

INTERSECTION AND UNION OVERLAYS
FOR GIS

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Engineering

By

Keyur Patel
(04MCE009)

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
Ahmedabad 382481

May 2006

I

This is to certify that the Dissertation entitled

Intersection and Union Overlays for GIS

Presented by

Keyur Patel

has been accepted toward fulfillment of the requirement

for the degree of
Master of technology in Computer Science & Engineering

Professor In Charge Head of The
 Department

 Date

II

ABSTRACT

Intersection and Union are the most important Overlay functions in the GIS.

It mainly concerns with the algorithms which should be optimized and made

efficient in terms of memory requirement and processor utilization. Memory

can be saved by using the simple data structure and processor utilization can

be improved by using algorithms which minimizes the use of more iterative

loops.

This thesis explains efficient algorithms related to the Intersection and Union

overlay and is based on the vector images mainly stored as shape file

format. Intersection and Union algorithms mainly concerns with the Point in

Polygon strategies, Line-Line intersection, Line-Polygon intersection, Polygon-

Polygon intersection, Polygon-Polygon Union and their integration with each

other. By using this algorithms Intersection and Union Overlays can be

developed using different programming languages. Here it is developed using

VC++ and VB.

Keywords: Point in Polygon strategies, Line-Line intersection, Line-Polygon

intersection, Polygon-Polygon intersection, Polygon-Polygon Union,

Intersection, Union

III

ACKNOWLEDGEMENT

I take this opportunity to express my immense gratitude to my guide

Mr. Shashikant Sharma, Senior Scientist, BISAG Gandhinagar, for

accepting me to work under his guidance for my Training. I am grateful to

him for his prolonged interest in my work and excellent guidance. He has

been a constant source of motivation to me. His uncompromising demand for

quality and instance for meeting the deadlines motivated me a lot to achieve

excellence in whatever I did. He induced me to learn and improve all the

time.

 I would also like to thank Mr. T.P.Singh, Director, BISAG , who

always motivate students to do something extraordinary. He provided very

friendly environment in the institute so that I have been able to work at

extreme level of mine. I also thank him for sparing his valuable time for us. I

would like to thank him for providing me unlimited resources, which greatly

helped me in making me learn and do the things faster.

I am also thankful to Dr. A.R. Dasgupta, Senior Scientist, BISAG, for

sparing his valuable time for giving us training about the GIS system and its

Applications to make our view batter to understand the GIS systems. I also

offer my thanks to all the employees of BISAG, for helping me, for providing

all the resources I required.

I am highly indebted to Dr. S.N. Pradhan (Course Co-ordinator,

MTech -CSE) and Dr. D.J. Patel (H.O.D-Computer Department), Nirma

Institute of Technology, Ahmedabad, for allowing me to join BISAG, for my

research and theses work and also for their encouragement and guidance

given to me throughout my training period.

I am also thankful to my family members and friends who motivated

me throughout this course, I am thankful to all of them.

IV

Certificate I
Abstract II
Acknowledgement III
Contents IV
List of Figures XII
List of Tables X

CONTENTS

Chapter

No

Title Page No

1. INTRODUCTION 1

 1.1 Motivation 2

 1.2 Client and targeted users of project 4

 1.3 Literature Survey 4

 1.3.1 Geographic Information System 4

 1.3.2 Shapefile 18

 1.4 Existing Systems 28

 1.4.1 ArcView GIS 3.0 28

 1.4.2 ArcMap 30

 1.4.3 Pragati GIS 31

2. THESIS PROFILE 32

 2.1 Objective 33

 2.2 Scope 33

 2.3 Thesis Platform 34

 2.3.1 Platform Details 34

 2.3.2 Motives for Platform 35

 2.3.3 Features of the languages 36

 2.4 Thesis Summary 37

V

3. SYSTEM ANALYSIS 39

 3.1 Problem Definition 40

 3.2 Fact Finding Techniques 40

 3.3 Requirement Analysis 40

 3.4 Feasibility Analysis 43

4. SYSTEM DESIGN 46

 4.1 System Design 47

 4.2 Architectural Design 47

 4.3 Flow Charts 48

 4.4 Object Oriented Design 55

 4.5 Structure Oriented Design 56

 4.6 Dynamic Modeling 57

5. PROCEDURAL DESIGN 59

 5.1 Algorithms 60

 5.1.1 Determining if a point lies on the interior

of a polygon

61

 5.1.2 Line-Line Intersection 80

 5.1.3 Line-Polygon Intersection 82

 5.1.3.1 Cohen-Sutherland Algorithm 82

 5.1.3.2 Presented Line-Polygon Intersection

Algorithm

89

 5.1.4 Polygon-Polygon Intersection 90

 5.1.4.1 Why this presented Polygon-Polygon

Intersection algorithm?

92

 5.1.4.2 Presented Polygon-Polygon

Intersection Algorithm

93

 5.1.5 Polygon-Polygon Union 95

 5.1.5.1 Difference between Union and

Intersection

95

 5.1.5.2 Why this presented Polygon-Polygon 95

VI

Union algorithm?

 5.1.5.3 Data structures 96

 5.1.5.4 Presented Polygon-Polygon Union

Algorithm

97

 5.1.5.5 Algorithm for the union with example 101

 5.2 Data Flow Design 104

 5.2.1 Context Level Diagram 105

 5.2.2 First Level Data Flow Diagram 106

 5.2.3 Second Level Data Flow Diagrams 107

6. FUNCTIONAL SPECIFICATION 109

 6.1 Input Specifications and Input Snapshots 110

 6.2 Output Specifications and Output Snapshots 115

 6.2.1 Line-Polygon Intersection Snapshots 115

 6.2.2 Polygon-polygon Intersection Snapshots 117

 6.2.3 Polygon – Polygon Union Snapshots 120

 6.3 Function and Performance 122

7. IMPLEMENTATION 123

 7.1 Member Variables 124

 7.2 Member Functions 125

 7.3 Languages and Tools 130

 7.4 Platform Dependencies 131

 7.5 Constraints 131

 7.6 Implementation Challenge 132

8. MAINTENANCE 134

 8.1 Corrective maintenance 136

 8.2 Adaptive maintenance 136

 8.3 Perfective maintenance 136

 8.4 Preventive maintenance 136

VII

9. CONCLUSION AND FUTURE WORK 137

 9.1 Conclusion 138

 9.2 Limitations 138

 9.3 Scope of Future Work 138

 REFERENCES 140

VIII

 LIST OF FIGURES

Fig No Title Page No

 Fig. 4.1 Architectural Design of the Proposed System 47

Fig.4.2 Flow Chart for Reading of shapefile 49

Fig.4.3 Flow Chart for Display of shapefile 50

Fig.4.4 Flow chart for finding the Intersection or Union 54

Fig.4.5 Object model for ActiveX 55

Fig.4.6 Initial structured chart of the system 56

Fig.4.7 Final Structured chart of the system 57

Fig.4.8 State Diagram for finding Intersection and Union 58

Fig.5.1 Crossings Test 61

Fig.5.2 Angle Summation Test 65

Fig.5.3 Triangle Fan Test 66

Fig.5.4 Convex Inclusion Test 69

Fig.5.5 Bin Test 71

Fig.5.6 Grid Cell Test 72

Fig.5.7 Small example 100

Fig.5.8 Two lists of Input and Overlay Polygon 100

Fig.5.9 Input Polygon P and Overlay Polygon Q 101

Fig.5.10 Unioned Output Polygon 102

Fig.5.11 Context level diagram 105

Fig.5.12 First level Data Flow Diagram 106

Fig.5.13 Second Level Data Flow Diagram for Intersection 107

Fig.5.14 Second Level Data Flow Diagram for Union 108

Fig.6.1 Add theme window 110

Fig.6.2 Adding of file province.shp 111

Fig.6.3 Display of file Province.shp 111

Fig.6.4 Adding of file lakes.shp 112

Fig.6.5 Display of the both files lakes.shp and province.shp 112

Fig.6.6 Geoprocessing Wizard with Intersection option 113

Fig.6.7 Geoprocessing Wizard with Union option 114

IX

Fig.6.8 River map – line feature – input file 115

Fig.6.9 Province map – Polygon feature – Overlay file 116

Fig.6.10 Intersected river map – line feature – output file 116

Fig.6.11 Province and intersected file together 117

Fig.6.12 Lakes file – Polygon feature - Input file 117

Fig.6.13 Province file – Polygon feature – Overlay file 118

Fig.6.14 Lakes and Province file together 118

Fig.6.15 Intersected file – Polygon feature – Output file 119

Fig.6.16 Lakes file – Polygon feature – Inputfile 120

Fig.6.17 Province file – Polygon feature – Overlayfile 120

Fig.6.18 Both Province and Lakes files together 121

Fig.6.19 Unioned file – Polygon feature – Outputfile 121

X

LIST OF TABLES

Table No Title Page No

Table 1.1 Topologically coded Network And Polygon File 14

Table 1.2 Description of the Main File Header 22

Table 1.3 Description of Main File Record Headers 23

Table 1.4 Point Record Contents 24

Table 1.5 Polyline Record Contents 25

Table 1.6 Polygon Record Contents 26

Table 1.7 Description of Index Records 27

Table 5.1 General Algorithms, Random Polygons 79

Table 5.2 General Algorithms, Regular Polygons 79

 1

 Chapter 1

 INTRODUCTION

 Motivation

 Client and targeted users of project

 Literature Survey

 Existing Systems

 2

1.1 Motivation

About BISAG, The BISAG is scientific society registered under the societies act,

Govt. of Gujarat state. All office bearers are executive senior government officials.

It has a singular purpose to identify and satisfy the needs of Gujarat state by using

remote sensing, GIS technology and satellite communication. It has mandate to

apply state of the art technology to create the GIS based decision support system

for various infrastructure and resource utilities in Gujarat and promote, train and

help users to establish their own GIS facility using Satellite communication. To

provide linkage between state capital, Districts and taluka level for distant

interactive training, education and extension. To do all such activities BISAG is

armed with Scientists and Engineers.

Need of BISAG in Gujarat

 Space technology offers synoptic and repetitive information, which could be

of immense value in providing scientific database and reliable maps. It also is a

means to provide distant interactive learning by a way of satellite communication.

 Gujarat is an industrially advanced and progressive state. The state has

characteristic problem of natural diversity of highly uneven rainfall and drought

prone areas whereas few areas are prone to floods. Uncertain, erratic and uneven

rainfall causes droughts and stresses on water for drinking and irrigation purposes.

This has led to over exploitation of ground water resources and salinity ingress in

coastal areas. Soil fertility varies from the central fertile plains to low fertility and

hilly areas.

Saurashtra and Kutch are starved of soil moisture and are denuded whereas

the coastal areas are waterlogged and saline. Due to terrain conditions large

agricultural areas are facing soil degradation affection productivity. Forest areas

facing degradation require immediate attention. Similarly wasteland reclamation

program also requires to be taken up on large scale. The state has about 1600 KMs

long coast.

 3

Motivation for Work

So it is a great opportunity to have research work to be carried out at the

BISG. And we also get here challenging work to do at a time immense moral

support and guidance from the organization to achieve Excellency in our work. For

that all the resources are given by the organization.

As I mentioned BISAG is mainly doing work related to the maps taken from

the satellite. So it is used for the survey of the soil, forest area, rainy area,

polutated area etc.

So many time it is required to get combined information from two different

different maps. Like we want to get the view of the cities which are populated more

than 1,00,000 and also having local train network. So here we need to intersect

two maps one is related to the cities having population attribute and other

describing the cities having local train network attribute.

Likewise if we want the area which is either forest area or area having the

pollution more than some specific value than we have to do the Union of the two

maps one having the attribute forest and other with pollution values.

So my work is to do this thing in most efficient way to utilize memory and

processor efficiently and for that defining new algorithms and also implementing it

using Visual Basic and Visual C++. For that I need to learn the Shape file as all the

maps are stored in shape file format.

So I find this thing very challenging and inspiring as it requires immense

study on memory optimization, algorithms and also on the processor utilization.

 4

1.2 Client and targeted users of project

All the organization requiring the information related to the particular area on

the earth based on its map.

Government sectors requiring information regarding villages and doing

regular surveys for this villages and cities can be benefited a lot by using this.

Any business firm or individual wanting to develop plant at any place can use

this system to see that all the requirements can be easily fulfilled or not at that

place and what is the economic value of that particular place.

1.3 Literature Survey

1.3.1 Geographic Information System

Introduction

Geography is the science of spatial relationships. Maps from a major

constitute of geography, as they are a means of representing very large spatial

relationships in a physically handle-able size. The need for environmentally being

and socially accountable development has put a heavy demand on the capabilities

of planners. Therefore planning and execution now require more accurate, reliable

and timely information and better tools for the management of such information.

This require not only a variety of maps but a large amount of spatial information,

commonly known as statistics, a means to handle this tools to selectively extract

information relevant to the planning task. In sort, an information system for

geographical data is needed.

Any information system has four major components. There is an input

module which accepts data, a data base module which organized and stores the

data, an analysis module which selectively retrieves and manipulates the data and

an output module which presents the analyzed information.

 5

A Geographic Information System (GIS) is different in the sense that it

handles both spatial and non-spatial data; consequently the corresponding module

becomes more complex.

Information system incorporates apart from database management

functions, a set of analysis modules which selectively retrieve and manipulate the

data and output module which represents analyzed information in the context of

given planning needs.

Input to an Information System is data, which is raw and does not convey

any meaning unless analyzed and converted into meaningful information. Output

from any Information System is the information, which conveys a meaning and

prompts a set of action or decisions.

GIS (Geographical Information System) plays major role by providing linkage

between the information domain and the technologies available for management

and development planning. Geographical Information System is a particular from of

information system is a set of process, executed on a raw data, to product

information, which will be useful indecision making. Therefore an information

system must have a full range of functions to achieve its purpose, including

observation, measurement, description, explanation, forecasting and decision-

making.

Functionality of GIS

GIS, basically refers to science and technology dealing with the character and

the structure of spatial information, its method of capture, organization,

classification, analysis, measurement, display and dissemination as will as the

infrastructure necessary for the optimal use of the information. With the increase in

volume and dimensionality of data it becomes essential to use automated GIS. Use

of an automated system has become necessary as the data are maintain in a

physically compact format (i.e. magnetic media), data can be retrieved with the

greater speed, various computerized tools allow a variety of manipulation. Hence,

GIS is defining as:

 6

“AN AUOTOMATED TOOL USEFUL TO CAPTURE, STORAGE, RETRIVALAND

AND MANIPULATION, DISPLAY AND QUERYING BOTH SPATIAL AND NON-SPATIAL

DATA TO GENERATE VARIOUS PLANNING SCENARIOUS FOR DECISION MAKING.”

Alternatively, we could describe “Geographic Information System (GIS) as a

system which provide a computerized mechanism for integrating various geo-

reference datasets analyzing them in order to geo –reference datasets analyzing

them in order to generate information relevant to planning needs in a given

context.”

Thus GIS is a tool able to answer the location, condition, trends and

modeling. For example, the location of feature is answered with the help of

geographic reference

Latitude and longitude. The second question the converse of the first one and

requires spatial analysis to answer. Instead of identifying what exists at a given

location, one wants to find location where certain conditions are satisfied. The third

one involves both of the above to answer and seeks to find the difference with an

area through time. The fourth one determines what types of spatial pattern exists

when the last one would be “what if…”question is paused to determine what

happens. To answer this integrated to require combining spatial and non- spatial

information.

A Geographical Information System (GIS) is a particular from of information

system applied to geographical data. It is powerful tool to input, store, manipulate

analysis, model, and output spatial and attribute information. We could describe

Geographical Information System various geo referenced data sets and analyzing in

order to generate information relevant to planning needs in a given context. The

ultimate goal of a GIS is to support decision-making.

Like any other information System, GIS is also primarily an input output

system and include Database Management System (DBMS) function. However, it

differs from conventional DBMS and information systems in the sense that every

pieces of data element in GIS has to be directly as co –ordinates with respect to

predefined Co-ordinate system.

The data handling in GIS is not limited to only data with explicit coordinate

reference. Coordinate could express indirectly, e.g. demography associated with the

 7

village and village being expressed in form of a polygon or point coordinate. In

general GIS facilities handling of variety of data both spatial as well as non-spatial.

 By organizing spatial information into from, GIS allows us to manipulate and

display geographical knowledge in new and exciting ways.

Requirements of GIS

The environment in which a GIS operates is defined by hardware (the

machinery including a hot computer), a digitizer or a scanner for converting the

input data, a plotter for presentation processed outputs and video display unit for

commanding the system by a user, the software (programs that tell the computer

what to do) and the data. In this context GIS can be seen as a system of hardware,

software, and procedures design to support the capture, management data for

solving, analyzing, modeling and display spatially-referenced data for solving

complex planning and management problems. Although many other computer

programs can use spatial data (e.g. Auto CAD and statistics packages), GIS include

the additional ability to perform spatial operations.

Major Component of GIS

 The major components of GIS are:

1. The end use or management

2. Data Acquisition

3. Data Input

4. Data Storage and retrieval

5. Analysis

6. Information presentation

There are two components of Geographic data i.e. spatial data and attribute

data. On the maps, symbols and text convey descriptive information. The map then

becomes a powerful tool for referencing geographic information. The same concept

applied to spatial data model. Therefore the powerful capability of GIS lies in the

 8

link between the spatial and the tabular data, which illustrate the relationship

between and attribute data.

Types of GIS

GIS may be categorizing into three basic type:

 Map Based

 Integrated

 Linkage Based

Information Storage

Because graphic information is very different from tabular information, GIS

uses to database to graphic and tabular information that must manage: a spatial

and an attribute database.

Spatial Database

A spatial database is used to manage graphic information for several

reasons.

A spatial database makes searches for graphic extremely fast because the

spatial database has been optimize to manage graphic information rather than

tabular information.

A spatial database can store and manipulate complex entities as discrete

objects. For example, a polygon can be selected by referring a point anywhere on

or within the polygon.

A spatial database allow the use of double precision numbers consequently, a

spatial database can store very large coordinates values and is able to manage very

large amount of graphic information without significant decline in performance.

A spatial database allows entities to be retrieved and manipulated

independently of the graphic engine and attribute database.

 9

The spatial database stores two forms of graphic information

 Object Geometric

 Object relationships (Topology)

Objects

All graphical entities are store in the spatial data as spatial objects. Any entity for

which you wish to maintain, store, and retrieve the geographical location may be

considered an object. In GIS, first creating a graphic representation of the object in

Cad and then loading this representation of the object into the spatial database

create objects.

Object Types

The GIS spatial data is able to handle four types of objects. This objects can be

categorized as simple objects and complex objects. Simple objects include point

and line objects are defined known number of coordinate pairs. Complex objects

are defined by undetermined of coordinates pair and include line, string and

polygon objects.

 Point Objects

 Line Objects

 String Objects

 Polygon Objects

Connecting Features and Attributes

The importance of GIS lies in its link between the graphic (spatial) and the tabular

(non-spatial or a spatial) data. Basically there are three characteristics of this

connection. They are

 There is one to one relationship between features on digital map and

the records in the feature attribute table. The link between the feature and

 10

its records is maintained through a unique numerical identifier assigned to

each feature (label points).

 The unique identifier is physically in two places i.e. in the file that

content X, Y coordinates and with the corresponding records in the feature

attribute table.

 So, once this connection is established one can query the digital map

to display attribute information or create a map based on the attributes

stored in the feature attribute tables.

Data Manipulation

GIS allows a variety of manipulation such as map measurement, map overlay

analysis transformation from one coordinate projection to another coordinate

projection, graphic design and manipulation. In addition to this graphics and non-

graphics data can be merged and manipulated simultaneously in related manner.

Apart from this system must also facilities other typical related DBMS

function like interactive query language, basic file creation / update file

management, basic search retrieval and report generation, database content and

high level language interface.

Spatial Database Management in GIS

The scope database in GIS is quite varied as compared conventional DBMS

.In the conventional DBMS on the deals with one-dimensional data (non-spatial) in

form of hierarchical, network or relation model. In GIS the data is handled in the

form of Geo-Relational model, which ha two components viz., Entity location data in

form topological structures handled in conventional file mode and attributes in form

of a RDBMS, which is embedded within GIS.

The first component concerned with the graphic data domain, where in the

location specific data for various geographic entities are stored, is system specific

and a user is not given access for making any modifications in the file structure in

the file structures. In the second domain pertaining to the non-location attributes of

the spatial entities, users can attempt variety of modification by adding, removing

or changing the specifications of specific set of attribute for the spatial entities.

 11

 Graphics and non-graphics domains are link through the relation tables. Such

an organization gives sample scope for building up an integrated date base

involving spatial and non-spatial data elements. This opens up many exciting

possibilities with regards to the end use of the database. Looking at the ends of

such an integrated database in a perspective, the Geo-relational nature of the data

organizations makes it possible to:

 Visualize the GIS database as integrated database providing a

common platform for spatial as well as non-spatial data from variety of

sources.

 Make integrated queries on the underlying database looking at any

combination of data elements together.

 General planning views based on multiple analyses.

 General planning views based on analyses of multiple parameters.

 And simulate “what – if……… Scenarios in an interactive and iterative

manner providing flexible decision supports in spatial context approaching

towards paperless planning.

Relation between Spatial and non-Spatial Data

 With spatial data if proper LINKAGE BETWEEN SPATIAL AND NON-SPATIAL

data Non-spatial data are an important part of GIS database. User can use these

data along is defined. There linkages and inter relationship are an import element

of the GIS database organizations as they define the user relations or user views

that can be created.

Spatial and non-Spatial Data Linkage

 All the spatial data sets have as associated attribute table where the detail

attributes table of each feature is recorded. There are two major linkage aspects

involved:

 For all the spatial data sets other than administrative maps, the

linkage is achieved through the data dictionary feature code.

 For administrative maps, villages and Taluka maps, the linkage is

archived on a one-to one relation based to the on a unique code for each

 12

village or the Taluka. This link code also is related to the census village

number on a one-to –one basis. Thus the internal organization of the spatial

village, Taluka

 boundaries if flexible to relate to the non-spatial data set son a one-to-

one basis further, because of the co-relation to census village numbers it is

also possible to abstract village data to Taluka data.

 There are varying approaches foe design of data models and structure as

described below.

 Two basic types of data models have evolved for storing the spatial data in

digital form.

1. Vector

2. Tessellation (grid) models.

 In the vector type of data model, the basic logical unit in a map is line or

vector. A series of x-y point’s location along the line are recorded as the

components of a single data record. The points can be represented as lines of zero

length (i.e. one x-y location).

 In the grid model the basic logical unit for storage is a single cell or unit of

space in the mesh. This class of data models encompasses much more than the

approaches based on a rectangular of square grid. These may include May identify

repeatable pattern of a regular polygon (two dimensional) or polyhedron (three

dimensional) vector data mode also has its variation in the way they describe the

entity interrelationships.

 Whereas the two classes of spatial data models are in common practice

today, there also exists a third type of model –the hybrid type. This class of the

data model is a recent development with an attempt to possess the characteristics

of both the vector and models.

 Since a GIS attempts to model the real world as a set of digital number and

features, these models should be amenable to structuring, querying and processing

the problems. The way a spatial data processed creates the problems.

 13

 The way a spatial data processing algorithm works, is not necessary the way

a human operator will solve a problem in the real world. The data structure must

therefore account for the quirks of the algorithms. This requirement leads to the

adoption of a functional structure based on primitives.

 The data structure decides the physical and logical storage, retrieval, query

and analysis capabilities. It allows for the linking of spatial entitles and spatial

attributes. It also impacts the efficiency of storage (space) and access (time). A

spatial data is organizing their inter–relationships. In a GIS this is essential. This

relationship is the topology.

 The oldest and most popular model has been the vector data model that

deals which an ordered set of x and y locations representing the points, line and

polygons. The ordering takes into account the spatial inter-relationship.

 With the advent of remote sensing as well as automatic scanners another

structure, which has gained popularly, is the raster structure (one amongst the

family of grid models). Other structure have evolved form the need to handle both

ector and raster data. One such example is the quid-tree data structure.

Vector data model and associated structures

 The vector data model is based on representation of objects by an array of

coordinates. As mentioned above, the vector mode of data representation has its

variations.

The spaghetti structure

 The most simplest and elementary vector data model is a direct line-for-line

translation of the paper map. This is called sapphire mode. Associated data

structure for this model is very simple and easy to understand. Each geographic

entity becomes one logical record in the digital file, and is defined as strings of X-Y

coordinates.

 This model has severe limitations since there are no spatial relationships

explicitly defined amongst various entitles. Moreover, for adjacent polygon data,

the model results in recording of X-Y coordinate of the shared boundary segment

twice.

 14

1
2

4

5

 The model is very inefficient for most types of spatial data analysis, since any

relationship required has to be derived through computation. However the lack of

explicitly stored relationships, which are extraneous to the plotting process, makes

this model efficient for reproducing the original graphic input. The model is thus

used primarily for applications that are limited to map inputs and outputs.

 4 6

 5
 3
 7 11
 1 8
 2 9

 10

Figure 1.1 The Topological model

 Table 1.1 Topologically coded Network and Polygon File

Link Right
Polygon

Left
Polygon

Node
1

Node
2

1
2
3
4
5
6
7
8
9
10
11

1
2
2
1
3
3
3
4
5
4
5

0
0
1
0
2
0
3
3
4
0
0

3
4
3
1
4
2
5
6
7
7
5

1
3
2
2
2
5
6
4
6
4
7

Node X
Coordinate

Y
Coordinate

1
2
3
4
5
6
7

23
17
29
26
8
22
24

8
17
15
21
26
30
38

1

7

2

5

4
3

6

3

 15

The second vector model is the topological model where in the spatial

relationships amongst the entities are explicitly recorded. The basic logical entities

in this structure are points or nodes, arcs which are lines joining nodes and

polygons which are areas completely enclosed by arcs. The attributes or descriptors

are lined to each of these entitles.

Such an organization has an advantage over Spaghetti Model for spatial

analysis as it minimizes geometric computation overheads for inferring the

relationships amongst the spatial object. Moreover, it records the coordinates of the

common polygon boundaries only once thereby reducing the redundancy and

facilities consistency and integrity of data storage.

GIS-Core of the Database

The Geographic Information System (GIS) package is the core of the data

sets, as both spatial and non-spatial databases have to be handled. The GIS

package offers efficient utilities for handling both of these data sets and also allows

for the spatial database organization; non-spatial data sets organization-mainly as

attributes of the spatial elements; analysis and transformation for obtaining the

required information; obtaining information in specific format (cartographic quality

outputs and reports), organization of a user friendly query-system.

In the present study ARC/INFO GIS package has been used as the core of

the spatial database. ARC/INFO is a modular, vector based package and is for

making cartographic quality out puts in the form of maps and generation of model

while the non-spatial data is organized using topological data model while non-

spatial attribute data is stored using a database management package.

 Three main aspects of any modern technology are: the instrumentation, the

software and the manpower. Even though GIS does not demand any special

Instrumentation, with the rapidly expanding use of computer technology in India

has been a great boon for GIS. Most public sector organizations today are

increasingly using GIS technology for the effective utilization of their resources, and

its use in private sector is also catching up.

 In GIS-related software development, even though the contribution of Indian

GIS professionals is significant, a lot more needs to be done in developing

 16

indigenous software systems for global market. In manpower development also,

many academic and professional organizations in India are today offering

comprehensive-training courses related to GIS.

 However, introduction of GIS as a major field of study in Indian engineering

and technological institutes and Universities is still a dream, and more efforts are

required to be directed in this direction. The GIS-based publications, with their high

quality technical contents, are also contributing significantly in spreading GIS

awareness.

GIS is very useful to the following persons:

 Urban planner – might like to find out about the urban fringe growth in

her/his city, and quantify the population growth that some suburbs are

witnessing.

 Mining engineer could be interested in determining which prospect

copper mines are best fit for future exploration, taking into account

parameters such as extent, depth and quality of the one body, amongst

others.

 Natural hazard analyst might like to identify the high-risk areas of

annual monsoon-related flooding by looking at rainfall patterns and terrain

characteristics.

 Land surveyor working on land development projects for urban

expansion.

 Cadastral engineer working on the provision of up-to-date information.

 Regarding real estate and land property.

 Food security officer - working on monitoring systems of crop

production.

 Land use suitability analyst working on assessments regarding

production of certain crops in semi-arid areas.

 Wildlife manager - working to ensure that wildlife (e.g., elephant) has

freedom of movement without damaging human settlements.

 17

An important distinction between GIS application is whether the geographic

phenomena studied are man-made or natural. There are many different uses of

GIS, as may have become clear from our list of professionals as shown above who

deal with geo information. An important distinction between GIS for urban planning

purposes involves a study of man-made things: the roads, sidewalks, and at larger

scale, suburbs and transportation routes are man-made. These entities are

assumed to have clear-cut boundaries.

 On the other hand, geomorphologies, ecologists and soil scientists often have

natural phenomena as their study objects. They may be looking at rock formations,

plate tectonics, and distribution of natural vegetation or soil units.

About Maps
 The best-known models of the real world are maps. Maps have been used for

thousands of years to represent information about the real world. Their conception

and design has developed into a science with a high degree of sophistication. Maps

have proven to be extremely useful for many applications in various domains.

 A disadvantage of maps is that they are restricted to two-dimensional static

representations, and that they always are displayed in a given scale. The map scale

determines the spatial resolution of the graphic feature representation. The smaller

the scale, the less detail a map can show. The accuracy of the base data, on the

other hand puts limits to the scale in which a map can be sensibly drawn. The

selection of a proper map scale is one of the first and most important steps in map

design.

 Cartography as the science and art of map making functions as an

interpreter of translation real world phenomena into correct, clear and

understandable representations for our use.

 18

1.3.2 Shape file

This document defines the shape file (.shp) spatial data format and describes

why shape files are important. It lists the tools available in Environmental Systems

Research Institute, Inc. (ESRI), software for creating shape files directly or

converting data into shape files from the formats. This document also provides all

the technical information necessary for writing a computer program to create shape

files without the use of ESRI ® software for organizations that want to write their

own data translators.

Why Shape files?

A shape file stores no topological geometry and attributes information for the

spatial features in a data set. The geometry for a feature is stored as a comprising

a set of vector coordinates.

Because shape files do not have the processing overhead of a topological

data structure, they have advantages over other data sources such as faster

drawing speed and edit ability. Shape files handle single features that overlap or

that is noncontiguous. They also typically require less disk space and are easier to

read and write.

Shape files can support point, line, and area features. Area features are

represented as closed loop, double-digitized polygons. Attributes are held in a

dBase ® format file. Each attribute record has a one-to-one relationship with the

associated shape record.

How Shape files can be created

Shape files can be created with the following four general methods:

 Export -- Shape files can be created by exporting any data

source to a shape file using ARC/INFO ®, PC ARC/INFO ®, Spatial Database

Engine ™ (SDE ™), Arc View ® GIS, or Business MAP ™ software.

 19

 Digitize -- Shape files can be created directly by digitizing

shapes using ARCVIEWGIS feature creation tools.

 Programming -- Using Avenue ™ (Arc View GIS), MapObjects ™,

ARC Macro Language (AML ™) (ARC/INFO), or Simple Macro Language (SML

™)(PC ARC/INFO) software, you can create shape files within your programs.

 Write directly to the shape file specifications by creating a

program.

SDE, ARC/INFO, PC ARC/INFO, Data Automation Kit (DAK ™), and Arc CAD

® software provide shape-to-coverage data translators, and ARC/INFO also

provides a coverage-to-shape translator. For exchange with other data formats, the

shape file specifications are published in this paper. Other data streams, such as

those from global positioning system (GPS) receivers, can also be stored as shape

files or X, Y event tables.

Shape File Technical Description

Computer programs can be created to read or write shape files using the

technical specification in this section.

An ESRI shape file consists of a main file, an index file, and a dBASE table.

The main file is a direct access, variable-record-length file in which each record

describes a shape with a list of its vertices. In the index file, each record contains

the offset of the corresponding main file record from the beginning of the main file.

The dBASE table contains feature attributes with one record per feature. The one-

to-one relationship between geometry and attributes is based on record number.

Attribute records in the dBASE file must be in the same order as records in the

main file.

Naming Conventions

All file names adhere to the 8.3 naming convention. The main file, the index

file, and the dBASE file have the same prefix. The prefix must start with an

alphanumeric character (a–Z, 0–9), followed by zero or up to seven characters (a–

Z, 0–9, _, -). The suffix for the main file is .shp. The suffix for the index file is .shx.

 20

The suffix for the dBASE table is .dbf. All letters in a file name are in lower case on

operating systems with case-sensitive file names

Examples

 Main file: countries.shp
 Index file: countries.shx
 DBase table: countries.dbf

Numeric Types

A shape file stores integer and double-precision numbers. The remainder of

this document will refer to the following types:

 Integer: Signed 32-bit integer (4 bytes)

 Double: Signed 64-bit IEEE double-precision floating point number

 (8 bytes)

Floating point numbers must be numeric values. Positive infinity, negative

infinity, and Not-a-Number (NaN) values are not allowed in shape files.

Nevertheless, shape files support the concept of "no data" values, but they are

currently used only for measures. Any floating point number smaller than –10 38 is

considered by a shape file reader to represent a "no data" value.

The first section below describes the general structure and organization of

the shape file. The second section describes the record contents for each type of

shape supported in the shape file.

Organization of the Main File

The main file (.shp) contains a fixed-length file header followed by variable-

length records. Each variable-length record is made up of a fixed-length record

header followed by variable-length record contents. Figure 1 illustrates the main file

organization.

 21

Record Header Record
Contents

Figure 1 .2 Organization of the Main File

Byte Order

All the contents in a shape file can be divided into two categories:

Data related

· Main file record contents

· Main file header’s data description fields (Shape Type, Bounding Box,

etc.)

File management related

· File and record lengths

· Record offsets, and so on

The integers and double-precision integers that make up the data description

fields in the file header (identified below) and record contents in the main file are in

little endian (PC or Intel ®) byte order. The integers and double-precision floating

point numbers that make up the rest of the file and file management are in big

endian (Sun ® or Motorola ®) byte order. The Main File Header The main file

header is 100 bytes long.

Table 1 shows the fields in the file header with their byte position, value,

type, and byte order. In the table, position is with respect to the start of the file.

File Header

Record Header Record
Contents

Record Header Record
Contents

Record Header Record
Contents

Record Header Record
Contents

 22

 Position Field Value Type Byte Order
Byte 0 File Code 9994 Integer Big
Byte 4 Unused 0 Integer Big
Byte 8 Unused 0 Integer Big
Byte 12 Unused 0 Integer Big
Byte 16 Unused 0 Integer Big
Byte 20 Unused 0 Integer Big
Byte 24 File Length File Length Integer Big
Byte 28 Version 1000 Integer Little
Byte 32 Shape Type Shape Type Integer Little
Byte 36 Bounding Box Xmin Double Little
Byte 44 Bounding Box Ymin Double Little
Byte 52 Bounding Box Xmax Double Little
Byte 60 Bounding Box Ymax Double Little
Byte 68* Bounding Box Zmin Double Little
Byte 76* Bounding Box Zmax Double Little
Byte 84* Bounding Box Mmin Double Little
Byte 92* Bounding Box Mmax Double Little

* Unused, with value 0.0, if not Measured or Z type

Table 1.2 Description of the Main File Header

The value for file length is the total length of the file in 16-bit words

(including the fifty 16-bit words that make up the header).

All the non-Null shapes in a shape file are required to be of the same shape

type. The values for shape type are as follows:

Value Shape Type

 0 Null Shapes
 1 Point
 3 PolyLine
 5 Polygons
 8 Multipoints
 11 PointZ
 13 PolyLineZ
 15 PolygonZ
 18 MultiPointZ
 21 PointM
 23 PolyLineM
 25 PolygonM
 28 MultiPointM
 31 MultiPatch

 23

Shape types not specified above (2, 4, 6, etc., and up to 33) are reserved for

future use. Currently, shape files are restricted to contain the same type of shape

as specified above. In the future, shape files may be allowed to contain more than

one shape type. If mixed shape types are implemented, the shape type field in the

header will flag the file as such.

The Bounding Box in the main file header stores the actual extent of the

shapes in the file:

The minimum-bounding rectangle orthogonal to the X and Y (and potentially

the M and Z) axes that contains all shapes. If the shapefile is empty (that is, has no

records), the values for Xmin, Ymin, Xmax, and Ymax are unspecified. Mmin and

Mmax can contain "no data" values (see Numeric Types on page 2) for shape files

of measured shape types that contain no measures.

Record Headers

The header for each record stores the record number and content length for

the record. Record headers have a fixed length of 8 bytes. Table 2 shows the fields

in the file header with their byte position, value, type, and byte order. In the table,

position is with respect to the start of the record.

Table 1.3 Description of Main File Record Headers

Byte Position Field Value Type Order
Byte 0 Record Number Record Number Integer Big
Byte 4 Content Length Content Length Integer Big
Record numbers begin at 1.

The content length for a record is the length of the record contents section

measured in 16-bit words. Each record, therefore, contributes (4 + content length)

16-bit words toward the total length of the file, as stored at Byte 24 in the file

header.

 24

Point
A point consists of a pair of double-precision coordinates in the order X, Y.

Point
{
Double X // X coordinate
Double Y // Y coordinate
}

 Table 1.4 Point Record Contents

PolyLine

A PolyLine is an ordered set of vertices that consists of one or more parts. A

part is a connected sequence of two or more points. Parts may or may not be

connected to one another. Parts may or may not intersect one another. Because

this specification does not forbid consecutive points with identical coordinates,

shapefile readers must handle such cases. On the other hand, the degenerate, zero

length parts that might result are not allowed.

PolyLine
{

Double [4] Box // Bounding Box

Integer NumParts // Number of Parts

Integer NumPoints // Total Number of Points

Integer[NumParts] Parts // Index to First Point in Part

Point[NumPoints] Points // Points for All Parts

}

Position Field Value Type Number Byte Order
Byte 0 Shape Type 1 Integer 1 Little
Byte 4 X X Double 1 Little
Byte 12 Y Y Double 1 Little

 25

 Table 1.5 PolyLine Record Contents

 Note: X = 44 + 4 * NumParts

Polygon

A polygon consists of one or more rings. A ring is a connected sequence of

four or more points that form a closed, non-self-intersecting loop. A polygon may

contain multiple outer rings. The order of vertices or orientation for a ring indicates

which side of the ring is the interior of the polygon. The neighborhood to the right

of an observer walking along the ring in vertex order is the neighborhood inside the

polygon.

 Vertices of rings defining holes in polygons are in a counterclockwise

direction. Vertices for a single, ringed polygon are, therefore, always in clockwise

order. The rings of a polygon are referred to as its parts. Because this specification

does not forbid consecutive points with identical coordinates, shapefile readers

must handle such cases. On the other hand, the degenerate, zero length or zero

area parts that might result are not allowed.

The Polygon structure is identical to the PolyLine structure, as follows:

Polygon
{
Double[4] Box // Bounding Box
Integer NumParts // Number of Parts
Integer NumPoints // Total Number of Points
Integer[NumParts] Parts // Index to First Point in Part
Point[NumPoints] Points // Points for All Parts
}

Position Field Value Type Number Byte Order
Byte 0 Shape Type 3 Integer 1 Little
Byte 4 Box Box Double 4 Little
Byte 36 NumParts NumParts Integer 1 Little
Byte 40 NumPoints NumPoints Integer 1 Little
Byte 44 Parts Parts Integer NumParts Little
Byte X Points Points Point NumPoints Little

 26

Table 1.6 Polygon Record Contents

 Note: X = 44 + 4 * NumParts

Organization of the Index File

The Index File Header: The index file header is identical in organization to

the main file header described above.

The file length stored in the index file header is the total length of the index file in

16-bit words (the fifty 16-bit words of the header plus 4 times the number of

records).

Index Records The I’th record in the index file stores the offset and content

length for the I’th record in the main file. Table shows the fields in the file header

with their byte position, value, type, and byte order. In the table, position is with

respect to the start of the index file record.

File Header

……

Record

Record

Record

Position Field Value Type Number Byte Order
Byte 0 Shape Type 5 Integer 1 Little
Byte 4 Box Box Double 4 Little
Byte 36 NumParts NumParts Integer 1 Little
Byte 40 NumPoints NumPoints Integer 1 Little
Byte 44 Parts Parts Integer NumParts Little
Byte X Points Points Point NumPoints Little

 27

Table 1.7 Description of Index Records

The offset of a record in the main file is the number of 16-bit words from the

start of the main file to the first byte of the record header for the record. Thus, the

offset for the first record in the main file is 50, given the 100-byte header.

The content length stored in the index record is the same as the value stored

in the main file record header.

Organization of the dBase File

The dBASE file (.dbf) contains any desired feature attributes or attribute keys

to which other tables can be joined. Its format is a standard DBF file used by many

table-based applications in Windows ™ and DOS. Any set of fields can be present in

the table.

 There are three requirements, as follows:

• The file name must have the same prefix as the shape and index file. Its

suffix must be .dbf. (See the example on page 2, in Naming Conventions.)

• The table must contain one record per shape feature.

• The record order must be the same as the order of shape features in the

main (*.shp) file.

• The year value in the dBASE header must be the year since 1900.

A shape file stores nontopological geometry and attributes information for

the spatial features in a data set. The geometry for a feature is stored as a shape

comprising a set of vector coordinates.

Because shape files do not have the processing overhead of a topological

data structure, they have advantages over other data sources such as faster

drawing speed and editability. Shape files handle single features that overlap or

 Position Field Value Type Byte
Order
 Byte 0 Offset Offset Integer Big
 Byte 4 Content Length Content Length Integer Big

 28

that is noncontiguous. They also typically require less disk space and are easier to

read and write.

Shape files can support point, line, and area features. Area features are

represented as closed loop, double-digitized polygons. Attributes are held in a

dBASE® format file. Each attribute record has a one-to-one relationship with the

associated shape record.

An ESRI shape file consists of a main file, an index file, and a dBASE table.

The main file is a direct access, variable-record-length file in which each record

describes a shape with a list of its vertices. In the index file, each record contains

the offset of the corresponding main file record from the beginning of the main file.

The dBASE table contains feature attributes with one record per feature. The one-

to-one relationship between geometry and attributes is based on record number.

Attribute records in the dBASE file must be in the same order as records in the

main file.

The main file (.shp) contains a fixed-length file header followed by variable-

length records. Each variable-length record is made up of a fixed-length record

header followed by variable-length record contents. The index file (.shx) contains a

100-byte header followed by 8-byte, fixed-length records.

The dBASE file (.dbf) contains any desired feature attributes or attributes

keys to which other tables can be joined. Its format is a standard DBF file used by

many table-based applications in Windows™ and DOS. The file name must have the

same prefix as the shape and index file. Its suffix must be .dbf.

1.4 Existing systems

1.4.1 ArcView GIS 3.0

It’s a powerful, easy-to-use tool that brings geographic information to the

desktop. ArcView gives one the power to visualize, explore, query and analyze

data spatially.

 29

 ArcView is made by Environmental Systems Research Institute (ESRI), the

makers of ARC/INFO, the leading geographic information system(GIS) software. It

has been helping people solve spatial problems with computers for over 20 years.

 One doesn’t need to know how to create geographic data in order to use

ArcView. ArcView comes with a useful set of ready-to-use data. Additional

geographic data sets are available from ESRI and from various third parties to suit

almost any requirement one might have. Plus, if one’s organization uses ARC/INFO

data, one will immediately be able to use ArcView to access all these resources,

including vector coverage, map libraries, grids, images and event data.

Working spatially

 ArcView can be used by anyone who wants to work spatially. A key feature of

ArcView is that it’s easy to load tabular data, such as dBASE files and data from

database servers, into ArcView so that one can display, query, summarize, and

organize this data geographically.

 In no time one will be working with the data in a completely new way, seeing

patterns not seen before, understanding geographic relationships that were

previously hidden, gaining new insights… and achieving new results for business.

Views

 With ArcView one works with geographic data in interactive maps called

views. Every view features ArcView’s unique geographic “Table of Contents”,

making it easy to understand and control what’s displayed. GIS has never been

simpler!

Tables

 Working with tabular data in ArcView’s tables puts one in control. Click on

features on a view, and their records highlight in the table showing their attributes.

Select records in the table and the features they represent highlight on the view.

ArcView’s tablesslao have a full range of features for obtaining summary statistics,

sorting and querying.

 30

Charts

 ArcView’s charts offer a powerful business graphics and data visualization

capability that is fully integrated into ArcView’s geographic environment. One can

simply click on features on a view to add them to the chart. ArcView lets you work

simultaneously with geographic, tabular and chart representations of your data.

Layouts

 ArcView’s layouts lets one create high quality, full color maps by first

arranging the various graphic elements on-screen the way one wants them. One

will get great looking results on a wide range of printers and plotters. Layouts are

smart because they have a live link to the data they represent. When one prints a

layout, any changes to the data are automatically included, so one knows

everything on the map will be up-to-date.

Scripts

 ArcView scripts are macros written in Avenue, Arc View’s programming

languages and development environment. With Svenue one can customize almost

every aspect of ArcView, from adding a new button to run a script one writes, for

creating an entire custom application that can distribute.

Projects

 All the components of the ArcView session: views, tables, charts, layouts,

and scripts are conveniently stored in one file called a project. ArcView’s Project

window shows the contents of the project and makes it easy to manage all the

work.

1.4.2 ArcMap

ArcMap is also a software for desktop GIS and mapping. It provides better

functionality for editing as compared to ArcView.

 ArcMap provides a rich set of tools that perform many common network

analysis tasks on geometric network. Some of the common network analysis that

can be performed using ArcMap are:

 31

 Trouble Call analysis: determines the likely cause of a problem based on the

location of customers with service problem.

1.4.3 Pragati GIS

 Pragati is the project which is being developed at the Bisag. Its main aim is

to support the features of the GIS. It is necessary to study and understand ArcView

and ArcMap because it aims to include all the functionality of the ArcView and the

ArcMap.

 Pragati is software which is built at BISAG and which is made on the lines of

ArcView S/W. Actually ArcView costs a lot of rupees and hence all the government

organization who wants to use ArcView has to purchase it by paying a huge amount

of money. So BISAG decided to build a S/W which is identical to ArcView and hence

the result was Pragati S/W. Till now various facilities has been added to Pragati and

still other modules are being added to built it just like ArcView. Our project that is

to build and an ActiveX control that implements various Pen and Brush style is also

a module to be added to this S/W.

 Pragati S/W is build using Visual Basic 6.0 as it provides an excellent

Graphical user interface. While the whole code is written in Visual c++ as it is very

good at graphic application with a rich set of graphic functions. Again for graphic

application time to run the application is very critical and VC++ is faster at run time

and hence it is the most suitable platform to write the whole logic.

It contains various features like:

• Read and Display Shape file

• Allow the user to identify the attribute on map

• Display all types of labels on layers and all types of texts on controls itself

• Have hierarchy map facility i.e. the user can navigate from one layer to

another layer

• Select by theme

• Printing and print preview

 32

 Chapter 2

 THESIS PROFILE

 0BJECTIVE

 SCOPE

 THESIS PLATFORM

 PROJECT SUMMARY

 33

2.1 0BJECTIVE

 Since 1998 BISAG (Gandhinagar) has been working on the task of creating

GIS applications, which can be distributed independently throughout the various

Governmental Departments of the Gujarat State. They all require GIS software for

simplifying their work. There are various GIS softwares available in the market like

Arc/Info, Arc View, MapInfo etc, but these softwares are very costly .So BISAG

decided to develop its own GIS software (Pragati GIS) that can meet all the needs

of government. Arc View includes the facility of Geoprocessing functionality of

overlays mainly Intersection and Union of the maps which has not been included in

Pragati GIS and since these features helps in solving many real world problems I

decided to work on it.

2.2 SCOPE

Thesis Definition

 To develop Overlays for the GIS mainly Intersection and Union of the maps

using Microsoft Visual C++ and Microsoft Visual Basic 6.0.

Feature

 Intersection helps in finding the common area of the two maps with different

features and combines all attributes of both the maps in that area and Union helps

in finding the common area having combine features of both the maps as well as

the separate areas of the two maps having their own features only.

So many times it is required to get combined information from two different

maps. Like we want to get the view of the cities which are populated more than

1,00,000 and also having local train network. So here we need to intersect two

maps one is related to the cities having population attribute and other describing

the cities having local train network attribute.

 34

Likewise if we want the area which is either forest area or area having the

pollution more than some specific value than we have to do the Union of the two

maps one having the attribute forest and other with pollution values.

So my work is to do this thing in most efficient way to utilize memory and

processor efficiently and for that defining new algorithms and also implementing it

using Visual Basic and Visual C++.

2.3 THESIS PLATFORM

2.3.1 Platform Details

Operating System:- Windows 2000

Programming Languages:- Visual C++ and Visual Basic

 To implement, test and validate the efficiency of the algorithms concerning

the Intersection and Union of the maps we need to develop language skill in

 -Visual Basic

 -Visual Studio

 We need to implement our research work using two different languages

because we need to do two things,

• GUI is to be done in Visual Basic which has to be integrated in Pragati S/W

• Coding is to be done in Visual C++ which has to be integrated in GGIS

control

As we are using VB to develop User Interface, the user is provided with an

excellent Graphical User Interface (GUI) and project is very user friendly. So output

or result will be displayed as an image to the user and it is stored in the shape file

format. This graphical display of the output is stored in one of the three feature

types point, line, and polygon in file with the format .shp.

 35

As it has attributes related to each feature point, line, polygon stored in the

database file, user can have the required attribute values of the resultant map in

the database file stored with the .dbf format.

So we have used “Microsoft Visual Studio” for the implementation of research

work in Visual Basic and Visual C++.

2.3.2 Motives for Platform

Windows 2000

 Windows 2000 Professional is suitable operating system for geographic

system development and also for the use of the software related to the geographic

system. Also it gives more update facilities as Microsoft’s new Web-based resource

site, automates driver and system file updates, and provides up-to-date technical

support.

 Windows 2000 can review device drivers and system software on your

computer, compare those findings with a master database on the Web, and then

recommend and install updates specific to your computer. You can also revert to a

previous device driver or system file using the uninstall option.

Visual C++

The main reason for using Microsoft VC++ as the development tool is that it

provides a variety of new and improved features for managing projects and

subprojects, editing code and resources, managing classes, code reuse and code

generation and also we need to integrate the module with the existing system.

Visual C++ 6.0 includes the comprehensive Microsoft foundation classes, which

simplify and speed development of window applications. It includes sophisticated

resource editor to design the complex dialog boxes, menu, toolbars, images, and

many other elements of modern window application. There is an excellent

integrated development environment called developer studio that present graphical

views of your application’s structure as you develop it. Totally integrated debugging

tool lets you examine in minute detail every aspect of your program as it runs.

 36

Visual Basic

Visual Basic 6.0 has emerged as one of the standard windows programming

language and it has become must for all software people for developing applications

in visual environment, rather than writing numerous lines of code to describe the

appearance(GUI) and location of interface elements, VB provides method to simply

add objects and place them on screen also it has rich set of APIs to support easy

and quick development.

2.3.3 Features of the languages

Visual C++

The Project Workspace

The Project Workspace window offers three views: in Class View project classes,

member variables and functions are shown; in File View files comprising a project

are visible and in Resource View resource file components can be manipulated.

Editor

The editor offers improved compatibility with other popular editors.

The Class Wizard and the Wizard Bar

The Class Wizard offers support for OLE control development. Many Class Wizard

features can easily be accessed in the Wizard Bar.

Component Gallery

Classes that are created through Class Wizard or entire projects created through

AppWizard can be added to the Component Gallery and later inserted to other

applications. The Component Gallery comes with many useful tools including OLE

controls etc.

 37

Debugging

The integrated debugger has redesigned windows. It also offers a new feature data

tips i.e. positioning the mouse cursor over a symbol in an editor window during

debugging causes a tool tip style window to appear, displaying the current value of

the symbol.

Integration with other Tools

The Developer Studio offers a high level of integration with Microsoft development

tools such as the Microsoft Developer Library.

Visual Basic

 Visual Basic can serve as an ideal front end tool for the client to interact. It

has got connectivity mechanism for all types of database situated far and wide in a

network and so it can gratify to the needs of large body of clients. Using the latest

ActiveX technologies it can integrate the functionalities provided by other

applications. The final application is a true EXE file and so can be freely distributed.

2.4 THESIS SUMMARY

Thesis Title

“To develop Overlays for the GIS mainly Intersection and Union”

Front End Tools

Microsoft Visual Basic

GUI is to be done in Visual Basic which has to be integrated in Pragati

S/W

Back End Tools

Microsoft Visual C++

 Coding is to be done in Visual C++ which has to be integrated in

GGIS control

 38

Thesis Guide

Shri Shashikant Sharma

Organization

Bhaskaracharya Institute for space Application and GeoInformatics,

Govt. of Gujarat (Science & Technology),

Gandhinagar.

Submitted By

Keyur Patel

Submitted To

Institute Of Technology,

Nirma University

Ahmedabad.

 39

 Chapter 3

 SYSTEM ANALYSIS

 Problem Definition

 Fact Finding Techniques

 Requirement Analysis

 Feasibility Analysis

 40

3.1 PROBLEM DEFINITION

 To develop Overlays for the GIS mainly Intersection and Union of the maps

using Microsoft Visual C++ and Microsoft Visual Basic 6.0.

3.2 FACT FINDING TECHNIQUES

Fact Finding Techniques

 During requirement determination phase, the system analyst has to find out

how the current system works and what is expected from a new system, for that it

is required to spend considerable time talking to users and gathering all relevant

information for the project.

Information Sources

• Users of the system.

• Forms and documents used in the organization.

• Procedure manuals and rulebooks which specify various activities are carried

out in the organization.

• Various reports used in the organization.

• Computer programs of existing system.

3.3 REQUIREMENT ANALYSIS

 The description of the service and the constraints are the requirements of the

system and the processes involved in the requirement engineering are:

• Finding out

• Analyzing

• Documenting and

• Checking these services and constraints

 41

The process activities are:

Domain Understanding:

 Analyst must develop understanding of the application domain and therefore

I spent some initial time for domain understanding like using maps, becoming

aware of map manipulation software etc.

 I took help from software like Arc View which helped me to understand what

to build and what are the advantages and disadvantages of that. I Considered user

as a point of view and developed a user friendly system.

Requirement Classification:

Requirements are classified as follows:

The main requirements are

• User requirements

• System requirements

Above Requirements can be further classified as:

• Functional requirements

• Non-functional requirements

• Domain requirements

User Requirements

There are mainly following types of users:-

o Visitors and tourists

Visitors and tourists are mainly interested in beautiful locations,

emergency services like Banks, police station, hotels etc.

o Citizens

Citizens want to get information about emergency services like Banks,

police station, hotels all together at one place so we need to do

intersection of maps showing the banks information, police station

information, hotels information in the city etc.

 42

o Govt. Officials

Different departments of any govt. can use the system to acquire

information about any place which combines different features like the

area which is having rain up to some value and also having population up

to some value to do the survey and to apply some schemes like schemes

regarding farmers may be based on the type of the soil and the rain in

that area so intersection and union feature can be used to see the

combining and separate effects of these two features soil type and the

rain.

o Education Departments

To see which area is having Higher secondary, secondary and primary

school facilities as well as good transportation in that area to provide

facility to the students living far away from these schools.

o Health Departments

To see how many private hospital, govt. hospital are covered in the

particular area which might be having another feature like area having

populatin more than 1,00,000 people. This can be helpful to develop new

hospitals in the more populated area.

System Requirements

 System Requirements state which kind of services, functions and facility

should be given to users.

 Users are allowed to retrieve information of places.

Functional Requirements

 Since this project uses database and control, this needs the retrieval of

information from the database. It needs the interaction between Visual Basic

Container and Visual C++ control.

 43

Non Functional Requirements

Product Requirements

• Efficiency

 The system should provide easy and fast access without consuming more cost.

• Reliability

User should never be surprised by the behavior of the system and it should also

provide meaningful feedback when errors occur so that user can recover from

errors.

Conflict Resolution:

 Here, requirement conflicts are handled so that users can distinguish

themselves. Like some facility may not be used by other user, there must not be

any objection from other users.

Requirement Validation:

 Requirement validation is concerned with showing that requirements actually

define the system. If this validation is inadequate errors in the requirements will be

propagated to the system design and implementation.

3.4 FEASIBILITY ANALYSIS

 A feasibility study is a short, focused study which aims to answer a number

of questions:

• Does the system contribute to the overall objectives of the

organization?

• Can the system be implemented using current technology and given

cost and schedule constraints?

• Can the system be integrated with systems which are already in place?

 44

Operational Feasibility

 Operational Feasibility measures how well the solution will work in the

organization and how will end-user and management feels about system. Proposed

system is helpful for tourists, citizen and visitors. It will help them to get

appropriate and adequate information.

On studying the operational feasibility of the project the following conclusions were

derived:

• Developed system will provide the adequate throughput and all necessary

information to end users.

• It will provide advantageous and reliable services.

 Thus, it is operationally feasible to develop the proposed system.

Technical Feasibility

 Technical Feasibility tries to answer the following questions to make the

software feasible to develop.

• The software or tools necessary for building or running the application are

easily available or not?

• Compatibility amongst software exists or not?

• Are developers aware of these technologies?

• What about the alternative of these chosen technologies?

Factors Considered

• Here we have to consider those tools which will be required for developing

the project?

• The tools that are available and tools that will be required are taken into

account.

• I have to work on Visual Basic and Visual C++ for GIS. The company’s

former versions are developed in VC++, So the company already has the

licensed version of Visual Studio with MSDN.

• Various Shapefiles are desired as maps are to be displayed with the help of

shapefiles. It is desired to have as much as shapefiles possible. BISAG is

 45

Govt. of Gujarat enterprise .So, it has all official maps, DBF files as data

source and index files are also available.

• Well known softwares like Arc View, Arc Map are available.

Considering all the above points it is technically feasible to carry on the

project.

Economical feasibility

Economical feasibility addresses to the following issues:

• Is the organization having suitable budget to develop the proposed system?

• How much profit can be earned from the system by an organization?

• Would it be cost-effective to develop the system or it is worthwhile to remain

with the current system?

As the development tools are available free of cost, there isn’t any

burden of buying them. Pragati does not have Overlays of the GIS, so it is

certainly required .Extra funds are not required to develop the system, so it

is economically feasible to the organization.

Implementation feasibility

Under the study of Implementation feasibility following issues are considered:

• Is it possible to install the software within the given environment?

• Will organization, user support for the installation of software?

• Will proposed system cause any harm to the operations of the organization?

Operationally, this system can be installed and it will work according to its

functionality.

 46

 Chapter 4

 SYSTEM DESIGN

 System Design

 Architectural Design

 Flow Charts

 Object Oriented Design

 Structure Oriented Design

 Dynamic Modeling

 47

4.1 SYSTEM DESIGN

During the designing of the system I followed the modular approach .Firstly I

had discussed with Senior Scientist the basic needs and usages of the project to be

undertaken. Then I took help from Arc View which includes the Geo-Processing

Wizard extension which contains Overlays functions like Union, Intersection,

Clipping, Dissolve etc. in order to understand it’s operation, so that various

parameters and conditions to be considered can be known. After that I started the

algorithmic design of the system.

4.2 ARCHITECTURAL DESIGN

Figure 4.1 Architectural Design of the Proposed System

 The figure shows the interaction of user with system. The major components

of the model are:-

User:

 User interacts with the container (Visual Basic). It does not know the internal

operation of the system.

User
User
Interface

User Interface
Management
System(VB) Database

Display
Specification

ActiveX
Control

.dbf file
Call to
control

.dbf
file

User Interface
Display

 48

User Interface Management System:

 This calls various methods, properties developed in the ActiveX control. It

interacts with the ActiveX control.

ActiveX Control:

 This does the internal operations, various methods and properties are

developed in this control.

Database:

 Database stores data necessary for the process.

4.3 FLOW CHARTS

 49

Take Shapefile name as
input from the user

Does File Exists at the Path
given by user?

Is the Shapefile of
required type?

Construct the appropriate object
according to the shape type

Read the Main File Header

Is the length of file
same as mentioned in
the file header?

Read the next record and store it in
the memory

Does the file pointer
pass total file size?

Stop reading the file & release file pointer

Associate Layer Number with the file

Return the Layer Number

Return with
error code

Yes

No

Yes

No

Yes

No

No

Yes

Flow Chart for
Reading of shapefile

Figure 4.2 Flow Chart for Reading of shapefile

 50

Get the current Bounding Box set
for the display

Are both the extents
of Bounding Box
and display area in
proportion

Change the height &width of the Bounding Box
according to the display area

Calculate the scale factors Sx and Sy

Get the next record of the shape file

Does record falls in
the Display Area?

Convert the map coordinates of the record into
screen coordinates

 Display the record

Is this the last record
in the shape file?

Return

Yes

No

Yes

No

No

Yes

Figure 4.3 Flow Chart for Display of shapefile

Flow Chart for
Display of shapefile

 51

Get OpertnType

Is OpertnType 1?

Get the names of the Input
file, Overlay file and
Output file

Store these names as
m_Input_theme, m_Overlay_theme

and m_Output_theme

B

Yes

Yes

No

No

A

Give error
message

Are there
altleast two

themes added?

Flow chart for

finding the

Intersection or

Union

 52

B

Pass these values to Intersection algorithm

Create the new Output file with the
name m_Output_theme after getting

result from Intersection of
m_Input_theme with m_Overlay_theme

Display the Output file

 53

A

Is OpertnType 2?

Get the names of the Input
file, Overlay file and
Output file

Store these names as
m_Input_theme, m_Overlay_theme

and m_Output_theme

C

Yes

Yes

No

No

Give error
message

Give error
message

Are there
altleast two

themes added?

 54

C

Pass these values to Union algorithm

Create the new Output file with the
name m_Output_theme after getting
result from Union of m_Input_theme

with m_Overlay_theme

Display the Output file

Figure 4.4 Flow chart for finding the Intersection or Union

 55

4.4 OBJECT ORIENTED DESIGN

 The object model describes the structure of objects in a system-their

identity, their relationship to other objects, their attributes and their operations.

CObject

CBox CChart CPolylineRecord CQuery Int

Part Point CShapefile CBufferFile StrLabel

CPointFile CPolygonFile CLineFile

Figure 4.5 Object model for ActiveX Control

 56

4.5 STRUCTURE ORIENTED DESIGN

 Structural model shows how a function is realized by a number of other

functions it calls. Structural charts are the graphical way to represent

decomposition hierarchy.

Structured Charts

Structured Diagram steps

1) Identify system processing transformations

2) Identify input transformation.

3) Identify output transformation.

User
Input Call to

Control Response
Output

 GIS software

User Interface ActiveX Control Display

Figure 4.6 Initial structured chart of the system

 57

4.6 DYNAMIC MODELING

 State diagrams are used to represent dynamic modeling.

Conventions used in state diagram:

Event:

 Event is something that happens at a point of time.

States:

 The attribute values and links held by an object are called states.

Op type
Intersection
or Union

Op type Output
Output shape file

 GIS software

User Interface ActiveX Control Display

Get User
Input(Inpu
t and

Get Operation
type(Intersectio
n / Union)

Get Data Internal
Calculations

Database

DataData
Input

Output

Usr
i/p Op type Da

ta
Output for
display

Figure 4.7 Final Structured chart of the system

 58

Conventions used in state diagram are:-

State Diagram for finding Intersection and Union

User Input
Do: Get Input
Theme and
Overlay Theme
and Operation
type

Operations
Do: Intersection
or Union of the
two i/p files as
per the Operation
type

Display
Do:Display
Output shapefile

Figure 4.8 State Diagram for finding Intersection and Union

Output shape file

Initial State

Final State

Event

State

Input file,
Overlay file and
Operation type

 59

 Chapter 5

 Procedural Design

 Algorithms

 Data Flow Design

 60

5.1 Algorithms

Why efficient Algorithm?

 GIS algorithms for complex processes are often built up from simple ones

• The algorithm illustrates one of the principles of this type of programming,

that there are numerous special cases which have to be dealt with.

• In general, the cost of obtaining a solution increases with the problem size

o If the size of the problem is sufficiently small, even an inefficient

algorithm will not cost much to run

o Consequently, the choice of an algorithm for a small problem is not

critical unless the problem has to be solved many times.

 As mentioned before shapefile is consisting of hundreds of points, lines and

polygons so we have big problem size here, also strategy like point in polygon is

applied for both intersection and union repeatedly while doing intersection and

union of two themes so we require to have more efficient algorithms over here.

Main work to do

• Intersection

 Line-Line intersection

 Line-Polygon intersection

 Polygon-Polygon intersection

• Union

 Polygon-Polygon union

 For both the Intersection and Union we have to check repeatedly that

whether point lies inside or outside of the Polygon so one more thing to do is

• Point in Polygon strategy

 So I will start with Point in Polygon strategy, than Intersection and at the end

I will explain Union.

 61

5.1.1 Determining if a point lies on the interior of a polygon

Inside vs. Outside

One definition of whether a point is inside a region is the Jordan Curve

Theorem. Essentially, it says that a point is inside a polygon if, for any ray from this

point, there is an odd number of crossings of the ray with the polygon's edges

(Figure 1). This definition means that some areas which are enclosed by a polygon

are not considered inside. The center pentagonal area inside a star is classified as

outside because any ray from this area will always intersect an even number of

edges.

 Figure 5.1 Crossings Test

If the entire area enclosed by the polygon is to be considered inside, then the

winding number is used for testing. This value is the number of times the polygon

goes around the point. For example, a point in the center pentagonal area formed

by a star has a winding number of two, since the outline goes around it twice. If the

point is outside, the polygon does not wind around it and so the winding number is

 62

zero. Winding numbers also have a sign, which corresponds to the direction the

edges wrap around the point.

Complex polygons can be formed using either polygon definition. A complex

polygon is one that has separate outlines (which can overlap). For example, the

letter "R" can be defined by two polygons, one consisting of the exterior outline, the

other the inside hole in the letter. Most point in polygon algorithms can be easily

extended to test multiple outline polygons by simply running each polygon outline

through separately and keeping track of the total parity.

3D to 2D

In ray tracing and other applications the original polygon is defined in three

dimensions. To simplify computation it is worthwhile to project the polygon and test

point into two dimensions. One way to do this is to simply ignore one component.

The best component to ignore is usually that which, when ignored, gives the largest

area polygon.

This is easily done by taking the absolute value of each component of the

polygon plane's normal and finding the largest. The corresponding coordinates in

the polygon are then ignored. Precomputing some or all of this information once for

a polygon uses more memory but increases the speed of the intersection test itself.

While the above method is simple and quick, another projection may be

useful when the polygon vertices are not guaranteed to lay on a single plane. While

such polygons could be considered ill defined, they do crop up. For example, if a

spline surface is tessellated into quadrilaterals instead of triangles, then the

quadrilaterals are likely to be ill defined in this way. If a component is simply

dropped, cracking can occur between such polygons when they are cast upon

different planes.

One solution is to tessellate such polygons into triangles, but this may be

impractical for a variety of reasons. Another approach is to cast all polygons tested

onto a plane perpendicular to the testing ray's direction. A polygon might have no

area on this plane, but the ray would miss this polygon anyway. Casting a polygon

 63

onto an arbitrary plane means having to perform a matrix transformation, but this

solution does provide a way around potential cracking problems.

Bounding Areas

Point in Polygon Algorithms benefit from having a bounding box around

polygons with many edges. The point is first tested against this box before the full

polygon test is performed; if the box is missed, so is the polygon. Most statistics

generated in this Gem assume this bounding box test was already passed

successfully.

In ray tracing, Worley points out that the polygon's 3D bounding box can be

treated like a 2D bounding box by throwing away one coordinate, as done above for

polygons. By analysis of the operations involved, it can be shown to be generally

more profitable to first intersect the polygon's plane then test whether the point is

inside the 2D bounding box rather than first testing the 3D bounding box. Other

bounding box variants can be found in Woo.

Crossings Test

One algorithm for checking a point in any polygon is the crossings test. The

earliest presentation of this algorithm is Shimrat, though it has a bug in it. A ray is

shot from the test point along an axis (+X is commonly used) and the number of

crossings is computed (Figure 5.1). Either the Jordan Curve or winding number test

can be used to classify the point.

What happens when the test ray intersects one or more vertices of the

polygon? This problem can be ignored by considering the test ray to be a half-plane

divider, with one of the half-planes including the ray's points. In other words,

whenever the ray would intersect a vertex, the vertex is always classified as being

infinitesimally above the ray. In this way, no vertices are intersected and the code

is both simpler and speedier.

One way to think about this algorithm is to consider the test point to be at

the origin and to check the edges against this point. If the Y components of a

 64

polygon edge differ in sign, then the edge can cross the test ray. In this case, if

both X components are positive, the edge and ray must intersect and a crossing is

recorded. Else, if the X signs differ, then the X intersection of the edge and the ray

is computed and if positive a crossing is recorded.

MacMartin pointed out that for polygons with a large number of edges there

are generally runs of edges which have Y components with the same sign. For

example, a polygon representing Brazil might have a thousand edges, but only a

few of these will straddle any given latitude line and there are long runs of

contiguous edges on one side of the line.

So a faster strategy is to loop through just the Y components as fast as

possible; when they differ then retrieve and check the X components. Compared to

the basic crossings test the MacMartin test was up to 1.8 times faster for polygons

up to 100 sides, with performance particularly enhanced for polygons with many

edges.

Other optimizations can be done for this test. Preprocessing the edge list into

separate X and Y component lists, with the first vertex added to the end, makes for

particularly tight loops in the testing algorithm. This is not done in the code

provided so as to avoid any preprocessing or additional memory costs.

A somewhat faster crossings test is by turning the division for testing the X

axis crossing into a tricky multiplication test this part of the test became faster,

which had the additional effect of making the test for "both to left or both to right"

a bit slower for triangles than simply computing the intersection each time. The

main increase is in triangle testing speed, which was about 15% faster; all other

polygon complexities were pretty much the same as before.

On machines where division is very expensive (not the case on the HP 9000

series on which I tested) this test should be much faster overall than the old code.

Your mileage may (in fact, will) vary, depending on the machine and the test data,

but in general I believe this code is both shorter and faster.

 65

Angle Summation Test

The worst algorithm in the world for testing points is the angle summation

method. It's simple to describe: sum the signed angles formed at the point by each

edge's endpoints. If the sum is near zero, the point is outside; if not, it's inside

(Figure 5.2). The winding number can be computed by finding the nearest multiple

of 360 degrees.

The problem with this scheme is that it involves a square root, arc-cosine,

division, dot and cross product for each edge tested. In timing tests the MacMartin

test was up to 63 times faster than the angle summation test for polygons with up

to 100 sides. In fairness, the angle algorithm can be sped up in various ways, but it

will still always be faster to use any other algorithm in this Gem.

 Figure 5.2 Angle Summation Test

 66

Triangle Tests

In Graphics Gems, Didier Badouel presents a method of testing points

against convex polygons. The polygon is treated as a fan of triangles emanating

from one vertex and the point is tested against each triangle by computing its

barycentric coordinates. As Berlin points out, this test can also be used for non-

convex polygons by keeping a count of the number of triangles which overlap the

point; if odd, the point is inside the polygon (Figure 5.3).

Unlike the convex test, where an intersection means that the test is done, all

the triangles must be tested against the point for the non-convex test. Also, for the

non-convex test there may be multiple barycentric coordinates for a given point,

since triangles can overlap.

 Figure 5.3 Triangle Fan Test

When the number of sides is small, the barycentric test is comparable to the

MacMartin test in speed, with the additional bonus of having the barycentric

coordinates computed. As the number of sides approached 100, the MacMartin test

becomes 3 to 6 times faster than the barycentric method.

 67

A faster triangle fan tester proposed by Green is to store a set of half-plane

equations for each triangle and test each in turn. If the point is outside any of the

three edges, it is outside the triangle. The half-plane test is an old idea, but storing

the half-planes instead of deriving them on the fly from the vertices gives this

scheme its speed at the cost of some additional storage space.

For triangles this scheme is the fastest of all of the algorithms discussed so

far, being almost twice as fast as the MacMartin crossings test. It is also very

simple to code and so lends itself to assembly language translation.

Both the half-plane and barycentric triangle testers can be sped up further by

sorting the order of the edge tests. Worley and Haines note that the half-plane

triangle test is more efficient if the longer edges are tested first. Larger edges tend

to cut off more exterior area of the polygon's bounding box, and so can result in

earlier exit from testing a given triangle. Sorting in this way makes the test up to

1.6 times faster, rising quickly with the number of edges in the polygon. However,

polygons with a large number of edges tend to bog down the sorted edge triangle

algorithm, with the MacMartin test being from 1.6 to 2.2 times faster for 100 edge

polygons.

For the general test a better ordering for each triangle's edges is to sort by

the area of the polygon's bounding box outside the edge, since we are trying to

maximize the amount of area discarded by each edge test. This ordering provides

up to another 10% savings in testing time. Unfortunately, for the convex test

below, this ordering actually loses about 10% for regular polygons due to a subtle

quirk. As such, this ordering is not presented in the statistics section or the code.

Convex Polygons

Convex polygons can be intersected faster due to their geometric properties.

For example, the crossings test can quit as soon as two Y sign difference edges are

found, since this is the maximum that a convex polygon can have. Also, more

polygons can be categorized as "convex" for the crossings test by checking only the

change in the Y direction (and not X and Y as for the full convexity test).

 68

For example, a block letter "E" has at most two Y intersections for any test

point's horizontal line, so it can be treated as convex when using the crossings test.

Convexity is sufficient but not necessary for all of the algorithms discussed in this

section.

The triangle fan tests can exit as soon as any triangle is found to contain the

point. This algorithm can be enhanced by both sorting the edges of each triangle by

length and also sorting the testing order of triangles by their areas.

Larger triangles are more likely to enclose a point and so end testing earlier.

Using both of these sorting strategies makes convex testing 1.2 times faster for

squares and 2.5 times faster for regular 100 sided polygons.

Another strategy is to test the point against each exterior edge in turn. If the

point is outside any edge, then the point must be outside the entire convex

polygon. This algorithm uses less additional storage than the triangle fan and is

very simple to code.

The order of edges tested affects the speed of the algorithm; testing edges

which cut off the most area of the bounding box earliest on is the best ordering.

Finding this optimal ordering is non-trivial, but doing the edges in order is often the

worst strategy, since each neighboring edge usually cuts off little more area than

the previous. Randomizing the order of the edges makes this algorithm up to 10%

faster overall for regular polygons. However, even then the triangle fan algorithm

with sorting is up to 1.35 times faster for 100 edge regular polygons.

The exterior edge strategy looks for an early exit due to the point being

outside the polygon, while the triangle fan convex test looks for one due to the

point being inside. For example, for 100 edge polygons if all points tested are inside

the polygon the triangle fan is 1.7 times faster; if all are outside the exterior test is

more than 11 times faster (but only 3 times faster if the edges are not

randomized). So when the polygon/bounding box area is low the exterior edge

strategy might be best.

A method with O(log n) performance is discussed by Preparata and Shamos.

The polygon is preprocessed by adding a central point to it and is then divided into

wedges. The angles from an anchor edge to each wedge's edges are computed and

saved, along with half-plane equations for each wedge's polygon edge. When a

 69

point is tested, the angle from the anchor edge is computed and a binary search is

used to determine the wedge it is in, then the corresponding polygon edge is tested

against it (Figure 5.4). This algorithm is slower for polygons with few edges

because the startup cost is high, but the binary search makes for a much faster test

when the number of edges is high.

Figure 5.4 Convex Inclusion Test

Edge Problems

A problem that is sometimes important is determining if a point is exactly on

an edge of a polygon. Being "exactly" on an edge entails computing error bounds

and other issues in numerical analysis. While the "on" condition is of interest in CAD

and elsewhere, for most computer graphics related operations this type of

classification is unnecessary.

Problems occur in triangle fan algorithms when the code assumes that a

point that lies on a triangle edge is inside that triangle. Points on the edges

between test triangles will be classified as being inside two triangles, and so will be

 70

classified as being outside the polygon. This problem does not happen with the

convex test. However, another problem is common to this family of algorithms. If a

point is on the edge between two polygons, it will be classified as being inside both.

The code presented for these algorithms does not fully address either of

these problems. In reality, a random point tested against a polygon using either

algorithm has an infinitesimal chance of landing exactly on any edge. For rendering

purposes this problem can be ignored, with the result being one mis-shaded pixel

once in a great while.

The crossings test does not have these problems when the 2D polygons are

in the same plane. By the nature of the test, all points are consistently categorized

as being to one side of any given edge or vertex. This means that when a point is

somewhere inside a mesh of polygons the point will always be in only one polygon.

Points exactly on the unshared edge of a polygon will be classified as arbitrarily

inside or outside the polygon by this method, however. Again, this problem is rarely

encountered in rendering and so can usually be ignored.

Faster Tests

The algorithms presented so far for the general problem have been O(n); the

order of the problem is related to the number of edges. Preparata and Shamos

present a fascinating array of solutions which are theoretically faster. However,

these algorithms have various limitations and tend to bog down when actually

coded due to expensive operations.

In this section are some practical methods inspired by their presentation that

perform well under ordinary circumstances. They are still O(n) for pathological

cases, but for reasonable polygon data they are quite efficient. These methods use

much more memory and have higher initialization times before testing begins, but

are much faster per tested point.

 71

Bins Method

One method to speed up testing is to classify the edges by their Y

components and then test only those edges with a chance of intersecting the test

point's X+ test ray. The bounding box surrounding the polygon is split into a

number of horizontal bins and the parts of the edges in a bin are kept in a list,

sorted by the minimum X component.

The maximum X of the edge is also saved, along with a flag noting whether

the edge fully crosses the bin's Y bounds. In addition, the minimum and maximum

X components of all the edges in each bin are recorded.

When a point is to be classified, the proper bin is retrieved and if the point is

outside the X bounds, it must be outside the polygon. Else, the list is traversed and

the edges tested against the point. Essentially, a modified crossings test is done,

with additional speed coming from the sorted order and from the storage of the

"fully crosses" condition (Figure 5.5).

 Figure 5.5 Bin Test

 72

Grid Method

An even faster, and more memory intensive, method of testing for points

inside a polygon is using lookup grids. The idea is to impose a grid inside the

bounding box containing the polygon. Each grid cell is categorized as being fully

inside, fully outside, or indeterminate. The indeterminate cells also have a list of

edges which overlap the cell, and also one corner (or more) is determined to be

inside or outside using a traditional test. It is quick to determine the state of these

corners by dealing with those on each latitude line by flipping the state of each

corner to the right of the edge's crossing point.

To test a point against this structure is extremely quick in most cases. For a

reasonable polygon many of the cells are either inside or outside, so testing

consists of a simple look-up. If the cell contains edges, then a line segment is

formed from the test point to the cell corner and is tested against all edges in the

list. Since the state of the corner is known, the state of the test point can be found

from the number of intersections (Figure 5.6).

 Figure 5.6 Grid Cell Test

 73

Care must be taken when a polygon edge exactly (or even nearly exactly)

crosses a grid corner, as this corner is then unclassifiable. Rather than coping with

the topological and numerical problems involved, one simple solution is to just start

generating the grid from scratch again, giving slightly different dimensions to the

bounding box. When testing the line segment against the edges in a list, exact

intersections of an edge endpoint must be counted only once.

One additional speed up is possible. Each grid cell has four sides. If no edges

cross a side, then that side will be fully inside or outside the polygon. A perfectly

horizontal or vertical test line segment can then be generated and the faster

crossings test can be used against the edges in the cell. The only test case where

this made a significant difference was with a 20x20 grid imposed on a 1000 edge

polygon, where the grid cell side test was 1.3 times faster.

Solution first (2D)

The following is a simple solution to the problem often encountered in

computer graphics, determining whether or not a point (x,y) lies inside or outside a

2D polygonally bounded plane. This is necessary for example in applications such as

polygon filling on raster devices. hatching in drafting software, and determining the

intersection of multiple polygons.

Consider a polygon made up of N vertices (xi,yi) where i ranges from 0 to N-

1. The last vertex (xN,yN) is assumed to be the same as the first vertex (x0,y0),

that is, the polygon is closed. To determine the status of a point (xp,yp) consider a

horizontal ray emanating from (xp,yp) and to the right. If the number of times this

ray intersects the line segments making up the polygon is even then the point is

outside the polygon. Whereas if the number of intersections is odd then the point

(xp,yp) lies inside the polygon. The following shows the ray for some sample points

and should make the technique clear.

 74

For the purposes of this discussion 0 will be considered even, the test for

even or odd will be based on modulus 2, that is, if the number of intersections

modulus 2 is 0 then the number is even, if it is 1 then it is odd.

The only trick is what happens in the special cases when an edge or vertex of

the polygon lies on the ray from (xp,yp). The possible situations are illustrated

below.

The thick lines above are not considered as valid intersections, the thin lines

do count as intersections. Ignoring the case of an edge lying along the ray or an

edge ending on the ray ensures that the endpoints are only counted once.

Note that this algorithm also works for polygons with holes as illustrated

below

 75

The following C function returns INSIDE or OUTSIDE indicating the status of

a point P with respect to a polygon with N points.

#define MIN(x,y) (x < y ? x : y)

#define MAX(x,y) (x > y ? x : y)

#define INSIDE 0

#define OUTSIDE 1

typedef struct {

 double x,y;

} Point;

int InsidePolygon(Point *polygon,int N,Point p)

{

 int counter = 0;

 int i;

 double xinters;

 Point p1,p2;

 p1 = polygon[0];

 for (i=1;i<=N;i++) {

 p2 = polygon[i % N];

 if (p.y > MIN(p1.y,p2.y)) {

 if (p.y <= MAX(p1.y,p2.y)) {

 if (p.x <= MAX(p1.x,p2.x)) {

 76

 if (p1.y != p2.y) {

 xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;

 if (p1.x == p2.x || p.x <= xinters)

 counter++;

 }

 }

 }

 }

 p1 = p2;

 }

 if (counter % 2 == 0)

 return(OUTSIDE);

 else

 return(INSIDE);

}

Solution second (2D)

Another solution forwarded by Philippe Reverdy is to compute the sum of the

angles made between the test point and each pair of points making up the polygon.

If this sum is 2pi then the point is an interior point, if 0 then the point is an exterior

point. This also works for polygons with holes given the polygon is defined with a

path made up of coincident edges into and out of the hole as is common practice in

many CAD packages.

The inside/outside test might then be defined in C as

typedef struct {

 int h,v;

} Point;

int InsidePolygon(Point *polygon,int n,Point p)

 77

{

 int i;

 double angle=0;

 Point p1,p2;

 for (i=0;i<n;i++) {

 p1.h = polygon[i].h - p.h;

 p1.v = polygon[i].v - p.v;

 p2.h = polygon[(i+1)%n].h - p.h;

 p2.v = polygon[(i+1)%n].v - p.v;

 angle += Angle2D(p1.h,p1.v,p2.h,p2.v);

 }

 if (ABS(angle) < PI)

 return(FALSE);

 else

 return(TRUE);

}

/*

 Return the angle between two vectors on a plane

 The angle is from vector 1 to vector 2, positive anticlockwise

 The result is between -pi -> pi

*/

double Angle2D(double x1, double y1, double x2, double y2)

{

 double dtheta,theta1,theta2;

 theta1 = atan2(y1,x1);

 theta2 = atan2(y2,x2);

 dtheta = theta2 - theta1;

 while (dtheta > PI)

 78

 dtheta -= TWOPI;

 while (dtheta < -PI)

 dtheta += TWOPI;

 return(dtheta);

}

Solution third (2D)

There are other solutions to this problem for polygons with special attributes.

If the polygon is convex then one can consider the polygon as a "path" from the

first vertex. A point is on the interior of this polygons if it is always on the same

side of all the line segments making up the path.

Given a line segment between P0 (x0,y0) and P1 (x1,y1), another point P

(x,y) has the following relationship to the line segment.

Compute

(y - y0) (x1 - x0) - (x - x0) (y1 - y0)

if it is less than 0 then P is to the right of the line segment, if greater than 0

it is to the left, if equal to 0 then it lies on the line segment.

Timings are in microseconds per test, and appear to be within roughly +-

10% accuracy. However, the best way to get true timings is to run the code on the

 79

target machine; the code provided on disk has a test program which can be used to

generate timings under various test conditions.

 The performance of all the algorithms is practically linear; as such, the

ratios of times for the 1000 edge polygons are representative of performance for

polygons with a large number of edges.

Table 5.1 General Algorithms, Random Polygons

 Number of edges per polygon
 3 4 10 100 1000

MacMartin 2.9 3.2 5.9 50.6 485
Crossings 3.1 3.4 6.8 60.0 624

Triangle Fan+edge sort 1.1 1.8 6.5 77.6 787
Triangle Fan 1.2 2.1 7.3 85.4 865
Barycentric 2.1 3.8 13.8 160.7 1665

Angle Summation 56.2 70.4 153.6 1403.8 14693

Grid (100x100) 1.5 1.5 1.6 2.1 9.8
Grid (20x20) 1.7 1.7 1.9 5.7 42.2
Bins (100) 1.8 1.9 2.7 15.1 117
Bins (20) 2.1 2.2 3.7 26.3 278

Table 5.2 General Algorithms, Regular Polygons

 Number of edges per polygon
 3 4 10 100 1000

MacMartin 2.7 2.8 4.0 23.7 225
Crossings 2.8 3.1 5.3 42.3 444

Triangle Fan+edge sort 1.3 1.9 5.2 53.1 546
Triangle Fan 1.3 2.2 7.5 86.7 894
Barycentric 2.1 3.9 13.0 143.5 1482

Angle Summation 52.9 68.1 158.8 1489.3 15762

Grid (100x100) 1.5 1.5 1.5 1.5 1.5
Grid (20x20) 1.6 1.6 1.6 1.7 2.5
Bins (100) 2.1 2.2 2.6 4.6 3.8
Bins (20) 2.4 2.5 3.4 9.3 55.0

 80

Conclusion of Point in Polygon strategies

 So from the results we can say that Mac Martin test is most efficient

strategy and so it should be used for the point in polygon strategy.

5.1.2 Line-Line Intersection

SIMPLEST CASE

Procedure

• Find the equations of the two lines, and solve them simultaneously for the

intersection

o the equation of a line is:

y = a + bx where b is the slope

• Given two points on the line at (x1,y1) and (x2,y2), the slope b can be

determined by the expression:

b = (y1 - y2) / (x1 - x2)

o the value of a can then be found by solving the equation using either

point

General form

• In general, the two lines

y = a1 + b1x and y = a2 + b2x intersect at:

xi = - (a1 - a2) / (b1 - b2) yi = a1 + b1xi

 81

• An intersection point at xi lies between x1 and x2, i.e. on line 1, if:

(x1 - xi) (xi - x2) >= 0

• Similarly the point lies on line 2 with endpoints (u1,v1) and (u2,v2) if:

(u1 - xi) (xi - u2) >= 0

SPECIAL CASES

• Unfortunately this algorithm will get into trouble in certain special cases:

Vertical lines

• If line is vertical, then it will cause an error because of an attempt to divide

by zero, as numerical processors cannot deal with infinity

Solution

• To deal with these special cases we must make the algorithm a little more

complex:

• These special cases occur in many simple geometrical algorithms.

o they can be avoided to some extent by using different approaches

COMPLEX LINES

• Consider two complex lines of n1 and n2 straight line segments respectively:

o these can be processed for all intersections by looping the simple

algorithm, testing every segment in one line against every segment in

the other

o the amount of work to be done is proportional to the product (n1 x n2)

 82

5.1.3 Line-Polygon Intersection

Line-Polygon intersection operations should comprise the following cases

• totally plotted

• partially plotted

• not plotted at all

 Even though neither of two vertices is within the window, certain part of the

line segment may be still within.

 There are many different techniques for clipping lines in 2D

 The fundamentals are

(1) Line equations and

(2) Intersection computation

Could apply point test to all points on line

– Too much work

–Need a simple test involving line's endpoint coordinates

Next, we will discuss Cohen-Sutherland algorithm

5.1.3.1 Cohen-Sutherland Algorithm

It is not the most efficient algorithm

It is one the most commonly used

The key technique is 4-bit code:

TBRL where

T is set (to 1) if y > top

B is set (to 1) if y < bottom

R is set (to 1) if x > right

L is set (to 1) if x < left

 83

Window Regions

 Outcode of p : 1000

 Outcode of q : 0010

 Outcode of [pq] : 0000

 Not rejected

 84

 Outcode of p : 1010

 Outcode of q : 1010

 Outcode of r : 0110

 Outcode of s : 0010

 Outcode of t : 0110

 Outcode of u : 0010

 Outcode : 0010

 Rejected

Algorithm

 Assume two endpoints are p0 and p1

 If code(p0) OR code(p1) is 0000,the line can be trivially accepted, the line is

drawn

 If code(p0) AND code(p1) is NOT 0000,the line can be trivially rejected, the

line is not drawn at all

 85

 Otherwise, compute the intersection points of the line segment and window

boundary lines (make sure to check all the boundary lines)

Line Intersection

Intersection Computation

 Line equation

y = y1 +m(x - x1) ,where m =(y2 - y1)/(x2 - x1)

Line intersection with the left vertical boundary

 Line intersection with the left vertical boundary x = l

Assume the intersection is c

 x = l

 y = y1 +m(l-x1)

 Line ab is clipped w.r.t. x = l, now it becomes cb

Line intersection with the top boundary y = t

 86

 Assume the intersection is d

 y = t

 x = 1/m(t-y1)+x1

 Line cb is clipped w.r.t. y = t, line cb becomes cd

Line intersection with the right boundary x = r

 Assume the intersection is e

 x = r

 y = y1 +m(r - x1)

 Line cd is clipped w.r.t. x = r, line cd becomes ce

Line intersection with the bottom boundary y = b

 Assume the intersection is f

 y = b

 x = 1/m(b-y1)+x1

 Line ce is clipped w.r.t. y = b, line ce becomes fe

 So, the entire process is

 ab - cb - cd - ce –fe

Pseudo code

 C-S-Clip(P0 = (x0,y0) , P1 = (x1,y1) , xmin , xmax , ymiz , ymax)

C0 ← Code(P0) ; C1 ← Code(P1);

if ((C0 and C1) ≠ 0) then

return;

if ((C0 or C1) == 0) then

draw(P0, P1);

else if (OutsideWindow(P0)) then

 87

begin

Edge (Window boundary of leftmost non-zero bit of C0;

P2 ← line(P0,P1) ∩ Edge;

C-S-Clip(P1 , P2 , xmin , xmax , ymin , ymax);

End

Else

begin

Edge (Window boundary of leftmost non-zero bit of C1;

P2 ← line(P0,P1) ∩ Edge;

C-S-Clip(P0, P2 , xmin , xmax , ymin , ymax);

end

Liang-Barsky Clipping

 1 > α4 > α3 > α2 > α1 > 0

Line meets l before t

Line between α2 and α3 is inside the window

 1 > α4 > α2 > α3 > α1 > 0

Line meets t before l

Whole line is outside

Reject completely

 88

Efficiency Improvements

Compute intersections one by one

-May need less than four intersections to reject

Compare without floating point division

-If (α2 < α3) then (ymax-y1)(x2-x1) <(xmin-x1)(y2-y1)

Line-Segment Algorithm Assessment

• Cohen-Sutherland

 – Works well if many lines can be rejected early

 – Recursive structure (multiple subdiv) a drawback

• Liang-Barsky

 – Avoids recursive calls (multiple subdiv)

 – Many cases to consider (tedious, but not expensive)

 – Used more often in practice

 89

5.1.3.2 Presented Line-Polygon Intersection Algorithm

In real problem polygons are not that much perfect rectangular type they can be

regular or convex type so proposed algorithm is as described below :

 Compare line bounding box with the polygon bounding box

 If they intersect than

 Further compare bounding box of line segment with that of polygon

 If they intersect than

 Take two end points of the line segment p1(x1,y1) and

 p2(x2,y2)

 Check whether they are outside or inside the polygon using

 point in polygon strategy as described before

 If both points are within the polygon line segment is

 totally inside the polygon so save both end points

 If both points are outside the polygon than compute the

 intersection of line segment with polygon sides

 If two intersections found save both intersection

 points

 If none intersection found than line segment is

 outside the polygon so reject it

 If p1 is outside and p2 is inside the polygon

 90

 If line is outside to inside save the intersection

 point and p2

 If line is inside to outside save the intersection

 point

5.1.4 Polygon-Polygon Intersection

There are mainly two intersection algorithms

 - Weiler algorithm

 - Vatti algorithm

So I have explained here weiler algorithm in depth and described why the algorithm

presented over here is more beneficial than these two algorithms.

Weiler-Atherton Algorithm

• General clipping algorithm for concave polygons with holes

• Produces multiple polygons (with holes)

• Make linked list data structure

• Traverse to make new polygon(s)

 91

• Given polygons A and B as linked list of vertices (counter-clockwise order)

• Find all edge intersections & place in list

• Insert as “intersection” nodes

• Nodes point to A & B

• Determine in/out

 status of vertices

Intersection

• Start at intersection point

– If connected to an “inside” vertex, go there

– Else step to an intersection point

– If neither, stop

• Traverse linked list

• At each intersection point switch to other polygon and remove intersection point

from list

• Do until return to starting intersection point

• If intersection list not empty, pick another one

• All visited vertices and nodes define and’ed polygon

 92

5.1.4.1 Why this presented Polygon-Polygon Intersection algorithm?

Weiler-Atherton Algorithm

 The Weiler-Atherton algorithm is capable of clipping a concave polygon with

interior holes to the boundaries of another concave polygon, also with interior

holes.

 But it is based on a graph representation of the polygons and was rather

complicated.

 In order to generate the resultant polygon, a complete traversal of a tree

structure was necessary.

 Here in present system to be developed we dont need to do intersection of

polygons with the holes and also tree structure and graph makes things more

complex and less efficient so we used method which uses only array data structure

and simple algorithm rather than complex.

Vatti algorithm

 Vatti proposed a new algorithm. His method was able to perform some other

boolean operations on the two input polygons and offered support to an eventual

further filling process.

 However, the data structure they use was more complex that in the

algorithm presented. Moreover, the intersection between the cross intersecting

edges of a polygon has also to be computed. This leads to poorer results in

comparison with the present algorithm.

 So in this case also proposed algorithm is more beneficial because of its

simple datastructure and algorithm.

 93

5.1.4.2 Presented Polygon-Polygon Intersection Algorithm

Subproblem:

 – Input : polygon (vertex list) of InputPolygon and OverlayPolygon

 – Output : new (clipped/intersected) polygon (vertex list)

To get the intersection of two polygons we need to clip the InputPolygon using the

boundary of the OverlayPolygon

To clip vertex list (polygon) against other polygon:

 – Test first vertex. Output if inside, otherwise skip.

 – Then loop through list, testing transitions

• In-to-in : output vertex

• In-to-out : output intersection

• Out-to-in : output intersection and vertex

• Out-to-out : no output

 – Will output clipped polygon as vertex list

 Can form a pipeline

 Process vertex list concurrently

• For each clipper, there are 4 possible situations for

the vertices at the endpoints of any polygon edge:

All of the clippers follow the same procedure:

 94

 • In case 1: the line segment is not clipped; the second

 vertex v2 is forwarded to the next clipper

 • In case 2: the intersection point, v2′, of the line segment with the clipping

 edge is determined and forwarded to the next clipper

 • In case 3: the line segment is entirely outside the clip region; no vertices

 are forwarded to the next clipper

 • In case 4: the intersection point, v1′, of the line segment with the clipping

 edge is determined and forwarded to the next clipper, along

 with the vertex v2

Edge 1:

 • for all clippers, the vertices satisfy case 1;

 • nothing is clipped;

 • vertex v2′is output

Edge 2:

 • for the bottom, right, and top edge clippers, the vertices satisfy case 1;

 • for the clipper corresponding to the left edge, the vertices satisfy case 2;

 • intersection point v2′�is output

 95

5.1.5 Polygon-Polygon Union

5.1.5.1 Difference between Union and Intersection

• Union is very similar to Intersection, but in Union the parts of the polygons that

do not intersect have zero for the non-defined attributes.

• Intersection only gives the part of the input feature which is within the overlay

feature whereas in union individual parts and common parts are included in the

output file.

• So as we know algorithms related to the union is based on the intersection

algorithms for the vectors.

• So there are mainly two intersection algorithms based on which we can develop

union algorithm

 - Weiler algorithm

- Vatti algorithm

5.1.5.2 Why this presented Polygon-Polygon Union algorithm?

 Clipping an arbitrary polygon against an arbitrary polygon is a basic routine

in computer graphics. In rendering complex images, it may be applied thousands of

times. The efficiency of these routines is therefore extremely important.

 So far though, only two other algorithms have been proposed, Weiler

designed for the first time an algorithms which was able to clip arbitrary polygons.

His approach was based on a graph representation of the polygons and was rather

complicated.

 In order to generate the result polygon, a complete traversal of a tree

structure was necessary. Vatti proposed a new algorithm. His method was able to

perform some other Boolean operations on the two input polygons and offered

support to an eventual further filling process.

 96

 However, the data structure they use was more complex that in the

algorithm presented. Moreover, the intersection between the cross intersecting

edges of a polygon has also to be computed. This leads to poorer results in

comparison with the present algorithm.

 Obviously if we want to do union of two polygons we need to modify

intersection algorithm to do it. Also Weiler-Atherton algorithm is more complex and

uses tree structure and graphs so I have modified Weiler-Atherton algorithm to do

the union of the two polygons and used simple data structure than graphs and tree.

5.1.5.3 Data structures

 The algorithm computes the unioned polygon in three phases. In the first

phase it determines (and marks) the intersection points. The points are then

inserted in both lists, in their proper place by ordering them using the alpha values.

 If no intersection points are found in this phase we know that either the

subject polygon lies entirely inside the clip polygon or vice versa, or that both

polygons are disjoint. By performing a containment test for any of the vertexes we

are able to determine which case we have. Then we either return the inner polygon

or nothing at all.

 In order to efficiently implement this, the algorithm uses two linked lists to

represent the polygons. One list is for the OverlayPolygon and one for the

InputPolygon (SubjectPolygon). In each list, a node represents a distinct vertex.

Obviously, the lists will contain the x and y coordinates of the vertexes as well as

the necessary index value to the previous and next node in the list. In addition to

these however, the algorithm needs some more information:

 int x, y;

 int next;

 int prev;

 int intersect; /* 1 if an intersection point, 0 otherwise */

 97

 int entry; /* 1 if an entry point, 0 otherwise */

 int visited; /* 1 if the node has been visited, 0 otherwise */

 float alpha; /* intersection point placemet */

 Intersect is a boolean value that is set to true if the current node is an

intersection point and to false otherwise. Similarly, entry is flag that records

whether the intersecting point is an entry or an exit point to the other polygon's

interior.

 The visited flag is used to mark the nodes already inserted in the result (it is

important to notice here that every intersection point belongs to the resulting

polygon (since by definition it belongs to both interiors).

 The alpha value is a floating point number from 0 to 1 that indicates the

position of an intersection point reported to two consecutive

non-intersection vertexes from the initial list of vertexes.

5.1.5.4 Presented Polygon-Polygon Union Algorithm

Phase one

 The first phase is basically an iteration through the both lists (the complexity

is at least m*n, where m and n are the number of vertexes for the two polygons).

The intersection points between all the edges are determined.

 Intersection can be found by using the following equations:

 Intersecting Two Edges

• Edge 0: (P0, P1)
• Edge 2: (P2, P3)
• E0 = P0 + t0 * (P1-P0) D0 ≡� (P1-P0)
• E2 = P2 + t2 * (P3-P2) D2 ≡ �(P3-P2)
• P0 + t0 *D0= P2 + t2 * D2
• x0 + dx0 * t0= x2 +dx2 * t2
• y0 +dy0 * t0 = y2 +dy2 * t2

 98

Solve for t’s

• t0 = ((x0 – x2) * dy2+ (y2 - y0) * dx2) / (dy0 * dx2- dx0 * dy2)
• t2 = ((x2 - x0) * dy0+ (y0 - y2) * dx0) / (dy2 * dx0- dx2 * dy0)
• Edges intersect if 0 ≤ t0, t2 ≤ 1
• Edges are parallel if denominator = 0

 An important thing to remark is that here, unlike in the Vatti's algorithm,

only the intersection points between edges from different polygons are considered.

 Once a new intersection point is determined, it is inserted in both the two

lists. While computing an intersection point, the algorithm determines also its alpha

value.

 The alpha value shows basically the placement of the intersection point

between the two polygon vertexes. If the length of the new formed segment is a

and the length of the edge it belongs to is b, then the alpha value is defined as a/b

(the value is obviously between 0 and 1). Alpha is used when inserting the new

intersection points. They basically define an ordering relation on the number of

intersection points between the two vertexes of the same edge.

Phase two

 Phase two is a simple process of marking the intersection points as entries or

exits. Practically, the intersection points are labeled as entry/exit alternatively when

traversing the polygon lists, since we cannot have two entry/exit points in a row.

 The process starts by first determining the inside/outside value for one

vertex of each of the polygons. If, for example, it is outside the other

polygon, then the next intersection point that come across will be marked as entry.

What it is interesting here is that, by changing the order in which one starts

marking the nodes, other boolean operations on the set of polygons (specifically

union and difference) can also be performed.

 99

 Consequently, the only problem in this phase is finding a "containment test"

that, given a point and a polygon, determines whether the point lies inside that

polygon or not.

 But I have already found a good method to test whether the point is within

the interior of the polygon or not so it is not a problem anymore here.

Phase three

 The goal of phase three is to generate the unioned polygon. The generation

process is a back and forth navigation through the two lists, guided by the

entry/exit values.

 Generation of a single polygon starts by traversing through the InputPolygon

in counter clock wise direction and adding each point of that list until first

Intersection point comes.

 If the point is an entry then switch the list and go forward in the new list till

the next intersection point is reached (otherwise go backward). From this exit point

switch the list. Further go forward or backward depending on whether the

"neighbor" vertex is an entry or an exit.

 This process iterates until the starting point is reached, when we complete

the generation of the polygon. In case that there still are unvisited exit nodes

(every node is marked as visited or not) then the result is composed of multiple

rings and a new iteration begins.

 The execution of the algorithm for a small example is illustrated below:

 100

Figure 5.7 Small example

Figure 5.8 Two lists of Input and Overlay Polygon

 101

5.1.5.5 Algorithm for the union with example

Figure 5.9 InputPolygon P and OverlayPolygon Q

1) We calculate intersections of sides and put them in two lists :

 For polygon P -> P1 ; I0 ; I1 ; P2 ; I2 ; P3 ; P4 ; I3 ; P5 ; I4 ; I5 ; P6

 For polygon Q -> Q1 ; Q2 ; I1 ; I2 ; I3 ; I4 ; Q3 ; Q4 ; I5 ; I0

2) We have also list of exiting points for P : I5 ; I3 ; I1

3) We begin with first point of polygon P , P1 and walk along the polygon in
counter clockwise direction untill we get the intersection point means

We take next point on list for P until we get intersection point I0

As I0 is an entering point we change the list and walk along the polygon Q ,so we
get the next point Q1,than Q2 and than I1

Here I1 is an exiting point so we go to list for P and take next point P2 than we take
I2 but it is an entering point so we further switch to Q’s list

 102

So now next point is I3 which is exiting point so we go to list for P, so P4 is a next
point and than I4 but it is entering for P so we go to list for Q and get the next
point Q3,than Q4 and than I5 which is an exiting point so further we switch to P’s
list and get the points P6 and P1 so we got all the points to generate new resultant
polygon which is a union of the two polygon P and Q.

4) We delete exiting points from exiting list

 So output Polygon will be as given below

Figure 5.10 Unioned OutputPolygon

 103

We can describe this algorithm in short as follows:

• Find a vertex of A outside of B

• Traverse linked list

• At each intersection point switch to

 other polygon

• Do until return to starting vertex

• All visited vertices and nodes define

 union’ed polygon

Special Case

If polygons don’t intersect

 – Union

 • If one inside the other, return polygon that surrounds the other

 • Else, return both polygons

 104

5.2 DATA FLOW DESIGN

 Data flow design is concerned with designing a sequence of functional

transformations that convert system inputs into the required outputs. The

design is represented as data flow diagrams. These diagrams illustrate how data

flows through a system and how output is derived from the input through a

sequence of functional transformations.

 Data-flow diagrams are a useful and intuitive way of describing a

system.They are normally understandable without special training, especially if

control information is excluded. They show end to end processing.

 Conventions used in drawing the data flow Diagrams are:-

Data Flow

Processing
Function

Start or Stop point

Database

 105

5.2.1 CONTEXT LEVEL DIAGRAM

Context level diagram shows the main task of the process.

End User: The user of the system.

ActiveX Control: This is developed in microsoft Visual C++ for internal operations

and is not application dependent. This can be used for any type of software.

Container (User Interface): This is developed in Microsoft visual Basic and is

visible to user. This is user friendly and easily understandable to both technical and

non technical users.

 Control Users
(Container
developer)

End Users

Results

Various queries
and operations

Call to
Control

.shp files

.dbf file ActiveX
Control

Various Methods,
Events, Properties

Figure 5.11 Context level diagram

 106

5.2.2 First Level Data Flow Diagram

End Users

Control Users
(Container
developer)

Output shape
file

Input and Overlay
shape files and
Operation type
(Intersection or
Union)

.shp files .dbf files

Various methods.
Events, Properties,
Results

Find

Intersection of
the Input and
Overlay files

 1

Find Union of
the Input and
Overlay files

 2

Figure 5.12 First level Data Flow Diagram

 107

5.2.3 Second Level Data Flow Diagrams

.dbf

User

Read
User i/p

Set
OpType = 1 Do

Intersection

.shp

Figure 5.13 Second Level Data Flow Diagram for Intersection

I/p

Input theme, Overlay
theme, OpType

Display
Output shape

file
User

 108

.dbf

User

Read
User i/p

Set
OpType = 2 Do Union

.shp

Figure 5.14 Second Level Data Flow Diagram for Union

I/p

Input theme, Overlay
theme, OpType

Display
Output shape

file
User

 109

 Chapter 6

 FUNCTIONAL SPECIFICATION

 Input Specifications and Input Snapshots

 Output Specifications and Output Snapshots

 Function and Performance

 110

6.1 Input Specifications and Input Snapshots

As the Intersection and Union both requires two files as input one is input file

and other is overlaying file so user first need to add them as a themes by browsing

the files.

 Figure 6.1 Add theme window

 111

 Figure 6.2 Adding of file province.shp

 Figure 6.3 Display of file Province.shp

 112

 Figure 6.4 Adding of file lakes.shp

 Figure 6.5 Display of the both files lakes.shp and province.shp

 113

After that user can select “GeoProcessing Wizard” for selecting one of the two

options for Intersection and Union from it.

 Figure 6.6 Geoprocessing Wizard with Intersection option

 114

 Figure 6.7 Geoprocessing Wizard with Union option

Here user requires to input two added files and result will be stored in third

file which is Outputfile.

According to the values of these parameters means files, user can get the

desired output either for Intersection or Union.

 115

6.2 Output Specifications and Output Snapshots

As we are using VB to develop User Interface, the user is provided with an

excellent Graphical User Interface (GUI) and project is very user friendly. So output

or result will be displayed as an image to the user and it is stored in the shape file

format. This graphical display of the output is strored in one of the three feature

types point, line, and polygon in file with the format .shp.

As it has attributes related to each feature point, line, polygon stored in the

database file, user can have the required attribute values of the resultant map in

the database file stored with the .dbf format.

6.2.1 Line-Polygon Intersection Snapshots

Figure 6.8 River map – line feature – input file

 116

Figure 6.9 Province map – Polygon feature – Overlay file

Figure 6.10 Intersected river map – line feature – output file

 117

Figure 6.11 Province and intersected file together

6.2.2 Polygon-polygon Intersection Snapshots

Figure 6.12 Lakes file – Polygon feature - Input file

 118

Figure 6.13 Province file – Polygon feature – Overlay file

Figure 6.14 Lakes and Province file together

 119

Figure 6.15 Intersected file – Polygon feature – Output file

 120

6.2.3 Polygon – Polygon Union Snapshots

Figure 6.16 Lakes file – Polygon feature – Inputfile

Figure 6.17 Province file – Polygon feature - Overlayfile

 121

Figure 6.18 Both Province and Lakes files together

Figure 6.19 Unioned file – Polygon feature - Outputfile

 122

6.3 Function and Performance

In order to allow user to input the parameters he must be provided

with good GUI and then the values of this parameters must be stored in

variables. Then these values must be passing to the GGIS control which

contains the coding of the whole thing. So GGIS has the implementation of

the algorithm in Visual C++. And GUI is added in Pragati using Visual Basic.

 123

 Chapter 7

 IMPLEMENTATION

 Member Variables

 Member Functions

 Languages and Tools

 Platform Dependencies

 Constraints

 Implementation Challenge

 124

7.1 MEMBER VARIABLES

m_shapeType - specifies what type of feature(shape) file is having

m_numPoints - Total number of points in the polyLine

m_numParts - Total number of parts, mainly line is consist of the line segments

 so total number of segments in the line and total number of

 rings in case of the polygon

m_points - Pointer object to the point feature ,to access the points of the

 line

m_parts - Integer pointer pointing to an array having starting index of the

 each part stored in it

m_box - Bounding box of the line or polygon,double array having four

 values stored in it

 xmin - minimum x co-ordinate value

 ymin - minimum y co-ordinate value

 xmax - maximum x co-ordinate value

 ymax - maximum y co-ordinate value

m_Overlay_theme --- Shape file which is used to Intersect the other file

m_Input_theme --- Shape file which is used as input file to be

 clipped, intersected or unioned with the overlay file

m_Output_theme --- Shape file which is used to store the output got by doing

 intersection or union of the two shape files namely input

 file and overlay file

interX[] --- Stores the x co-ordinates of the intersection points

interY[] --- Stores the y co-ordinates of the intersection points

 125

interCount --- Stores the total number of intersections of the line

 segment consist of ending points p1 and p2 with

 overlaypolygon

totalPolylines --- Total number of polylines shape file is having

totalInputPolygons --- Total number of polygons in the InputFile

totalPolygons --- Total number of polygons in the OverlayFile

totalParts --- Total number of parts(segments) polyLine is having or

 total number of parts(rings) polygon is having

firstIndex --- index of the first point of part

lastIndex --- index of the last point of part

7.2 MEMBER FUNCTIONS

void CGGISCtrl::GeoProcessingInterLine(LPCTSTR m _Overlay_theme,

LPCTSTR m_Input_theme, LPCTSTR m_Output_theme)

 This function is used to do the Intersection of the input file(m_Input_theme)

having the feature polyline with the overlay file having the feature polygon

(m_Overlay_theme)and stores the output in the output file(m_Output_theme)

void CGGISCtrl::GeoProcessingInterPolygon(LPCTSTR m_Overlay_theme,

LPCTSTR m_Input_theme, LPCTSTR m_Output_theme)

 This function is used to do the Intersection of the input file(m_Input_theme)

having the feature polygon with the overlay file having the feature polygon

(m_Overlay_theme)and stores the output in the output file(m_Output_theme)

void CGGISCtrl::GeoProcessingUnion(LPCTSTR m_Overlay_theme, LPCTSTR

m_Input_theme, LPCTSTR m_Output_theme)

 This function is used to do the Union of the input file(m_Input_theme) having

the feature polygon with the overlay file having the feature

 126

polygon(m_Overlay_theme)and stores the output in the output

file(m_Output_theme)

void CShapePolygon::Intersect(CShapePoint p1, CShapePoint p2, double

interX[], double interY[],int & interCount)

 This function is called with the two points p1 and p2 and it gets the

intersections of the line segment consist of these points as end points with the

OverlayPolygon

So mainly intersection strategies are performed over here

BOOL CShapePolygon::InOut(double x1,double y1)

 Returns true if the point with (x1,y1) co-ordinates is within the polygon

So basically it performs "point in polygon" strategies

CShapePoint::CShapePoint(int shape, double x, double y)

 Constructor to initialize a point with (x,y) co-ordinates

double CShapePoint::GetX()

 Returns x co-ordinate of the point

double CShapePoint::GetY()

 Returns y co-ordinate of the point

void CShapePoint::SetXY(double x, double y)

 Sets co-ordinates of the point as (x,y)

 127

CShapePolyLine::CShapePolyLine(int shape, int nparts, int npoints,

CShapePoint *points, int *parts, double *box)

 Constructor to initialize polyLine values when we want to create a new

polyLine mainly when we want to create output polyLine

double CShapePolyLine::GetBoundPoint(int i)

 This function returns one of the bounding points

 returns xmin value if i = 0

 returns ymin value if i = 1

 returns xmax value if i = 2

 returns ymax value if i = 3

int CShapePolyLine::GetTotalParts()

 This function returns total number of parts(segments) polyLine is having

int CShapePolyLine::GetTotalPoints()

 This function returns total number of points of the polyLine

int CShapePolyLine::GetPartFirstIndex(int l)

 This function returns index of the first point of part(segment) l

int CShapePolyLine::GetPartLastIndex(int l)

 This function returns index of the last point of part(segment) l

 128

CShapePoint CShapePolyLine::GetPoint(int i)

 This function returns point having index i

BOOL CShapePolygon::CompareBox(double x1, double y1, double x2,

double y2)

 This function returns true if bounding box of the InputPolyLine or

InputPolygon is intersecting with the bounding box of OverlayPolygon

BOOL CShapePolygon::ComparePartBox(double xmin, double ymin, double

xmax, double ymax, double xminP, double yminP, double xmaxP, double

ymaxP)

 Compares that bounding box of the polygon is intersecting with the bounding

box of OverlayPolygon or not

double CShapePolygon::GetBoundPoint(int i)

 Returns the ith point of the bounding box

CShapePoint CShapePolygon::GetPoint(int i)

 Returns a point with index i

int CShapePolygon::GetPartFirstIndex(int l)

 Returns part's first index

 129

int CShapePolygon::GetTotalParts()

 Returns total number of parts(rings)

int CShapePolygon::GetTotalPoints()

 Returns total number of Points in polygon

int CShapePolygon::GetPartLastIndex(int l)

 Returns part's last index

BOOL CShapePolygon::CompareBox1(double x1, double y1, double x2,

double y2)

 Returns true if the bounding box of the OverlayPolygon is same as

InputPolygon with the bounding box having bounds x1,y1,x2,y2

int CGGISCtrl::GetTotalInputPoly()

 Returns total number of polygons of the InputFile

int CGGISCtrl::GetTotalPoly()

 Returns total number of polygons of the OverlayFile

 130

7.3 Languages and tools

 To implement, test and validate the efficiency of the algorithms concerning

the Intersection and Union of the maps we need to develop language skill in

 -Visual Basic

 -Visual Studio

 We need to implement our research work using two different languages

because we need to do two things

1) GUI is to be done in Visual Basic which has to be integrated in Pragati

S/W

2) Coding is to be done in Visual C++ which has to be integrated in GGIS

control

So we use “Microsoft Visual Studio” for the implementation of research work

in Visual Basic and Visual C++.

We found wide range of facilities provided by VC++ that would be of great

help while we progressed further with the work.

Visual C++ 6.0 includes the comprehensive Microsoft foundation classes,

which simplify and speed development of window applications. It includes

sophisticated resource editor to design the complex dialog boxes, menu, toolbars,

images, and many other elements of modern window application. There is an

excellent integrated development environment called developer studio that present

graphical views of your application’s structure as you develop it.

Totally integrated debugging tool lets you examine in minute detail every

aspect of your program as it runs.

 131

7.4 Platform dependencies

 Current Platform

I am implementing my work using the Windows 2000 Professional.

Windows 2000 Professional is suitable operating system for geographic

system development and also for the use of the software related to the

geographic system. Also it gives more update facilities as Microsoft’s new Web-

based resource site, automates driver and system file updates, and provides up-

to-date technical support. Windows 2000 can review device drivers and system

software on your computer, compare those findings with a master database on

the Web, and then recommend and install updates specific to your computer.

You can also revert to a previous device driver or system file using the uninstall

option.

Dependency

As we use Microsoft Visual Basic and Microsoft VC++ ,our developed system

is dependent on the “Windows” platform.

7.5 Constraints

o Memory size

o Processor speed

o Maps are stored as shape file

o Dependency on the Windows platform

Shape file is a constraint as we can only use the information of the

map which is stored as shape file to get the information from it and store the

processed map in only shape file format.

 132

So we can not use maps stored as image in other format like jpg ,

gif etc.

7.6 Implementation Challenge

I am developing algorithms for the overlays related to the map which

mainly covers Intersection and Union. Here map is stored as shape file.

Shape file can be one of three types

o Point

o Line

o Polygon

Point file is used to show the particular offices, centers, nodes etc within

defined area.

Line is used to show rode network, water canals etc within defined area.

Polygon is used to show areas like forest area, polutated area etc.

So here comparison is required between the segments of one shape file

with other shape file to know the common part and uncommon part for the

intersection and union.

So we need to check for the line-line and polygon-polygon intersection

for the overlays. Shape file for the big map is consisting of hundreds or more

lines and polygons.

So for the small map comparison for the intersection and union

required is much less but for the big map this turns in more memory

utilization to store the local variables and data .Also more processor

utilization is there because of more computation is needed in the comparison.

o Efficient Memory utilization

 133

o Efficient Processor utilization

So my role is to develop efficient algorithms for supporting overlays as

it requires efficient memory utilization to control memory leakages and

memory overflow and to speedup the processing

Also we need to learn and understand the shape file structure to

access the information from it to use it to make proper algorithm using its

information and also to store the information in shape format to implement

proposed algorithm.

 134

 Chapter 8

 MAINTANANCE

 Corrective maintenance

 Adaptive maintenance

 Perfective maintenance

 Preventive maintenance

 135

Once you develop a project a duty is not completed. Sometimes the

application is unstable. It still works, but every time a change is attempted,

unexpected and serious side effects occur. Yet the application must evolve.

 The maintenance of the existing software can account for over 60 percent of

all effort expended by a development organization, and the percentage continues to

rise as more software is produced.

 Much of the software we depend on today is on average 10 to 15 years old.

Even when these programs were created using the best design and coding

techniques known at the time, they were created when program size and storage

space were principle concerns. They were then migrated to new platforms, adjusted

for changes in machine and operating system technology and enhanced to meet

new user needs all without enough regard to overall architecture.

The result is the poorly designed structures, poor coding, poor logic and poor

documentation of the software systems we are now called on to keep running…

The ubiquitous nature of change underlies all software work. Change is

inevitable when computer-based systems are built; therefore, we must develop

mechanism for evaluating, controlling and making modifications.

 “Software Maintenance” is, of course, far more than “fixing mistakes”. We

may define maintenance by describing four activities that are undertaken after a

program after a program is released for use. We have defined four different

activities:

 136

8.1 Corrective maintenance

Even with the best quality assurance activities, it is likely that the customer

will uncover defects in the software. Corrective maintenance changes the software

to correct defects.

8.2 Adaptive maintenance

Over time, the original environment (e.g., CPU, operating system, business

rules, external product characteristics) for which the software was developed is

likely to change. Adaptive maintenance results in modification to the software to

accommodate to its external environment.

8.3 Perfective maintenance

As software is used, the customer/user will recognize additional functions

that will provide benefit. Perfective maintenance extends the software beyond its

functional requirements.

8.4 Preventive maintenance

Computer software deteriorates due to change, and because of this,

preventive maintenance must be conducted to enable the software to serve the

needs of its end users. In essence, preventive maintenance makes changes to

computer programs so that they can be more easily corrected, adapted, and

enhanced.

Only about 20percent of all maintenance work is spent “fixing maintenance”.

The remaining 80 percent is spent adapting existing systems to changes in their

external environment, making enhancements requested by users, and

reengineering an application for future use.

 137

 CHAPTER 9

 CONCLUSION AND SCOPE

 OF FUTURE WORK

 Conclusion

 Limitations

 Scope of Future Work

 138

9.1 Conclusion

 As we know that GIS systems mainly concerning to vector systems deal with

hundreds of points, lines and polygons , also it requires repetitive comparison of its

elements and also repetitive calling of same methods like point in polygon strategy

is called repetitively in both Intersection and Union Procedures.

 So it uses more processing power and efficiency decreases in terms of time

and processing power also efficiency decreases because of the complex algorithms

and datastructure.

 So algorithms presented over here are simple and datastructure is also

simple as we use array for the list. Also it decreases number of comparisons

between the vector elements by using efficient heuristics and strategies. So this

algorithms do optimal use of the processing power and increases efficiency in terms

of the time.

9.2 Limitations

Platform Dependency : As application is developed using Visual Basic and Visual

 C++ it is Dependent on windows platform

Fix file format : Applicable to only images having shape file format

9.3 Scope of Future work

 Same thing can be developed using platform independent language like Java

so it can be applicable to any platform and we can remove the platform dependency

constraints of the current platform.

 Strategies explained here and used in this system uses list of x, y co-

ordinates and edges. But it is done on the fly in this system so we can improve the

efficiency by preprocessing this list before doing actual function. It also cost prior

 139

processing power to do the preprocessing and additional complexity but we can do

it and compare the net efficiency between current system and new system.

 140

REFERENCE

[1] A. E. Middleditch,T. W. Stacey,S. B. Tor , "Intersection algorithms for

lines and circles",ACM Press New York, NY, USA,1988

[2] George Nagy,Sharad Wagle , "Geographic Data Processing" ,ACM Press

New York, NY, USA ,1979

[3] D. P. Dobkin,D. Silver, "Recipes for geometry and numerical analysis -

Part I: an empirical study" ,ACM Press New York, NY, USA ,1988

[4] Henry G. Baker ,"Corrigenda: intersection algorithms for lines and

circles",ACM Press New York, NY, USA,1994

[5] Practical Visual C++ 6 by Jone Bates and Tim Tompkins

[6] ARC/INFO user Manual by ESRI

[7] Paul A. Longley, Michael F. Goodchild, David J. Maguire, Geographic

Information Systems and Science – Second Edition

 [8] Desktop Application VC++ published by Microsoft Press

 [9] www.gis.com/whatisgis/index.html

 [10]www.esri.com/software/arcgis/arcview/index.html

 [11]http://www.esri.com/software/arcgis/about/desktop.html

	title page1.pdf
	04MCE009.pdf

