dense memory cell and 

replica structure with no dummy row. 

2.5 LOW POWER APPROACHES IN SRAM 

                        This chapter presents the latest development in low-power circuit 

techniques and methods for static random access memories. The key techniques in power 

reduction in both active and standby modes are: capacitance reduction by using divided 

word line structure, selective precharging scheme, pulse word line, ac current reduction 

by multistage decoding, operating voltage reduction coupled with low power sensing 

with sense amplifier 
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Sources of SRAM Power 

                        There are different sources of active and standby (data retention) power 

present in SRAMs. The active power is the sum of the power consumed by memory core 

and the periphery components in SRAM. The standby power of an SRAM has a major 

sources represented as leakage current. 

 

Techniques for low-power operation  

                          In order to significantly reduce the power consumption in SRAMs all 

contributors to the total power must be targeted. The most efficient techniques used in 

recent memories are:  

 Capacitance reduction of word-lines and the numbers numbers of cell connected to 

them, data lines, IO lines and decoders 

 DC current reduction by using new pulse operation techniques for word lines, 

periphery circuits and sense amplifiers 

 Operating voltage reduction 

 Leakage current reduction by utilizing multiple threshold voltage etc. 

 

Capacitance reduction  

                              The largest capacitive elements in a memory are word-line, bitline, and 

datalines each with numbers of cell connected to them. Therefore, reducing the size of 

these lines can have significant impact on power consumption reduction. A common 

technique used often in large memory is called Divided Wordline (DWL) which adopts a 

two stage hierarchical row decoder structure as shown in figure below 

 

 

Figure 2.16: Divided Wordline Structure (DWL) 
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The number of sub-wordlines is connected to one main word line in the dataline direction 

is generally four, substituting the area of main row decoder with the area of local row 

decoder. DWL features two-step decoding for selecting one wordline, greatly reducing 

the capacitance of the address lines to a row decoder and the wordline RCdelay 

 

Selective Precharge off principle  

                           The selective precharge technique was recommended in low-power 

SRAM to reduce the dynamic power consumption , it can be applied at two different 

level of hierarchy: at the block level, by precharging off only for the block to be read, and 

at the bit-line level by precharging off only for the bitlines to be read. Selective precharge 

off at both the level can be implemented in our low power SRAM compiler. No extra 

decoder is needed since we use same decoder for the precharging and multiplexer part. 

Of course, the area of the precharge part is slightly increased by the height of the 

precharge bus.  

2.6 ANALYSIS OF SRAM ARCHITECTURE 

                           Fast low power SRAM‟s have become a critical component of many 

VLSI chips. This is especially true for microprocessors, where the on-chip cache sizes are 

growing with each generation to bridge the increasing divergence in the speeds of the 

processor and the main memory. Simultaneously, power dissipation has become an 

important consideration due to both the increased integration and operating speeds, as 

well as due to the explosive growth of battery operated appliances. 

 

BASIC ARCHITECTURE 

 

Figure. 2.17 – Basic 256 X 256 SRAM Architecture 
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In the conventional architecture when the selected word line is high, all the cells 

connected to the wordline in the row are active. When the word line is high, all the cells 

connected to the wordline become active -- thus dissipation increases. In the basic 

architecture, the two major factors contribute to the read access are the bit access time & 

the word line access time. When the size of the SRAM increases, the number of cells 

connected to the word line increases--the load is reduced. Therefore, the wordline delay 

increases because of the increase in the wordline capacitance. These two factors can be 

improved by reducing the bit line capacitance & the word line capacitance, but this is 

achieved only after using a different architecture. 

 

SPLIT CORE ARCHITECTURE 

 

 

Figure. 2.18 – Split Bank Architecture for 64K SRAM 

 

In this type of architecture, reduction is performed by splitting the matrix in smaller 

blocks. The resulting architecture is called Split-Core architecture. The reduction in the 

RC delay is observed because of the split bank, but here too the activation of a wordline 

activates the entire cell in both of the core areas. So certainly, there is need of a different 

architecture, which could also provide some advantage in terms of power dissipation. 

 

PAGE TYPE ARCHITECTURE 

  In split-core, architecture although the bank is split is two parts but the word 

line activates the cell in both and no gain in power is observed. Thus to reduce the run 

length of the word lines, a new architecture is analyzed. 
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Figure. 2.19 – Page type Architecture for 64K SRAM 

 

 

Figure. 2.20 – Page type Architecture with Global and Local Sections 

                         Here the control unit and row decoder sections are divided in global and 

local sections. This benefits by activation of cells only one page and thus the wordline 

capacitance is reduced. 

 

BANK ARCHITECTURE 

  This technique to reduce the run length of the bitlines and divided core 

structure helps in gain in both of speed and power. 

                    Here the control and the Input/Output sections are divided. So for a selected 

wordline, the cells of only one bank are activated. Also in case of bitline, the numbers of 

cells activated are reduced. Thus, a significant improvement is observed in case of 

wordline cap and the bit line cap. 
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Figure. 2.21 – Bank type Architecture for 64K SRAM 

 

                       There is also reduction in the power consumption to a very significant 

value. But in this type of architecture, the area used is more and hence a less dense 

memory is obtained. 

 

 

Figure. 2.22 –Bank type Architecture with Global and Local Sections 
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3.1 USER REQUIREMENTS 

  The design of a large Dualport SRAM into a single chip driver for TFT-LCD 

represents a challenge due to: 

Increased memory area and transistor density, but with limited impact on device‟s 

yield 

Very low power consumption 

                       

  The increased number LCD rows and column at same frame rate requires a 

faster access time Likely larger panels such a QVGA (Quarter Video Graphics Array) 

will use motion pictures as well, making the memory access even more aggressive. 

Moreover motion picture access may use separate access to the motion and at the same 

time new issues have to be addressed such as: 

 Supply noise effects 

 Dense memory cell 

                   Finally, the user requirement is to design a Dual Port 180nano Video 

(DP180nano) SRAM 
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3.2 DETAIL LIFE CYCLE OF THE PROJECT 

 

Figure: 3.2: Detail life cycle of the project 
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4.1 INTRODUCTION 

                             In an SRAM, switching of the bitlines and I/O lines and biasing the 

sense amplifiers consume a significant fraction of the total power, especially in wide 

access width memories. This chapter investigates techniques to reduce SRAM power 

without hurting performance by using tracking circuits to limit bitline and I/O line swing, 

and aid in the generation of the sense clock to enable clocked sense amplifiers. 

                           With the migration toward low supply voltages in low power SRAM 

designs, threshold and supply voltage fluctuations will begin to have larger impacts on 

the speed and power specifications of SRAM‟s. The technique represented based on 

replica circuits which minimize the effect of operating conditions‟ variability on the 

speed and power. Replica memory cells and bitlines are used to create a reference signal 

whose delay tracks that of the bitlines. This signal is used to generate a sense clock with 

minimal slack time and control wordline pulse widths to limit bitline swings. 

                                In details, low power circuit designers have been continually pushing 

down supply voltages to minimize the energy consumption of chips for portable 

applications. The same trend has also applied to low power SRAM‟s in the past few 

years; while the supply voltages are scaling down at a rapid rate, to control sub-threshold 

leakage, the threshold voltages have not scaled down as fast, which has resulted I 

corresponding reduction of the gate overdrive for the transistors. With the fluctuations is 

not expected to decrease in future submicron devices, the delay variability of low power 

circuits across process corners will increase in the future. The large delay spreads across 

process corners will necessitate bigger margins in design of the bitline path in an SRAM, 

and also will result in larger bitline power dissipation and loss of speed. This problem can 

be mitigated by using a self-timed approach to designing the bitline path, based on delay 

generators which track the bitline delays across operating conditions. Bitline power can 

be further minimized but controlling the wordline pulsewidth to be just wide enough to  

guarantee the minimum bitline swing development. This type of bitline swing control can 

be achieved by a precise pulse generator that can match the bitline delay. Lowpower 

SRAM‟s also use clocked sense amplifier to limit the sense power. These are either the 

current mirror type or cross-coupled latch type designs. In the former, the sense clock 

turns on the amplifier sometime before the sensing, to set up the amplifier in high gain 
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region. To reduce power, the amount of time the sense amplifier is on should be 

minimized. In the latch-type amplifiers, the sense clock starts the amplification, and 

hence the sense clock needs to track the bitline delay to ensure correct and fast operation. 

                              Fundamentally, the clock path needs to match the data path to ensure 

fast and low-power operation. The data path starts from the local block select and/or 

global wordline, and goes through the wordline driver, memory cell, and bitline to the 

input of the sense amps. The clock path often starts from the local block select or some 

clock phase, and goes through a buffer chain to generate the sense clock. The delay 

variations in the former are dominated by the bitline delay since the memory cells are 

made out of minimum sized devices and are more vulnerable to process variations. 

 

 

Figure 4.1: Latch-Type Sense Amplifier 

 

Enough delay margins has to be provided to the sense clock path for worst case 

conditions, which reduces the average case performance.  

        

REPLICA STRUCTURE 

                              The replica delay stage is made up by two types of structure. First, by 

taking the dummy bitline capacitance value is fraction of main bitline capacitance and the 

tuning of capacitance will be used for tracking. Second, the replica delay stage is made 

up of a memory cells called dummy discharge cells (DDC) connected to a dummy bitline 

whose capacitance is equal to the main bitline capacitance. The number of dummy 



38 

 

discharge cells to discharge the dummy bitline is determined by the required bitline 

swing for proper sensing. For the clocked voltage sense amplifiers we use (Fig. 4), the 

minimum bitline swing for correct sensing is around a tenth of the supply. An extra 

column in each memory block is converted into the dummy column by cutting its bitline 

pair to obtain a segment in which the tuned number of dummy discharge cells is used to 

discharge dummy bitline (Fig. 4.2). 

 

 

Figure 4.2: Design of Replica Bitline Column 

 

                                The replica bitline has a similar structure to the main bitlines in terms 

of the wire and diode parasitic capacitances. The replica memory cell is programmed to 

always store a zero so that, when activated, it discharges the replica bitline. The delay 

from the activation of the replica cell to the 50% discharge of the replica bitline tracks 

that of the main bitline very well. The delays can be made equal by fine tuning of the 

replica bitline height using simulations. The replica structure takes up only one additional 

column per block, and hence has very little area overhead. The circuits to control the 

sense clock and wordline pulsewidths are shown in Fig. 4.3. 

                             The block decoder activates the replica delay cell (node fwl). The 

output of the replica delay cell is fed to a buffer chain to start the local sensing, and is 

also fed back to the block decoder to reset the block select signal. Since the block select 

pulse is ANDed with the global wordline signal to generate the local wordline pulse, the 
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latter‟s pulsewidth is set by the width of block select signal. It is assumed that the block 

select signal does not arrive earlier than the global wordline. The delay of the buffer 

chain to drive the sense clock is compensated by activating the replica delay cell with the 

unbuffered block select signal. 

 

 

 Figure 4.3: Control circuits for sense clock activation and word line pulse control  

 

The delay of the five inverters in the buffer chain, S1–S5, is set to match the delay of the 

four stages, B1–B4, of the block select to local wordline path (the sense clock needs to be 

a rising edge). The problem of delay matching has now been pushed from having to 

match bitline and inverter chain delay to having to match the delay of one inverter chain 

to a chain of inverters and an AND gate. The latter is easier to tackle, especially since the 

matching for only one pair of edges needs to be done. A simple heuristic for matching the 

delay of a rising edge of the five-long chain, S1– S5, to the rising delay of the four-long 

chain, B1–B4, is to ensure that the sums of falling delays in the two chains are equal, as 

well as the sum of rising delays. 
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Figure 4.4: Delay matching of two buffer chains 

 

                                The S chain has three rising delays and two falling delays, while the 

B chain has two rising and falling delays. This simple sizing technique ensures that the 

rising and falling delays in the two chains are close to each other, giving good delay 

tracking between the two chains over all process corners. The delay from fwl (see Fig. 

4.3) to minimum bitline swing is tBchain + tbitline and the delay to the sense clock is tReplica + 

tSchain delay. If tbitline equals tReplica and tBchain equals tSchain, then the sense clock fires exactly 

when the minimum bitline swings have developed. 

4.2 MEMORY CELL CHARACTERIZATION 

  Memory cell stability analysis means memory cell has to be tested for its 

reliability or ruggedness in storing bits. For example any stored bit should not change due 

to change in any parameters. Major causes which can change the stored bit are 

Noise 

Temperature 

Design of memcell, here due to different sizes of pull down transistors              

differential nose comes up. In this case one transistor is more affected than other    

by noise. 

Process variation also affects the stability of memcell. When process varies 

model parameters of the transistors also varies accordingly. 
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Before studying the memcell stability, first of all we find out worst case conditions for 

stability analysis. It is essential to consider the stable SRAM cells when CMOS 

technology is scaled down to deep-submicron dimensions .Six key parameters which can 

lead to the change in the stored information that need to be checked in the designing of a 

memory cell are: 

 Ground Bounce                               

 SNM 

 Write margin 

 Discharge rate 

 Leakage 

 

GROUND BOUNCE 

When the BIT and BITB are 1 (precharge) and the initial voltages at node A and node B 

are “0” and “1”and then WL is switched ON. At node “A” there will be a voltage 

 

Va= Rm2/ (Rm1+Rm2)* Vdd 

 

This voltage is known as Ground Bump from the design point of view it is kept as low as 

possible. In any case it shouldn‟t exceed the threshold voltage of M4. 

 

Figure 4.5: Conventional 6T CMOS SRAM Cell 
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STATIC NOISE MARGIN (SNM) 

                                  The cell stability is generally expressed in terms of the static Noise 

Margin (SNM) which determines the sensitivity of the SRAM to process tolerances and 

operating conditions. Thus “static noise” in this context indicated disturbances caused by 

the interference, spurious and transistor mismatch and offsets. For data retention while 

reading in noidy environment, we need to keep some margin while memcell designing 

and this should be more than 10% of vdd. 

In the figure above, memcell is said to have SNM = Vnoise if, 

                Va(Ground bump) + Vnoise < Vt (threshold voltage of pulldown transistor) 

 

Till this criterion is satisfied the memcell will not flip. As soon as Va + Vnoise becomes 

more than the threshold voltage of the pulldown transistors then the memcell flips. Thus 

care should be taken that the transistor sizes are designed properly. 

 

METHODOLOGY FOR MEMCELL STABILITY 

While reading the memcell there‟ll be a bump on internal nodes. This bump 

should not be more than Vt, which can cause flipping. 

WL is switching on for long time. Check if the internal node voltage settles of 

keep on charging. Now the WL is switched off. The memcell shouldn‟t flip when 

the WL is switched off. 

WORST CASE CONDITIONS FOR SNM 

 

Figure 4.6: Static noise margin at different PVT 
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  As shown in figure the worst case i.e. case at which chances of flipping 

memcell is max. For SNM worst case would be on fast NMOS, slow PMOS, maximum 

voltage, and maximum temperature in given combinations. 

Higher Temperature 

High temperature will cause voltage coefficient (Vt) of the transistor to decrease. 

So less voltage at internal node B1 will be able to flip the cell. 

High Vdd 

When WL will be on higher the Vdd, higher the voltage at node B1, more easily 

the memcell will flip. So the higher Vdd will help in flipping. 

Max NMOS 

The current carrying capacity of max NMOS will be more. So maxN will pull-

down the node voltage at B1 and B2 soon. 

Min PMOS 

Since the current carrying capacity will be less so it‟ll not hold 1 at node B2 for 

longer time 

 

PROCEDURE FOR NOISE ANALYSIS 

  Noise immunity of the memcell was tested by adding two noise sources as 

shown in Figure 

 

Figure 4.7: Memcell with static noise voltage sources 

 

Stability of memory cell with the noise sources is shown in figure above. Here both oise 

sources are aiding in flipping the memcell. In above figure at node B1 “0” and at node B2 

“1” was being stored. So noise source Vn will aiding „0‟ and subtracting from „1‟ causing 

less immune memcell to be flipped. Static noise is dc disturbance such as offsets and 
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mismatches due to processing and variations in operating conditions. The SNM of the 

flip-flop is defined as the maximum value of Vn that can be tolerated by the flip-flop 

before changing states. A SRAM should be designed such that under all conditions some 

SNM is reserved to cope with dynamic disturbances caused by alpha-particles, crosstalk, 

voltage supply ripple and thermal noise. I did transient analysis to find the Static Noise 

Margin with a linearly increasing noise source. The value of noise source at which 

memcell flips is the static noise margin of memcell 

 

WRITE MARGIN 

  Write Margin is defined as the maximum voltage required at the Bitline to 

write a “0”.Initially both the BITT and BITF are precharged to Vdd. When the wordline 

is turned ON the voltage at the Bitline (say BITF) corresponding to the node at which “0” 

has to be written is slowly brought down and the voltage at the node B is checked. The 

voltage at Bitline is noted for which the voltage at the node is 10% of the wordline 

voltage. This is called the Write Margin of the Memcell. 

 

 

Figure 4.8: Write Margin at different PVT 

 

The worst write margin of the memcell is on slow NMOS and fast PMOS, the maximum 

bit line voltage to writing the value with respect to wordline on. 
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DISCHARGE RATE 

  The rate at which the Bitline discharges is called the Discharge Rate. There 

are two points to be taken care while calculating Discharge Rate: 

 Additional load on Bitline from 

       o I/O Cell 

       o Strap Cell 

       o Dummy Row Cell 

 Domination of fringe capacitance for small height memory. As the technology 

changes the height of the memory cell changes, thus the capacitance per memory 

cell also changes. Lesser the height, lower is the capacitance. But effectively the 

fringe capacitance remains the same and thus it dominates. 

 

Discharge Rate is calculated by keeping the wordline as “ON” and BITT and BITF at 

VDD. The discharge rate is a prime parameter to decide the rate at which the bitline 

discharges directly affect the access time of memory. Generally we are looking for the 

high discharge rate keeping improvement in other parameter. 

 

LEAKAGE 

                             We generally assume that in “OFF” condition MOS transistors have 

impedance between its drain to source and thus there is no flow of current. But, in 

practical circuits there exists very high impedance between the source and drain in the 

“OFF” state. Thus, leakage in this context is calculated as the current flowing through the 

access transistor when the wordline is “OFF” and the bitlines are precharged. This is the 

case to access the memcell in an array where the cell access through bitline pair will 

contribute the current from the active memcell as well as from the current through the 

inactive memcells. The leakage should be low to make the discharging of bit line faster. 

The higher the leakage will create the worst case for sense amplifier for Vdiff creation. 
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4.3 COST AND BENEFIT ANALYSIS 

  Whenever we are talking about the cost analysis of integrated circuits then the 

three main points for cost analysis would be considered i.e. area, power and speed but in 

case of memory the fourth parameters which contribute cost is robustness. The 

methodologies have been mentioned in methodologies section used to make the product, 

cost and benefit efficient. The port sharing methodology, ultra high dance memory cell 

and the replica structure with no dummy rows made the system area efficient. Different 

methods used to reduce the bitline swing like page type architecture, pulsed word line, 

isolation of sense amplifier from bitlines, replica structure, selective recharging, divided 

word line structure etc. which contributes the cost benefits in terms of power. 
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CHAPTER 5 

EVALUATION AND TESTING 
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5.1 MEMCELL CHARACTERIZATION RESULTS 

BITCELL STATIC NOISE MARGIN (SNM)  

at Temperature 150C for Process FS 

 

 

 

 

 

 

 

 

 

WRITE-MARGIN  

for Process SF at Temperature 150 
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5.2 STIMULI GENERATION APPROACH 

STIMULI FOR TIMING/MARGINALITY ANALYSIS 

   The critical path modeling is used to verify the functionality of the SRAM. 

To save the simulation times but still remains a simple and exact view of the SRAM 

performance. It will give the exact view of timing and power information. As name 

suggests the critical path means the path through which signal suffers maximum delay 

and the path of maximum power consumption. For verification purpose, it is sufficient to 

perform the read/write operation/cycles to check the functionality of SRAM. During the 

stimuli writing we have to make sure that the all operations on the corner occurs to check 

the worst and best timings and power consumption information during read/write cycles. 

 

STIMULI FOR POWER CHARACTERIZATION 

   A power stimulus is used to put the operation in such a manner that the 

maximum possible toggling would occur in given time window of each operation to find 

the worst power consumption. Also take care about the individual signal toggling power 

contribution in systems power consumption. The stimuli used for power characterization 

in memory are different from the stimuli used for timing and marginality 

characterization. Following powers to be calculated on CAD for power characterization 

of memory: dynamic read power, dynamic write power, standby read power, standby 

write power, leakage power, and rest of the individual signals power. 

 

STIMULI FOR LEAKAGE CHARACTERIZATION 

   Leakage power is amount of power consumed when none of input nodes are 

toggling and all the input signals are in stable state. The stimulus used to put in such a 

manner that after the operation performed in which maximum signal toggling, then after 

the slack time when all signals are relaxed, no signal toggling effect is there. This is the 

situation to calculate the leakage power in memory. 

 

STIMULI FOR PIN CAPACITANCE MEASUREMENT 

  The stimulus used to calculate the pin capacitance is written in such a manner 

that the signal toggling occurs to find the capacitance at rising and falling edge and then 
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calculate the average of those. This activity is performed for all the input pins 

individually to find out their pin capacitance. 

  

TIGHT STIMULI GENERATION APPROACH 

   A tight stimulus is used to cross check the timings generated during the 

timing analysis. Here we have to ensure that the all operation to be performed on all 

available locations keeping the tight timings. It is generally used to check the timings and 

predefined operations to be performed acceptably in tense situations. 

5.3 LIMITATION OF THE SYSTEM 

  A well known technique used to improve power efficiency is to partition a 

memory array in to smaller memory blocks so that only the addressed block is activated. 

At the architecture level we are using page type architecture, which is beneficial for low 

power, but area is a limited by this approach. For each page we are using separate IO 

blocks. As our main emphasis on area constraint so page type architecture is a limitation 

of this project. 
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CHAPTER6 

EVALUATION WORKS 
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6.1 ELDO OPTIMIZER 

   The Eldo optimizer is a general-purpose electrical circuit optimization 

program. The optimizer will calculate the value of parameters (the optimization 

variables) in the circuit such that the behavior or the characteristics of the circuit conform 

as close as possible to the specifications. The optimizer can achieve a simultaneous 

improvement in AC, DC, Transient domain, Steady-State and Modulated Steady-State 

analyses. 

                   The designer specifies the design objectives and the optimizer will adjust the 

component parameters of the circuit (such as resistor or capacitor values, the β value of a 

transistor, widths and lengths of a MOSFET) in order to meet a specified electrical 

performance. Optimization can be applied to: 

 Circuit parameters 

 Model parameters 

 Element parameters 

 Device lengths, widths, areas, and peripheries. 

 

                        The parameter values must conform to the manufacturing limits, process 

limits, or discrete device values. To achieve this, restrictions can be specified on the 

design parameters. Various constraints (or inter-relations) can be specified, for example, 

circuit parameters must be non-negative, or must not violate upper boundaries. In 

addition, more complicated constraints can be specified, for example, how components 

physically interact with each other to produce non-linear relations. 

                          The process of identifying the objective, variables, and constraints for a 

specific problem is known as modeling. The construction of an appropriate model is the 

first step (sometimes the most important) in the optimization process. If the model is too 

simplistic, it will not generate useful insights into the practical problems.  
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6.1.1 PROBLEM STATEMENT 

 In order to use the Eldo optimizer, the designer must provide the following 

information: 

 The nominal circuit, identical to the circuit provided for simulation in the netlist 

format. The user must have a working netlist. 

 The design variables, the designer must specify those parameters that may be 

optimized by the optimizer in its search for an optimal solution. The designer‟s 

selection of variables is accomplished by making minor modifications to the 

working netlist, using the .PARAMOPT command.  

 The design objectives may be any quantity represented by a real  value, a 

combination of quantities that are generated by multiple sweep commands, or 

multiple increment step on circuit parameters.  

The information that the user has to provide is referred to as the problem statement. The 

designer provides a model for the optimization problem; this may be the minimization or 

maximization of functions (extracted measures) subject to the constraints on its variable.  

                             For example, the .PARAMOPT command is used to specify the length l 

and the width w of a MOS transistor: 

                        .PARAMOPT 

                        + l = (10u, 2u, 100u) 

                        + w = (60u, 2u, 200u) 

 

Exploiting the results of optimization 

                              After the optimization algorithm has been applied, the designer must 

be able to recognize whether it has succeeded in its task of finding a solution. This can be 

accomplished by analyzing the results of the optimization. 

 There are optimality conditions or the final diagnostics for checking that the 

current set of variables is a solution of the problem. If the optimal conditions are 

not satisfied, they may give useful information on how the current estimate of the 

solution can be improved.  
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 There are also the values of the extracted measures printed during the 

optimization at the end of the process. This represents the post-optimization 

analysis. 

                               The designer will find this kind of information within the output 

results of Eldo (.chi file) and the Eldo optimizer (.otm file). The script viewotm can be 

invoked to extract the desired results. This script can be invoked from the command line 

as follows: 

viewotm -f <circuit name>.otm <other arguments> 

6.1.2 OPTIMIZATION COMMANDS 

The following are commands that can be used for optimization: 

 .EXTRACT  

 .OBJECTIVE 

 .OPTIMIZE 

 .PARAMOPT 

 

EXTRACT  

 OBJECTIVE_INFO:= 

   GOAL=MINIMIZE|MAXIMIZE     [WEIGHT=RVALUE] 

   | GOAL=RVALUE [WEIGHT=RVALUE] 

     | EQUAL=RVALUE 

     | {LBOUND=RVALUE | UBOUND=RVALUE} 

     | LBOUND=RVALUE UBOUND=RVALUE 

 

The OBJECTIVE_INFO argument describes the category of the design objective when 

optimization is required. When this argument defines a MINIMIZE or MAXIMIZE 

objective, the specified expression will be minimized or maximized. The argument 

GOAL=RVALUE defines a soft constraint on the measure, while the LBOUND, 

UBOUND and EQUAL define hard constraints. The specification of the arguments 

GOAL, EQUAL, LBOUND, and/or UBOUND is mandatory for optimization.  
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OBJECTIVE 

   The following is a list of reasons of using the .OBJECTIVE command: 

 Some implicit rules in the EXTRACT construct are not well fitted for optimization. 

For example, when several ALTER blocks are used with optimization, the 

.EXTRACT commands are simply added to each ALTER blocks. By default, the 

.OBJECTIVE command has a local scope. 

 It is easier to separate the optimization block, the circuit statements, and the plot 

statements. 

 

Notes 

 The additional data such as the goal values, the lower/upper bounds, and the 

weight numbers are sent to the optimizer when initializing the optimization 

process. They have constant values during the whole process. 

 Excepting the design objectives specified with GOAL=MINIMIZE|MAXIMIZE, which 

play a specific role in the problem statement, the goal values and the bounds have 

multi-point extension. This feature is related to data driven analysis.  

 Note that some of the arguments in OBJECTIVE_INFO are mutually exclusive. For 

instance, an objective cannot be specified at the same time as equality and as an 

inequality. The user may think of as an extracted measure having a unique 

descriptor that gives its role within the problem.  

 In general not all equality and inequality constraints are perceived by designers in 

the same way. It leads to classify constraints as either hard or soft.  

    

The term hard constraints means refers to the constraints the designer considers as most 

essential, i.e. they have to be satisfied. The designer does not want them to take part in 

any subsequent design trade-off.  
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OPTIMIZE 

Command syntax 

  The optimization specification acting on all the analyses specified in the 

circuit netlist is done using the following command: 

.OPTIMIZE 

+ [QUALIFIER=VALUE {, QUALIFIER=VALUE}] 

+ [PARAM=LIST_OF_VARIABLES|*] 

+ [RESULTS=LIST_OF_MEASURES|*] 

+ [OUTER=LIST_OF_PARAMETERS] 

 

Parameters 

 QUALIFIER 

           The name of the corresponding configuration argument  

 PARAM = LIST_OF_VARIABLES 

             List of comma-separated variables to be tuned, specified with the  

           PARAMOPT command. 

 RESULTS = LIST_OF_MEASURES 

             List of comma-separated measures to be optimized, specified with EXTRACT   

     commands. 

 OUTER=LIST_OF_PARAMETERS 

             List of comma-separated design parameters specified with the     

           PARAM command and used in a STEP PARAM command.  

 

Eldo optimizer/SQP arguments 

   The performance of the solver (the SQP algorithm) is controlled by a number 

of parameters. For specific situations it is possible to specify non-standard values for 

some or all of the parameters. 

 MAX_ITER=IVALUE 

           Maximum number of iterations permitted for optimization. Default 1000. 

 MAX_SIMUL=IVALUE 

            Maximum number of circuit simulations allowed. Default 99999. 
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 TOL_OPT=RVALUE 

  Tolerance on optimality conditions. This parameter specifies the accuracy to 

which the final iterate to approximate a solution of the problem. TOL_OPT can be 

considered as indicating the level of accuracy desired in the design functions at the 

solution. Specifying only the value TOL_OPT has the same effect as setting separately 

both the tolerances TOL_GRAD=TOL_OPT and TOL_FEAS=10-2 x TOL_OPT. Default value is 

10-4. 

 TOL_FEAS=RVALUE 

  Tolerance on feasibility conditions. An iterate is said to satisfy the feasibility 

conditions if FEAS(x) ≤TOLFEAS ×SIZE (x), where SIZE(x) represents a scaling quantity 

taking into account the norm of the solution vector. Default value is 10-6. 

 TOL_GRAD=RVALUE 

  Tolerance on the measure of criticality of the current iterate. An iterate is said 

to be critical if OPTIM(x) ≤TOLGRAD ≤SIZE () where SIZE() is a scaling factor 

representing the sensibility of the current solution with respect to changes of problem 

data. Default value is 10-4. 

 

PARAMOPT 

  The specification of the optimization variables is realized with an extension 

of the .PARAM command. These variables will be denoted by a vector of real values of 

dimension N: 

x = (x(1), x(2), ..., x(N)) 

The vector x is also associated with vectors of the lower and upper bounds denoted by xl, 

xu. An additional vector will be associate to the discretization (or resolution) of the 

variables x. 

Command syntax 

The design variables must be specified through the .PARAMOPT command: 

    .PARAMOPT VARIABLE_NAME=( 

    + [INIT_VALUE,] 

    + {LOWER_BOUND | LOWER_PERCENT% }, 

    + {UPPER_BOUND | UPPER_PERCENT% } 

    + [, INCREMENT]) 
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Parameters 

 VARIABLE_NAME 

         Name of the design variable(s). This parameter can be one of the     

         following: 

 

    PARAMETER_NAME | 

    P(PARAMETER_NAME) | 

    E(DEVICE,PARAMETER) | 

    M(MODEL_NAME,MODEL_PARAMETER) | 

   

 INITIAL_VALUE 

           Initial value of the design variable. It is optional in some situations. 

 LOWER_BOUND, UPPER_BOUND 

           Lower and upper bounds specified for the design variable. Unbounded (or free              

           variables) must be specified using the star character *, for example: 

 

               .PARAMOPT VAR1=(1.0, 0.0, *) 

               .PARAMOPT VARIABLE_NAME=(INIT_VALUE, *, *) 

 LOWER_PERCENT%, UPPER_PERCENT% 

           Percentages of the initial value.  

 

             .PARAMOPT VAR1=(5.0, 10%, 35%), 

           specifies that the effective lower and upper bounds are xl
(1)  

 =5.0 ×(1 0.1)  and         

           xu
(1) 

 = 5.0 ×(1 0.35). 

 INCREMENT 

           Specifies a discretization for the final value of the design parameter              

           (“Discretization of design variables”). Optional. 

For example, to optimize the length L and width W of a MOS transistor, the parameter 

.PARAMOPT 

             + L = (10U, 2U, 100U, 0.01U) 

               + W = (60U, 2U, 200U, 0.01U) 
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Here, the optimization is initiated with a length of 10µm and a width of 60µm the length 

is allowed to change between 2µm and 100µm by steps that are multiples of 0.01µm. 

Similarly the width can to take values between 2µm and 200µm that differ from the 

initial value (60µm) by a multiple of 0.01µm. 

6.1.3 Discretization of design variables 

  Figure 6.1-1 illustrates such a situation. The continuous box represents the 

feasible domain specified by the upper and lower bounds, and the black bullets are the 

feasible points where the final parameters are allowed to lie. 

 

___ 

Figure 6.1-1. Discretization of final parameters 

 

For example, when the lower bound is a finite number, the set of discretized points are as 

follows: 

{x1
(i),, x1

(i) + , x1
(i)  + 2, …..} 

 

Where i > 0 is the given increment. When the lower bound is infinite (xl
(i)  = ∞ ), the grid is 

started from the upper bound if this one is finite. The set of discretized points is then: 

 

{xu
(i), xu

(i) - i , xu
(i)  - 2I , ……} 

When a design parameter is unbounded (xl
(i) = -∞ and xu

(i) = ∞) , the requirement of 

discretization is not considered. 
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6.1.4 OPTIMIZATION OPTIONS 

The following are a list of options that are used for optimization: 

 OPSELDO_ABSTRACT 

           Generates a summary table of simulations containing parameter and extract values   

           for each run. This option has no effect on the .otm file, only the .chi file is       

           affected. 

 OPSELDO_DETAIL 

            If this option is set to NONE, only the last run and the nominal run will be stored        

            in the generated files (.wdb, .cou, .aex) and no other simulation information will  

            be displayed on the standard output. When set to ALL, simulation information for  

            all runs will be stored. Default is NONE 

 OPSELDO_NETLIST 

            Generates a netlist modified from the original input file, which    

            contains the optimized parameter values but also every parameter set  under #ifdef  

            statements. 

 OPSELDO_OUTER 

           Allows a reverse behavior of optimization and sweep simulations(.TEMP, .DATA,  

           or .STEP). A full optimization will be performed for each set of sweep       

           parameters.  

 

6.1.5 ROBUST OPTIMIZATION USING CORNERS 

This example illustrates the combination of optimization and .ALTER commands. For 

this purpose a new architecture based on the concepts of multi-context of simulation and 

multinetlist optimization has been developed. 

 

Problem definition 

Nominal optimization focuses on finding the best design parameters for one nominal 

operating condition of the circuit. Typically the power supply, the ambient temperature, 

and the process technology are given their nominal value, and the best set of design 

parameters is found by the optimizer, given its targets. If the circuit has to operate under a 
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variety of operating conditions, nothing guarantees that this will still be the case, if the 

design parameters are simply set to these optimal nominal values. Maybe if the power 

supply level is slightly changed, the circuit will fail.  

                                „Robust optimization‟ focuses on finding the „best‟ set of parameters 

that fulfill the specifications across a certain range of operating conditions. For example, 

robust optimization would be performed on a circuit that must operate between 1.7 and 

1.9V, a temperature range of -25C to 100C, and accommodate variations in the process 

(defined by the „corner‟ device model libraries). In this case the optimization targets 

might be upper or lower bounds on certain characteristics (for example the DC 

consumption has to be „lower than 50A, in all operating conditions). Targets can be set 

as targets for the average value of a given specification.  

                                   Operating conditions are conveniently defined with .ALTER 

commands in Eldo. In each .ALTER command, a specific combination of parameters 

defining the operating conditions (typically the power supply level and the temperature) 

and the corner device model library, can be defined. 

                                    The optimization commands (design variables definition, design 

objective definitions, and the optimize command) from the main netlist are then 

interpreted to span the main netlist conditions and the various combinations defined 

through the .ALTER sections. Obviously these types of optimizations are usually more 

costly than simple nominal optimizations. Eldo can distribute the necessary simulation on 

multi-processor machines, thus potentially accelerating the process. 

 

Smooth and non-smooth problems 

A difficult situation arises when the functions corresponding to the design objectives do 

not have continuous derivatives or are not continuous at all. In this case, methods for 

smooth problems will encounter difficulties. 

 



62 

 

                     

 

                      

Figure 6.1-2. Examples of non smooth problems 

 

 

It is assumed in the optimization problem, that the functions are continuous with 

continuous derivatives on some domain (or sufficiently smooth). Figure 6.1-2 illustrates 

some of these difficulties: 

 The first case represents a “noisy function” with an overall “trend” plotted with 

dashed lines. It is related to the effect of features such as adaptive algorithms and 

stopping tests in iterative methods inside the simulation. The Eldo optimizer will 

fail to make any progress because local descent directions may point uphill. 

 The second example is related to the use of functions such as ABS(.), MIN(.) or 

MAX(.) that are not differentiable in the common sense. 

 In general, the last two cases will lead to serious difficulties. The “discontinuous” 

case probably involves functions that are not numerical in nature, or the 

discontinuities are the result of features such as table look-ups and switches.  
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Global and Local Optimization 

  The fastest optimization algorithms only search for a local solution at a point 

at which the objective function is smaller than all other feasible points in its vicinity. 

They don‟t always find the best of all such minima that is the global solution (see Figure 

6.1-3). The reason for this is that practical methods for finding global optima are too 

expensive in all but the most specialized cases. 

 

 

Figure 6.1-3. Different types of minima 

 

General non-linear problems may possess local solutions that are not global solutions. 

Global solutions are highly desirable, however, they are usually difficult to identify and 

even more difficult to locate. Unless very strong assumptions are made about the 

functions that define the optimization problem in question, characterizations of global 

minima are almost impossible, so even if one is found the user may never know. The 

algorithm implemented in the Eldo optimizer on Newton iterations.  

 

Role of the weight numbers 

The numbers µm
(i) are positive weight values attached to each design objective. For 

instance, the weight µm
(i)  can be thought of as quantifying the user‟s desire to make fm

(i)(x) 

small. The user would take µm
(i) large if the user wants fm

(i)(x) to be small. The ratio µm
(i) / 

µm
(j)  can be interpreted as the relative weight of the ith objective compared to the jth 

objective. 
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                              These remarks can help users that want to change the weights in order 

to get the lower values of a chosen objective, for example the kth. To find an optimal 

point which trades off the kth objective, users can increase the weight on the kth objective. 

 

Eldo optimizer/SQP Method 

                        The Eldo optimizer/SQP optimizer, which is based on a Sequential 

Quadratic Programming method (SQP), using an augmented Lagrangian approach (AL) 

for solving the sequence of quadratic problems (QP) involved in the SQP iterations. It is 

efficient for solving small and medium scale problems belonging to the following classes: 

 

 unconstrained and bound constrained problems (using only the statements 

GOAL=MINIMIZE|MAXIMIZE and GOAL=rvalue) 

 systems of non-linear equations (using only the statement  EQUAL=rvalue) 

 general (equality and inequality) constrained problems. 

 

Before continuing our presentation, some useful definition and mathematical notations 

are given. The design variables are denoted by: 

 

x =(x(1), x(2), ..., x(N)) 

 

a vector of real numbers of dimension N. Therefore the space of variables is denoted by 



. v The scalar product is denoted by: 

   
i

ii vuvu )()(| onto the space 

, and its associated norm is ||u||. 

A simplified structure of the kth iteration can be depicted as: 

 Step Computation: determine a direction of search sk (by solving a tangent 

quadratic subproblem (QP)k) 

 Step Assessment: find k > 0 in order to minimize a chosen merit function 

)(xx   along the line ,kk sx    

 Update: .1 kkkk sxx   



65 

 

This approach is referred to as a descent method since the search direction sk satisfies a 

descent property: 

0|  kks   

where the vector k represents the gradient of the chosen merit function. The role of the 

line search algorithm is to dampen the displacement ks . However, the most important 

feature of this algorithmic process is: 

 

Role of tolerances in Eldo optimizer 

This section gives some indications on the role of the arguments  TOL_GRAD, TOL_FEAS, 

and TOL_OPT. 

                       Suppose a value of x that is a local minimizer of f(x) in the interval a ≤x ≤b 

is to be obtained: 

                     Minimize           f(x) 

                       Subject to           a  ≤ x ≤b 

or using a SPICE formulation: 

 

.OPTIMIZE 

* Minimize Statement 

.OBJECTIVE EXTRACT_INFO LABEL=F 

+ {$MACRO|FUNCTION} 

+ GOAL=MINIMIZE 

* Design variable specification 

.PARAMOPT X=(X0, A, B) 

 

The optimality conditions OPTIM(x) in the definition of the TOL_GRAD argument are: 

                        f‟(x) if a < x < b 

OPTIM(x)             min(f‟(x),0) if x = a 

                                                                              max(f‟(x),0) if x = b 

 

Consider the first case in Figure 6.1-4. The minimum is the point x = b. The blue vector 

represents the derivative f‟(x) at point b (this is the opposite of the steepest descent 

direction -f‟(x) at point b). The derivative f‟(x) is negative, then is the number 

max(f‟(x),0)=0. When OPTIM(x) is zero or very small this indicates that the point x is an 
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optimum. The point x is optimal when the absolute value of OPTIM(x) is less than 

TOL_GRAD. 

                               Consider the second case in Figure 6.1-4. Point y is an unconstrained 

minimizer of f, since it lies strictly in the interval [a,b]. The optimality condition is then 

OPTIM(y)=f‟(y) which is the slope of f at point y. OPTIM(y) equals zero. Note that the 

previous definition of the optimality conditions are related only to bound constrained 

minimization problems.  

 

                            

Figure 6.1-4. Illustration of the optimality conditions 

 

For instance, suppose that a constraint function c(i)(x) is computed for some relevant x and 

if the first six digits are known to be correct. A constraint should be considered as active 

at its upper bound (or lower bound), if the magnitude of the difference between the values 

c
(i)

(x) and cu (i) (or cl
(i)

 respectively) is less than some tolerance of order 1.0 ×10-6. This 

tolerance, , specifies how accurately the constraints should be satisfied. It defines the 

maximum absolute violation in non-linear constraints at a feasible point. 

 A constraint is considered satisfied if its violation does not exceed the tolerance . The 

feasible region for the constraints )()()( )( i

u

i

I

i

l
cxcc

l
  is shown in Figure 6.1-5 . 

 

 

Figure 6.1-5. Illustration of the constraints 
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The constraints are considered satisfied if c
(i)

(x) lies in the region 2, 3, or 4, and inactive 

if c
(i)

(x) lies in region 3. The constraint )()()( xcc ii

l   is considered active in region 2, and 

violated in region 1. Similarly, )()( )( i

u

i cxc   is active in region 4, and violated in region 5. 

For equality constraints )()( i

u

i

l cc  , regions 2 and 4 are the same, and region 3 is empty. 

The default value is appropriate when the constraints contain data about the accuracy. 

                           Note that specifying an appropriate tolerance on feasibility TOL_FEAS 

may lead to several savings, by allowing the optimization procedure to terminate when 

the difference between function values along the search direction becomes as small as the 

absolute error in the values. 

 

Computation of finite-difference derivatives 

                           The finite differences in the Eldo optimizer are used. Finite differencing 

is an approach to calculate the approximate derivatives whose motivation comes from 

Taylor‟s theorem. Like many software packages, the Eldo optimizer performs automatic 

calculation of finite differences whenever the simulator is unable to supply the code to 

compute exact derivatives. 

                            A popular formula for approximating the partial derivative xF   at a 

given point is the forward differences or one-sided differences. The parameter denoted by 

hf is used, this controls the interval used to estimate the gradients of the function F by 

forward differences: 

f

f

h

xFhxF

x

F )()( 




  

 

One-sided difference estimates are used to ensure feasibility with respect to an upper or 

lower bound on x. If x is close to an upper bound, the trial intervals will be negative. The 

final interval is always positive. 

 An approximation to the derivative of F can be obtained by evaluating the 

function F at N + 1 points and performing some elementary arithmetic. 

 The resulting gradient estimates should be accurate to O(hf) unless the functions 

are badly scaled. 
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6.2 MULTI - THREADING 

6.2.1 MTHREAD 

                           Activates multi-threading for a single DC or TRAN simulation. Eldo 

will share computer resources on a multi-processor machine. Eldo will make use of all 

the possible CPUs on the machine. It will share the work between the different CPUs in 

order to speed-up simulation. Note that the CPUs should not already be in use, otherwise 

simulation will be slower. Statistics, generated at the end of simulation, show how many 

CPUs have been used for the current simulation. This number will also be printed out at 

the beginning of the TRAN simulation. 

                            Eldo will make use of the multi-thread capability of the machine it is 

running on only if all the following conditions are met:  

  The MTHREAD flag has been set (via option or at invocation)  

  The machine is a multi-cpu machine  

  The circuit contains devices which are thread-safe  

  The circuit contains more than 100 devices.  

 

If the circuit does not contain any thread-safe device, MTHREAD will be ignored. 

Thread safe devices are BJT, diode, and MOSFET exclusively. A few models of these 

categories are not thread-safe, and are therefore handled in a single processor. Eldo will 

notify when it cannot apply thread optimization on models. Thread-safe and non-thread-

safe models can be used in the same circuit. 

                          If a circuit contains less than 100 devices, MTHREAD is disabled 

because multi-threading might slow down the simulation when there are not enough 

devices to distribute between the processors. 

.option MTHREAD 

6.2.2 USETHREAD=VAL  

                Activates multi - threading for a single DC or TRAN simulation. Eldo will 

share computer resources on a multi-processor machine. Eldo will make use of the 

number of CPUs as specified with this option. The number specified can exceed the 
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number of CPUs available, but this is not recommended. This option is equivalent to 

the Eldo -usethread # command line flag. 

.option usethread = val 

6.2.3 .MPRUN  

Multi-Processor Simulation  

.MPRUN [ALL|HOST={host[(nbjobs)]}|FILE=filename}][NBLICENSES=val]  

        +[MAX_NBJOBS=val][CLEAN=YES|NO][QUEUE=YES|NO][SETENV=YES|NO] 

 + [VIEW_COMMAND=YES|NO] [CHECK_DELAY=val] [INIT_FILE=filename]  

 + [DEFAULT_INIT=YES|NO] [NETWORK_DIR=directory]  

 + [CD_WORKDIR=YES|NO] [LOGFILE=YES|NO] 

 + [SHELL_SYNTAX=(source_cmd, setenv_cmd, setenv_sep, init_anacad_ext)]  

 + [USE_LOCAL_HOST=YES|NO] [FLAT=YES|NO]  

 + [FILE_PREFIX=(name1,name2,...,nameX)]  

 + [USE_SSH=YES|NO] [SSH_OPTIONS="{<options>}"] 

 

This command is used to run multi-threading simulations on one multi-processor 

machine, or on many machines. .ALTER, .MC, .TEMP, .STEP, .DATA and .OPTIMIZE are 

distributed by this command.  

                            The child processes are launched through a rsh call which by default 

inherits the environment variables used in .INCLUDE or .LIB statements. Temporary 

results are stored in subdirectories named       

<NETLIST_NAME>.part<X> 

 

where X is an incrementing counter. By default and unless they are in use temporary 

directories are removed once the simulation is complete. 

Notes  

1. In all cases, Eldo will warn you if a host cannot be used. This will happen when:  

 You don t have the permissions to see the machine and/or to write in the working 

directory. This error must be fixed by the system administrator before the .MPRUN 

command can be used. 
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 Too many hosts are given in the command line compared to the number of tasks 

that can be distributed.  

2. To use the .MPRUN command with both Linux and Sun platforms, you must 

provide an initialization script (INIT_FILE) and use the DEFAULT_INIT=NO keyword. 

3. Ensure there are enough runs (more than three) from .STEP, .ALTER, and other 

commands to activate distribution of jobs on different processors. 

 

                              The first and last processes are reserved for the main processor or 

CPU (say, processor #1) and the rest of the processes are distributed to any of the 

available processors including the first one.  

                                In simulations with only a few processes, the .MPRUN command 

is not practical. Consider a temperature sweep with a command .TEMP -30 30 90. This 

case has only three temperatures which are not enough to trigger multi-processor runs 

since the algorithm runs the first and last process (in this case .TEMP -30 and .TEMP 90) 

in single processor mode. The rest of the processes are distributed to other processors 

or machines. In this case, only one processor will be used and the simulation will not 

take advantage of the multi-processor feature. 

4. The netlist must be in a shared directory (a place visible from the other machines 

on the network). 

5. If using local installations of Eldo, the installation patches (not the binaries) must 

be strictly identical on all machines.  

6. Users need to be able to rlogin to other machines without supplying password. If a 

user needs a password to perform an rlogin to other servers, when Eldo attempts to 

rlogin to other systems to launch tasks it will fail because the other machines require 

passwords and Eldo cannot supply them. 

7. The priority of distriuted commands is as follows (high to low): 

   .Alter, .Temp,.Step/.MC,.Data/.optimize. if you have ten runs for .Step but only two runs 

for .Alter only two then eldo will distribute the ten runs (from .Step) on the available 

machines. 
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Parameters  

 ALL This is the default. Keyword specifies Eldo to run the simulation on all the 

processors of the machine. Eldo will find the number of processors of the machine 

and distribute the tasks between them. If the machine has one processor, Eldo will 

run the simulation normally without taking this command into consideration. 

 HOST={host1[(nbproc1)] host2[(nbproc2)]... hostN[(nbprocN)]} 

Keyword specifies Eldo to run the simulation on the list of machines: host1, host2, 

hostN (commas are optional). Eldo will distribute the tasks on the list of machines 

specified. nbjobs is an optional parameter that explicitly tells Eldo the maximum 

number of jobs that can be submitted on this machine. On multi-processor 

stations, this number should be the number of processors.  

 FILE=filename Specifies the name of a file which contains a list of machine names 

(with a number of processors if needed). The file can have any extension or no 

extension at all. The first line of the file is read. Example file contents: 

pluton kebra(3) 

                                                              morkai(2) 

                                                              nao cochise 

 NBLICENSES=val Specifies the maximum number of licenses that this job can use. It 

must be greater than 1 to be taken into account, since the parent process always 

takes its own license.  

 MAX_NBJOBS=val Specifies the maximum number of jobs that can be submitted for 

all machines.   

 CLEAN[=YES|NO] Default value is YES. This specifies Eldo to remove temporary 

files created in any child process subdirectories, together with removing the 

subdirectories themselves. If keyword is set to NO, the temporary files are not 

removed.  

 QUEUE[=YES|NO] Instructs the system to wait for the release of a license if one is 

not immediately available. A consequence is that the parent process will hang 

until its child process has finished. Default value is NO.  
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 LOGFILE[=YES|NO] This controls the redirection of the standard output of sub-

processes. The default value is YES, which means that Eldo dumps the standard 

output in <NETLIST_NAME>.log in the temporary directories. "  

 USE_LOCAL_HOST[=YES|NO] Setting this option to NO tells Eldo that it cannot use 

the local host to perform some simulations. Default value is YES (the local host is 

the machine on which the main process has been launched).  

 FILE_PREFIX=(name1,name2,...,nameX) In case of splitting .ALTER statements, a user 

may want to rename the output files of each run. If a flag is given after .ALTER, it 

is used as the name. Output names can also be redefined with this FILE_PREFIX 

option. For example if a netlist contains two .ALTER statements and the following 

.MPRUN option FILE_PREFIX=(first,second, third), output files for each run will be: 

1. for the netlist before .ALTER statements: first.chi, first.wdb, etc.  

2. for the netlist after the first .ALTER statement: second.chi, second.wdb  

3. for the netlist after the second .ALTER statement: third.chi, third.wdb   

 

Examples  

.MPRUN HOST=host1, host2 NBLICENSES=2 QUEUE=YES 

 

Specifies Eldo to run the simulation on both the host1 and host2 machines. A maximum 

of two licenses can be used by this simulation. If a license is not immediately available, 

the system will wait for the release of a license.  

                                   .MPRUN HOST=host3(2) host4 

                              + INIT_FILE=script.shell DEFAULT_INIT=NO  

 

Specifies Eldo to run the simulation on both the host3 and host4 machines, also with two 

processors of host3 specified as running the simulation. A script file script.shell will be 

sourced before running child processes. This script will replace any other default 

initialization file. 
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.MPRUN and external dispatchers 

 .MPRUN DISPATCHER= [LSF |  

+ (dispatcher_name, install_check_cmd, submission_cmd]  

+ [REMOVE_QUOTE=YES|NO] [DISPATCHER_OPTIONS=options]  

+ [NBLICENSES=val] [MAX_NBJOBS=val] [CLEAN=YES|NO]  

+ [QUEUE] [SETENV] [VIEW_COMMAND] [CHECK_DELAY=val]  

+ [INIT_FILE=filename [DEFAULT_INIT=YES|NO]]  

+ [USE_LOCAL_HOST=YES|NO] [FLAT=YES|NO]  

+ [FILE_PREFIX=(name1,name2,...,nameX)] 

 

.MPRUN  

+ DISPATCHER_TEMPLATE=command_line 

+ [USE_LOCAL_HOST=YES|NO] [FLAT=YES|NO]  

+ [FILE_PREFIX=(name1,name2,...,nameX)]  

                              A dispatcher is software which shares and manages computer 

resources across a network. Instead of a basic remote shell command, the dispatcher uses 

various criteria (memory usage, CPU charge) to determine which machine is suitable to 

run the simulation on. The second syntax above is useful for .ALTER dispatching only. 

 DISPATCHER=LSF  

              Specifies Eldo to use LSF as external dispatcher. This syntax is a shortcut to 

DISPATCHER=("LSF","bsub -V","bsub"). 

 DISPATCHER=(dispatcher_name,install_check_cmd, submission_cmd)  

dispatcher_name  

name of the software (required for print purpose only).  

install_check_cmd  

a command that can prove the software is accessible. 

 submission_cmd 

 the command that submits a job to the engine.  

 REMOVE_QUOTE[=YES|NO]  

This tells Eldo how to manage double quotes inside the DISPATCHER_OPTIONS 

argument. If defined, it is mandatory to set if before the DISPATCHER_OPTIONS 

argument. Default value for LSF is YES, and NO for other dispatchers. 
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 DISPATCHER_OPTIONS=options  

This keyword allows sending extra options to the dispatcher submission command. 

The dispatcher options must be enclosed in ( ), { }, " " or '  . If enclosed in ( ) or { } Eldo 

may add some spaces between items. To keep the exact syntax, use " " or ' ' if the 

options contains some double quotes.  

 DISPATCHER_TEMPLATE  

This option allows to completely overriding the usual MPRUN mechanism. It is useful 

for .ALTER dispatching only. The user is in charge of providing a valid shell 

command which will dispatch jobs. This command can use predefined variables 

which are substituted by Eldo before executing the command. These variables are: 

%NETLIST_NAME%  

stands for the name of the netlist %RUN_NAME% stands for the name of each run 

(may be redefined with FILE_PREFIX) 

 %RUN_NUMBER%  

stands for an absolute run counter (starting from 1) %MPRUN_OPTIONS% is a 

mandatory variable which represents internal options added by Eldo. 

 Example with LSF  

.MPRUN DISPATCHER=LSF 

 + DISPATCHER_OPTIONS=(-q myqueue -m "host1 host2")  

+ MAX_NBJOBS=5  

Specifies Eldo to use the LSF management system as a dispatcher for the remote jobs. 

The simulation will be run on both the host1 and host2 machines. A maximum of five 

jobs will be submitted to LSF. -q myqueue is the LSF option which controls the Batch 

Queue to which the jobs will be submitted. 

 

 

 

 

 

 

 



75 

 

Observation  

Table : 6.2.1 comparision of simulation time 

S.no Case Simulation time Conclusion 

1 Netlist containing 

Two .ALTER & 1000 MC 

Approx 19 hrs Conventional method 

2 Two .ALTER & 1000 MC + MPRUN Approx  8 hrs according to mprun‟s 

characteristic it distribute jobs 

with respect to .ALTER. So it 

uses only two processors.  

 

3 Netlist containing only one .ALTER( block of 

above netlist) & 1000 MC + .MPRUN  

 

Approx 1½ hrs 

 

In this mprun distribute jobs 

according to .MC & uses upto 40 

– 45 processors 

 

          

From the above evaluations we can conclude that we can reduce our simulation time 

very drastically. But require a smart approach (with giving corrected value for 

MAX_NBJOBS & NBLICENSES). 

 

Table : 6.1.2 priority of distributing command 

S.no no. of ALTER  

 

no. of STEP  

 

no. of TEMP  

 

no. of MC  

 

observation & Conclusion  

 

1 
0 -4  5  5  50  distribution according to ALTER  

2 
0 -1  5  5  50  same  

3 
0 -9  5  5  4  according to ALTER  

4 
no  5  5  50  distribution according to temp  

5 
no  5  8  50  according to temp  

6 
no  8  5  50  according to temp  

7 
0 -9  10  10  9  according to alter  

 

According to my observation the preferences given by MPRUN to distributing 

commands are:- 

                         .ALTER > .TEMP > .STEP > .MC 
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CHAPTER 7 

CROSS-TALK SETUP 
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SIGNAL INTEGRITY CHECKS 

These CircuitCheck commands are designed to help check for static and dynamic 

crosstalk and noise-sensitivity estimation.  

7.1 Dynamic Crosstalk Analysis 

Dynamic crosstalk refers to the parasitic effects which lead to distortion of digital signals 

in the post-layout netlist. The effect is measured according to user-specified thresholds 

for change of characteristics of the signals. Violations are reported in the CircuitCheck 

result file. 

                         In Figure 7.1 there are two overlapped waveforms of the signal. The 

leading one is the waveform in the pre-layout netlist. The second is the waveform found 

in the post-layout netlist. It somewhat differs from the first due to parasitic effect. 

 

 

Figure7.1 comparing post-layout & prelayout 
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cckDXtalk syntax 

cckDXtalk ccFile=<ccfile_name> noccFile=<noccfile_name> 

[nodeListFile=<nodelist_name>] 

[node=<node_name>]* [skipnode=<nodeName>]* [slope_rel=10] 

[slope_abs=1e-9] 

[slope_vhth=80] [slope_vlth=20] [delay_rise_th=50] 

[delay_rise_abs=1e-9] 

[delay_fall_th=50] [delay_fall_abs=1e-9] 

[separate_file=[0|1]] [extract_signals=[0|1]] [bc_wc=[0|1]] 

 

SYNTAX DEFINITIONS 

 ccFile           

      Optional. ccFile specifies the post-layout fsdb file name.  

 noccFile       

      Optional. noccFile specifies the pre-layout fsdb file name. 

 nodeListFile      

      Optional. 

 spfFile          

      Optional. spfFile specifies the \SPF file name.  

 node             

      Optional 

 skipnode      

      Optional 

 slope_rel      

      Relative slope in percentage. Unit is %. The DEFAULT is 10. 

 slope_abs    

      Absolute slope. Unit is V/ns. The DEFAULT is 1. 

  slope_vhth or slope_high    

High threshold voltage of output. Unit is %.The DEFAULT is 80, meaning that 80% 

of HSIMVDD. 
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 slope_vlth or slope_low          

 Low threshold voltage of output. Unit is %. The DEFAULT is 20, meaning that 20% 

of HSIMVDD. 

 delay_rise_th or delay_rise_thr  

 Rising threshold in percentage. Unit is %. The DEFAULT is 50, which means 50% 

of HSIMVDD. 

 delay_rise_abs  

      Absolute value of rise time. Unit is second(s). The DEFAULT is 1ps. 

 delay_fall_th or delay_fall_thr 

             Falling threshold in percentage. Unit is %. The DEFAULT is 50, which means                      

             50% of HSIMVDD. 

 delay_fall_abs  

      Absolute value of fall time. Unit is second(s). The DEFAULT is 1ps. 

 separate_file 

      If set to 1, output to a separate file. The DEFAULT is 0. 

 extract_signals  

      If set to 1, extract signals which violate cckDXtalk rules from ccFile and    

      noccFile into a separate fsdb file. The DEFAULT is 0. 

 bc_wc or wc_bc  

     If set to 1 best/worst violations of a signal in the simulations are reported. The     

     DEFAULT is 0. 

 

Signal Edge Characteristics  

The signal edge characteristics for the waveform shown in Figure 7.1, Pre-/Post layout 

Waveform Node Differences are described below. 

 

THRESHOLDS  

 Delay_rise_th and delay_fall_th 

                                                 Thresholds for the rising and falling edges. Normally these                                                                 

                                                 two values are 50% of VDD. Their simulation time at the 

                                                 point where the signal crosses the thresholds are tr and tf. 
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 Slope_vhth and slope_vlth 

                                Defines the signal edges. The DEFAULT value of    

                              slope_vhth is 80% of VDD and 20% of VDD for   

                                                 slope_vlth                                                   

RISING SLOPE 

 Srising  

                                            The positive average slope of a signal crossing from 

                                                   slope_vlth to slope_vhth as shown by the following 

                                       syntax: srising=(slope_ vhth-slope_ vlth)/(tr_ end-tr_ start). 

FALLING SLOPE 

 Sfalling  

                                             The negative average slope of a signal crossing from 

                                                    slope_vhth to slope_vlth as shown by the following 

                                          syntax: sfalling=(slope_ vlth-slope_ vhth)/(tf_ end-tf_ start). 

 

Validation is measured based on four criteria: 

 

 Rising Edge Delay   

                                               Rising edge delay measures the time delay of a rising 

edge. It measures the difference of tr, i.e., tr_delay                                                       

between pre-layout and post-layout waveforms. If the                                                       

difference, in second, is greater than the value specified                         

by delay_rise_abs, a Warning is issued into the result 

file. 

 Falling Edge Delay  

                                               Falling edge delay measures the time delay of a falling  

                                                      edge. It measures the difference of tf, i.e., tf_delay  

                                                      between pre-layout and post-layout waveforms. If the 

                                                      difference, in second, is greater than the value specified                     

                                                      by delay_fall_abs, a Warning is issued into the result                                                          

                                                      file. 
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 Slope Relative Error  

                                              Slope relative error measures the relative error of rising/ 

                                                     falling slopes between pre-layout and post-layout                                                        

                                                     waveforms. The error is calculated using the formula 

                                                     (slopepost_ layout-slopepre_ layout)*100% /  (slopepre_   

                                                     layout).If the absolute value of the error is greater than          

                                                     the value specified by slope_rel, a Warning is issued   

                                                     into the result file. 

 Slope Absolute Error  

                                             Slope absolute error measures the difference of rising/ 

                                                    falling slopes between pre-layout and post-layout                                                      

                                                    waveforms. If the difference, in V/ns, is greater than the)

                                           value specified by slope_abs, a Warning is issued into 

                                                    the result file. 

 

Usage Flow Methods  

 

Various methods of executing dynamic crosstalk checking: 

METHOD 1. 

                                 The first method of executing dynamic crosstalk checking is to 

execute HSIM separately. Using this approach, simulation results must be prepared for 

both pre-layout and post-layout netlists in advance. The result files are denoted as 

noccFile.fsdb and ccFile.fsdb respectively. The nodes of interest have to be output using 

.print command for both cases. 

 

The analysis needs an optional node list file such as nodelist.txt. The node list file is a 

text file containing a list of analysis nodes itemized one node name per line. If the file is 

not given, the node specifier in cckDXtalk will specify which nodes are to be analyzed. 
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Dynamic crosstalk analysis is eventually driven by adding cckDXtalk into the 

CircuitCheck command file of the netlist. This is both a pre- or post-layout netlist file and 

run HSIM with this revised netlist. Figure 7-2, shows the detailed analysis flow. 

 

 

 

FIGURE 7-2.Dynamic Cross Talk Detailed Analysis Flow 

METHOD 2.  

                                The second method of executing dynamic crosstalk checking is to run 

cckDXtalk in batch mode. Using this flow, only spfFile must be specified while not 

specifying ccFile and noccFile. The command will automatically execute HSIM twice. 

 The first run simulates the pre-layout netlist. 

 The second run simulates the post-layout netlist with the specified SPF file and 

carries out the analysis. 

Nodes found that are to be analyzed are automatically added to output files as shown in 

following example. 

Example 1:  

                    Using cckDXtalk when ccFile and noccFile are given when ccFile and 

noccFile are both given, add cckDXtalk to the CircuitCheck command file using the 

following syntax: 

cckDXtalk ccFile=post.fsdb noccFile=pre.fsdb 

nodeListFile=nodelist.txt\ 

delay_rise_th=45 delay_rise_abs=1.12n \ 

slope_vlth=14 slope_vhth=80 slope abs=1 slope_rel=10 \ 

delay_fall_th=60 delay_fall_abs =0.001n \ 

separate_file=1 

noccFile.fsdb 

ccFile.fsdb 

Pre-layout 

simulation 

post-layout 

simulation 

nodeListFile 

hsim.cck hsim with cckDXtalk 

(COMMAND) 
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Following is typical report sample from cckDXtalk: 

* ------------------------------------------------------ 

* Dynamic Cross Talk Check 

* noccFile = pre.fsdb 

* ccFile = post.fsdb 

* nodeListFile = nodelist.txt 

* referenced vdd = 1.5 V 

* slope_rel = 10% 

* slope_abs = 1 V/ns 

* slope_vlth = 14% 

* slope_vhth = 80% 

* delay_rise_th = 55% 

* delay_rise_abs = 1 ns 

* delay_fall_th = 60% 

* delay_fall_abs = 0.001 ns 

* separate_file = 1 

* ------------------------------------------------------ 

Signal       sim  time(ns)  delay time(ns)  slope rel(%)   slope \abs(v/ns) 

v(oup)          0.375               -                       28.3                    3.69 

v(oup)          3.96              0.232(F)             -47.7                   8.73 

v(oup)          7.36                 -                        34                      4.49 

v(oup)          11                 0.232(F)             -47.7                   8.72 

v(out_b)       0.28                 -                        34                      4.49 

v(out_b)       2.71              0.232(R)             -47.7                   8.72 

....... 

find 24 rise delay violation(s). 

find 89 fall delay violation(s). 

find 174 absolute slope violation(s). 

find 174 relative slope violation(s). 

Total of 437 dynamic cross talk violation(s). 

Total of 6 node checked. 
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7.2 Static Crosstalk Noise Analysis -Estimate Noise Glitches 

  Due to the ever increasing density in a chip design, the coupling capacitor 

between signal nets is an important topic to study. Aggressor nets can induce noise on 

victim nets. If the noise glitch is too large, it will trigger the circuit to change state 

unexpectedly. Furthermore, with the decrease of power supply voltage (VDD) such as 

from 3V to 2.5V to 1.8V, the noise glitch requires more attention and needs to be 

addressed. 

 

            FIGURE 7-3.Fast Rising vs. Slow Falling Path 

 

Slow falling path. The total         =   Rise noise glitch is 

Capacitance along the path is            Vr = (FC / Total_Cf)*VDDs 

 

  If FC is a floating capacitor with a value exceeding a specific threshold; and 

from node A, the fast rising paths are located; from node B, slow falling paths are 

located. The fast rising at A will create a rising noise glitch at node B. The noise bump is 

approximated as (FC / Total_Cf) * VDD, where FC is the coupling capacitance; Total_Cf is 

the total capacitance on the slow falling path. 

 

Similarly, fast falling paths and slow rising paths may exist at the two ends of a floating 

capacitor. The noise glitch on the slow path needs to be computed. 
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The following specifications are needed to analyze crosstalk: 

SYNTAX DEFINITIONS  

cckXtalkFloatingCap       cap 

cckXtalkRiseVolt             vr 

cckXtalkFallVolt              vf 

cckXtalkByWL                [0|1] 

cckXtalkModelWLratio   <model=m> <min=d1> <max=d2> 

cckXtalkByRC                 [0|1] 

cckXtalkRiseTimeConst  <min=t1> <max=t2> 

cckXtalkFallTimeConst  <min=t3> <max=t4> 

cckXtalkAtNode              <subckt=s> <node=nd> 

cckXtalkSkipNode           <subckt=s> <node=nd> 

cckXtalkSkipElem           <subckt=s> <inst=e> <pattern=p> 

cckXtalkReportCouplingCapRatio     <CC/Ctotal ratio> 

cckXtalkReportAggressorNode node  = <node_name>(supports wildcard) 

 

CircuitCheck permits nodes in a design to be selectively analyzed as described in the 

following steps. 

 

Step 1. Specify the coupling capacitance threshold (cckXtalkFloatingCap=fcap). Any 

floating capacitor with a value larger than the specified threshold is considered in the 

crosstalk analysis. 

 

STEP 2. Specify the following: 

 

 Rising noise glitch threshold (cckXtalkRiseVolt=vr) 

 Falling noise glitch threshold (cckXtalkFallVolt=vf) 

            Nodes are reported if they are impacted by the coupling capacitance and the    

            resulting glitches are larger than vr/vf. 
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STEP 3. The fast and slow paths ending at the coupling capacitors need to be identified. 

Fast paths have low impedance and slow paths have high impedance. CircuitCheck looks 

for the impact from a fast path to a slow path. 

 

Two methods for detecting the fast and slow paths are: 

 Width-to-Length (W/L) Ratio using cckXtalkByWL=1 

 RC-delay using cckXtalkByRC=1 

Note : These two commands are mutually exclusive: 

Either cckXtalkByWL or cckXtalkByRC may be set to =1, but not both. 

 

a. W/L Ratio Method (cckXtalkByWL=1) 

     The MOSFET models that need to be considered along the paths must be specified. In    

      this model, the following apply: 

 If a path‟s smallest W/L ratio is larger than the maximum ratio specified, the path 

is treated as a fast path. 

 If a path‟s smallest W/L ratio is smaller than minimum ratio specified, then this 

path is treated as a slow path. 

 ckXtalkModelWLratio model=m1 min=d1 max=d2 specifies the min/max W/L 

ratios for model m1. 

 

b. RC-delay Method (cckXtalkByRC=1) 

The rising and falling time constant must be specified. In this model, the following apply: 

 

Rising Time Calculation 

 If a path‟s rising time constant is smaller than minimum rise time constant, then 

this path is a fast rising path. 

 If this rising time constant is greater than the maximum rise time constant, the 

path is a slow path. 

 cckXtalkRiseTimeConst min=t1 max=t2 specifies the delay range for rising path. 

Any rising path with a delay greater than t2 is a slow path. 
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Falling Time Calculation 

 For falling paths, the minimum and maximum time constants are used to decide if 

a falling path is fast or slow. The rc-delay calculation is same as the method 

described in cckRCDlyPath. 

The following three files are created: 

 hsim.cckxtk or out_file.cckxtk 

                                        These files show path-pairs on the interested floating                        

                                        capacitors. In each pair, one path is fast and the other is slow. 

 hsim.cckvr or out_file.cckvr 

                                        Path-pairs that cause a large rising noise glitch will be reported                             

                                        in these files. 

 hsim.cckvf or out_file.cckvf 

                                 These files contain path-pairs that cause large falling glitch,       

                                 hence smaller vf. 

Examples 3: 

 

1. cckXtalkAtNode node        =         xam* 

                     CircuitCheck only analyzes the floating capacitors with two ends in xam. 

2. cckXtalkSkipNode subckt  =         ram          node=* 

                     CircuitCheck analyzes all the nodes except those in all the instantiation of              

                     subckt ram. 

Example 4:    Crosstalk Aggressor Static Check 

 

Using the following syntax, a check is conducted by going through the x1.a* victim 

nodes to see if coupling capacitance is connected. If YES, and CC has CC/Ctotal value is 

greater than the specified ratio (0.2), then the other end of CC terminal is reported as the 

aggressor signal. The checking result will be stored in a report file with the .cckXtkNdCap 

extension. 

 

cckXtalkReportCouplingCapRatio         0.2 

cckXtalkReportAggressorNode              node=x1.a* 
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Example 5: 

cckXtalkFloatingCap           1.e-12 

cckXtalkRiseVolt                   0.02 

cckXtalkFallVolt                   0.3 

cckXtalkByWL                       1 

cckXtalkModelWLratio  model=nx   min=12  max=18 

cckXtalkModelWLratio  model=px   min=16  max=24 

cckXtalkModelWLratio  model=px2 min=10  max=20 

 

In Example 5, any floating capacitor with value larger than 1 pF will be considered. The 

W/L ratio is used to determine if a path is fast or slow. The three MOSFET models to be 

considered are: 

 model = nx          The min/max ratio for this model is 12 and 18. Any nx type of 

                                         transistor with W/L ratio larger than 18 will likely to be part of        

                                         a fast path. This is a fast path=low impedance. 

 model = px  

 model = px2 

When a floating capacitor FC is considered, its two nodes are A and B. From node A, the 

paths are as follows: 

 2 rising paths to VDD 

 3 falling paths to GND 

For each rising path from A, the smallest W/L ratio on the path must be found. If the px2 

MOSFET has the smallest W/L ratio, then this W/L ratio is compared with the given min 

/max values. If its W/L is larger than 20, then this path is a fast path. If its W/L is smaller 

than 10, then it is a slow path. Then examine the falling paths from node A and use the 

min/max W/L ratios of model nx to decide if a falling path is slow or fast. 

To find the fast and slow paths, a similar search is accomplished from node B. 

                                 After this is accomplished, the impact on node B from node A and 

node A from node B is computed. Therefore, for each selected floating capacitor, a set of 

fast-path and slowpath pairs is identified. All pairs are reported in either the hsim.cckxtk 

or out_file.cckxtk files. 
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To calculate the rising and falling glitch, the following paths are used: 

 Fast paths ending at A 

 Slow paths ending at B 

Reports of the rising and falling glitch on B are saved in the following files: 

 Rising Glitch   > 0.02 hsim.cckvr or out_file.cckvr 

 Falling Glitch  >  0.3 hsim.cckvf or out_file.cckvf 

hsim.cckxtk Output Sample  

          The hsim.cckxtk output sample contains pairs of slow and fast paths as shown in 

the following: 

; Report format: 

; Serial_num Capacitor_name Cap_1st_node_name  

Cap_2nd_node_name Cap_value \ 

; minWL_mos_name_on_low_imp_path  

minWL_mos_name_on_high_imp_path 

; Low_imp_path: 

; Vsrc_node_name 

; Elem_name Elem_type L/W or Resistance 

; High_imp_path: 

; Vsrc_node_name 

; Elem_name Elem_type L/W or Resistance 

Total number of low and high impedance path pairs for 

floating capacitors=2912 

User defined values: 

Floating capacitance threshold=1e-012(F) 

Use MOSFET WL ratio to find low/high impedance paths. 

nxmin=12, max=18 

pxmin=16, max=24 

px2min=10, max=20 

1 c6x gx1 wl8 4.51e-012 mx7|mn1 mx55|mi30 

low_imp_path: 

gnd 

mx7|mn1nmos0.4/5 

* mx7|xi38|mn1@3 nmos0.4/5 

* mx7|xi38|mn1@2 nmos0.4/5 

* mx7|xi38|mn1@5 nmos0.4/5 
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8.1 FUTURE WORK/REQUIREMENTS 

                         There are several ways how future work can be based on the presented 

results. Our replica structure implementation suggests that it is possible to built an 

efficient fast and low power memory without making any modifications to the existing 

system except the additional dummy column to replicate the normal column. Although 

our system contains all necessary mechanisms to support the dual port at a time, there are 

a few more issues concerning the overall policy that deserve further investigation. Some 

of these issues are discussed below. 

                            Clearly, a deeper exploration of the effects of the parameter on the basic 

memory cell is needed as the technology is shrinking. In particular, a better 

understanding of the memory cell parameters which are used to characterize the 

performance, speed and density. Alternative solution attempts for the low power outlined 

in the thesis section 4.3 should also be investigated further. Thus, better methods for 

characterizing the basic memory cell are a rewarding topic for further research. Ideas 

from theory revision might turn out to be useful in this context. 

                             The Eldo optimizer is very powerful tool for designing purposes. But 

require some modification in tool because it can only calculate parameter which produces 

local optimized objective set by the user. Due to this we require to change the variable 

parameters to achieve the efficient output. Require to develop full flow of the procedure 

or methodology so every person uses it efficiently.   

                               The cross-talk analysis setup is very helpful for generating the nodes 

which suffer from cross-talk & which can harm our design. It is alright with the static 

check but in case of dynamic analysis we require a healthy discussion about type of 

stimuli use & where to apply these stimuli.    

8.2 APPLICATIONS 

Dualport SRAM is a special purpose memory often used for video purposes. Faster than 

normal computer RAM, the amount of Dualport SRAM determines how many colors a 

given video system can display. This Dualport SRAM will be used in single chip driver 

for LCD display. 
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                         The optimizer can reduce the designing time so; it can be very helpful to 

the designers. There are some designs which require huge affords or designing may be 

very tidiest then it reduce lots of designer affords. 

                        The multi-threading is totally devoted to reduce the simulation time of any 

big Eldo netlist. This facility can reduce the simulation time by 60 -80% of the original 

simulation time. It basic applications can be come when we have to simulate a very big 

design. 

                     The cross-talk analysis can be very powerful setup for generating those 

nodes (victim, aggressors) which violating user specified threshold. It also reduces the 

burden of estimating the cross-talk prone nodes manually.    
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CONCLUSION 

                                 In this thesis we looked at design trade offs for dual port 180nano 

(DP180nano) SRAMs. The effort required for DP180nano memory start from basic dual 

port SRAM cell design to system level. Different methodologies are used to make the 

system area and power efficient. Mainly the port sharing technique reduces the large 

amount of area of the system and the rest of area is minimized by using the ultra high 

density memory cell and the replica structure without dummy rows. 

 

The key to low power operation in the SRAM data path is to reduce the signal swings in 

the high capacitance nodes like the bitlines and the data lines. Clocked voltage sense 

amplifiers are essential for obtaining low sensing power, and accurate generation of their 

sense clock is required for high speed operation. An energy efficient way to obtain low 

voltage swings in the bitlines is to limit the word line pulse width, by controlling the 

pulse width of the block select signal. The pulse widths are regulated by the aid of a 

replica delay element which consists of a replica memory cell and a replica bitline and 

hence tracks the delay of the memory cell over a wide range of process and operating 

conditions. The pulse width is controlled by discharging a replica line which has the same 

capacitance as the worst case data line. This replica line is also used to trigger the 

amplifiers at the receiving end of these lines.  

 

The optimizer can reduce the designing time so; it can be very helpful to the designers. 

There are some designs which require huge affords or designing may be very tidiest then 

it reduce lots of designer affords. The multi-threading is totally devoted to reduce the 

simulation time of any big Eldo netlist. This facility can reduce the simulation time by 60 

-80% of the original simulation time. It basic applications can be come when we have to 

simulate a very big design. The cross-talk analysis can be very powerful setup for 

generating those nodes (victim, aggressors) which violating user specified threshold. It 

also reduces the burden of estimating the cross-talk prone nodes manually.    
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