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Abstract

Instantaneous Optimal Control (IOC) is used to obtain desired force from MR

damper fitted to a seismically excited building. Excitation is considered when mini-

mizing performance index, unlike in classical optimal controllers. Modified Bouc-Wen

damper model and on-off voltage law is considered. Various forms of state weighting

matrix are considered for controller design. IOC is compared with Linear Quadratic

Regulator(LQR), Linear Quadratic Gaussian(LQG) and Passive-on control. It yields

reduction in: maximum peak and maximum RMS interstorey drift; and generally in

accelerations vis-a-vis LQR and LQG. IOC Riccati Matrix Type controller appears

most effective, yielding: lowest maximum peak drift and maximum peak accelera-

tion and generally best storeywise drift control vis-a-vis passive-on, LQR and LQG;

substantially lower peak accelerations vis-a-vis LQR and LQG.
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1 Introduction

Semi-active devices are useful for vibration control since their properties can be

adjusted in real time and they have relatively low power requirements. Magnetorhe-

ological (MR) dampers are semi-active devices, using MR fluids having controllable

yield characteristics, which produce sizeable damping force for small input voltage.

Their hysteritic behavior can be represented using the modified Bouc-Wen model

having voltage dependent parameters (Dyke et al.1). Dominguez et al. developed a

current-frequency-amplitude dependent Bouc-Wen model for MR dampers2. Other

contributions include the phase-transition model of Wang and Kamath3, and modi-

fied LuGre friction model of Jiménez and Álvarez-Icaza4 and Sakai et al.5.

Various methods for controller design have been used with MR dampers. Due

to the difficulty in inverting damper dynamics, predicting applied voltage that pro-

duces a desired damper force becomes a challenging task. Hence, various voltage laws

have been proposed. Dyke et al. used acceleration feedback based Linear Quadratic

Gaussian (LQG) control, with the modified Bouc-Wen model and an on-off Clipped

Voltage Law based on desired and measured damper forces1. Chang and Zhou used

Linear Quadratic Regulator (LQR) control with a recurrent neural network model

for damper inverse dynamics6. Yuen et al. used reliability based robust linear control

with a clipped voltage law7. Prabakar et al. used H∞ control and genetic searching

to enhance the performance of the semi-active system8.

Yang et al. proposed instantaneous optimal control (IOC) algorithms by in-

cluding seismic excitation when minimizing the quadratic performance index (PI)

at each instant9. Results showed that IOC is somewhat more efficient than clas-
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sical LQR control, and easy to implement. Subsequently, using Lyapunov’s direct

method, Yang et al. determined various structures of state weighting Q that yield

stable and effective controllers10. Agrawal and Yang presented an optimal controller

(non-IOC) using a PI that is quadratic in control input and polynomial in states, the

minimization of which leads to a polynomial control law and Riccati and Lyapunov

equations for the gains11. The controller used less control energy than LQR control.

Ribakov and Dancygier12 compared IOC with velocity and acceleration feedback10

and polynomial control11 in an implementation with a controlled stiffness damper.

Renzi and Serino considered a structural bracing system with MR dampers operating

in passive and semi-active on-off mode13. An on-off control algorithm was derived by

instantaneously minimizing a time dependent quadratic PI comprising states but not

control input. Chang and Yang derived an instantaneous optimal control law based

on Newmark integration of the second-order equations of motion, with weighting

matrices selected to yield unconditionally stable control, and applied the same to an

active tendon system14.

Among the few available applications of IOC for seismic response control, noted

above, none exist for a system with MR dampers with the PI containing the damper

force. Further, comparison of IOC with other well established controllers for MR

damper applications, such as LQG, are not available. The goals of this paper are to:

(i) implement IOC (with full state feedback and velocity and acceleration feedback)

for a seismically excited system with MR dampers, for various weighting matrices

yielding stable control

(ii) assess the performance amongst the various ensuing IOC controllers, and also
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compare these vis-a-vis passive-on, LQR and LQG control (that neglect the excita-

tion during PI minimization).

Thus, the IOC controller due to Yang et al.9,10 is considered for a MR damper fit-

ted to a building. The modified Bouc-Wen damper model and a Clipped Voltage

Law1 is used to obtain the damper voltage required to produce a desired control

force. Various available structures of state weighting (Q) that yield stable con-

trollers are considered. An IOC-Qo controller and a modified IOC-VAFM controller

are proposed. Peak and RMS responses are obtained using the IOC controllers and

compared with LQR, LQG, and passive-on controllers.

The paper is organized as follows. Section 1 contains a brief introduction, lit-

erature review, and aims and scope of the paper. Section 2 describes the structural

and MR damper models, and voltage law considered. Section 3 describes the theory

and implementation of IOC with state/velocity-acceleration feedback, various state

weighting structures, implementation issues, and the proposed IOC-Qo and modi-

fied IOC-VAFM controllers. Results and discussions are presented in section 4, and

conclusions and future scope in section 5.

2 System model

A simplified model of a three storey test structure with single MR damper at-

tached between ground and first storey is used here1 (Fig. 1). The test structure

model assumes: (1) The structure has a symmetric plan, i.e., torsional modes of re-

sponse are excluded, and a plane frame model suffices; (2) The beam-slab system is

rigid, and is rigidly connected to flexible and relatively light columns. This results in
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a single translational degree of freedom per storey. If these assumptions are violated,

a three dimensional frame model needs to be considered, possibly with distributed

mass and partial restraints at joints. In that case the damper configuration would

need to be altered to at least two dampers per storey level, in order to effectively

control torsional responses. This configuration is not considered herein and is the

subject of ongoing work by the authors. However, while such modifications in the

model would increase the size of the problem, the control methodology would remain

the same. The MR dampers used in the test structure are of capacity 3 kN, with

parameters corresponding to this capacity being considered in the model1. These

parameters would need to be obtained afresh (via testing) for field applications in-

volving a large scale damper, eg., of capacity 200 kN. Note that by virtue of their

semi-active behavior, MR dampers do not add energy into the system, and hence

the controlled response is always stable irrespective of the damper capacity.

The equation of motion reads

Ms ẍ+Cs ẋ+Ks x = Gf −Ms L ẍg (1)

where Ms,Cs, and Ks are mass, damping, and stiffness matrices, respectively, G is

the location matrix of MR damper, f is the applied control force defined by Eq. (4),

L is the location matrix of earthquake excitation, ẍg is the ground acceleration

(earthquake excitation), and x = [x1 x2 x3]
T is the displacement vector of the three

storeys measured relative to ground. For the three storey structure with damper

attached between ground and first storey, G = [−1 0 0]T, f = [f ], L = [1 1 1]T.

Note that f , determined from Eq. (4), depends on the applied voltage which is

obtained using the voltage law presented at the end of section 2. Defining the state
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q = [xT ẋT]T the state equations representing Eq. (1) are,

q̇ = Aq+Bf + E ẍg (2)

where,

A =

 0 I

−M−1
s Ks −M−1

s Cs

 ; B =

 0

M−1
s G

 ; E = −

0
L

 (3)

The modified Bouc-Wen model, considered here, gives damper force f as1

f = c1ẏ + k1(x− x0) (4)

where,

ẏ =
1

(c0 + c1)
{αz + c0ẋ+ k0(x− y)} (5)

u̇ = −η(u− v) (6)

ż = −γ|ẋ− ẏ|z|z|n−1 − β(ẋ− ẏ)|z|n + A(ẋ− ẏ) (7)

α = α(u) = αa + αbu; c1 = c1(u) = c1a + c1bu; c0 = c0(u) = c0a + c0bu (8)

Here x, ẋ and f are damper displacement, velocity and force, respectively. Thus,

for the three storey structure with single MR damper attached between ground and

first storey, x = q1 and ẋ = q4. Further, y is an internal pseudo-displacement; z

is the evolutionary variable describing hysterisis; u models the combined dynamics

of current driver and delay in fluid reaching rheological equilibrium, and v is the

control input voltage to current driver. Parameters k1 and x0 are stiffness and initial

displacement of accumulator, respectively; c1 and c0 model viscous damping at low

and high velocities, respectively; k0 models stiffness at high velocities; and γ, β, A,
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n are parameters affecting shape of the hysterisis loop. Parameter values considered

are shown in Table 1, with x0 = 0, i.e., initial offset due to the accumulator is

neglected1.

The input voltage, v, to the damper is obtained using the Clipped Voltage Law

(CVL) as follows1. If fdf < 0 then v = vmin = 0 V; else v = vmax = 2.25 V when

|fd| > |f |, or v = vmin = 0 V when |fd| < |f |, or v is held at its present value when

fd = f . Here fd is desired damper force obtained from the controller (i.e., LQR,

IOC described in section 3, or LQG), and f is applied damper force (obtained from

Eq. (4)).

3 Instantaneous Optimal Control (IOC)

Classical LQR optimal control, whether using full state feedback or optimal

observer based feedback (LQG), does not consider time dependent external excitation

during PI minimization in order to derive optimal feedback control laws. Thus, it

results in sub-optimal control. The quadratic PI minimized in LQR control is defined

as

J =

∫ ∞

0

[qT(t)Qq(t) + fTd (t)Rfd(t)] dt (9)

Here Q is positive semi-definite state weighting matrix and R is positive definite

control weighting matrix. For a single damper R = [R] (a scalar). The minimization

yields the sub-optimal control law (control input vector)

fd(t) = −R−1BTPq(t) (10)

where, the Riccati matrix P is a solution of the algebraic Riccati equation

PA+ATP−PBR−1BTP+Q = 0 (11)
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IOC methods consider the excitation during PI minimization in controller design.

Two such methods, suitable for structural control where excitation is not known

apriori (but is required to be measured), are due to Yang et al.9,10 (see also Soong15).

These are considered here as follows.

3.1 IOC with state feedback (IOC-SF).

Consider the time dependent PI defined as

J⋆(t) = qT(t)Qq(t) + fTd (t)Rfd(t) (12)

to be minimized at each instant, subject to the constraint Eq. (2) with applied

damper force f replaced by desired optimal control input (force) fd. The system

defined by Eq. (2) is decoupled using the linear transformation

q(t) = Tk(t) (13)

where, T is the modal matrix comprising eigenvectors of A which is assumed to

possess distinct eigenvalues. Thus, the decoupled system is obtained as,

k̇(t) = Λk(t) +w(t) (14)

where Λ = T−1AT is the diagonal eigenvalue-matrix of A, and

w(t) = T−1[Bfd(t) + Eẍg(t)] (15)

Using the state transition solution at t−∆t and the trapezoidal rule approximation,

the state transition solution of Eq. (14) for zero initial conditions (q(0) = k(0) = 0)

is written as

k(t) =

∫ t−∆t

0

exp[Λ(t− τ)]w(τ) dτ +

∫ t

t−∆t

exp[Λ(t− τ)]w(τ) dτ

≈ exp(Λ∆t)k(t−∆t) +
∆t

2
[exp(Λ∆t)w(t−∆t) +w(t)] (16)
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Equations (13), (15) and (16) yield

q(t) = Td(t−∆t) +
∆t

2
[Bfd(t) + Eẍg(t)] (17)

where

d(t−∆t) = exp(Λ∆t)T−1

{
q(t−∆t) +

∆t

2
[Bfd(t−∆t) + Eẍg(t−∆t)]

}
(18)

The constraint Eq. (2) is now equivalent Eq. (17). Thus, using the PI Eq. (12) and

constraint Eq. (17), the Hamiltonian

H = qT(t)Qq(t) + fTd (t)Rfd(t) + λT(t)

{
q(t)−Td(t−∆t)− ∆t

2
[Bfd(t)

+Eẍg(t)]
} (19)

is minimized with respect to q, fd and λ, where λ(t) is the vector of Lagrange

multipliers. Thus, one obtains the closed loop control as,

fd(t) = −∆t

2
R−1BTQq(t) (20)

Equations (20) and (17) yield the state as,

q(t) =

[
I+

∆t2

4
BR−1BTQ

]−1 [
Td(t−∆t) +

∆t

2
Eẍg(t)

]
(21)

For control simulation, the state can be obtained by numerically integrating Eq. (2)

or using the state transition solution, i.e., Eq. (21). Comparing the IOC control law

(Eq. (20)) with that of LQR (Eq. (10)), one obtains that
∆t

2
Q is equivalent to the

Riccati matrix P. Thus, the effectiveness of IOC-SF depends on the choice of time

interval ∆t and state weighting Q.
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3.2 IOC with velocity and acceleration feedback (IOC-VAF).

Consider the time dependent PI, quadratic in velocities, accelerations and control

input, defined as

Ĵ(t) = q̇T(t)Qq̇(t) + fTd (t)Rfd(t) (22)

Using backward difference representation q(t) = q(t − ∆t) + ∆tq̇(t − ∆t) for the

state vector, the constraint equation (i.e., plant Eq. (2)) is written as

q̇ = A [q(t−∆t) + ∆tq̇(t−∆t)] +Bfd + Eẍg(t) (23)

Hence, the PI is minimized at each instant subject to the constraint. Note that use of

backward differences eliminates δq(t) from δĴ(t), thus ensuring a control law based

on velocity and acceleration feedback (i.e., without displacement feedback). Thus,

the Hamiltonian expressed as

H = q̇T(t)Qq̇(t) + fTd (t)Rfd(t) + λT(t) {q̇−A [q(t−∆t) + ∆tq̇(t−∆t)]

−Bfd − Eẍg(t)}
(24)

is minimized with respect to q̇, fd and λ. This yields the closed loop control

fd(t) = −R−1BTQq̇(t) (25)

where q̇ represents relative velocities and relative accelerations (i.e., measured rela-

tive to ground). For control simulation, q̇ is obtained from Eq. (2).

3.3 Q structures and implementation issues.

Following Yang et al.10, state weighting (Q) structures are considered as follows.

Here ϕ ≡ ∆t/2.
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1. IOC-Riccati Type Equation (IOC-RTE): Here Q = ϕ1Q1 is chosen, where ϕ1

is a positive constant. Equations (2, 20) yield the closed loop system q̇(t) =

(A − ϕBR−1BTQ)q(t) + Eẍg(t). Considering the Lyapunov function defined

as V (q) = qTQq ≥ 0, and the closed loop system without excitation (since

stability of the closed loop system is independent of excitation), yields V̇ =

ϕ1q
T(ATQ1 + Q1A − 2ϕϕ1Q1BR−1BTQ1)q. Thus, the stability condition

V̇ (q) ≤ 0 requires that

ATQ1 +Q1A− 2ϕϕ1Q1BR−1BTQ1 = −I0 (26)

where I0 is a symmetric positive semidefinite matrix. Equation (26) is a Riccati

type equation to be solved for Q1. Thus, choosing ϕ, ϕ1, I0, and R, one

obtains Q and hence the control from Eq. (20). Here ϕ = 0.002, ϕ1 = 23.15,

I0 = 103 × I, and R = 10−10 is chosen for effective control.

2. IOC-Riccati Matrix Type (IOC-RMT): Here Q =
ϕ2

ϕ
P is chosen, with ϕ2 being

a positive constant and P being the solution of the algebraic Riccati equation

PA+ATP−PBR−1BTP = −I0. Thus, choosing ϕ, ϕ2, I0, and R, one obtains

Q and hence the control from Eq. (20). Here, ϕ = 0.002, ϕ2 = 0.0475, I0 = I,

and R = 10−11 is chosen for effective control.

3. IOC-VAF : HereQ = −A−TP⋆ is chosen. Considering Eqs. (25, 2) without the

excitation, the closed loop system is obtained as q = A−1
(
I−BR−1BTA−TP⋆

)
q̇,

where I is the identity matrix. Thus, for the Lyapunov function defined as

V (q) = qTP⋆q ≥ 0, one obtains in a similar manner that the stability condi-
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tion V̇ ≤ 0 is satisfied if

A−TP⋆ +P⋆A−1 − 2P⋆A−1BR−1(A−1B)TP⋆ = −I0 (27)

Equation (27) is a Riccati type equation with unknown P⋆. Thus, choosing I0

and R, one obtains Q and hence the control from Eq. (25). Here I0 is chosen

as the null matrix except I0(3,3) = 1, and R = 10−8, for effective control.

A proposed Q structure for IOC with state feedback (IOC-Qo): Since a single damper

is fitted between ground and first storey only, for IOC with state feedback it is readily

concluded from Eqs. (3, 20) (see also G) that only the fourth row of Q contributes

to the control input fd. Thus, Q is chosen as the null matrix except for its fourth

row which is [Q1 Q2 . . . Q6], and the control obtained from Eq. (20). One obtains

qTQq = q4
∑6

i=1 Qiqi, implying that velocity of damper storey (i.e., damper velocity

in the present case) is always weighted in the PI while other states are weighted

depending on the Qi chosen. Here Q1 = Q2 = Q4 = Q5 = 1, Q3 = Q6 = 2, and

R = 10−8 is chosen for effective control.

Studies were performed to obtain ∆t that yields effective control when using

IOC with state feedback. Figure (2) shows RMS values of third storey displacement

for various ∆t used. It is evident that 0.004 ≤ ∆t ≤ 0.02 yields effective control.

Note that a very small ∆t, eg., ∆t = 0.001, yields poor control as is verified from

Fig. 2 and also evident from Eq. (20). Hence ∆t = 0.004, being amongst the small-

est time steps affording effective control, is chosen in controller design. As noted

earlier, for control simulation the state can be obtained by either numerically in-

tegrating Eq. (2) or via the state transition solution, Eq. (21), both yielding near

identical results. For results reported herein, controlled system dynamics is obtained
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by numerical integration of Eq. (2), with control input (i.e., desired damper force

fd) obtained from Eqs. (20, 21), and CVL used to obtain applied damper voltage.

Note that in IOC-VAF the relative velocities and relative accelerations are fed back.

However, since absolute accelerations are readily measured, an ad-hoc modification

(i.e., IOC-VAFM) involving feedback of relative velocities and absolute accelerations

is considered whereby relative velocities are obtained using Eq. (2) and absolute

accelerations are obtained as (Cq + Df), where C = [−M−1
s Ks

... −M−1
s Cs] and

D = [M−1
s G].

The block diagram of physical implementation of IOC control is shown in Fig. 3.

Thus, the structure and MR damper equations (comprising the plant) are integrated

using the available applied voltage and states at the start of each time step. The

states and accelerations are thus obtained at the end of each time step. These are

fed to the controller which computes the desired damper force, fd, based on the feed-

back control Eqs. (20, 25). The actual applied damper force f is also computed, via

Eq. (4), at the end of each time step. Both f and fd are fed to the control voltage

law to obtain the voltage to be applied to the damper at the start of the next time

step.

4 Results and Discussions

The following cases are considered:

(1) Passive Control : For passive-off (POF) case no voltage is applied to the damper

(v = 0V). For passive-on (PON) case the damper-force saturation voltage v = 2.25V

is applied.
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(2) Semi-active Control (SA): Desired damper force fd is determined using IOC (or

LQR/LQG for comparisons). For IOC, the controllers and state weighting struc-

tures described in section 3 are considered. For LQR, Q = I (identity matrix)

and R = 10−11 is chosen for effective control. For LQG, following Dyke et al.1,

Q = ĈTQ̂Ĉ, where Ĉ = [CT ... [1 0 0 0 0 0]T]T and Q̂ is the null matrix except

Q̂33 = 1, i.e., only top storey acceleration is weighted, and R = 10−17.

The data for the test structure is Ms = 98.3 × I kg, [Ks11 = 12.0, Ks22 = 13.7,

Ks33 = −Ks12 = 6.84, Ks13 = 0]×105 N/m, [Cs11 = 175, Cs22 = 100, Cs33 = −Cs12 =

50, Cs13 = 0] N.s/m. The building is subjected to N-S component of the 1940 El

Centro ground acceleration16 with time scale reduced fivefold due to the test struc-

ture considered being a scaled model (Fig. 4).

The system of Equations (5-7), (2) are integrated using MATLAB ODE45

(4th/5th order Runge - Kutta method) for initial conditions q(0) = 0 (structure

at rest), u(0) = 0 (no applied voltage), z(0) = 0 (no hysterisis component), and

y(0) = 0, yielding f(0) = 0 (zero initial force in damper). Response quantities are

obtained at time interval ∆t = 0.004 s.

4.1 Peak and RMS Response.

Peak and RMS response (i.e., storeywise interstorey drift, displacement, acceler-

ation, and damper force) and PI are shown in Tables 2 and 3. For easy comparison,

the PI for PON control is evaluated using the same Q and R as the corresponding

semi-active PI. Henceforth, maximum peak and maximum RMS responses refer to

the storeywise maximum of the particular response quantity.
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4.1.1 Comparison of passive control and uncontrolled.

As expected, both passive controllers yield substantial response reduction vis-

a-vis the uncontrolled (UC) case (i.e., without damper). For example, when using

POF control, maximum peak- drift, displacement and accelerations reduce by 61%,

53%, 48%, respectively, while corresponding maximum RMS values reduce by 65%,

64%, 62%. Corresponding reductions using PON are even greater.

4.1.2 Comparison of IOC and passive control.

IOC achieves substantial interstorey drift reduction vis-a-vis passive control.

When compared to PON control, the maximum peak and maximum RMS drift is

attenuated by up to 29% (IOC-RMT) and 15% (IOC-VAF), respectively. These

attenuations are even greater vis-a-vis POF. In fact comparison with POF control

shows storeywise reductions of at least: 7% (IOC-RTE, storey-3) and 43% (IOC-

Qo, storey-3) for peak- drift and displacement, respectively; and 36% (IOC-VAF,

storey-3), 58% (IOC-Qo, storey-3), and 3% (IOC-VAF, storey-1) for RMS- drift,

displacement, and acceleration, respectively. However, comparison with PON control

shows storeywise reductions, except for damper storey, of at least: 12% (IOC-RTE,

storey-3) and 7% (IOC-Qo, storey-2) for peak- drift and displacement, respectively;

and 11% (IOC-VAFM, storey-3) for RMS drift. Thus, while IOC performs well vis-

a-vis PON control for drift, this is not always so for displacements and accelerations.

Comparing with PON control, the peak damper force applied is higher (by < 6%) for

IOC- RTE/VAF and lower (> 3%) for IOC- RMT/Qo/VAFM, whereas RMS damper

force is substantially lower (> 10%) for all IOC controllers. The PI (evaluated as
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∫ 2

0
(J∗ or Ĵ)dt) is lower for IOC vis-a-vis PON control, except for IOC-Qo.

4.1.3 Comparison of IOC and LQR.

IOC yields a reduction of up to 12% in maximum peak interstorey drift vis-a-vis

LQR, with IOC-RMT yielding the highest reduction. The storeywise peak drift also

shows a reduction, except at damper storey, of up to 20% (IOC-RMT, storey-2).

However, maximum RMS drift (which occurs at storey-1) shows an increase of up to

20%, while storeywise RMS drifts are comparable. Storeywise peak accelerations are

also mostly lower, the reduction being up to 35% (IOC-VAFM, storey-1). Storeywise

RMS accelerations are lower, except at damper storey, the reduction being up to 23%

(IOC-Qo, storey-2). However, storeywise peak and RMS displacements are mostly

higher, the increase being up to 15% and 20%, respectively. Peak and RMS values

of damper force reduce up to 16% (IOC-Qo) and 6% (IOC-RMT), respectively.

4.1.4 Comparison of IOC and LQG.

LQG control, applied to this system by Dyke et al.1, is compared with the present

IOC results. The maximum peak interstorey drift resulting from IOC is comparable,

lying between −6% and 5% of the LQG result. However, IOC affords a substantial

reduction of up to 25% (IOC-VAF, storey-1) in maximum RMS interstorey drift.

Storeywise RMS drift comparisons show IOC to generally provide better control.

Storeywise RMS displacements reduce by up to 19% (IOC-VAF, storey-2) with IOC.

Storeywise peak and RMS accelerations from IOC are mostly reduced, the highest

reduction being 38% and 28%, respectively (IOC-Qo, storey-2). Peak damper forces
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from IOC lie within −12% and 5% of the LQG values. However, RMS damper forces

from IOC are higher by up to 14%.

4.1.5 Summary of comparison - IOC with other controllers.

When using IOC: Maximum peak interstorey drift reduces vis-a-vis PON and

LQR, and is comparable to LQG; Maximum RMS interstorey drift reduces vis-a-vis

PON and LQG but not consistently vis-a-vis LQR; Drift does not always reduce

storeywise vis-a-vis other controllers; Displacements show storeywise reduction in

RMS values only vis-a-vis LQG only; Accelerations generally show reduction vis-a-

vis LQR and LQG but not PON; Damper forces are generally comparable or reduced

vis-a-vis PON and LQR but not LQG.

4.1.6 Comparison amongst IOC controllers.

Figure 5 shows the comparison of IOC controllers, for storeywise peak responses

(i.e., drift, displacement, and accelerations). The ordinate represents the storey

number of the three storeyed structure. This shows that: IOC-Qo yields the best drift

control, followed by IOC-RMT (Fig. 5(a)); all IOC controllers provide comparable

displacement control (Fig. 5(b)); IOC-VAFM yields the best acceleration control,

followed by IOC-RMT (Fig. 5(c)). Further, Table 2 shows that PI from all IOC

controllers, except IOC-Qo, is lower than the corresponding PON value, the reduction

being between 29− 35%. Note that a comparison of IOC-VAF and the ad-hoc IOC-

VAFM controllers shows that the latter provides substantial reduction in drift and

acceleration while displacements are comparable. Considering all response quantities,
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PI reduction, and peak/RMS damper forces (Tables 2 and 3), IOC-RMT appears

most effective amongst IOC controllers. Henceforth it is used for comparison with

PON, LQR and LQG.

4.1.7 Comparison of IOC-RMT with PON, LQR, LQG controllers.

Figure 6 shows the comparison of IOC-RMT with PON, LQR, LQG control, for

storeywise peak responses. The ordinate represents the storey number of the three

storeyed structure. Figure 6(a) shows that IOC-RMT provides the lowest maximum

peak interstorey drift (compare maximum peak drift occuring at- storey-1 for IOC-

RMT and LQG, storey-2 for LQR and PON) and it generally has the best storeywise

performance. While PON control clearly provides the lowest peak drift at damper

storey, it is least effective at the remaining storeys, and is generally outperformed by

semi-active controllers. This is due to the fact that semiactive control attempts to

keep the drift uniformly low at all storeys. Figure 6(b) shows that peak displacements

from IOC-RMT lie between LQR and LQG values except at the top storey where the

maximum peak displacements occur. Thus IOC-RMT yields the highest maximum

peak displacement amongst semiactive controllers. While PON control provides the

lowest peak displacement at damper storey, it is least effective at the remaining

storeys, and is generally outperformed by semi-active controllers.

Figure 6(c) shows that IOC-RMT clearly outperforms LQR and LQG controllers

by yielding substantial reductions in storeywise peak acceleration, and it also yields

the lowest maximum peak acceleration amongst all controllers (compare maximum

peak acceleration occuring at- storey-1 for IOC-RMT, LQR, LQG, storey-3 for PON).
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While PON control clearly provides the lowest peak acceleration at damper storey, it

yields the highest maximum peak acceleration. It is interesting to note that although

LQG attempts to minimize a PI based on only top storey acceleration, it generally

has the poorest performance in acceleration control. This may be due to the greater

flexibility available in choice of weighting matrices Q and R when applying LQR

and IOC-RMT control.

4.2 Time History.

Figures 7(a), (b), (c) show time traces of interstorey drift, displacement, and

acceleration, respectively, for storey where the respective maximum peak values oc-

curs. For drift, the maximum peak occurs at storey-2 for PON, LQR, and storey-1

for LQG, IOC-RMT controllers. Peak drift occurs at 0.44 s for PON, LQR, and

at 0.56 s for LQG, IOC-RMT control, with IOC-RMT yielding lowest peak drift.

For displacement, the maximum peak occurs at top storey for all controllers. The

peak displacement occurs simultaneously for all controllers at around 0.45 s, with

the PON peak being maximum and the semiactive peaks being comparable. For

acceleration, the maximum peak occurs at storey-3 for PON and storey-1 for semi-

active controllers. Peak acceleration occurs around 0.45 s for PON and LQR, 0.55

s for LQG, and 0.66 s for IOC-RMT controller. It is evident that IOC-RMT yields

lowest peak acceleration.

Figure 8(a) shows time trace of voltage applied to the damper when using IOC-

RMT control. The voltage switches between minimum (v = 0V) and saturation

(v = 2.25V) levels, remaining saturated for 34% of total simulation time shown.

Thus IOC-RMT, like other semiactive controllers, affords tremendous power savings

19



vis-a-vis PON control. Time trace of desired and applied damper forces are compared

in Fig. 8(b). Differences between applied and desired damper forces are apparent.

These are due to (i) inverse dynamics of damper (i.e., predicting applied voltage for

given force) being difficult to obtain, due to which CVL is considered in order to ap-

proximately obtain the damper voltage; (ii) damper force saturating at v = 2.25V,

which limits the maximum force that the damper can produce; (iii) damper consti-

tutive law that restricts force-velocity plot to lie in first and third quadrants despite

desired damper force, obtained by IOC-RMT, traversing all quadrants. The applied

damper force (f) appears to follow desired damper force (fd) reasonably well, thus

justifying use of the CVL to command the MR damper.

Figures 9(a), (b) and (c) show time trace of interstorey drift, displacement, and

acceleration, respectively, for the storey where the respective maximum peak occurs,

for uncontrolled and IOC-RMT cases (see Table 2, Fig. (6)). Response attenuation

due to IOC-RMT is evident and as expected. Figure (10) shows the time trace of

PI, Ĵ , for the IOC- VAF and VAFM controllers. Although IOC-VAF yields a higher

peak value of Ĵ , it does not appear to be consistently inferior vis-a-vis IOC-VAFM

throughout the 2 s duration. This is seemingly in contrast to the observations in

section 4.1, where peak responses from IOC-VAFM showed superior or comparable

control vis-a-vis IOC-VAF.

5 Conclusion

Instantaneous optimal control is used to determine the desired force (control

input) required from an interstorey MR damper attached between ground and first

20



storey of a seismically excited building. A modified Bouc-Wen damper model is

considered, and an existing Clipped Voltage Law is used to obtain the command

damper-voltage. The performance of various IOC controllers are assessed and com-

pared with passive, LQR and LQG control. The significant conclusions are:

1. IOC provides mostly a reduction in maximum peak/RMS interstorey drift,

although not a storeywise drift reduction. Accelerations are generally reduced

vis-a-vis other semiactive controllers.

2. A comparison of IOC-VAF and the ad-hoc IOC-VAFM controllers shows that

the latter provides substantial reduction in drift and acceleration with compa-

rable displacements, even though it does not consistently yield a lower PI over

the earthquake duration.

3. IOC-RMT appears most effective amongst IOC controllers. When compared

with PON, LQR, LQG, it provides the lowest maximum peak interstorey

drift and generally the best storeywise drift performance also. It outperforms

LQR and LQG controllers in terms of storeywise peak acceleration, and yields

the lowest maximum peak acceleration amongst all controllers. However, it

marginally yields the highest maximum peak displacement amongst semiactive

controllers.

Further studies would consider IOC based on output feedback. Note that output

feedback is more direct and quicker since states are often unmeasurable and their

estimation using LQG is time intensive. Also, an optimization based design of weight-

ing matrices Q and R, including optimal sensor and damper placement, would be
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considered with a view to minimize multiple objectives (such as the PI and a set of

peak/RMS responses at chosen storey levels).
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Table 1: Parameters for modified Bouc-Wen model1

Parameter Value Parameter Value Parameter Value
c0a 21.0 N·sec/cm k1 5.00 N/cm β 363 cm−2

c0b 3.50 N·sec/cm·V x0 14.3 cm A 301
k0 46.9 N/cm αa 140 N/cm n 2
c1a 283 N·sec/cm αb 695 N/cm·V η 190 s−1

c1b 2.95 N·sec/cm·V γ 363 cm−2
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