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ABSTRACT 

 

The non-linear partial differential equation of groundwater infiltration has been solved with 

appropriate boundary conditions and height of water mound is obtained in form of error 

function. 

 

The atmospheric pressure in air of the dry region have been obtained by using height of water 

mound and then the velocity of infiltered water have been obtained by using of Darcy’s law. 

The graphical presentation is given by using MAT LAB coding. 
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1  INTRODUCTION 

 

 

When fluid infiltered in porous medium (unsaturated soil), its velocity decreases as soil 

becomes saturated such phenomenon is called infiltration. It has been discussed by different 

authors from different viewpoints; for example, Darcy(1856), A.E.Scheidegier(1960)
]
, 

M.Muskat(1946)
 
and Jacob Bear(1946). It has also been discussed in homogeneous porous 

media as well as heterogeneous porous media by Verma(1967), Mehta & Verma(1977), 

Mehta & Patel(2007) 
 
and Mehta & Desai(2010). 

 

The infiltration phenomenon is useful to control salinity of water; contamination of water and 

agriculture purpose and it is also useful in chemical engineering, nuclear waste disposable 

problems. 

 

Such problems are also useful to measure moisture content of water in vertical one 

dimensional ground water recharge and dispersion of any fluid in porous media. It has been 

discussed by M.N.Mehta(2006), Mehta & Patel(2007), Mehta & Yadav(2007), Mehta & 

Joshi(2009), Mehta & Mehar(2010) from different viewpoints. 

 

  



A. K. Parikh et al. 

Int. J. of Appl. Math and Mech. 7 (13): 77-90, 2011. 

78 

 

2  STATEMENT OF THE PROBLEM 

 

Infiltration is the process by which water on the ground surface enters the unsaturated soil. 

The purpose of this paper is to present physically meaningful technique to determine effective 

height of the water table as a measure of initial storage capacity of a basin. Thus first an 

equation is derived for mean water table height on the basis of hydraulic theory of ground 

water by means of Boussinesq’s equation; second is to solve that equation by using 

perturbation method. Then with the help of height of free surface, the atmospheric pressure in 

dry region and velocity of infiltered ground water is to calculate by using Darcy’s law. 

 

 

3  MATHEMATICAL FORMULATION 

 

It is assumed that: 

 

(i) The stratum has height     and lies on top of a horizontal impervious bed, which is 

labeled as z = 0; 

 

(ii) Ignore the transversal variable y; and 

 

(iii) The water mass which infiltrates the soil occupies a region described as Ω = {(x, z)   

R: z ≤ h(x, t)}.  

 

Clearly, 0 ≤ h(x, t) ≤   ,     maximum height of free surface and the free boundary function 

h is also an unknown. For the sake of simplicity and for the practical computation after 

introducing a suitable assumption, the hypothesis of almost horizontal flow, i.e., we assume 

that the flow has an almost horizontal speed. 

 

 

 
Figure 3.1: A schema of ground infiltration 

 

u   (u, 0), so that h has small gradients. It follows that in the vertical component 

of the momentum equations 

 

z
z

du p
u u g

dt z
 

 
     

   



The Atmospheric Pressure In Dry Region And Velocity Of Infiltered Water 

Int. J. of Appl. Math and Mech. 7 (13): 77-90, 2011. 

79 

 

Neglecting the inertial term (the left-hand side), Integration in z gives for this first 

approximation p gz  constant. 

 

Now calculate the constant on the free surface z = h(x, t). 

 

If we impose continuity of the pressure across the interface, we have p = 0 (assuming constant 

atmospheric pressure in the air that fills the pores of the dry region z > h(x, t)). 

 

  p = ρg (h − z).           (1) 

 

In other words, the pressure is determined by means of the hydrostatic approximation. 

Now using mass conservation law, taking a section S = (x, x + a) × (0, C), 

 

0

x a h

x s

dzdx u ndl
t








 

             (2) 

 

where   is the porosity of the medium, i.e., the fraction of volume available for the flow 

circulation, and u is the velocity, which obeys Darcy’s law in the form that includes gravity 

effects 

 

( )
k

u p gz


             (3) 

 

On the right-hand lateral surface we have u· n ≈ (u, 0)· (1, 0) = u, i.e., − (k/μ)px, while on the 

left-hand side we have −u. 

 

Using the formula for p and differentiating in x, we get 

 

0

h
h gk

hdz
t x x






  


  
         (4) 

 

We thus obtain Boussinesq’s equation. 

 

 
2

2

2
h

h

t x


 


 
          (5) 

 

where constant  = / 2gk  .  
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4  SOLUTION OF THE PROBLEM 

 

Choose dimension less variable X = 
1

x
and T =  t, then equation (5) can be written as 

 

 
2

2

2
h

h

T X

 


            (6) 

 
With the boundary conditions  

 

h(0, T) = mh   when x = 0 , any T > 0      (7) 

 

h(X, 0) = h0  when T = 0 , any X       (8) 

 

It is a fundamental equation in groundwater infiltration. Once h(x, t) is calculated, we may 

calculate the pressure via (1) and then the speed by means of Darcy’s law. 

 

Using the transformation
2

0

2
( )

h T
F where

h X
   ,      (9) 

 

Combining equation (6) and (9), 

 

2                                    (10) 

 

Subtitling value of (10) implies that   0 as T    for all finite value of X. It is also implies 

that     as X    for all finite value of T. Hence by using (10) the boundary conditions, 

 

            at X = 0,                  
  

  
         (11) 

 

And 

 

h                 for finite value of X gives F(0) = 1     (12) 

 

To write conditions (7) and (8) in more convenient for, we introduce new function f( ) 

defines by 

 

F( ) = 1 + (M-1) f( ); (M 1)        (13) 

 

So that we can obtained 

 

f(0) = 0 and f ( ) = 1          (14) 

 

Now equation (10) reduce to 

 

2                                                     (15) 
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Equation (15) is a nonlinear differential equation which can be solved for a given set of initial 

and boundary conditions; if height h0 is slightly different from hm we may choose 

 

                         
 

                          we get 

 

2                        
 
                         (16) 

 

Now to find the solution of equation (16), using perturbation technique, let the solution be 

expressed in the form, 

 

                                    (17) 

 

Where f 0, f 1 , f 2 .......... are continuous and differentiable functions of   to be determined and 

0 <  < 1 is the perturbation parameter. Subtitling (17) in equation (16) and then equating 

coefficient of    to zero, for r=0, 1,2 .............  we obtain, 

 

                            (18) 

 

           
 
     

 
              

 
                 (19) 

 

and so on. 

 

Now the equation (18) may be written as 

 
     

    
  

      

   
               (20) 

 

Its solution can be given as, 

 

         
              

 

 
             (21) 

 

Where c and c1 are constant of integration and this value can be obtained with help of 

conditions (14). Using the properties of error function, we obtained, 

 

c = 
 

   
 and hence from (21) is         

              
 

 
        (22) 

 

Hence the required solution of (18) is given by 

 

         = erfc  
 

   
           (23) 

 

Since,         = erfc  
 

   
  =   

 

  
     

 
 

   

 
   

 

Differentiating with respect to   gives, 
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      = 

 

   
  

  
    

  
     and    

       = 
 

   
      )  

  
    

  
       (24) 

 

Now substituting (24), in the equation (19) reduce to 

 

 

      
         )    

  =    
 

 
     

  
      

 

   
  

  
    

  
          

 

   
      (25) 

 

Thus is linear differential equation in   
  , with constant coefficient and its solution may be 

obtained in usual manner.  Thus we obtained 

 

       
 

  
          

 

   
  

 

      
  

    
  

         
 

   
    

  
          

          
 

   
       

            (26) 

 

Where    and    are constants of integration. 

 

Substituting values of f0 and f1 from (23) and (26) in (17) and retaining only terms in   only, 

we get 

 

         
 

   
     

 

 
      

 

   
  

 

 
 

   
  

  
    

  
         

 

   
  

 

 
  

  
    

2  c1erfc12 +c2          (27) 

 

The values of    and     are obtained from the condition in (14) with help of properties of 

error function. Thus the solution (26) can be expressed as 

 

       = erfc  
 

   
         

 

   
           

 

   
         

  
   

  
            

0.3183  12           (28) 

 

Since, F( ) = 1+ (M-1) f ( ) 

 

F(  )=1+          
 

   
            

 

   
           

 

   
         

  
   

  
     

0.8183−0.3183  12          (29) 

 

Replacing
2

2
(9),

T
by and by

X


 
 

                       
 

    
            

 

    
           

 

    
  

0.282  12   28 +0.8183 0.3183   24 
     

(30)
 

 

Changing into original variables, 
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0.282  12   28  +0.8183−0.3183   24       (31) 

 

This provides the approximate solution for       which gives the height of free surface 

of water mound. 

 

The atmospheric pressure in the air that fills the pour of dry region          is 

 

  

   0h    

  erfc 
x22βt+  1erfx22βt 0.5serfcx22βt+0.282e 12e x28βt+0.8183 0.3183e x24βt  z
       (32) 

p gz     0h              
 

     
            

 

     
           

 

     
  

                      0.282e 12e x28βt+0.8183 0.3183e x24βt   (33) 

 

which represent the pressure determined by mean of hydrostatic approximation. 

 

Also u is the velocity of infiletered water which obeys Darcy’s law in the form that includes 

Gravity effect is 
 

 

( )
k

u p gz


  
 

 

Using value of pressure from (11) we get velocity of infiltered water, 

 

   
 

 
     0h              

 

     
            

 

     
           

 

     
  

                      0.282e 12e x28βt+0.8183 0.3183e x24βt    (34) 

 

     
      

 

    β 
   

  
 

    
    

   

 
      

     

  β  
  

         

  β 
                                           

 

 

5  NUMERICAL & GRAPHICAL PRESENTATIONS 

 

Numerical and graphical presentations of equations (31), (32) and (35) have been obtained by 

using MATLAB coding. Figure (5.1) shows the graph of height h vs. X for time T = 0.1, 0.2, 

0.3, 0.4, 0.5, figure (5.2) shows pressure P vs. X for time T= 0.1, 0.2, 0.3, 0.4, 0.5 and figure 

(5.3) shows the graph of velocity u vs. X for time T= 0.1, 0.2, 0.3, 0.4, 0.5. 
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Figure 5.1 

 

 

 

Table 1: ho = 0.5,   = 0.99, g = 9.8,       are Fixed. 

  ,h X T  

X T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 

0.0 0.9942 0.9942 0.9942 0.9942 0.9942 

0.1 0.9814 0.9762 0.9722 0.9688 0.9658 

0.2 0.9686 0.9582 0.9503 0.9435 0.9376 

0.3 0.9558 0.9403 0.9284 0.9184 0.9097 

0.4 0.9429 0.9224 0.9068 0.8936 0.8821 

0.5 0.9300 0.9047 0.8853 0.8692 0.8551 

0.6 0.9171 0.8871 0.8642 0.8452 0.8287 

0.7 0.9043 0.8697 0.8434 0.8218 0.8031 

0.8 0.8915 0.8524 0.8231 0.7989 0.7783 

0.9 0.8787 0.8355 0.8031 0.7768 0.7545 

1 0.8659 0.8188 0.7838 0.7555 0.7318 

 

  



The Atmospheric Pressure In Dry Region And Velocity Of Infiltered Water 

Int. J. of Appl. Math and Mech. 7 (13): 77-90, 2011. 

85 

 

 
Figure 5.2 

 

 

 

Table 2: ho = 0.5,   = 0.99, g = 9.8,       are Fixed. 

 P
 

X T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 

0.0 0.8743 0.8743 0.8743 0.8743 0.8743 

0.1 0.8618 0.8567 0.8527 0.8494 0.8465 

0.2 0.8493 0.8391 0.8313 0.8247 0.8189 

0.3 0.8366 0.8215 0.8089 0.8001 0.7915 

0.4 0.8240 0.8040 0.7896 0.7757 0.7645 

0.5 0.8114 0.7866 0.7676 0.7757 0.7380 

0.6 0.7988 0.7693 0.7469 0.7283 0.7120 

0.7 0.7862 0.7523 0.7266 0.7053 0.6870 

0.8 0.7737 0.7354 0.7066 0.6830 0.6628 

0.9 0.7612 0.7188 0.6871 0.6613 0.6395 

1 0.7486 0.7024 0.6681 0.6404 0.6179 

 

  



A. K. Parikh et al. 

Int. J. of Appl. Math and Mech. 7 (13): 77-90, 2011. 

86 

 

 
Figure 5.3 

 

 

 

Table 3: ho = 0.5,   = 0.99, g = 9.8,       are Fixed. 

 U
 

X T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 

0.0 0.0285 0.0136 0.0087 0.0064 0.0049 

0.1 0.0282 0.0135 0.0087 0.0063 0.0049 

0.2 0.0271 0.0133 0.0086 0.0063 0.0049 

0.3 0.0255 0.0129 0.0084 0.0062 0.0048 

0.4 0.0234 0.0123 0.0083 0.0060 0.0047 

0.5 0.0209 0.0116 0.0082 0.0059 0.0046 

0.6 0.0182 0.0109 0.0079 0.0057 0.0045 

0.7 0.0155 0.0100 0.0075 0.0054 0.0044 

0.8 0.0128 0.0091 0.0071 0.0052 0.0042 

0.9 0.0104 0.0082 0.0067 0.0049 0.0040 

1 0.0082 0.0073 0.0062 0.0046 0.0038 

 

 

6  COMPARISON WITH THE POWER SERIES SOLUTION 

 

Reference: Paper titled “Power Series Solution of Boussinesq’s equation arising in ground 

water infiltration phenomena” by K. R. Patel and M. N. Mehta communicated for the 

publication at GAMS. 
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(a) Height at different distance when T = 0.1, 0.2, 0.3, 0.4, 0.5 AND   = 0.1, ρ=0.1, z=0.1 

and g=9.8 Fixed. 

 

 
Figure 6.1 

 

(b) Pressure at different distance when T = 0.1, 0.2, 0.3, 0.4, 0.5 AND   = 0.1, ρ=0.1, z=0.1 

and g=9.8 Fixed. 

 

 

 
Figure 6.2 
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(c) Velocity at different distance when T = 0.1, 0.2, 0.3, 0.4, 0.5 AND   = 0.1, ρ=0.1, z=0.1 

and g=9.8 Fixed. 

 

 
Figure 6.3 

 

Comparing figure 5.1 with figure 6.1, figure 5.2 with 6.2 and figure 5.3 with 6.3, it can be 

observe that the solution obtained by perturbation technique is matching with the power series 

solution and consistent with physical nature. 

 

 

7  CONCLUDING REMARK 

 

Equation (31) shows the height of water mound in infiltration phenomena at any x for t > 0. 

 

Equation (32) is the atmospheric pressure in the air of the dry region and the speed of 

unfiltered water can be measured by equation (35). 

 

We can conclude from equation (31) that the height of the water mound is expressed in terms 

of error function and complimentary error function. Also when x increases, the height h(x,t) 

decreases for any time t > 0 which is consistent with physical phenomena. 

 

We can conclude from equation (32) is that the atmospheric pressure in dry region is 

expressed in terms of error function and complimentary error function which is negative 

exponential function. Hence when x increases, atmospheric pressure (P) decreases in dry 

region for any value of z. 

 

Also we can conclude from equation (35) that the velocity of infiltered water is expressed in 

terms of negative exponential term for any time t > 0 , for       . Hence velocity of 

infiltered water (u) is also decreasing when distance travelled x increases. 
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The graph of equation (30) shows h verses x for any time t is given by using MAT LAB  that 

when x increases , the height h(x,t) decreases for any time t > 0 which is consistent with 

physical phenomena as shown by figure 5.1. 

 

The graph of equation (32), P verses x is given by using MAT LAB shows that when x 

increases, the atmospheric pressure P decreases for any time t > 0 which is shown by figure 

5.2. 

 

The graph of equation (35), u verses x is given by using MAT LAB shows that when x 

increases, the velocity of infiltered water is also decreases which are the validity of Darcy’s 

law in Porous media which is shown by figure 5.3. 
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