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Abstract

Fibre Reinforced Laminated composites are widely used in Aerospace and Civil En-

gineering Structures due to its higher strength to weight and stiffness to weight ratio.

The present study is concerned with the analysis of plates made of continuous fibre

reinforced laminated composite materials, using finite element method. Specifically

the study concerns the behaviour of laminated plates including transverse shear de-

formations, and transverse normal stresses and strains.

Two Displacement models with six and eleven degrees of freedom per node based

on Higher Order Shear Deformation Theory (HOSDT) are considered to derive finite

element formulation. First displacement model considers transverse displacement,

rotations and their higher order terms. While second displacement model is based on

inplane and transverse displacements, rotations and their higher order terms. Stiff-

ness matrix, load vector and mass matrix of eight - node Quadrilateral isoparametric

finite element are derived considering two displacement models. The objective is to

study the performance of above derived finite elements in static and dynamic anal-

ysis of laminated composite plate. Finite element analysis is carried out to evaluate

displacements and stresses under static load with varying width-to-thickness ratio,

material anisotropy, and number of layers of the fibers with different angle of orienta-

tion and support conditions. Further free vibration analysis is carried out using finite

element method to obtain natural frequencies and corresponding mode shapes.

Results for plate deformations, internal stresses and natural frequencies for several

examples are compared with the results available in literatures for evaluating accuracy

of displacement models. Computer programs are developed for automatic meshing of

laminated composite plate, for static analysis to obtain deflection and interlaminar

stresses under uniform and sinusoidal loading, for dynamic analysis to obtain natural

frequencies and mode shapes. The programs are capable to handle any number of
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elements, geometry, support conditions and loading.

Further to explore the concept of intelligent structure and to enhance its application

in the field of structural engineering, study on a composite laminate embedded with

smart patches of piezoelectric material is presented. A displacement model with two

mechanical degrees of freedom and one electrical degree of freedom (i.e. voltage)

is considered. Finite element formulation is derived using 8-node isoparametric ele-

ment based on considered displacement fields. Electromechanical coupling behaviour

is studied from direct piezoelectric effect (Sensing action) and converse piezoelectric

effect (actuation action). Analysis of piezoelectric laminated composite is illustrated

through an example of bimorph beam constructed by two PVDF beam using devel-

oped computer program.
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Chapter 1

Introduction

1.1 General

The word ‘composite’ in composite material signifies that a material system which

consists of a combination of two or more material with significantly different phys-

ical and chemical properties on a microscopic scale to achieve more useful material.[1]

The first high performance composite material is as old as man as himself, for it is

the human body: the bones, muscle tissues that are multidirectional fibrous lami-

nate. Current developments are pointed towards combination of unusually strong,

high modulus fibers and organic, ceramic, or metal matrices. Such materials promise

to be far more efficient than any structural materials known previously.

1.2 History

Composite materials have very long history of usage. Their beginnings are unknown,

but all recorded history contains references to some form of composite material. The

concept of fiber reinforced materials can be traced back to 2000 b. c. or earlier from

the Biblical references that the use of straw as reinforcement in mud bricks and com-

posite bows found in Egypt and Mongolia. The Japanese Samurai warriors used lam-

1
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inated metals in their swords. In nineteenth century in the late 1930s the use of short

glass fiber reinforcement in cement in the United States was started. After World

War II, US manufacturers began producing fiberglass and polyester resin compos-

ite boat hulls and radomes (radar cover). The automotive industry first introduced

composites into vehicle bodies in the early 1950s. Because of the highly desirable

lightweight, corrosion resistance, and high strength characteristics in composites; re-

search emphasis went into improving the material science and manufacturing process.

That effort led to the development of two new manufacturing techniques known as

filament winding and pultrusion, which helped advance the composite technology into

new markets. There was a great demand by the recreation industry for composite

fishing rods, tennis rackets, ski equipment and golf clubs. The Aerospace industry

began to use composites in pressure vessels, containers, and non-structural aircraft

components. The US Navy applied composites in mine sweeping vessels, crew boats

and submarine parts. The domestic consumers began installing composite bathtubs,

covers, railings, ladders and electrical equipment. The first civil application in com-

posites was a dome structure built in Benghazi in 1968, and other structures followed

slowly.[1]

1.3 Classification of Composite Materials

Composite materials are commonly classified at following two distinct levels:

• The first level of classification is usually made with respect to the matrix con-

stituent. The major composite classes include Organic Matrix Composites

(OMCs), Metal Matrix Composites (MMCs) and Ceramic Matrix Composites

(CMCs). The term organic matrix composite is generally assumed to include

two classes of composites, namely Polymer Matrix Composites (PMCs) and

carbon matrix composites commonly referred to as carbon-carbon composites.

• The second level of classification refers to the reinforcement form - fibre rein-

forced composites, laminar composites and particulate composites, describe as
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follows:

1. Fibrous composites, which consists of fibers in matrix.

2. Particulate composites, which is composed of particles in a matrix.

3. Laminated composites, which consists of layers of various materials.

1.3.1 Fibrous Composites

Long fibers in various forms are inherently much stiffer and stronger than the same

material in the bulk form because of the more perfect structure of a fiber. The crys-

tals are aligned in the fiber along the fiber axis. Few selected common fiber materials

are Aluminium, Titanium, Steel, E-glass, S-glass, Carbon, Beryllium, Boron, and

Graphite etc.

The binder material is generally called a matrix. The purpose of matrix is to manifold,

support, protection, stress transfer etc. Typically, the matrix is of considerably lower

density, stiffness and strength than the fibers. A typical organic epoxy matrix material

such as Narmco 2387 has a density of 11.9 kN/m3, compressive strength of 0.158

GN/m2, compressive modulus of 3.86 GN/m2, tensile strength of 0.029 GN/m2 and

tensile modulus of 3.38 GN/m2. Metals are also used as matrices.

1.3.2 Particulate Composites

Particulate composites consist of particles of one or more materials suspended in a

matrix of another material. The particles can be either metallic or nonmetallic as

can the matrix. Common combinations are:

Nonmetallic in Nonmetallic Composites

The most common example of a nonmetallic particle system in a nonmetallic matrix

is concrete. Concrete is particles of sand and rock that are bound together by a

mixture of cement and water that has chemically reacted and hardened.
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Metallic in Nonmetallic Composites

Metal flakes in a suspension are common. For example, aluminium paint is actually

aluminium flakes suspended in paint. Upon application, the flakes orient themselves

parallel to the surface giving very good coverage.

Metallic in Metallic Composites

Unlike any alloy, a metallic particle in a metallic matrix does not dissolve. Lead par-

ticles are commonly used in copper alloys and steel to improve the machine ability

(metal comes off in shaving rather than chip form).

Nonmetallic in Metallic Composites

Nonmetallic particles such as ceramics can be suspended in a metal matrix. The

resulting composite is called a cermet. Two common classes of cermets are oxide based

and carbide-based composites. Oxide-based cermets can be either oxide particles in

a metal matrix or metal particles in an oxide-matrix.

1.3.3 Laminated Composites

What is Lamina?

A lamina is a flat (sometimes curved in a shell) arrangement of unidirectional fibers

as shown in Fig.1.1 in matrix. The fibers are the principal reinforcing or load-carrying

agent. They are typically strong and stiff. The matrix can be organic, ceramic, or

metallic. The function of matrix is to support and protect the fibers and to provide

a means of distributing load among and transmitting load between the fibers.

Fibers generally exhibit linear elastic behaviour, although reinforcing steel bars in con-

crete are more nearly elastic-perfectly plastic as shown in Fig.1.2. Aluminium and

some composites exhibit elastic-plastic behaviour, which is really nonlinear elastic

behavior if there is no unloading. Resinous matrix materials are exhibit viscoelastic

behaviour in the absence of viscoplastic behaviour Fig.1.3. Fiber-reinforced com-

posites such as boron-epoxy and graphite-epoxy are usually treated as linear elastic

materials since the fibers provide the majority of the strength and stiffness.
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Figure 1.1: Lamina with unidirectional fibers

Figure 1.2: Various stress-strain behavior: (a) Linear elastic and (b) Elastic-perfectly
Plastic

Figure 1.3: Various stress-strain behavior: (a) Elastic-Plastic and (b) Viscoelastic (e1
> e2 > e3)
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What is Laminate?

A laminate is a stack of laminae with various orientations of principal material direc-

tions in the laminae as in Fig.1.4. The layers of a laminate are usually bound together

by the same matrix material that is used in the laminae. Laminate can be composed

of plates of different materials or, in the present context, layers of fiber reinforced

laminae. A laminated circular cylindrical shell can be constructed by winding resin-

coated fibers on a mandrel first with one orientation to the shell axis, then another,

and so on until the desired thickness is built up.

Figure 1.4: A multi-ply laminate construction [4]

A major purpose of lamination is to tailor the directional dependence of strength and

stiffness of a material to match the loading environment of the structural element.

Laminates are uniquely suited to this objective since the principal material directions

of each layer can be oriented according to need.

A potential problem in the construction of laminates is the introduction of shearing

stresses between layers. The shearing stresses arise due to the tendency of each layer

to deform independently of its neighbours because all may have different properties

(at least from standpoint of orientation of principal material directions). Such shear-

ing stresses are largest at the edges of a laminate and may cause delaminations there.
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The properties that can be emphasized by lamination are strength, stiffness, low

weight, and corrosion resistance, wear resistance, beauty or attractiveness, thermal

insulation, acoustical insulation etc.Examples of laminated composites are Bimetals,

Clad metals, laminated glass, plastic-based laminates, and laminated fibrous compos-

ites as described below:

Bimetals

Bimetals are laminates of two different metals with significantly different coefficients

of thermal expansion. Under change in temperature, bimetals warp or deflect a pre-

dictable amount and are therefore well suited for use in temperature measuring device

such as thermostat.

Clad Metals

The cladding or sheathing of one metal with another is done to obtain the best prop-

erty of both. For example, high-strength aluminium alloys do not resist corrosion;

however, pure aluminium and some aluminium alloys are very corrosion resistant.

Thus, a high-strength aluminium alloy covered with a corrosion-resistant aluminium

alloy is a composite material with unique and attractive advantages over its con-

stituents.

Laminated Glass

The concept of protection of one layer of material by another as described under “clad

metals” can be extended in a rather unique way to safety glass. Ordinary glass is

durable enough to retain its transparency under the extremes of weather. However,

glass is quite brittle and is dangerous because it can break into many sharp-edged

pieces. On the other hand, a plastic called polyvinyl butyral is very tough (deforms

to high strains without fracture), but is very flexible and susceptible to scratching.

Safety glass is a layer of polyvinyl butyral sandwiched between two layers of glass.

The glass in the composite protects the plastic from scratching and gives it stiffness.

The plastic provides the toughness of the composite.
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Plastic-based laminates

Many materials can be saturated with various plastics and subsequently treated for

many purposes. The common product Formica is a merely layer of heavy Kraft paper

impregnated with a phenolic resin overlaid by a plastic-saturated decorative sheet

which, in turn, is overlaid by a plastic-saturated cellulose mat. Heat and pressures

are used to bind the layers together.

Laminated Fibrous Composites

They are a hybrid class of composites involving both fibrous composites and lami-

nation techniques. A more common name is laminated fiber-reinforced composites.

Here, layers of fiber-reinforced material are built up with the fiber directions of each

layer typically oriented in different directions to give different stiffness and strengths

in the various directions. Thus, the strengths and stiffness of the laminated fiber-

reinforced composite can be tailored to the specific design requirements of the struc-

tural element being built.

1.4 Characteristics of Composites

The mechanical properties of composites depend on many variables such as fiber

types, orientations, and architecture. The fiber architecture refers to the preformed

textile configurations by braiding, knitting, or weaving. Composites are anisotropic

materials with their strength being different in any direction. Their stress-strain

curves are linearly elastic to the point of failure by rupture. The polymeric resin in

a composite material, which consists of viscous fluid and elastic solids, responds vis-

coelastically to applied loads. Although the Viscoelastic material will creep and relax

under a sustained load, it can be designed to perform satisfactorily. Composites have

many excellent structural qualities and some examples are high strength, material

toughness, fatigue endurance, and lightweight. Other highly desirable qualities are

high resistance to elevated temperature, abrasion, corrosion, and chemical attack.
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1.5 Manufacturing Processes

There are many manufacturing techniques in producing composite structural prod-

ucts, with many variations and patented processes but basically three techniques are

generally followed:

1. The pultrusion process involves a continuous pulling of the fiber roving and

mats through a resin bath and then into a heated die. The elevated temperature

inside the die cures the composite matrix into a constant cross-section structural

shape.

2. The filament winding process can be automated to wrap resin-wetted fibers

around a mandrel to produce circular or polygonal shapes.

3. The lay-up process engages a hand or machine build up of mats of fibers that are

held together permanently by a resin system. This method enables numerous

layers of different fiber orientations to be built up to a desired sheet thickness

and product shape.

1.6 Civil Structural Application

Fibre-Reinforced composites are being used in civil engineering, Aircraft, Automo-

tive, Marine and in other industries where the structural engineering comes in a way

since of their low densities, high strength and stiffness to weight ratio with many ad-

vantages. Composite materials have more environmental resistance than traditional

civil engineering materials such as steel, concrete, masonry, and plaster. Degradation

in strength and stiffness for steel structures due to the corrosion problem requires

frequent inspection, maintenance, and repair. Similarly, stress cracking due to the

warm/cold weathering limits the service life of concrete structures. Timber is suscep-

tible to moisture-swelling problems and paste attack.
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Most important of all, these traditional construction materials are relatively inefficient

in earthquake and fatigue resistance. Composite materials are as stiff as steel, but

weigh approximately 80 times less and have stiffness-to-weight ratio higher (approx.

5 times) than that of steel and so less susceptible to be in resonance with the ground

motion of an earthquake. For this reason alone, composite materials structures are

safer and can minimize property and life loss induced by earthquake.

Figure 1.5: Application of composite material in Aircraft [40]

Major applications in the field of civil engineering with example of important con-

structed structures are as follow:

• Currently, composite materials are being used to retrofit and/or reinforce ex-

isting Infrastructures.

• Flat composite laminates have been bonded to the exterior surface of reinforced

concrete deck to increase its bending stiffness.

• Several pedestrian bridges have been built successfully.
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• Composite materials are suitable for construction of Tall Buildings, Highway

Bridges, Power Transmission towers, Silos, Office/Residential Buildings, etc.

• Some of the important structures constructed earlier using Glass-fiber reinforced

Polyester (GFRP ) are given below [37]:

1. Dome structure in Benghazi in 1968.

2. Roof structures to the Dubai Airport built in 1972.

3. Covert Garden Flower Market at Nine Elms, London.

4. 37m high Chimney at Hendon, London.

5. Prestigious American Express Building in Brighton, England.

6. Radome structure - 30.5 m high GFRP towers inserted into steel tower at

the Chicago McCook Illinois.

7. Sulpher factory using singly curved small roof of span 10 meter.

8. Swimming pool building near Abezdeen, Scotland.

9. Mondial International telephone service, Central London.

10. Air roof survilence rader.

• The first USA advanced composite vehicular bridge superstructure was dedi-

cated into service on December 4, 1996 in Russell, Kansas.

• Demonstration bridge projects are being developed in other states such as

Delaware, West Virginia and California of USA.

• Continued research projects using composite reinforcing bars in concrete slabs

are being studied in New Hampshire, Washington, D.C. and Michigan.

Advantages

• Some of the advantages in the use of composite structural members include

the ease of manufacturing, fabrication, handling, and erection. Project delivery

time can be short.
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• It took the Russell county engineer one day to install the deck panels in the

first vehicular composite bridge. Composites can be formulated and designed

for high performance, durability and extended service life.

• They have excellent strength to weight ratios. If durability can be proven to

last 75 years, composites can be economically justified using the life - cycle cost

method.

• Due to greater reliability, there are fewer inspections and structural repairs.

• Directional tailoring capabilities to meet the design requirements. The fibre

pattern can be laid in a manner that will tailor the structure to efficiently

sustain the applied loads.

• Composites offer improved torsional stiffness.

• Thermoplastics have rapid process cycles, making them attractive for high vol-

ume commercial applications that traditionally have been the domain of sheet

metals. Moreover, thermoplastics can also be reformed.

• Composites are dimensionally stable i.e. they have low thermal conductivity

and low coefficient of thermal expansion. Composite materials can be tailored

to comply with a broad range of thermal expansion design requirements and to

minimise thermal stresses.

Disadvantages

• Some of the disadvantages in the use of composites in bridges are high first cost,

creep, and shrinkage.

• The design and construction require highly trained specialists from many engi-

neering and material science disciplines.

• The composites have a potential for environmental degradation, for examples,

alkalis’ attack and ultraviolet radiation exposure.
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• There are very little or nonexistent design guidance and/or standards. There is

a lack of joining and/or fastening technology.

• Because of the use of thin sections, there are concerns in global and local buck-

ling. Although the lightweight feature may be an advantage in the response

to earthquake loading, it could render the structure aerodynamically unstable.

In manufacturing with the hand lay-up process, there is a concern about the

consistency of the material properties.

• Composites are more brittle than wrought metals and thus are more easily

damaged.

• Transverse properties may be weak.

1.7 Laminated Composite with Piezoelectric Ma-

terial

1.7.1 Introduction

“Piezo” is the Greek word for Pressure. When any electric voltage is applied to

certain materials they experience a dimensional change”, such materials are known

as “Piezoelectric Material”. Because of converse effect, they generate electricity when

pressure is applied. The Piezoelectric effect was discovered in 1880 by Curie brothers

Pierre Curie and Jacques Curie.

The nature of piezoelectric material is closely linked to the significant quantity of

electrical dipoles within these materials.

Dipole : An dipole is a separation of positive and negative charges. The simplest

example of this is a pair of electric charges of equal magnitude but opposite sign.

The centers of the negative and positive charges of the each molecule co-inside. The

external effects of the charges are reciprocally canceled. As a result, an electrically
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neutral molecule appears as shown in Fig.1.6. After exerting some pressure on the

material, the internal structure is deformed, that causes the separation of the positive

and negative centers of the molecules. As a result, little dipoles are generated as shown

in Fig.1.6.

Figure 1.6: Dipole effect

A dipole is a vector with direction and value in accordance to electric charge around.

These dipoles are generally randomly oriented, and they altogether form regions called

Weiss domains as shown in Fig.1.7.

Figure 1.7: Response of molecules under electric field

A piezoelecric material has a characteristic Curie temperature. When it is heated

above this temperature, the dipoles can change their orientation in the solid phase

material. Then applying strong electric field the dipoles shift into alignment with the

direction of this field. Now the alignment of dipoles is permanently fixed as shown in

Fig.1.7. During this process the dipoles respond collectively to produce a macroscopic
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Figure 1.8: Microscopic Expansion of solid along the poling axis

expansion along the poling axis and contraction perpendicular to it as shown in fig

Fig.1.8.

Figure 1.9: Converse effect

Converse effect: By applying external pressure the polarization generates an electric

field and can be used to transform the mechanical energy of the material’s deformation

into electrical energy.

1.7.2 Materials used as a Piezoelectric Material

The most known material is Quartz (SiO2), but there are other piezoelectric materials

such as,

• Lead Zirconate Titanate (PZT )

• Berlinite (AlPO4)
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• Gallium orthophosphate (GaPO4)

• Tourmaline

• Barium Titanate (BaTiO3)

• Zinc Oxide (ZnO)

• Aluminum Nitride (AlN)

• Polyvinylidene Fluoride (PV DF )

1.7.3 Need of Piezoelectric Material

To enhance the response control and measurement of structural element laminated

with composite plates under applied mechanical and electrical field by embedding

actuator and sensor.

1.8 Laminated Composite with Functionally Graded

Material

The concept of functionally graded material (FGM) was proposed in 1984 by the

material scientists during space plane project in Japan . The FGM is a composite

material whose composition varies from one side of the material to the other side ei-

ther gradually or stepwise according to the required performance. It is an anisotropic

composite material where a material gradient has been deliberately introduced over

two different materials. By applying this concept, materials like ceramics, metals and

plastics can be brought together with a gradual change of property from one material

to another with no joint for specific application. FGMs allow the achievement of

varied properties unlike uniform composites.

In particulate composites a graded structure can be obtained by either changing

the particle volume fraction (Vp), or (b) the particle size along the thickness of the

composite.
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Figure 1.10: Gradual variation of material properties

1.8.1 Need of Functionally Graded Material

In conventional laminated composite structures, homogeneous elastic lamina are bonded

together to obtain enhanced mechanical and thermal properties. The main inconve-

nience of such an assembly is to create stress concentrations along the interfaces and

more specifically when high temperatures are involved. Because of sudden change of

the mechanical properties at the interface between the layers it can lead to delami-

nations, matrix cracks, and other damage mechanisms.

One way to overcome this problem is to use functionally graded materials within

which material properties vary continuously. So that an optimum distribution of

properties can be obtained depending on the functional requirements and are there-

fore, free from interface weaknesses typically consists in laminated composites and

sandwiches.

1.9 Objective of Study

Following are the main objectives of present work:

• To study different higher order shear deformation theories for analysis of lami-

nated composite plates.
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• To derive the formulation of 8-node Isoparametric Quadrilateral finite element

for Static and Dynamic analysis of Laminated Composite Plates.

• To develop computer program for static and dynamic analysis of laminated

composite plates.

• To study effect of various parameters on static and dynamic response of lami-

nated composite plates.

• To study the behaviour and response of Laminated Composite Plates with piezo-

electric material under Static Load.

1.10 Scope of Work

Scope of present work is as follows:

• Formulation of 8-node Isoparametric Quadrilateral finite element for Static Dy-

namic analysis of Laminated Composite Plates.

• Formulation of 8-node Isoparametric Quadrilateral finite element for Dynamic

analysis of Laminated Composite Plates.

• Static analysis of Laminated Composite Plates with Piezoelectric Material.

1.11 Organization of Report

The content of Major Project report is divided in to various chapters as follows:

An Introduction of Laminated Composite is discussed in Chapter 1. Various appli-

cations in the field of Civil Engineering, classification and characteristics of Laminated

Composite are also discussed. An overview of manufacturing process of composite

lamina is discussed. Introduction to Laminated Composite with Piezoelectric mate-

rial and Functionally Graded Material (FGM) with their advantages are discussed.
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Literature review is presented in Chapter 2. It includes review of literature related

to static and dynamic analysis of laminated composite plate as well as analysis of

laminated composite plate with piezoelectric material and functionally graded mate-

rial.

Static Analysis of Laminated Composite Plate is discussed in Chapter 3. Basic

Mechanics of laminated plate is discussed in this chapter. Based on two displacement

models with different degrees of freedom, using Higher Order Shear Deformation The-

ory(HOSDT) Finite Element Element Formulation has been derived. 8-Node Isopara-

metric Element has been considered to derive the finite element formulation for static

and dynamic(Free vibration analysis) analysis of laminated Composite plates.

Computer Program with illustrative examples of static and dynamic is developed in

Chapter 4. Computer Program is developed to carry out static and dynamic anal-

ysis of laminated composite plates with varying width-to-thickness ratio, material

anisotropy, number of layers, support conditions and orientation of fibres.

Static Analysis of Laminated composite plates and results are discussed in Chapter

5.To validate the finite element formulation, a comparison study of obtained numer-

ical results is carried out.

Dynamic Analysis of Laminated composite plates and results are discussed in Chap-

ter 6. To validate the finite element formulation, a comparison study of obtained

numerical results is carried out.

Static Analysis of bimorph composite laminate made up of piezoelectric material is

discussed by solving one illustrative example in Chapter 7.

Summary of major project, conclusion and future scope of work are presented in

Chapter 8.



Chapter 2

Literature Review

2.1 General

Literature review related to static and dynamic Finite Element Analysis of Laminated

Composite Plates is presented in this chapter. Various research papers have been

refereed to understand theoretical formulation for analysis of laminated composite

plates. A literature review is categorised based on the type of analysis and composite

materials used in Plates. The available literature has been classified in four groups

as follows:

1. Static Analysis of Laminated Composite Plates.

2. Dynamic (eigen value problem) Analysis of Laminated Composite Plates.

3. Analysis of Laminated Composite Plates with Piezoelectric material.

4. Analysis of Laminated Composite Plates with Functionally Graded Material.

2.2 Literature Review

2.2.1 Static Analysis of Laminated Composite Plates

Sivkumaran et al.[7] presented the studies on finite element analysis of laminated

composite plates including transverse shear deformations, and transverse normal

20
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stresses and strains. They have considered three displacement model based on finite

elements considering different higher-order theories. The three different displacement

functions expanded, resulting in three, five and six degrees of freedom per node. Based

on displacement model they derived nine-node lagrangian isoparametric element stiff-

ness matrices and the corresponding load vectors. The performance and accuracy of

derived finite element formulation had been studied by comparing the results with

other solutions like three-dimensional elasticity solutions, closed-form solutions, and

other finite element models.

Reddy and Chao[11] studied the effects of reduced integration, mesh size, and el-

ement type on the accuracy of deflection, stresses and natural frequencies based on

penalty finite element theory. They developed exact closed from solutions to assess

the accuracy of the present finite element for cross-ply and antisymmetric angle-

ply rectangular plates simply supported and subjected to sinusoidally distributed

mechanical and/or thermal loadings, and free vibration. Based on this study by cal-

culating various examples with different a/h ratios, they concluded that the reduced

integration is essential for the analysis of thin plates, but is not crucial for thick plates.

Pandya and Kant[9] presented the studies on a finite element formulation for flex-

ure of a symmetrically laminated plate based on a higher-order displacement model

and a three-dimensional state of stress and strain. These studies incorporated lin-

ear variation of transverse normal strains and parabolic variation of transverse shear

strains through the plate thickness. Nine-noded Lagrangian parabolic isoparametric

plate bending element described and, discussed with applications to bending of lam-

inated plates with various loading, boundary conditions, and lamination types. The

numerical evaluations also included the convergence study of the element used. In

addition, theory included the effect of direct normal stress in the thickness direction

which is, though negligible, very important to study the delamination mode of fail-

ure in laminated composites. Based on higher order theory they compared solutions

for deflections and stresses with those obtained using the three-dimensional elasticity
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theory, closed-form solutions with another high-order shear deformation theory, and

the Mindlin’s theory.

Pandya and Kant[8] presented the studies on a C0 continuous displacement isopara-

metric finite element formulation of a higher-order theory for flexure of thick arbitrary

laminated composite plates under transverse loads. They introduced the displacement

model to accounts the non-linear and constant variation of in-plane and transverse

displacement respectively through the plate thickness. The assumed displacement

model eliminating the use of shear correction coefficients. Nine-noded quadrilateral

element with nine degrees-of-freedom per node developed. They compared the results

for plate deformations, internal stress-resultants and stresses for selected examples

with the closed-form, the theory of elasticity and the finite element solutions with

another higher-order displacement model by the same authors. A computer program

developed which incorporated the realistic prediction of interlaminar stresses from

equilibrium equations. The difference in the results of transverse shear stresses ob-

tained using equilibrium equations and plate constitutive relations were found to be

a maximum for the sandwich plate rather than the laminated plates.

Kant and Swaminathan[10] presented the studies on the theoretical model con-

sidering laminate deformations which account for the effects of transverse shear de-

formation, transverse normal strain/stress and a nonlinear variation of in-plane dis-

placements with respect to the thickness coordinate. The comparison of the results

obtained from presented theory with the available elasticity solutions and the results

computed independently using the first order and the other higher order theories

available in the literature showed that this refined theory predicted the transverse

displacement and the stresses more accurately than all other theories considered in

this paper. Further new results for the stretching-bending coupling behaviour of an-

tisymmetric sandwich laminates using all the theories considered in this paper were

presented which will serve as a benchmark for future investigations.
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Xiao et al.[12] presented the studies to analyze static infinitesimal deformations

of thick laminated composite elastic plates under different boundary conditions, us-

ing the meshless local Petrov-Galerkin (MLPG) method with radial basis functions

(RBFs), and the higher order shear and normal deformable plate theory (HOS-

NDPT). Two types of RBFs, namely, multiquadrics (MQ) and thin plate splines

(TPS), had been employed for constructing trial functions while a fourth order spline

function have been used as the test function. Computed results for different lamina-

tion schemes found to match well with those obtained by other researchers. A benefit

of using RBFs over those generated was that no special treatment was needed to im-

pose essential boundary conditions, which substantially reduced the computational

cost. Furthermore, they also concluded that MLPG method did not require nodal

connectivity which reduced the time required to prepare the input data.

Shimpi and Patel[15] presented the studies on analysis of orthotropic plates. For

analysis they developed a new theory, which involved only two unknown functions

and yet took into account shear deformations. So the presented theory gave rise

to only two governing equations. Number of unknown functions involved were only

two, as against three in case of simple shear deformation theories of Mindlin and

Reissner. The theory presented was variationally consistent, had strong similarity

with classical plate theory in many aspects. Well studied examples, available in lit-

erature, had been solved to validate the theory. The results obtained for plate with

various thickness ratios using the theory were not only substantially more accurate

than those obtained using the classical plate theory, but were almost comparable to

those obtained using higher order theories having more number of unknown functions.

Pagano[13] presented the studies on three-dimensional elasticity solutions, for rectan-

gular laminates with pinned edges. The lamination geometry with arbitrary numbers

of layers which could be isotropic or orthotropic with material symmetry axes par-

allel to the plate axes. They also presented further evidence regarding the range of

validity and limitations of CPT. Several specific example problems solved, including
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a sandwich plate, and compared to the analogous results in classical laminated plate

theory. They concluded that the accuracy of the CPT solution of a particular prob-

lem depend upon material properties, lamination geometry, and span-to-depth ratios.

They observed the slower convergence of the exact solution to the CPT result and,

also a convergence of the elasticity solution to CPT, which was more rapid for the

stress components than plate deflection. This observation proved an importance of

selecting the form of a plate theory required in the solution of a specific boundary

value problem.

Park et al.[17] presented the studies on static and dynamic analysis of laminated

composite plates and shells using 4-node Quasi-conforming shell element. The el-

ement formulations use interrelated displacement-rotation interpolations making it

applicable for moderately thick and thin composite shells. The stiffness matrices for

the elements were explicitly expressed and the stresses were taken accurately at the

nodal points. A lot of numerical tests were carried out for the validation of presented

4-node composite shell element and the results were in good agreement with the ref-

erences. The presented quasi-conforming formulation based on first order transverse

shear deformation overcame the limit in the thin plates and shells. Also the presented

solutions in the linear displacement and natural frequency showed very good agree-

ment with the referenced solutions.

Iyengar and Pandya[14] presented the studies on analysis of orthotropic rectangu-

lar thick plates, using a method of initial functions. The formulation was capable to

obtain a theory of any order and refinement. A sixth-order governing equation used

to analyse uniformly loaded simply supported square plates for various thickness and

material properties. The variation across the thickness of maximum stresses and

displacements compared with those obtained by the application of Ambartsumyan’s

theory and Reissner’s theory.

Ghugal and Sayyad[16] presented the studies on analysis of isotropic plate using
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Trigonometric Shear Deformation Theory (TSDT). The presented theory was formu-

lated based on classical plate theory using right handed cartesian coordinate system.

In presented theory the displacement model was able to consider the shear deforma-

tion effect and effect of transverse normal strain. Governing equations and boundary

conditions of the theory were obtained using the principle of virtual work. The the-

ory obviates the need of shear correction factor. Results obtained for static flexural

analysis of simply supported thick isotropic plates for various loading cases were com-

pared with those of other refined theories and exact solution from theory of elasticity,

which showed good agreement.

2.2.2 Dynamic Analysis of Laminated Composite Plates

Kant and Mallikarjuna[18] presented the studies on non linear dynamics of lami-

nated plates with a higher order theory and C0 finite elements. A nine node isopara-

metric quadrilateral element based on higher-order theory developed. An experimen-

tally established contact law which accounts for the permanent indentation incor-

porated into the finite element program to evaluate the impact force. In the time

integration, the explicit central difference technique had been used in conjunction

with the special mass matrix diagonalization scheme. Numerical results, including

contact force histories, deflections and strains in the plate, were presented.

Khante et al.[19]investigated the studies on damped transient dynamic elasto-plastic

analysis of plate. A finite element model based on a C0 higher order shear deformation

theory was developed. Nine noded Lagrangian element with five degrees of freedom

per node was used. Selective Gauss integration was used to evaluate energy terms so

as to avoid shear locking and spurious mechanisms. Explicit central difference time

stepping scheme was employed to integrate temporal equations. The mass matrix was

diagonalized by using the efficient proportional mass lumping scheme. A program

was developed for damped transient dynamic finite element analysis of elasto-plastic

plate. Several numerical examples were studied to unfold different facets of damping

of elasto-plastic plates.
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They also studied the response of the plate under different degrees of damping mea-

sured by α (defined previously). The sensitivity of response of the plate to abso-

lute damping i.e. mass proportional damping was seen to be dependent on non-

dimensional parameter (NDP). For the larger NDP values the plate was observed to

be insensitive to damping considered. For the sensitive plates, it was found that with

increase in damping coefficient α the central displacement decreases without affecting

effective period of vibration of plate as is true in case of elastic plates.

Jameel and Abed[20]presented the studies on free vibration analysis of composite

laminated plates using HOST 12 FE model. The theory of a Higher Order Shear

Deformation Theory (HOST 12) used to solve the problem of free vibration of simply

supported symmetric and antisymmetric angle-ply composite laminated plates. The

presented HOST12 FE model incorporated laminate deformations which account for

the effects of transverse shear deformation, transverse normal strain/stress and a non-

linear variation of in-plane displacements with respect to the thickness coordinate -

thus modeling the warping of transverse cross-sections more accurately and eliminat-

ing the need for shear correction coefficients. Solutions were obtained in closed-form

using Navier’s technique by solving the Eigne value equation. The results compared

with those from exact analysis and various theories from references. It was concluded

for all the parameters considered based on Reddy’s theory that natural frequencies

were over predicted for the composite and sandwich plates.

Kant and Swaminathan[21]presented the studies on Free Vibration of Laminated

Composite and Sandwich plates based on a higher-order refined theory. Here pre-

sented theoretical model incorporated laminate deformation which account for the

effects of transverse shear deformation, transverse normal strain/stress and a non-

linear variation of in-plane displacements with respect to thickness coordinate. The

equations of motion were obtained using Hamilton’s principle. Solutions were ob-

tained in close form using Navier’s technique. The comparison of the present results
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with available elasticity solutions and the other higher order theories showed that

presented refined theory predict more accurate frequencies.

Kant and Mallikarjuna[22] presented the studies on vibrations of unsymmetrically

laminated plates analyzed by using a higher order theory with a C0 finite element

formulation. Vibration analysis of laminated composite and sandwich plates in con-

junction with a C0 isoparametric finite element formulation was carried out with

consideration of higher order displacement model. A special mass lumping proce-

dure was used in the equilibrium equations. The numerical examples presented were

compared with 3-D elasticity/analytical and Mindlin’s plate solutions, and presented

model predict frequencies more accurately.

Kant and Mallikarjuna[24] presented the studies on a refined higher-order the-

ory for free vibration analysis of unsymmetrically laminated multilayered plates. A

simple C0 finite element formulation was presented and the nine-noded lagrangian

element was chosen with seven degrees of freedom per node. Numerical results were

compared with first-order and classical plate theories, which showed that presented

theory predict frequencies more accurately.

Kulkarni and Khandagale[25] presented the studies on finite element analysis of

thick isotropic rectangular and skew plates based on Reddys third order theory in-

volves the problem of C1 continuity. A four-node quadrilateral element having seven

degrees of freedom per node was considered for finite element formulation. In displace-

ment model as present of second derivative of W0 was indicated that C1 continuity

was required at element boundary, which was circumvented by using the improved

discrete Kirchhoff constraint approach. Results obtained using a mesh size 24 X 24

for formulated finite element formulation were compared with 2D analytical results

for simply supported plate, 3D exact, 3D approximate and 3D FE results of ANSYS

for a square clamped plate and a simply-supported skew plate.
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2.2.3 Analysis of Laminated Composite Plates with Piezo-

electric material

Hwang and Park[32] studied the vibration control of laminated plate with piezo-

electric sensors/actuators. For dynamic analysis equation of motion was formulated

using Classical Laminate Theory and Hamilton’s principle. The plate was discretized

using 4-node quadrilateral plate bending element with 12 degrees of freedom per node

and one electrical degree of freedom per element. The piezoelectric sensor was dis-

tributed and integrated because output voltage was dependent on the strain rate. For

validation static responses of bimorph beam were calculated. For vibration control

of plate the responses of plate under given displacements and external loads were ob-

tained using direct time integration of equation of motion using newmark-β method.

From finite element formulation code was developed.

Chen et al.[33] presented the studies on vibration control of intelligent structure

using finite element analysis. Finite element formulation for vibration control and

suppression of intelligent structures with a new piezoelectric plate element was car-

ried out. A method of active vibration control and suppression for intelligent struc-

tures was developed based on a negative velocity feedback control law. For fi-

nite element formulation, 4-node isoparametric finite element with 12-degree of free-

dom(mechanical) and one electrical degree of freedom per node was considered. For

validation of the presented method two examples were calculated using bimorph beam

and intelligent plate.

Shiyekar and Kant[27] presented a studies on a complete analytical solution for

cross- ply composite laminates integrated with piezoelectric fiber-reinforced compos-

ite (PFRC) actuators under bi-directional bending. A higher order shear and normal

deformation theory (HOSNT12) had been used to analyze such hybrid or smart lam-

inates subjected to electromechanical loading. In the presented studies the electro-

static potential had been assumed to be layer wise (LW) linear through the thickness
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of PFRC. Navier’s technique and principle of minimum potential energy had been

used to obtain the equations of equilibrium. Transverse shear stresses were presented

at the interface of PFRC actuator and laminate under the action of electrostatic po-

tentials. They also observed that actuating effects were more in case of thick than

thin laminates. They compared the results with first order shear deformation theory

(FOST) and exact solution.

Neto et al.[28] presented the studies on static and dynamic analysis of smart lam-

inated structures. To analyse they presented the three node finite element with

piezoelectric coupling. The element was a continuum-based degenerated plate ele-

ment based on the Reissner-Mindlin theory with six mechanical degrees of freedom

per node and one electrical degree of freedom per finite element. The electric field was

assumed constant across the thickness of each piezoelectric layer. The bending and

membrane consistent mass matrices had been derived for applications on structural

dynamics. Since this finite element was firstly developed to allow the active vibration

control of the flexible multibody components The numerical results obtained by this

finite element correlated well with other published results.

Kogl and Bucalem[29] presented the studies on analysis of smart laminates us-

ing piezoelectric MITC plate and shell elements. In the presented studies, recently

developed piezoelectric MITC plate and shell elements had been employed for the

modelling of multi-layer smart structures. The piezoelectric MITC elements were

free of locking and yield very accurate and reliable results. The formulation allowed

the incorporation of layers of arbitrary material properties such as viscoelastic bond-

ing layers. By means of numerical examples, the accuracy of the solutions and the

suitability of the approach for the modelling of smart structures were demonstrated.

Finally, the excellent performance of the MITC-P shell elements was confirmed by

investigating harmonic vibrations of an elastic cylindrical shell with two piezoelectric

actuators attached to it.
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Fukunaga et al.[30]presented the finite element model for analyzing the composite

laminates containing the piezoelectrics statically and dynamically. A simple higher

order plate theory was used, which can satisfy the free conditions of transverse shear

strains on the top and bottom surfaces of the plates. To develop C0 type FEM

scheme, two artificial variables in the displacement field had been introduced to avoid

the higher-order plate theory. Also a generalized coupling FEM model for the me-

chanical and electric fields from the variational framework was proposed. Finally

various examples studied in many previous researches had been employed to verify

the justification, accuracy and efficiency of the presented model.

Huang and Liu[31]presented the studies which deals with the fully coupled response

characteristics of a multilayered composite plate with piezoelectric layers. The re-

sponse quantities of the plate were coupled by the mechanical field and the electric

field. Based on the three-dimensional linear piezoelectricity and the first-order shear

deformation theory, the fundamental unknowns, such as the displacements and the

electric potential, were assumed to be expandable through the plate thickness co-

ordinate. Numerical results for the static and dynamic response of the laminated

composite plates with different lamination schemes and having a PIC-151 piezoelec-

tric material layer were obtained. The effects of the static and dynamic response

were presented. Numerical results showed that the plate thickness ratio, plate aspect

ratio, lamination scheme, fiber orientations, and piezoelectric coupling significantly

influence the static and dynamic responses of the plate. It was observed that the

deflections increases and natural frequency decreases with an increase in the plate

aspect ratio for all fiber orientations. It has been also observed that the coupling due

to piezoelectric layer reduces the transverse deflection and the natural frequency of

the plate resistance increases with the presence of piezoelectric coupling.
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2.2.4 Analysis of Laminated Composite Plates with Func-

tionally Graded Material

Alieldin et al.[34] investigated the mechanical behaviour of laminated composite

and functional graded plates by using, the first-order shear deformation plate (FSDT).

Three approaches had been developed to transform the laminated composite plate,

with stepped material properties, to an equivalent functionally graded (FG) plate

with a continuous property function across the plate thickness. Such transformations

were used to determine the details of a functional graded plate equivalent to the

original laminated one and to acquire an easy and efficient way to investigate the

behaviour of multilayer composite plates, with direct and less computational efforts.

Pendhari et al.[35] presented the studies on mixed semi-analytical and analytical

solutions for a rectangular plate made of functionally graded (FG) material. All edges

of a plate were considered under simply supported (diaphragm) end conditions and

general stress boundary conditions can be applied on both top and bottom surface

of a plate during solution. A mixed semi-analytical model consists in defining a two-

point boundary value problem governed by a set of first-order ordinary differential

equations in the plate thickness direction. Analytical solutions based on shear-normal

deformation theories were also established to show the accuracy, simplicity and effec-

tiveness of mixed semi-analytical model. They concluded with the main feature of

mixed semi-analytical model that the governing equation system was not transformed

into an algebraic equation system, thus the intrinsic behaviour of the physical system

was retained to a greater degree of accuracy.

Shiyekar and Kant[36]presented the studies on bidirectional flexure analysis of

Functionally Graded (FG) plate integrated with piezoelectric fiber reinforced com-

posites (PFRC). A higher order shear and normal deformation theory (HOSNT12)

was used to analyze such hybrid or smart FG plate subjected to electromechanical

loading. The displacement function used was approximate. Variations of in-plane
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and transverse displacements were observed linear and constant. Linear layer wise

approximation of the electrostatic potential was proposed in the present model. Elas-

tic constants were varying exponentially along thickness (z axis) for FG material while

Poisson’s ratio was kept constant. PFRC actuator attached either at top or bottom

of FG plate and analyzed under mechanical and coupled mechanical and electrical

loading. Comparison of presented HOSNT12 was made with exact and finite element

method.

2.3 Summary

In this chapter, literature review related to static and dynamic analysis of laminated

composite plate has been briefly reviewed. The review of literature includes the

following points:

• Type of theory developed and used in analysis of laminated composites.

• Type of element used in finite element analysis.

• Degrees of Freedom considered based on support conditions.

• Applied Loading Conditions to the laminated composites.

• Comparison of results obtained by presented theory with different available

theory solutions.



Chapter 3

Static and Dynamic Analysis of

Laminated Composite Plate

3.1 Introduction

For static and dynamic analysis of composite plates Classical Plate Theory(CPT)

as well as Finite Element Method(FEM) based on numerical methods can be used.

In the present study finite element method is used for analysis of composite plates.

Finite element method is based on principle of discretization. By assuming element

properties global matrices are formed. From solution of equilibrium equations re-

sponse of composite plate under static loading can be obtained. Eigen value analysis

of assembled stiffness matrix and mass matrix gives natural frequency and mode

shapes of composite plates. Element properties depends on stress-strain relationship

and strain-displacement relationship. In this chapter element properties are derived

based on two displacement models.

33
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3.2 Basic Mechanics of Composite Laminates

3.2.1 Generalized Hooke’s law for Nonisotropic Materials

Normal Stress and Strain, Uniaxially Applied Force

For isotropic materials, the relationship between stress and strain is independent of

the direction of force, thus only one elastic constant (young’s modulus) is required to

describe the stress-strain relationship for a uniaxially applied force.

For a nonisotropic material, at least two elastic constants are needed to describe

the stress-strain behavior of the material. Fig.3.1 is a schematic of an isotropic and

a unidirectional fiber-reinforced material. The stiffness of the isotropic plate can be

described by one value, the modulus, E, of the material, regardless of direction of load.

The stiffness of the orthotropic plate must be described by two values, one along the

longitudinal direction of the fibers commonly referred to as EL, and one transverse to

the direction of fibers, usually denoted by ET . Subscripts 1 and 2 will be used such

that EL= E1 and ET = E2. Thus indices must be added to the stress, strain, and

modulus values to describe the direction of the applied force.

Figure 3.1: Difference between an isotopic plate and an orthotropic plate

For example, for an isotropic material, the stress-strain relationship is written.
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σ = Eε (3.1)

For the orthotropic system the direction must be specified.

For example,

σ1 = E1ε1 or σ2 = E2ε2 (3.2)

3.2.2 Stress And Strain relations of a thin lamina for spe-

cially orthotropic plates

The previous section dealt with an extremely simple type of stress state, uniaxial. In

general, plates will experience stresses in more than one direction within the plane.

This is referred as the plane stress condition. In this case Poisson’s ratio now becomes

important. It is the ratio of the strain perpendicular to a given loading direction, to

the strain parallel to this given loading direction:

Poisson’s ratio, for loading along the fibers

ν12 =
εT
εL

(3.3)

for loading perpendicular to fibers

ν21 =
εT
εL

(3.4)

The strain components are now stretch due to an applied force, minus the contraction

due to Poisson’s effect of another force perpendicular to this applied force. Thus,
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ε1 =
σ1
E1

− ν21ε2 and ε2 =
σ2
E2

− ν12ε1 (3.5)

Using equation,

ε1 =
σ1
E1

− ν21
σ2
E2

and ε2 =
σ2
E2

− ν12
σ1
E1

(3.6)

Shear forces can also be present. Shear stress and shear strain are related by a

constant. This constant is called the shear modulus and is usually denoted by G.

Thus,

τ12 = γ12G12 (3.7)

Where τ12 is the shear stress (the 1 and 2 indices indicating shear in the 1-2 plane),

and γ12 is the shear strain. Fig.3.2 gives a definition of shear strain. Since it is known

that a relationship exists between Poisson’s ratios and the modulii in each of the two

axes directions, namely,

ν21E1 = ν12E2 (3.8)
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Figure 3.2: Definition of shearing strain

For lamina stress and strain tensors are written as follows:

σ11 = σ1, σ22 = σ2, σ33 = σ3, σ23 = τ23 = σ4, σ31 = τ31 = σ5, σ12 = τ12 = σ6

In such a case all stress components out-of-plane direction (3-direction) are zero, that

is:

σ3 = τ23 = τ31 = 0 (3.9)
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Equations 3.6 and 3.7 can be written in matrix form as:∣∣∣∣∣∣∣∣∣
ε1

ε2

γ12

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
S11 S12 0

S12 S22 0

0 0 S33

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
σ1

σ2

τ12

∣∣∣∣∣∣∣∣∣ (3.10)

where

S11 =
1

E1

, S22 =
1

E2

, S12 =
−ν12
E1

=
−ν21
E2

, S33 =
1

G12

(3.11)

By inverting the compliance matrix, one can get stress as a function of strain. This

turns out to be:

∣∣∣∣∣∣∣∣∣
σ1

σ2

τ12

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
Q11 Q12 0

Q12 Q22 0

0 0 Q33

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ε1

ε2

γ12

∣∣∣∣∣∣∣∣∣ (3.12)

Where:

Q11 =
E1

1− ν12ν21
Q22 =

E2

1− ν12ν21
Q12 =

ν12E2

1− ν12ν21
=

ν21E1

1− ν12ν21
Q33 = G12 (3.13)

The Qij is referred to as the reduced stiffness component and the matrix is abbrevi-

ated as [Q].

3.2.3 Transformation of stress and strain

The stiffness of composite changes with the change of ply orientation. A particular

axis system is chosen for conveniently solving the problem - axis system is known as

the loading axis or the reference axis. For fibre reinforced composites, another axis

system which is parallel and perpendicular to the fibre orientation is convenient for

the calculation of material properties. As such the transformation of stresses and
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strains from one axis system to another is needed.

The principal material axis system is indicated by the 1-2 axis and the reference axis

system is shown by the x-y axis Fig.3.3. Fig.3.3(a) indicates an on-axis system, that

is, where the principal material axis is coincident with the reference axis. Fig.3.3(b)

depicts an off-axis system. Here the reference axis system for a unidirectional com-

posite is different from the material axis system. Counter-clockwise rotation of θ is

taken as positive.

Figure 3.3: Axis system in an unidirectional stressed lamina

Unidirectional stressed lamina in an off-axis system is shown in Fig.3.4 stresses on

planes coincident with the material axis system is shown in Fig.3.5 the wedge is

considered parallel and perpendicular to the fibre orientation.

Figure 3.4: Unidirectional stressed lamina
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Figure 3.5: Stresses on inclined plane

Referring to Fig.3.5 , the equilibrium of all horizontal and vertical forces of the wedge

with unit area on the inclined plane yield the following equations,

mσ1 − nσ6 = mσx + nσs (3.14)

nσ1 −mσ6 = nσy +mσs (3.15)

Where,

m = cos θ ,n = sin θ and σ6 = τ12

Solving Equation 3.14 and 3.15 ,yields,

σ1 = m2σx + n2σy + 2mnσs (3.16)

σ6 = −mnσx +mnσy + (m2 − n2)σs (3.17)

Similarly, referring to Fig.3.5(b) and following similar steps as above, we get

σ2 = n2σx +m2σy − 2mnσs (3.18)

Equations 3.16 to 3.17 written in matrix form becomes
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∣∣∣∣∣∣∣∣∣
σ1

σ2

σ6

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
σx

σy

σs

∣∣∣∣∣∣∣∣∣ (3.19)

Or,

σ1,2 = [T ] σx,y (3.20)

[T] is known as the transformation matrix.

Same way transformation matrix for strain,

∣∣∣∣∣∣∣∣∣
ε1

ε2

ε6
2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
εx

εy

εs
2

∣∣∣∣∣∣∣∣∣ (3.21)

Or,

ε1,2 = [T ] εx,y (3.22)

By multiplying both sides of Equation 3.19 and 3.21 by [T ]−1 , we obtain for the

stressed lamina,

∣∣∣∣∣∣∣∣∣
σx

σy

σs

∣∣∣∣∣∣∣∣∣ = [T ]−1

∣∣∣∣∣∣∣∣∣
σ1

σ2

σ6

∣∣∣∣∣∣∣∣∣ (3.23)

end

∣∣∣∣∣∣∣∣∣
εx

εy

εs
2

∣∣∣∣∣∣∣∣∣ = [T ]−1

∣∣∣∣∣∣∣∣∣
ε1

ε2

ε6
2

∣∣∣∣∣∣∣∣∣ (3.24)

Where
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[T ]−1 = [T (−θ)] =

∣∣∣∣∣∣∣∣∣
m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

∣∣∣∣∣∣∣∣∣ (3.25)

Transformation of elastic constants

When a lamina is loaded in the reference axis xy, the relationship between stresses

in the reference xy-axis and that in the principal material axis is given by Equation

3.23,

Combining 3.12 and 3.23 result in,

∣∣∣∣∣∣∣∣∣
σx

σy

σs

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Q11 Q12 0

Q12 Q22 0

0 0 2Q66

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ε1

ε2

ε6
2

∣∣∣∣∣∣∣∣∣ (3.26)

substituting strains in the 1-2 axis in terms of x-y axis from Equation 3.21 into 3.26,

yields

∣∣∣∣∣∣∣∣∣
σx

σy

σs

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Q11 Q12 0

Q12 Q22 0

0 0 2Q66

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
εx

εy

εs
2

∣∣∣∣∣∣∣∣∣
(3.27)

Equation 3.27 is written as

∣∣∣∣∣∣∣∣∣
σx

σy

σs

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Qxx Qxy 2Qxs

Qyx Qyy 2Qys

Qsx Qsy 2Qss

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
εx

εy

ε
s

∣∣∣∣∣∣∣∣∣ (3.28)

The relationship between reduced stiffness are as follows,

Qxx = m4Q11 + n4Q22 + 2m2n2Q12 + 4m2n2Q66

Qyy = n4Q11 + m4Q22 + 2m2n2Q12 + 4m2n2Q66

Qxy = m2n2Q11 + m2n2Q22 + (m4 + n4)Q12 - 4m2n2Q66
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Qxs = m3nQ11 - mn3Q22 + (mn3 −m3n)Q12 + 2(mn3 −m3n)Q66

Qys = mn3Q11 - m3nQ22 + (m3n−mn3)Q12 + 2(m3n−mn3)Q66

Qss = m2n2Q11 + m2n2Q22 - 2m2n2Q12 + (m2 − n2)2Q66

3.3 Higher Order Shear Deformation Theory

Introduction

Fibre reinforced composite are manufactured in the form of thin layers and by bond-

ing them together laminated composite plate is constructed. The analysis of these

plates has been very abundantly studied area in structural engineering for many years

because of their application. In most applications, the thickness of a laminate is small

compared to the planner dimensions. For analysis of this laminate two dimensional

theories are developed from three dimensional elasticity theory by making assump-

tions of variation of displacements and/or stresses through the thickness of laminate.

The classical laminated plate theory(CLPT) is an extension of the classical plate

theory to laminated plate. In this theory displacements are assumed to vary lin-

early through thickness and transverse displacement is assumed constant through the

thickness. In most of the case the classical laminated plate theory is found adequate

for the laminate with small thickness, and where it is not applicable the refinement of

this theory is required. A refined classical laminate plate theory is known as a First

Order Shear Deformation Theory(FSDT).[2]

The fist order shear deformation theory is based on displacement field, where the three

components of the displacement vector are expanded in power series of the thickness

coordinate and unknown functions. It is also known commonly as “The Mindlin

Plate Theory”. The first order shear deformation theory yields a constant value of

transverse shear strain through the thickness of plate by introducing shear correc-

tion factors. The shear correction factors are dimensionless quantities introduced to

account for the inconsistency between the constant rate of shear strains in the first
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order theory and the higher-order distribution of shear strains in the elasticity theory.

To account for the transverse shear deformation more correctly, the higher order

terms are necessary to incorporate in the displacement field. Higher order theories

are derived out of power series expansion of the mid-surface displacements in the

power of the thickness co-ordinates as given below. in this study two Displacement

models are used to account for membrane, bending and transverse shear deformation.

A coordinate system is adopted such that the x-y plane coincides with the mid plane

and the z-axis is perpendicular to the plane as shown in Fig.3.6. The displacements in

the x, y and z directions of the symmetrically laminated composite plates subjected

to transverse load may be taken as follows. The displacement along the x, y and z

directions are expressed in terms of higher order functions of thickness coordinates

and mid plane variables.

a. Displacement Model - 1

u(x, y, z) = zθx(x, y, 0) + z3θ∗x(x, y, 0) = zθx + z3θ∗x

v(x, y, z) = zθy(x, y, 0) + z3θ∗y(x, y, 0) = zθy + z3θ∗y

w(x, y, z) = w0(x, y, 0) + z2w∗0(x, y, 0) = w0 + z2w∗0

b. Displacement Model - 2

u(x, y, z) = u0(x, y, 0)+zθx(x, y, 0)+z2u∗0(x, y, 0)+z3θ∗x(x, y, 0)=u0+zθx+z
2u∗0+z

3θ∗x

v(x, y, z) = v0(x, y, 0)+zθy(x, y, 0)+z2v∗0(x, y, 0)+z3θ∗y(x, y, 0)=v0+zθy+z
2v∗0+z3θ∗y

w(x, y, z) = w0(x, y, 0) + zθz(x, y, 0)+z2w∗0(x, y, 0) = w0 + zθz + z2w∗0



CHAPTER 3. STATIC ANDDYNAMIC ANALYSIS OF LAMINATED COMPOSITE PLATE45

Figure 3.6: Laminate geometry with positive set of lamina reference axis, displace-
ment components and fibre orientation.[21]

3.3.1 Definition of Displacement Field for Model-1

u(x, y, z) = zθx(x, y, 0) + z3θ∗x(x, y, 0) = zθx + z3θ∗x

v(x, y, z) = zθy(x, y, 0) + z3θ∗y(x, y, 0) = zθy + z3θ∗y

w(x, y, z) = w0(x, y, 0) + z2w∗0(x, y, 0) = w0 + z2w∗0

where u, v, and w define the displacements of a point along x, y and z directions

respectively, θx and θy are the rotations of the normal to the mid plane at the same

point, and w∗0, θ
∗
x, θ

∗
y are the corresponding higher order terms. An advantage of

the displacement model under consideration is that the assumed field variables w0,
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θx, θy, w
∗
0, θ

∗
x, θ

∗
y need only be C0 continuity. This model includes the effects of the

transverse normal strain/stress also.

Strain Displacement Relationship Corresponding to Model

εx = ∂u
∂x

= z ∂θx
∂x

+ z3 ∂θ
∗
x

∂x
= zKx + z3K∗x

εy = ∂v
∂y

= z ∂θy
∂y

+ z3
∂θ∗y
∂y

= zKy + z3K∗y

εz = ∂w
∂z

= 2zw∗0 = zKz

γxy = ∂u
∂y

+ ∂v
∂x

= z ∂θx
∂y

+ z3 ∂θ
∗
x

∂y
+ z ∂θy

∂x
+ z3

∂θ∗y
∂x

= zKxy + z3K∗xy

γyz = ∂v
∂z

+ ∂w
∂y

= θy + 3z2θ∗y + ∂w0

∂y
+ z2

∂w∗
0

∂y
= φy + z2φ∗y

γxz = ∂u
∂z

+ ∂w
∂x

= θx + 3z2θ∗x + ∂w0

∂x
+ z2

∂w∗
0

∂x
= φx + z2φ∗x

Where the definitions of the various terms are as follows:

Kx = ∂θx
∂x

Ky = ∂θy
∂y

Kxy = ∂θx
∂y

+ ∂θy
∂x

K∗x = ∂θ∗x
∂x

K∗y =
∂θ∗y
∂y

K∗xy = ∂θ∗x
∂y

+
∂θ∗y
∂x

φx = θx + ∂w0

∂x

φy = θy + ∂w0

∂y

φ∗x = 3θ∗x +
∂w∗

0

∂x

φ∗y = 3θ∗y +
∂w∗

0

∂y

Kz = 2w∗0

The concise matrix form above equations,
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εkb =

∣∣∣∣∣∣∣∣∣∣∣∣

εx

εy

εz

γxy

∣∣∣∣∣∣∣∣∣∣∣∣
= z

∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

Kz

Kxy

∣∣∣∣∣∣∣∣∣∣∣∣
+ z3

∣∣∣∣∣∣∣∣∣∣∣∣

K∗x

K∗y

K∗z

Kxy
∗

∣∣∣∣∣∣∣∣∣∣∣∣
= zK + z3K∗ (3.29)

εks =

∣∣∣∣∣∣ γyzγxz
∣∣∣∣∣∣ = z

∣∣∣∣∣∣ φyφx
∣∣∣∣∣∣+ z2

∣∣∣∣∣∣ φ
∗
y

φ∗x

∣∣∣∣∣∣ = φ+ z2φ∗ (3.30)

The above Equation 3.29 and 3.30 are the expressions for the flexure and transverse

shear strains respectively, at any point in the kth layer of the laminate located at a

distance z from the mid-plane. It should be noted that owing to the nature of Equation

3.30, the transverse shear strains vary parabolically through the plate thickness. For

an orthotropic lamina in a 3-D state, the strain-stress relationship at a point in each

of the three orthogonal planes is given by,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε1

ε2

ε3

γ12

γ23

γ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E3

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1

σ2

σ3

τ12

τ23

τ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.31)

Or

ε = [s]σ (3.32)

The stress-strain constitutive relations can be obtained by inversion of strain-stress

relations given by Equation 3.32 and are written in following matrix form.

σ = [C]ε (3.33)
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where,

σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1

σ2

σ3

τ12

τ23

τ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.34)

[C] =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E1(1− ν23ν32) E1(ν21 + ν31ν23) E1(ν31 + ν21ν32) 0 0 0

E2(ν12 + ν13ν32) E2(1− ν13ν31) E2(ν32 + ν12ν31) 0 0 0

E3(ν13 + ν12ν23) E3(ν23 + ν21ν13) E3(1− ν12ν21) 0 0 0

0 0 0 ∆G12 0 0

0 0 0 0 ∆G23 0

0 0 0 0 0 ∆G13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.35)

ε =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε1

ε2

ε3

γ12

γ23

γ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.36)

In which,

∆ = (1 - ν12ν21 - ν23ν32 - ν31ν13 - 2ν12ν23ν31)

In the stress-strain relation Equation 3.29 and 3.30, the subscript k is introduced to

designate kth layer of the laminate. The relations given by Equation 3.33 are the

stress-strain constitutive relations with reference to lamina axes for a homogeneous
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orthotropic layer in a general 3-D state of stress and these are adopted here to develop

a theory based on the displacement model.

As noted earlier, the relation given by Equation 3.33 is the stress-strain constitutive

relation for the orthotropic lamina referred to the laminas principal axes (1,2,3). The

principal material axes of a lamina may not coincide with the reference axes for the

laminated plate. It is therefore necessary to transform the constitutive relation given

by Equation 3.33 from the lamina principal axes (1,2,3) to the reference axes of the

laminate (x, y, z).

σ′ = Tσ and ε′ = Tε (3.37)

The transformation matrix T is given by,

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2 s2 0 2cs 0 0

s2 c2 0 −2cs 0 0

0 0 1 0 0 0

−sc sc 0 (c2 − s2) 0 0

0 0 0 0 c −s

0 0 0 0 s c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.38)

Where, c = cosα and s = sinα with a as angle between reference axes and

principal axes of laminate.

The relation between engineering and tensor strain vectors is given by,

ε = [R]εts which can be written as εts = [R]−1ε (3.39)

R matrix is defined as,
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[R] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.40)

The stress-strain constitutive relations with reference to laminate axes are obtained

in the following form by making use of relations from Equations 3.33, 3.35 and 3.38.

σ = [T ]−1CRTR−1ε (3.41)

It can easily be proved that,

RTR−1 = [T ]−1t (3.42)

Thus, the relation 3.39 can be rewritten as,

σ = Qε (3.43)

Where,

Q = [T ]−1C[T ]−1t (3.44)

In matrix form,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σx

σy

σz

τxy

τyz

τxz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q11 Q12 Q13 Q14 0 0

Q21 Q22 Q23 Q24 0 0

Q31 Q32 Q33 Q34 0 0

Q41 Q42 Q43 Q44 0 0

0 0 0 0 Q55 Q56

0 0 0 0 Q65 Q66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

εx

εy

εz

γxy

γyz

γxz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.45)
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The matrix coefficients Q are defined as,

Q11 = C11c
4 + (2C12 + 4C44) s

2c2 + C22s
4

Q12 = (s4 + c4) C12 + (C11 + C22 - 4C44) s
2c2

Q13 = c2C13 + s2C23

Q14 = (C11 - C12 - 2C44) c
3s + (C12 - C22 + 2C44)s

3c

Q22 = C11s
4 + C22c

4 + (2C12 + 4C44)s
2c2

Q23 = c2C23 + s2C13

Q24 = (C11 - C12 - 2C44) s
3c + (C12 - C22 + 2C44)c

3s

Q33 = C33

Q34 = (C13 - C23)sc

Q44 = (C11 + C22 - 2C12 - 2C44)s
2c2 + (c4 + s4)C44

Q55 = c2C55 + s2C66

Q56 = (C66 - C55)sc

Q66 = s2C55 + c2C66

And the coefficients of C matrix are defined by Equation 3.33.

Stress-Resultant and Mid-Plane Strains Relationships

Laminate constitutive relations

The laminate constitutive relations with the assumed displacement model can be

derived as follows: In this case, from stress-strain relationship equations correspond-

ing to displacement model are substituted in the energy expression. By principle of

virtual work,

δU = δW (3.46)∫
v

(δεtσ)dV =

∫
A

δtFdA (3.47)

Where δU is the strain energy of the plate, δW represents the work done by externally

applied forces and F is the vector of force intensities corresponding to the generalized

displacement vector q defined at mid-plane.
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The mid-surface displacement vector q, strain vector ε and the stress-resultant vector

σ are defined as,

q = (w0, θx, θy, w
∗
0, θ

∗
x, θ

∗
y)

ε = (Kx,Ky,Kxy,K
∗
x,K∗y ,K∗xy,Kz,φx,φy,φ

∗
x,φ
∗
y)

σ = (Mx,My,Mxy,M
∗
x ,M∗

y ,M∗
xy,Mz,Qx,Qy,Q

∗
x,Q

∗
y)

The component of stress resultant vector σ are defined as,

(Mx,My,Mz,Mxy) =
NL∑
k=1

∫ hk

hk=1

(σx, σy, σz, τxy)
kzdz (3.48)

(M∗
x ,M

∗
y ,M

∗
xy) =

NL∑
k=1

∫ hk

hk=1

(σx, σy, τxy)
kz3dz (3.49)

(Qx, Qy) =
NL∑
k=1

∫ hk

hk=1

(τxz, τyz)
kdz (3.50)

(Q∗x, Q
∗
y) =

NL∑
k=1

∫ hk

hk=1

(τxz, τyz)
kz2dz (3.51)

The expressions for the stresses in the kth layer can be rewritten by substitution of

strain expressions Equations 3.29 and 3.30 in the lamina constitutive relations Equa-

tions 3.43 as follows,

∣∣∣∣∣∣∣∣∣∣∣∣

σx

σy

σz

τxy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

∣∣∣∣∣∣∣∣∣∣∣∣

k

z

∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

Kz

Kxy

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

∣∣∣∣∣∣∣∣∣∣∣∣

k

z3

∣∣∣∣∣∣∣∣∣∣∣∣

K∗x

K∗y

0

K∗xy

∣∣∣∣∣∣∣∣∣∣∣∣
(3.52)

∣∣∣∣∣∣ τyzτxz
∣∣∣∣∣∣ =

∣∣∣∣∣∣ Q55 Q56

Q65 Q66

∣∣∣∣∣∣
k ∣∣∣∣∣∣ φyφx

∣∣∣∣∣∣+

∣∣∣∣∣∣ Q55 Q56

Q65 Q66

∣∣∣∣∣∣
k

z2

∣∣∣∣∣∣ φ
∗
y

φ∗x

∣∣∣∣∣∣ (3.53)

The substitution of expressions (3.50, 3.51) in Equations (3.46, 3.47, 3.48, 3.49) and

the integration through each lamina thickness, results in the following laminate con-
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stitutive relations.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mx

My

Mxy

M∗
x

M∗
y

M∗
xy

Mz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
NL∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q11H3 Q12H3 Q14H3 Q11H5 Q12H5 Q14H5 Q13H3

Q12H3 Q22H3 Q24H3 Q12H5 Q22H5 Q24H5 Q23H3

Q14H3 Q24H3 Q44H3 Q14H5 Q24H5 Q44H5 Q34H3

Q11H5 Q12H5 Q14H5 Q11H7 Q12H7 Q14H7 Q13H5

Q12H5 Q22H5 Q24H5 Q12H7 Q22H7 Q24H7 Q23H5

Q14H5 Q24H5 Q44H5 Q14H7 Q24H7 Q44H7 Q34H5

Q13H3 Q23H3 Q34H3 Q13H5 Q23H5 Q34H5 Q33H3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

Kxy

K∗x

K∗y

K∗xy

Kz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.54)

∣∣∣∣∣∣∣∣∣∣∣∣

Qx

Qy

Q∗x

Q∗y

∣∣∣∣∣∣∣∣∣∣∣∣
=

NL∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣

Q55H1 Q56H1 Q55H3 Q56H3

Q56H1 Q66H1 Q56H3 Q66H3

Q55H3 Q56H3 Q55H5 Q56H3

Q56H3 Q66H3 Q56H5 Q66H3

∣∣∣∣∣∣∣∣∣∣∣∣

k ∣∣∣∣∣∣∣∣∣∣∣∣

φx

φy

φ∗x

φ∗y

∣∣∣∣∣∣∣∣∣∣∣∣
(3.55)

Where, Hi=
(hik−h

i
k−1)

i
i=1,3,5,7

Equation matrix is for flexure rigidity and Equation matrix is foe shear rigidity.

3.3.2 Definition of Displacement Field Model-2

u(x, y, z) = u0(x, y, 0)+zθx(x, y, 0)+z2u∗0(x, y, 0)+z3θ∗x(x, y, 0)=u0+zθx+z
2u∗0+z

3θ∗x

v(x, y, z) = v0(x, y, 0)+zθy(x, y, 0)+z2v∗0(x, y, 0)+z3θ∗y(x, y, 0)=v0+zθy+z
2v∗0+z3θ∗y

w(x, y, z) = w0(x, y, 0) + zθz(x, y, 0)+z2w∗0(x, y, 0) = w0 + zθz + z2w∗0

where u, v, and w define the displacements of a generic point in x, y and z directions

respectively, u0, v0, w0 are the associated mid-plane displacements, θx and θy are the

rotations of the transverse normal in the x-z and y-z planes, u∗0, v
∗
0, w∗0, θ

∗
x, θ

∗
y and θz

are the corresponding higher order terms.

Strain Displacement Relationship Corresponding to Model
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εx = ∂u
∂x

= ∂u0
∂x

+ z ∂θx
∂x

+ z2
∂u∗0
∂x

+ z3 ∂θ
∗
x

∂x
=ε0x + zKx + z2ε∗0x + z3K∗x

εy = ∂v
∂y

= ∂v0
∂y

+ z ∂θy
∂y

+ z2
∂v∗0
∂y

+ z3
∂θ∗y
∂y

=ε0y + zKy + z2ε∗0y + z3K∗y

εz = ∂w
∂z

= θz + 2zw∗0 = ε0z + zK∗z

γxy = ∂u
∂y

+ ∂v
∂x

= ∂u0
∂y

+z ∂θx
∂y

+ z2
∂u∗0
∂y

+ z3 ∂θ
∗
x

∂y
+ ∂v0

∂x
+z ∂θy

∂x
+ z2

∂v∗0
∂x

+ z3
∂θ∗y
∂x

= ε0xy +

zKxy + z2ε∗0xy +z3K∗xy

γyz = ∂v
∂z

+ ∂w
∂y

= θy + 2zv∗0 + 3z2θ∗y + ∂w0

∂y
+ z ∂θz

∂y
+ z2

∂w∗
0

∂y
= φy + zψy +z2φ∗y

γxz = ∂u
∂z

+ ∂w
∂x

= θx + 2zu∗0 + 3z2θ∗x + ∂w0

∂x
+ z ∂θz

∂x
+ z2

∂w∗
0

∂x
= φx + zψx +z2φ∗x

Where the definitions of the various terms are as follows:

ε0x = ∂u0
∂x

ε0y = ∂v0
∂y

ε0xy = ∂u0
∂y

+ ∂v0
∂x

ε∗0x =
∂u∗0
∂x

ε∗0y =
∂v∗0
∂y

ε∗0xy =
∂u∗0
∂y

+
∂v∗0
∂x

ε0z = θz

Kx = ∂θx
∂x

Ky = ∂θy
∂y

Kxy = ∂θx
∂y

+ ∂θy
∂x

K∗x = ∂θ∗x
∂x

K∗y =
∂θ∗y
∂y

K∗xy = ∂θ∗x
∂y

+ ∂θy
∗

∂x

K∗z = 2w∗0



CHAPTER 3. STATIC ANDDYNAMIC ANALYSIS OF LAMINATED COMPOSITE PLATE55

φx = θx + ∂w0

∂x

φy = θy + ∂w0

∂y

ψx = 2u∗0 + ∂θz
∂x

ψy = 2v∗0 + ∂θz
∂y

φ∗x = 3θ∗x +
∂w∗

0

∂x

φ∗y = 3θ∗y +
∂w∗

0

∂y

The concise matrix form above equations,

εkb =

∣∣∣∣∣∣∣∣∣∣∣∣

εx

εy

εz

γxy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

ε0x

ε0y

ε0z

ε0xy

∣∣∣∣∣∣∣∣∣∣∣∣
+ z2

∣∣∣∣∣∣∣∣∣∣∣∣

ε∗0x

ε∗0y

0

ε∗0xy

∣∣∣∣∣∣∣∣∣∣∣∣
+ z

∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

0

Kxy

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

z3K∗x

z3K∗y

zK∗z

z3K∗xy

∣∣∣∣∣∣∣∣∣∣∣∣
(3.56)

εks =

∣∣∣∣∣∣ γyzγxz
∣∣∣∣∣∣ = z

∣∣∣∣∣∣ φyφx
∣∣∣∣∣∣+ z

∣∣∣∣∣∣ ψyψx
∣∣∣∣∣∣+ z2

∣∣∣∣∣∣ φ
∗
y

φ∗x

∣∣∣∣∣∣ (3.57)

The above Equation 3.54 and 3.55 are the expressions for the flexure and transverse

shear strains respectively, at any point in the kth layer of the laminate located at a

distance z from the mid-plane. It should be noted that owing to the nature of Equation

3.55, the transverse shear strains vary parabolically through the plate thickness. For

an orthotropic lamina in a 3-D state, the strain-stress relationship at a point in each

of the three orthogonal planes is given by,
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε1

ε2

ε3

γ12

γ23

γ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E3

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1

σ2

σ3

τ12

τ23

τ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.58)

Or

ε = [s]σ (3.59)

The stress-strain constitutive relations can be obtained by inversion of strain-stress

relations given by Equation 3.57 and are written in following matrix form.

σ = [C]ε (3.60)

where,

σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1

σ2

σ3

τ12

τ23

τ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.61)
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[C] =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E1(1− ν23ν32) E1(ν21 + ν31ν23) E1(ν31 + ν21ν32) 0 0 0

E2(ν12 + ν13ν32) E2(1− ν13ν31) E2(ν32 + ν12ν31) 0 0 0

E3(ν13 + ν12ν23) E3(ν23 + ν21ν13) E3(1− ν12ν21) 0 0 0

0 0 0 ∆G12 0 0

0 0 0 0 ∆G23 0

0 0 0 0 0 ∆G13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.62)

ε =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε1

ε2

ε3

γ12

γ23

γ13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.63)

In which,

∆ = (1 - ν12ν21 - ν23ν32 - ν31ν13 - 2ν12ν23ν31)

In the stress-strain relation Equation 3.54 and 3.55, the subscript k is introduced to

designate kth layer of the laminate. The relations given by Equation 3.58 are the

stress-strain constitutive relations with reference to lamina axes for a homogeneous

orthotropic layer in a general 3-D state of stress and these are adopted here to develop

a theory based on the displacement model.

As noted earlier, the relation given by Equation 3.58 is the stress-strain constitutive

relation for the orthotropic lamina referred to the laminas principal axes (1,2,3). The

principal material axes of a lamina may not coincide with the reference axes for the

laminated plate. It is therefore necessary to transform the constitutive relation given

by Equation 3.58 from the lamina principal axes (1,2,3) to the reference axes of the
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laminate (x, y, z).

σ′ = Tσ and ε′ = Tε (3.64)

The transformation matrix T is given by,

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c2 s2 0 2cs 0 0

s2 c2 0 −2cs 0 0

0 0 1 0 0 0

−sc sc 0 (c2 − s2) 0 0

0 0 0 0 c −s

0 0 0 0 s c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.65)

Where, c = cosα and s = sinα with a as angle between reference axes and

principal axes of laminate.

The relation between engineering and tensor strain vectors is given by,

ε = [R]εts εts = [R]−1ε (3.66)

R matrix is defined as,

[R] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.67)

The stress-strain constitutive relations with reference to laminate axes are obtained

in the following form by making use of relations from Equations 3.58, 3.60 and 3.63.

σ = [T ]−1CRTR−1ε (3.68)
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It can easily be proved that,

RTR−1 = [T ]−1t (3.69)

Thus, the relation 3.64 can be rewritten as,

σ = Qε (3.70)

Where,

Q = [T ]−1C[T ]−1t (3.71)

In matrix form,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σx

σy

σz

τxy

τyz

τxz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q11 Q12 Q13 Q14 0 0

Q21 Q22 Q23 Q24 0 0

Q31 Q32 Q33 Q34 0 0

Q41 Q42 Q43 Q44 0 0

0 0 0 0 Q55 Q56

0 0 0 0 Q65 Q66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

εx

εy

εz

γxy

γyz

γxz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.72)

The matrix coefficients Q are defined as,

Q11 = C11c
4 + (2C12 + 4C44) s

2c2 + C22s
4

Q12 = (s4 + c4) C12 + (C11 + C22 - 4C44) s
2c2

Q13 = c2C13 + s2C23

Q14 = (C11 - C12 - 2C44) c
3s + (C12 - C22 + 2C44)s

3c

Q22 = C11s
4 + C22c

4 + (2C12 + 4C44)s
2c2

Q23 = c2C23 + s2C13

Q24 = (C11 - C12 - 2C44) s
3c + (C12 - C22 + 2C44)c

3s

Q33 = C33

Q34 = (C13 - C23)sc

Q44 = (C11 + C22 - 2C12 - 2C44)s
2c2 + (c4 + s4)C44
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Q55 = c2C55 + s2C66

Q56 = (C66 - C55)sc

Q66 = s2C55 + c2C66

And the coefficients of C matrix are defined by Equation 3.60.

Stress-Resultant and Mid-Plane Strains Relationships

Laminate constitutive relations

The laminate constitutive relations with the assumed displacement model can be

derived as follows: In this case, from stress-strain relationship equations correspond-

ing to displacement model are substituted in the energy expression. By principle of

virtual work,

δU = δW (3.73)∫
v

(δεtσ)dV =

∫
A

δtFdA (3.74)

Where δU is the strain energy of the plate, δW represents the work done by externally

applied forces and F is the vector of force intensities corresponding to the generalized

displacement vector q defined at mid-plane.

The mid-surface displacement vector q, strain vector ε and the stress-resultant vector

σ are defined as,

q = (u0,v0,w0, θx, θy, θz, u
∗
0,v
∗
0, w∗0, θ

∗
x, θ

∗
y)

ε = (ε0x, ε0y, ε0xy, ε
∗
0x, ε

∗
0y, ε

∗
0xy, ε0z, Kx, Ky, Kxy, K

∗
x, K∗y , K∗xy, K

∗
z , φx, φy, ψx, ψy,

φ∗x, φ
∗
x)

σ = (Nx, Ny, Nxy, N
∗
x , N∗y , N∗xy, NZ , Mx, My, Mxy, M

∗
x , M∗

y , M∗
xy, Mz, Qx, Qy, Sx,

Sy, Q
∗
x, Q

∗
y)

The component of stress resultant vector σ are defined as,

(Nx, Ny, Nxy, Nz) =
NL∑
k=1

∫ hk+1

hk=1

(σx, σy, τxy, σz)
kdz (3.75)



CHAPTER 3. STATIC ANDDYNAMIC ANALYSIS OF LAMINATED COMPOSITE PLATE61

(N∗x , N
∗
y , N

∗
xy) =

NL∑
k=1

∫ hk+1

hk=1

z2(σx, σy, τxy)
kdz (3.76)

(Mx,My,Mxy,Mz) =
NL∑
k=1

∫ hk+1

hk=1

z(σx, σy, τxy, σz)
kdz (3.77)

(M∗
x ,M

∗
y ,M

∗
xy) =

NL∑
k=1

∫ hk+1

hk=1

z3(σx, σy, τxy)
kdz (3.78)

(Qx, Qy) =
NL∑
k=1

∫ hk+1

hk=1

(τxz, τyz)
kdz (3.79)

(Sx, Sy) =
NL∑
k=1

∫ hk+1

hk=1

z(τxz, τyz)
kdz (3.80)

(Q∗x, Q
∗
y) =

NL∑
k=1

∫ hk+1

hk=1

z2(τxz, τyz)
kdz (3.81)

The expressions for the stresses in the kth layer can be rewritten by substitution of

strain expressions Equations 3.54 and 3.55 in the lamina constitutive relations Equa-

tions 3.68 as follows,

∣∣∣∣∣∣∣∣∣∣∣∣

σx

σy

σz

τxy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

Q11 Q12 Q13 Q14 Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24 Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34 Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44 Q41 Q42 Q43 Q44

∣∣∣∣∣∣∣∣∣∣∣∣

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0x

ε0y

0

ε0xy

zKx

zKy

0

zKxy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.82)
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+

∣∣∣∣∣∣∣∣∣∣∣∣

Q11 Q12 Q13 Q14 Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24 Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34 Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44 Q41 Q42 Q43 Q44

∣∣∣∣∣∣∣∣∣∣∣∣

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z2ε∗0x

z2ε∗0y

0

z2ε∗0xy

z3K∗x

z3K∗y

0

z3K∗xy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.83)

∣∣∣∣∣∣ τxzτyz
∣∣∣∣∣∣ =

∣∣∣∣∣∣ Q66 Q65 Q66 Q65

Q56 Q55 Q56 Q55

∣∣∣∣∣∣
k

∣∣∣∣∣∣∣∣∣∣∣∣

φx

φy

zψx

zψy

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ Q66 Q65

Q56 Q55

∣∣∣∣∣∣
k

z2

∣∣∣∣∣∣ φ
∗
x

φ∗y

∣∣∣∣∣∣ (3.84)

The substitution of expressions (3.79, 3.80) in Equations (3.71, 3.72, 3.73, 3.74, 3.75,

3.76, 3.77) and the integration through each lamina thickness, results in the following

laminate constitutive relations.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N

N∗

M

M∗

Q

Q∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Dm Dc 0

Dc Db 0

0 0 Ds

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0

ε∗0

K

K∗

φ

φ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.85)

where, N = [Nx, Ny, Nxy]
T , N∗ = [N∗x , N

∗
y , N

∗
xy, Nz]

T ,

M = [Mx,My,Mxy]
T , M∗ = [M∗

x ,M
∗
y ,M

∗
xy,Mz]

T , Q = [Qx, Qy]
T , Q∗ = [Sx, Sy, Q

∗
x, Q

∗
y],

ε0 = [∂u0
∂x
, ∂v0
∂y
, ∂u0
∂y

+ ∂v0
∂x

]T , ε∗0 = [
∂u∗0
∂x
,
∂v∗0
∂y
,
∂u∗0
∂y

+
∂v∗0
∂x
, θz]

T ,

K = [∂θx
∂x
, ∂θy
∂y
, ∂θx
∂y

+ ∂θy
∂x

]T , K∗ = [∂θ
∗
x

∂x
,
∂θ∗y
∂y
, ∂θ

∗
x

∂y
+

∂θ∗y
∂x
, 2w∗0]

T ,
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φ = [θx + ∂w0

∂x
, θy + ∂w0

∂y
]T , φ∗ = [2u∗0 + ∂θz

∂x
, 2v∗0 + ∂θz

∂y
, 3θ∗x +

∂w∗
0

∂x
, 3θ∗y +

∂w∗
0

∂y
]T

The rigidity matrices are as follow:

Dm =
n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q11H1 Q12H1 Q14H1 Q11H3 Q12H3 Q14H3 Q13H1

Q12H1 Q22H1 Q24H1 Q12H3 Q22H3 Q24H3 Q23H1

Q14H1 Q24H1 Q44H1 Q14H3 Q24H3 Q44H3 Q34H1

Q11H3 Q12H3 Q14H3 Q11H5 Q12H5 Q14H5 Q13H3

Q12H3 Q22H3 Q24H3 Q12H5 Q22H5 Q24H5 Q23H3

Q14H3 Q24H3 Q44H3 Q14H5 Q24H5 Q44H5 Q34H3

Q13H1 Q23H1 Q34H1 Q13H3 Q23H3 Q34H3 Q33H1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k

(3.86)

Dc =
n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q11H2 Q12H2 Q14H2 Q11H4 Q12H4 Q14H4 Q13H2

Q12H2 Q22H2 Q24H2 Q12H4 Q22H4 Q24H4 Q23H2

Q14H2 Q24H2 Q44H2 Q14H4 Q24H4 Q44H4 Q34H2

Q11H4 Q12H4 Q14H4 Q11H6 Q12H6 Q14H6 Q13H4

Q12H4 Q22H4 Q24H4 Q12H6 Q22H6 Q24H6 Q23H4

Q14H4 Q24H4 Q44H4 Q14H6 Q24H6 Q44H6 Q34H4

Q13H2 Q23H2 Q34H2 Q13H4 Q23H4 Q34H4 Q33H2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k

(3.87)
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Db =
n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q11H3 Q12H3 Q14H3 Q11H5 Q12H5 Q14H5 Q13H3

Q12H3 Q22H3 Q24H3 Q12H5 Q22H5 Q24H5 Q23H3

Q14H3 Q24H3 Q44H3 Q14H5 Q24H5 Q44H5 Q34H3

Q11H5 Q12H5 Q14H5 Q11H7 Q12H7 Q14H7 Q13H5

Q12H5 Q22H5 Q24H5 Q12H7 Q22H7 Q24H7 Q23H5

Q14H5 Q24H5 Q44H5 Q14H7 Q24H7 Q44H7 Q34H5

Q13H3 Q23H3 Q34H3 Q13H5 Q23H5 Q34H5 Q33H3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k

(3.88)

Ds =
n∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q66H1 Q65H1 Q66H2 Q65H2 Q66H3 Q56H3

Q65H1 Q55H1 Q56H3 Q55H3 Q56H3 Q55H3

Q66H3 Q56H3 Q66H5 Q65H3 Q66H3 Q65H3

Q65H3 Q55H3 Q65H5 Q55H3 Q56H3 Q55H3

Q66H3 Q56H3 Q66H5 Q56H3 Q66H3 Q65H3

Q56H3 Q55H3 Q65H5 Q55H3 Q65H3 Q55H3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k

(3.89)

In all above relations, n is the number of layers and Hi=
(hik−h

i
k−1)

i
i=1,2....,7.
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3.4 Finite Element Formulation

The solution of the fundamental equations of the displacement model based on higher

order shear deformation theory for laminates anisotropic plates, can conveniently be

obtained by using the finite element displacement formulation.Element properties are

derived by assuming a displacement function, which ensures completeness within the

element and compatibility across the element boundaries. The finite element theory

is developed in this section for application to linear equilibrium problems of isotropic,

orthotropic and multilayer anisotropic plates with various loading and boundary con-

ditions. In present work, 8-node isoparametric quadrilateral element Fig.3.7 is used.

The finite element formulation starts with writing the shape functions, followed by the

derivation of the strain-displacement matrix [B], and calculation of element stiffness

matrix. Here for both assumed displacement models the finite element formulation is

formulated.

Figure 3.7: Eight Node Isoparametric Element

3.4.1 Displacement Model-1

u(x, y, z) = zθx(x, y, 0) + z3θ∗x(x, y, 0) = zθx + z3θ∗x

v(x, y, z) = zθy(x, y, 0) + z3θ∗y(x, y, 0) = zθy + z3θ∗y

w(x, y, z) = w0(x, y, 0) + z2w∗0(x, y, 0) = w0 + z2w∗0
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The vector,

q = [w01, θx1, θy1, w
∗
01, θ

∗
x1, θ

∗
y1, w02, θx2, θy2, w

∗
02, θ

∗
x2, θ

∗
y2,............,θ

∗
y8] denotes the

element displacement vector. Thus the degrees of freedom at each node are:

w0 = Transverse displacement at the geometrical mid-plane.

θx, θy = Rotations of the normal to the geometrical mid-plane in x-z and y-z plane

respectively.

w∗0 = Higher order term of transverse displacement w0 at the geometrical mid-plane.

θ∗x, θ
∗
y = Higher order terms of rotations of the normal to the geometrical mid-plane

in x-z and y-z plane i.e. qx and qy respectively.

Therefore, Nodal degree of freedom for element : 6

Number of nodes in the element : 8

Total degree of freedom for the element : 6x8 = 48

Shape Functions

The shape functions for this element in terms of the non-dimensional coordinate

system can be written as:

N1 =
ξ(ξ − 1)η(η − 1)

4
(3.90)

N2 =
(1− ξ2)η(η − 1)

2
(3.91)

N3 =
ξ(ξ + 1)η(η − 1)

4
(3.92)

N4 =
ξ(ξ + 1)(1− η2)

2
(3.93)

N5 =
ξ(ξ + 1)η(η + 1)

4
(3.94)

N6 =
(1− ξ2)η(η + 1)

2
(3.95)

N7 =
ξ(ξ − 1)η(η + 1)

4
(3.96)
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N8 =
ξ(ξ − 1)(1− η2)

2
(3.97)

Where, ξ and η are the non-dimensional coordinates Fig.3.7 of a given point on the

element.

Now the displacement field is expressed in terms of the nodal values. Thus, if d =

[w0, θx, θy, w
∗
0, θ

∗
x, θ

∗
y] represents the displacement components of a point located at

(ξ,η), and q is the element displacement vector, then

w0 = N1w01 + N2w02 + .......+ N8w08

θx = N1θx1 + N2θx2 + .......+ N8θx8

θy = N1θy1 + N2θy2 + .......+ N8θy8

w∗0 = N1w
∗
01 + N2w

∗
02 + .......+ N8w

∗
08

θ∗x = N1θ
∗
x1 + N2θ

∗
x2 + .......+ N8θ

∗
x8

θ∗y = N1θ
∗
y1 + N2θ

∗
y2 + .......+ N8θ

∗
y8

Where,

[N ]6×48 = Σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ni 0 0 0 0 0

0 Ni 0 0 0 0

0 0 Ni 0 0 0

0 0 0 Ni 0 0

0 0 0 0 Ni 0

0 0 0 0 0 Ni

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.98)

Strain-Displacement Matrix

The strain-displacement matrix relating strain components to element nodal variables

can be formed as:

[ε] = [B][δ] (3.99)

Where each δTi = [w0, θx, θy, w
∗
0, θ

∗
x, θ

∗
y] for i = 1 to 8.
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Now, considering the flexure strain terms and shear strain terms separately and

from [C] matrix, writing the strain-displacement relationship in terms of the bending

curvature-displacement relation [Bb] and shear rotation-displacement relation [Bs].

From Equations 3.29 and 3.30,

∣∣∣∣∣∣∣∣∣∣∣∣

εx

εy

εz

γxy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

z 0 0 z3 0 0 0

0 z 0 0 z3 0 0

0 0 0 0 0 0 z

0 0 z 0 0 z3 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

Kxy

K∗x

K∗y

K∗xy

Kz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [Hb(z)][K] (3.100)

∣∣∣∣∣∣ γyzγxz
∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1 0 z2 0

0 1 0 z2

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

φy

φx

φ∗y

φ∗x

∣∣∣∣∣∣∣∣∣∣∣∣
= [Hs(z)][φ] (3.101)

Where, the shear rotation displacement relations [φ] are,

φ =

∣∣∣∣∣∣∣∣∣∣∣∣

φx

φy

φ∗x

φ∗y

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

θx + ∂w0

∂x

θy + ∂w0

∂y

3θ∗x +
∂w∗

0

∂x

3θ∗y +
∂w∗

0

∂y

∣∣∣∣∣∣∣∣∣∣∣∣
(3.102)
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And the bending curvature-displacement relations [K] are,

K =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

Kxy

K∗x

K∗y

Kxy∗

Kz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂θx
∂x

∂θy
∂y

∂θx
∂y

+ ∂θy
∂x

∂θ∗x
∂x

∂θ∗y
∂y

∂θ∗x
∂y

+
∂θ∗y
∂x

2w∗0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.103)

Curvature-nodal displacement Relationships

The curvature vectors [K] and [φ] may be related to the nodal displacements by:

[K] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kx

Ky

Kxy

K∗x

K∗y

Kxy∗

Kz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
NN∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ∂Ni

∂x
0 0 0 0

0 0 ∂Ni

∂y
0 0 0

0 ∂Ni

∂y
∂Ni

∂x
0 0 0

0 0 0 0 ∂Ni

∂x
0

0 0 0 0 0 ∂Ni

∂y

0 0 0 0 ∂Ni

∂y
∂Ni

∂x

0 0 0 2Ni 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w0

θx

θy

w∗0

θ∗x

θ∗y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= [Bb(x, y)]7×48[di]

(3.104)

[φ] =

∣∣∣∣∣∣∣∣∣∣∣∣

φx

φy

φ∗x

φ∗y

∣∣∣∣∣∣∣∣∣∣∣∣
=

NN∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣

∂Ni

∂x
Ni 0 0 0 0

∂Ni

∂y
0 Ni 0 0 0

0 0 0 ∂Ni

∂x
3Ni 0

0 0 0 ∂Ni

∂y
0 3Ni

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w0

θx

θy

w∗0

θ∗x

θ∗y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[Bs(x, y)]4×48[di] (3.105)
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3.4.2 Displacement Model-2

u(x, y, z) = u0(x, y, 0)+zθx(x, y, 0)+z2u∗0(x, y, 0)+z3θ∗x(x, y, 0)=u0+zθx+z
2u∗0+z

3θ∗x

v(x, y, z) = v0(x, y, 0)+zθy(x, y, 0)+z2v∗0(x, y, 0)+z3θ∗y(x, y, 0)=v0+zθy+z
2v∗0+z3θ∗y

w(x, y, z) = w0(x, y, 0) + zθz(x, y, 0)+z2w∗0(x, y, 0) = w0 + zθz + z2w∗0

The vector,

q = [u01, v01, w01, θx1, θy1, θz1, u
∗
01, v

∗
01, w

∗
01, θ

∗
x1, θ

∗
y1, u02, v02, w02, θx2, θy2, θz2,

u∗02, v
∗
02, w

∗
02, θ

∗
x2, θ

∗
y2,,............,θ

∗
y8] denotes the element displacement vector. Thus the

degrees of freedom at each node are:

u0, v0, w0 = Mid plane displacements in x, y , z direction.

θx, θy = Rotations of the transverse normal in the x-z and y-z plane respectively.

u∗0, v
∗
0, w

∗
0 = Higher order term of transverse displacements u0, v0, w0 respectively at

the geometrical mid-plane.

θ∗x, θ
∗
y = Higher order terms of rotations of the normal to the geometrical mid-plane

in x-z and y-z plane i.e. qx and qy respectively.

Therefore, Nodal degree of freedom for element : 11

Number of nodes in the element : 8

Total degree of freedom for the element : 11x8 = 88

Shape Functions

The shape functions for this element in terms of the non-dimensional coordinate

system can be written as:

N1 =
ξ(ξ − 1)η(η − 1)

4
(3.106)

N2 =
(1− ξ2)η(η − 1)

2
(3.107)

N3 =
ξ(ξ + 1)η(η − 1)

4
(3.108)

N4 =
ξ(ξ + 1)(1− η2)

2
(3.109)
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N5 =
ξ(ξ + 1)η(η + 1)

4
(3.110)

N6 =
(1− ξ2)η(η + 1)

2
(3.111)

N7 =
ξ(ξ − 1)η(η + 1)

4
(3.112)

N8 =
ξ(ξ − 1)(1− η2)

2
(3.113)

Where, ξ and η are the non-dimensional coordinates Fig.3.7 of a given point on the

element.

Now the displacement field is expressed in terms of the nodal values. Thus, if d =

[u0, v0, w0, θx, θy, θz, u
∗
0, v

∗
0, w∗0, θ

∗
x, θ

∗
y] represents the displacement components of a

point located at (ξ,η), and q is the element displacement vector, then

u0 = N1u01 + N2u02 + .......+ N8u08

v0 = N1v01 + N2v02 + .......+ N8v08

w0 = N1w01 + N2w02 + .......+ N8w08

θx = N1θx1 + N2θx2 + .......+ N8θx8

θy = N1θy1 + N2θy2 + .......+ N8θy8

θz = N1θz1 + N2θz2 + .......+ N8θz8

u∗0 = N1u
∗
01 + N2u

∗
02 + .......+ N8u

∗
08

v∗0 = N1v
∗
01 + N2v

∗
02 + .......+ N8v

∗
08

w∗0 = N1w
∗
01 + N2w

∗
02 + .......+ N8w

∗
08

θ∗x = N1θ
∗
x1 + N2θ

∗
x2 + .......+ N8θ

∗
x8

θ∗y = N1θ
∗
y1 + N2θ

∗
y2 + .......+ N8θ

∗
y8

Where,
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[N ]11×88 = Σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ni 0 0 0 0 0 0 0 0 0 0

0 Ni 0 0 0 0 0 0 0 0 0

0 0 Ni 0 0 0 0 0 0 0 0

0 0 0 Ni 0 0 0 0 0 0 0

0 0 0 0 Ni 0 0 0 0 0 0

0 0 0 0 0 Ni 0 0 0 0 0

0 0 0 0 0 0 Ni 0 0 0 0

0 0 0 0 0 0 0 Ni 0 0 0

0 0 0 0 0 0 0 0 Ni 0 0

0 0 0 0 0 0 0 0 0 Ni 0

0 0 0 0 0 0 0 0 0 0 Ni

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.114)

Strain-Displacement Matrix

The strain-displacement matrix relating strain components to element nodal variables

can be formed as:

[ε] = [B][δ] (3.115)

Where each δTi = [u0, v0, w0, θx, θy, θz, u
∗
0, v

∗
0, w∗0, θ

∗
x, θ

∗
y] for i = 1 to 8.

Now, considering the flexure strain terms and shear strain terms separately and

from [C] matrix, writing the strain-displacement relationship in terms of the bending

curvature-displacement relation [Bb] and shear rotation-displacement relation [Bs].

From Equations 3.29 and 3.30,
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∣∣∣∣∣∣∣∣∣∣∣∣

εx

εy

εz

γxy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 z2 0 0 0 z 0 0 z3 0 0 0

0 1 0 0 z2 0 0 0 z 0 0 z3 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 z

0 0 1 0 0 z2 0 0 0 z 0 0 z3 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0x

ε0y

ε0xy

ε∗0x

ε∗0y

ε∗0xy

ε0z

Kx

Ky

Kxy

K∗x

K∗y

K∗xy

K∗z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [Hb(z)][K]

(3.116)

∣∣∣∣∣∣ γyzγxz
∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1 0 z 0 z2 0

0 1 0 z 0 z2

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φy

φx

ψy

ψx

φ∗y

φ∗x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= [Hs(z)][φ] (3.117)
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Where, the shear rotation displacement relations [φ] are,

φ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φx

φy

ψx

ψy

φ∗x

φ∗y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θx + ∂w0

∂x

θy + ∂w0

∂y

2u∗0 + ∂θz
∂x

2v∗0 + ∂θz
∂y

3θ∗x +
∂w∗

0

∂x

3θ∗y +
∂w∗

0

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.118)

And the bending curvature-displacement relations [K] are,

K =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0x

ε0y

ε0xy

ε∗0x

ε∗0y

ε∗0xy

ε0z

Kx

Ky

Kxy

K∗x

K∗y

K∗xy

K∗z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u0
∂x

∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

∂u∗0
∂x

∂v∗0
∂y

∂u∗0
∂y

+
∂v∗0
∂x

θz

∂θx
∂x

∂θy
∂y

∂θx
∂y

+ ∂θy
∂x

∂θ∗x
∂x

∂θ∗y
∂y

∂θ∗x
∂y

+
∂θ∗y
∂x

2w∗0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.119)

Curvature-nodal displacement Relationships

The curvature vectors [ε0], [K] and [φ] may be related to the nodal displacements by:
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∣∣∣∣∣∣ ε0K
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0x

ε0y

ε0xy

ε∗0x

ε∗0y

ε∗0xy

ε0z

Kx

Ky

Kxy

K∗x

K∗y

K∗xy

K∗z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
NN∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Ni

∂x
0 0 0 0 0 0 0 0 0 0

0 ∂Ni

∂y
0 0 0 0 0 0 0 0 0

∂Ni

∂y
∂Ni

∂x
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ∂Ni

∂x
0 0 0 0

0 0 0 0 0 0 0 ∂Ni

∂y
0 0 0

0 0 0 0 0 0 ∂Ni

∂y
∂Ni

∂x
0 0 0

0 0 0 0 0 Ni 0 0 0 0 0

0 0 0 ∂Ni

∂x
0 0 0 0 0 0 0

0 0 0 0 ∂Ni

∂y
0 0 0 0 0 0

0 0 0 ∂Ni

∂y
∂Ni

∂x
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ∂Ni

∂x
0

0 0 0 0 0 0 0 0 0 0 ∂Ni

∂y

0 0 0 0 0 0 0 0 0 ∂Ni

∂y
∂Ni

∂x

0 0 0 0 0 0 0 0 2Ni 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u0

v0

w0

θx

θy

θz

u∗0

v∗0

w∗0

θ∗x

θ∗y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.120)∣∣∣∣∣∣ ε0K

∣∣∣∣∣∣ = [Bb(x, y)]14×88[di] (3.121)
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[φ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φx

φy

ψx

ψy

φ∗x

φ∗y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

NN∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 ∂Ni

∂x
Ni 0 0 0 0 0 0 0

0 0 ∂Ni

∂y
0 Ni 0 0 0 0 0 0

0 0 0 0 ∂Ni

∂x
0 2Ni 0 0 0 0

0 0 0 0 0 ∂Ni

∂y
0 2Ni 0 0 0

0 Ni 0 0 0 0 0 0 ∂Ni

∂x
3Ni 0

0 Ni 0 0 0 0 0 0 ∂Ni

∂y
0 3Ni

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u0

v0

w0

θx

θy

θz

u∗0

v∗0

w∗0

θ∗x

θ∗y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.122)

[φ] = [Bs(x, y)]6×88[di] (3.123)

3.4.3 Stiffness Matrix formulation

Here, the Virtual Work Principle has been used to derive the element stiffness matrix

and the consistent load vector. If we have, ∂U = ∂W , where the internal virtual

strain energy ∂U and the external virtual work ∂W can be written in terms of the

nodal displacements as,

δU =

∫
v

δ[εb]
T [σb] + δ[γs]

T [τs] dv (3.124)

δU =

∫
v

δ[di]
T [Bb(x, y)]T [Hb(z)]Tn [Qb]n[Hb(z)]n[Bb(x, y)][di]

+δ[di]
T [Bs(x, y)]T [Hs(z)]Tn [Qs]n[Hs(z)]n[Bs(x, y)][di] dv (3.125)



CHAPTER 3. STATIC ANDDYNAMIC ANALYSIS OF LAMINATED COMPOSITE PLATE77

δW = δ[di]
T [pei ] (3.126)

where [pei ] are the nodal actions due to the externally applied loads. Next, canceling

δ[di]
T from both sides of the equation δU = δW results in[Ke][di] = [pei ] , where [Ke]

is the element stiffness matrix given by,

[Ke] =

∫
v

[Bb(x, y)]T [Hb(z)]Tn [Qb]n[Hb(z)]n[Bb(x, y)]

+[Bs(x, y)]T [Hs(z)]Tn [Qs]n[Hs(z)]n[Bs(x, y)] dA (3.127)

further by replacing flexure and shear stiffness matrix by [Db] and [Ds], the element

stiffness matrix can be written in following form,

[Ke] =

∫
v

[Bb(x, y)]TDb[Bb(x, y)] + [Bs(x, y)]TDs[Bs(x, y)]dA (3.128)

Here [Db] and [Ds] matrix can be obtained from stress-strain relationship elasticity

matrix using constitutive law matrix as follows,

[D] =

∣∣∣∣∣∣ Db 0

0 Ds

∣∣∣∣∣∣ (3.129)

Where [Db] is,

[Db] =

∫ h/2

−h/2
[Hb(z)]Tn [Qb]n[Hb(z)]ndz (3.130)

and [Ds] is,
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[Ds] =

∫ h/2

−h/2
[Hs(z)]Tn [Qs]n[Hs(z)]ndz (3.131)

Note that the matrices [Bb] and [Bs] are evaluated based on the shape functions given

above. Upon evaluating matrices [Db], [Ds], [Bb] and [Bs] the element stiffness matrix

can be evaluated for displacement model-1 and model-2 respectively. However, since

the shape functions and, thus, the matrices [Bb] and [Bs] are defined in terms of the

nondimensional coordinate system, the element stiffness matrix must be evaluated as

follows:

[Ke] =

∫ +1

−1

∫ +1

−1
[Bb(ξ, η)]T [Db] [Bb(ξ, η)] + [Bs(ξ, η)]T [Db] [Bs(ξ, η)] [J ] dξ dη

(3.132)

The Gauss-Quadrature integration technique is used to evaluate the integrals. In the

present formulation a selective integration scheme is used to evaluate element stiffness

matrix. For the bending stiffness terms and shear stiffness terms 3x3 integration

scheme has been adopted. Thus the stiffness matrix has been evaluated as follows:

[Ke] =
NG∑
a=1

NG∑
b=1

[Bb(ξ, η)]T [Db] [Bb(ξ, η)] + [Bs(ξ, η)]T [Db] [Bs(ξ, η)] |J | Wa Wb

(3.133)

Where Wa and Wb are the weighting factors corresponding to Gauss sampling points

and NG is the number of Gauss points selected for the integration schemes.

3.4.4 Evaluation of Consistent Load Vector

The components of the consistent load vector are the equivalent load applied at the

nodal points of the element due to the loads applied at the intermediate points of a

finite element. In the evaluation of the load vector the entire laminate is considered as
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a single layer of thickness ti. The applied external forces may consist of independent

or combination of the following load cases:

Gravity Load :

The gravity loads, generally the self-weight of the element, always act in the global

z-direction. Let r be the uniform mass density of the element material and g be the

acceleration due to gravity in z-direction. The element load vector at node i is given

by,

Pgi =

∫
A

ρ g t [Ni]
T dA (3.134)

[P e
g ] =

NG∑
a=1

NG∑
b=1

ρ g t [Ni]
T [J ]WaWb (3.135)

The above equation represents the element load vector for all the nodes.

Uniform normal surface pressure:

To evaluate the nodal loads due to normal surface pressure P0, the displacement

normal to the surface of the element is required. As here, there is only the transverse

displacement, the transverse normal pressure acting either innermost or outermost

surface is considered. The load vector at node i is given by,

Ppi =

∫
A

P0 [Ni]
T dA (3.136)

[Ppi] =
NG∑
a=1

NG∑
b=1

P0 [Ni]
T [J ]WaWb (3.137)

The above equation represents the element load vector for all the nodes.

Sinusoidal normal surface pressure:

The load vector at node i due to sinusoidal distributed normal pressure is obtained



CHAPTER 3. STATIC ANDDYNAMIC ANALYSIS OF LAMINATED COMPOSITE PLATE80

from Equation 3.137 by replacing P0 by,

P0
sinmπx

a

sinnπy

b
(3.138)

Where, P0 is amplitude of loading in the z-direction and the element load vector is

given by Equation 3.138

Uniformly distributed load fz in the transverse direction:

The load vector at node I due to uniformly distributed load fz is given by,

Pui =

∫
A

fz [Ni]
T dA (3.139)

[Pui] =
NG∑
a=1

NG∑
b=1

fz [Ni]
T [J ]WaWb (3.140)

Equation 3.140 gives the element load vector for the uniformly distributed loads in

the transverse direction.

Point load along the transverse direction:

When the point of application is not coincident with nodal point and Ppt be the point

load normal to the surface of the element, the load vector at node i is given by,

[Ppti] = Ppt [Ni]
T (3.141)

3.5 Static Analysis of Laminated Composite Plate

General

Static Analysis is required to calculate the displacements along x, y and z points and

interlaminar stresses in laminated composite plate under different type of loadings.

After obtain global stiffness matrix and load vector from governing equation the static

analysis has been done using numerical method.



CHAPTER 3. STATIC ANDDYNAMIC ANALYSIS OF LAMINATED COMPOSITE PLATE81

Assembly and Solution

After obtaining the individual element stiffness matrices and nodal load vectors ma-

trices, they are assembled according to the element node relationship.

Boundary Condition:

The finite element formulation developed above is based on the assumed displacement

functions only. Thus only displacement boundary condition can be specified.

3.5.1 Governing Equation

Solution Procedure

We follow the standard finite element solution procedure, where first the element

stiffness matrices and the consistent load vectors are assembled to form the global

stiffness matrix and the global load vector. Substitution of a minimum number of

boundary conditions results in the system governing equation given by,

[K][q] = [P ] (3.142)

Where, [K] and [P] are the stiffness matrix and the consistent load vector, respec-

tively, for the entire solution domain. The above equations can be solved for nodal

displacements [q] for a given external load using numerical method.
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3.6 Dynamic Analysis of Laminated Composite Plate

Dynamic consideration is required when the loads are of variable nature, the mass

and acceleration effects come into the picture. If a solid body deformed elastically and

suddenly released, it tends to vibrate about its equilibrium position. This periodic

motion due to the restoring strain energy is called Free Vibration. The number of

cycles per unit time is called the frequency. In this chapter Free Vibration Analy-

sis of Laminated Composite Plate is presented based on assumed two displacement

functions same as used for static snalysis. Based on displacement functions further

Finite Element formulation is carried out.

3.6.1 Displacement Model-1

Displacement model considered for mass matrix is as follows,

u(x, y, z) = zθx(x, y, 0) + z3θ∗x(x, y, 0) = zθx + z3θ∗x

v(x, y, z) = zθy(x, y, 0) + z3θ∗y(x, y, 0) = zθy + z3θ∗y

w(x, y, z) = w0(x, y, 0) + z2w∗0(x, y, 0) = w0 + z2w∗0

The displacement along the x, y and z directions are expressed in terms of higher

order functions of thickness coordinates and mid plane variables.

Finite Element Formulation of Mass Matrix

The Lagrangean is define by

L = T −
∏

Where T is the kinetic energy and
∏

is the potential energy.

From Hamilton’s Prnciple for an arbitrary time interval from t1 to t2, the state of

motion of a body extremizes the functional,
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I =

∫ t2

t1

L dt (3.143)

For solid body the kinetic energy term is given by,

T =
1

2

∫
v

u̇T u̇ρ dV (3.144)

Where ρ is the density(mass per unit volume) of the maerial and u̇ = [u̇, v̇, ẇ]T is the

velocity vector. In the finite element method the body is devided into elements, and

in each elements, we express u in terms of the nodal displacements q, using shape

functions N. Thus,

u = Nq (3.145)

In dynamic analysis, the elements q are dependent on time, while N represents shape

functions defined on a master element.The velocity vector is then given by

u̇ = Nq̇ (3.146)

By substituting Equation 3.146 in Equation 3.144, the kinetic energy Te in element e

is,

Te =
1

2
q̇T
[∫

e

ρNTN dV

]
q̇ (3.147)

where the bracketed expression is the mass matrix
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Me =

[∫
e

ρNTmN dV

]
(3.148)

Where N is shape function and m is inertia matrix given by,

N =
N∑
i=1

Ni (3.149)

N = [Ni
... . . . . . .

...NNN ] (3.150)

m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1

I2 0

I2

I4

0 I4

I6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.151)

[I1, I2, I3, I4, I5, I6] =
n∑

L=1

∫ hl

hl−1

[1, z2, z4, z6]ρldz (3.152)

here ρl is the material density of the Lth layer. I1, I2, I4,I6 are the normal inertia,

rotary inertia and higher order inertia terms respectively.

This mass matrix is consistent with the shape functions chosen and is called the

consistent mass matrix.
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[M e] =

∫ +1

−1

∫ +1

−1
[N ]T [m] [N ] [J ] dξ dη (3.153)

The Gauss-Quadrature integration technique is used to evaluate the integrals. In the

present formulation a selective 3x3 integration scheme is used to evaluate element

mass matrix. For the bending stiffness terms and shear stiffness terms integration

scheme has been adopted. Thus the mass matrix has been evaluated as follows:

[M e] =
NG∑
a=1

NG∑
b=1

[N ]T [m] [N ] |J | Wa Wb (3.154)

Where Wa and Wb are the weighting factors corresponding to Gauss sampling points

and NG is the number of Gauss points selected for the integration schemes.

On summing over all the elements, we get

T =
∑
e

Te =
∑
e

1

2
q̇TM eq̇ =

1

2
Q̇TMQ̇ (3.155)

Thus the potential energy is given by

∏
=

1

2
QTKQ − QTF (3.156)

3.6.2 Displacement Model-2

Displacement model considered for mass matrix is as follows,

u(x, y, z) = u0(x, y, 0)+zθx(x, y, 0)+z2u∗0(x, y, 0)+z3θ∗x(x, y, 0)=u0+zθx+z
2u∗0+z

3θ∗x

v(x, y, z) = v0(x, y, 0)+zθy(x, y, 0)+z2v∗0(x, y, 0)+z3θ∗y(x, y, 0)=v0+zθy+z
2v∗0+z3θ∗y
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w(x, y, z) = w0(x, y, 0) + zθz(x, y, 0)+z2w∗0(x, y, 0) = w0 + zθz + z2w∗0

The displacement along the x, y and z directions are expressed in terms of higher

order functions of thickness coordinates and mid plane variables.

Finite Element Formulation of Mass Matrix

The Lagrangean is define by

L = T −
∏

Where T is the kinetic energy and
∏

is the potential energy.

From Hamilton’s Prnciple for an arbitrary time interval from t1 to t2, the state of

motion of a body extremizes the functional,

I =

∫ t2

t1

L dt (3.157)

For solid body the kinetic energy term is given by,

T =
1

2

∫
v

u̇T u̇ρ dV (3.158)

Where ρ is the density(mass per unit volume) of the maerial and u̇ = [u̇, v̇, ẇ]T is the

velocity vector. In the finite element method the body is divided into elements, and

in each elements, we express u in terms of the nodal displacements q, using shape

functions N. Thus,

u = Nq (3.159)
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In dynamic analysis, the elements q are dependent on time, while N represents shape

functions defined on a master element.The velocity vector is then given by

u̇ = Nq̇ (3.160)

By substituting Equation 3.160 in Equation 3.158, the kinetic energy Te in element e

is,

Te =
1

2
q̇T
[∫

e

ρNTN dV

]
q̇ (3.161)

where the bracketed expression is the mass matrix

Me =

[∫
e

ρNTmN dV

]
(3.162)

Where N is shape function and m is inertia matrix given by,

N =
N∑
i=1

Ni (3.163)

N = [Ni
... . . . . . .

...NNN ] (3.164)
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m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1

I1

I1 0

I2

I2

I2

I3

I3

0 I3

I4

I4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.165)

[I1, I2, I3, I4] =
n∑

L=1

∫ hl

hl−1

[1, z2, z4, z6]ρldz (3.166)

here ρl is the material density of the Lth layer. I1, I2, I3,I4 are the normal inertia,

rotary inertia and higher order inertia terms respectively.

This mass matrix is consistent with the shape functions chosen and is called the

consistent mass matrix.

[M e] =

∫ +1

−1

∫ +1

−1
[N ]T [m] [N ] [J ] dξ dη (3.167)

The Gauss-Quadrature integration technique is used to evaluate the integrals. In the

present formulation a selective 3x3 integration scheme is used to evaluate element

mass matrix. For the bending stiffness terms and shear stiffness terms integration

scheme has been adopted. Thus the mass matrix has been evaluated as follows:
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[M e] =
NG∑
a=1

NG∑
b=1

[N ]T [m] [N ] |J | Wa Wb (3.168)

Where Wa and Wb are the weighting factors corresponding to Gauss sampling points

and NG is the number of Gauss points selected for the integration schemes.

On summing over all the elements, we get

T =
∑
e

Te =
∑
e

1

2
q̇TM eq̇ =

1

2
Q̇TMQ̇ (3.169)

Thus the potential energy is given by

∏
=

1

2
QTKQ − QTF (3.170)

3.6.3 Free Vibration Solution

Using the Lagrangean L = T −
∏

, obtained equation of motion is:

MQ̈+KQ = F (3.171)

For free vibrations the force F is zero. Thus,

MQ̈+KQ = 0 (3.172)

For steady state condition, starting from the equilibrium state, we set
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Q = Usinωt (3.173)

Where U is the vector of nodal amplitudes of vibration and ω (rad/sec) is the circular

frequency (cycles/sec). Introducing Equation 3.173 in Equation 3.172, we have

KU = ω2MU (3.174)

This generalized eigenvalue problem

KU = λMU (3.175)

where U is the eigenvector, representing the vibrating mode, corresponding to the

eigenvalue λ. The eigenvalue λ is the square of the circular frequency ω. The fre-

quency f in hertz(cycles/sec) is obtained from f = ω
2π

. The eigenvalue problem is

solved by using Inverse Iteration method [4]. To make the solution procedure less

time consuming and to solve nos of problem computer program is developed.
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3.7 Summary

In this chapter a basic mechanics of composite laminates is discussed. For analysis

of Laminated Composites a Higher Order Shear Deformation Theory is studied and

presented. A two displacement models with six degrees of freedom and eleven degrees

of freedom per node respectively are assumed and based on higher order shear defor-

mation theory using 8-noded isoparametric finite element finite element solution is

formulated for Static and Dynamic analysis of laminated composite plates. A global

stiffness matrix is calculated using 3x3 Gauss Integration scheme. For Dynamic anal-

ysis mass matrix is calculated using 3x3 Gauss Integration scheme. To solve the

numerical problem free vibration analysis solution is formulated using Eigen Value

analysis.



Chapter 4

Computer Program Development

4.1 Introduction

In this chapter the study of computer program developed in C++ environment for

analysis of laminated composite plates is discussed. The programm is capable to

perform a meshing of laminated plate and to generate a input data file for analysis

of laminated plate. The core program is to perform a static and dynamic analysis

of laminated composite plate using a finite element formulation with displacement

model-1 and 2 based on higher order shear deformation theory.

4.2 Static Analysis

4.2.1 Features of Computer Program

Features of computer program are as follows:

1. Automatic Mesh generation

2. Generation of element stiffness matrix

3. Generation of load vector

4. Generation of overall stiffness matrix and load vector in banded form

92



CHAPTER 4. COMPUTER PROGRAM DEVELOPMENT 93

5. Incorporating Boundary conditions

6. Static solution using governing equation

7. Calculation of stresses

4.2.2 Flow of Computer Program

Automatic Mesh Generation with Input Data:

The meshing of laminated plate is performed automatically. The laminated plate is

divided in number of elements by assigning the number of divisions in along length

and width direction. Numbering to the elements are assigned automatically moving

in the direction from left to right and bottom to top. Each element has 8 nodes,

which are numbered sequentially from left to right and bottom to top as shown in

Fig.4.1.

Figure 4.1: Meshing of laminated plate

a. Plate Dimension
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b. Number of Materials with properties

c. Number of Laminate

d. Laminate id with angle of orientation and thickness

e. Assigning of Load

After material properties the element incidences and element coordinates are eval-

uated automatically. And based on support condition the boundary condition is

assigned to each node.

Generation of Constitutive Law Matrix:

A formulation of constitutive law matrix is executed in computer program based on

the finite element formulation discussed in Chapter 3. Constitutive law matrix is

formulated using the entered material properties.

Generation of [B] Matrix:

Matrix [B] is formulated using shape functions and curvature - nodal displacement

relationship. As shown in flow chart Fig.4.3 for each element [B] matrix for bending

and shear is generated using subroutine.

Generation of Overall Stiffness Matrix and Load Vector:

The element stiffness matrix for the laminate is generated by laminate constitutive

relation and [B] matrix. Then generated element stiffness matrices for the laminate

are assembled in banded form. The integration for stiffness matrix is evaluated by

3x3 Gauss integration scheme. For load vector each element load vector is generated

by reading loading type and value from input data. Then element load vectors are

assembled in banded form.

Incorporating Boundary conditions:

In input data file at each node based on displacement model according to degrees
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of freedom 0 or 1 value is assigned to each displacement fields. From this data file

boundary condition is assigned to overall stiffness matrix in core program.

Static Solution Using Governing Equation:

After assigning boundary condition to overall stiffness matrix from governing equation

displacement is calculated using subroutine based on Gauss Elimination method.The

governing equation is [K]{u} = {F}

where [K] = Overall stiffness matrix, {u} = displacement vector and {F}= Overall

load vector

Calculation of stresses:

Stresses are calculated from the stress-resultant and mid-plane strains relationships

as derived in Chapter 3 using subroutine of stress calculation in the program as

shown in flow chart Fig.4.3. Stresses are calculated for each lamina at top, at middle

and at bottom.

Output:

Output data file is consist of following data and results:

a. Plate Dimension

b. Number of elements, nodes and materials

c. Material Properties

d. Laminate data: id, angle of orientation, thickness

e. Element incidences

f. Joint Coordinates

g. Boundary condition

h. Lamina thickness
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i. Overall stiffness matrix

j. Overall load vector

k. Displacement vector

l. Stresses
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Flow Chart for the program of meshing of laminated composite plate with

Input Data

Figure 4.2: Input data with meshing of laminated plate
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Flow Chart for Static Analysis Program

Figure 4.3: Static analysis of laminated composite plate
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4.3 Dynamic Analysis

4.3.1 Features of Computer Program

In dynamic analysis of laminated composite plate program flow of computer program

for the generation of automatic mesh and overall stiffness matrix are same as executed

in static analysis. Here generation of overall mass matrix and subroutine for free

vibration solution are incorporated in analysis program as shown in Fig.4.4.

4.3.2 Flow of Computer Program

Generation of consistent Mass Matrix:

From Hamilton’s principle the element mass matrix for the laminate is generated by

shape function and inertia matrix. Then generated element mass matrices for the

laminate are assembled in banded form. The integration for mass matrix is evaluated

by 3x3 Gauss integration scheme.

Incorporating Boundary conditions:

In input data file at each node based on displacement model according to degrees

of freedom 0 or 1 value is assigned to each displacement fields. From this data file

boundary condition is assigned to overall stiffness matrix mass matrix in core program.

Dynamic Solution Using Governing Equation:

From Lagrangian principle the equation of motion is obtained and converted in to

generalized eigen value problem. Natural frequency is calculated for plate by solving

eigen value problem using subroutine of inverse iteration method [4] in core program.

Output:

Output data file is consist of following data and results:

a. Plate Dimension
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b. Number of elements, nodes and materials

c. Material Properties

d. Laminate data: id, angle of orientation, thickness

e. Element incidences

f. Joint Coordinates

g. Boundary condition

h. Overall stiffness matrix

i. Overall mass matrix

j. Eigen value, Iteration number, Eigen vector, omega and frequency
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Flow Chart for the Dynamic Analysis Program

Figure 4.4: Dynamic analysis of laminated composite plate
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4.4 Summary

Developed computer programs are used to solve the various numerical problems to

validate the finite element formulation by comparing obtained displacements and

frequencies with available results in literatures. From this study it can be conclude

that the developed computer programs are capable to carryout static and dynamic

analysis of laminated composite plates with varying width-to-thickness ratio, material

anisotropy, number of layers and support conditions.



Chapter 5

Static Analysis: Results and

Discussion

5.1 General

The Finite Element Method formulation based on Higher Order Shear Deformation

Theory is discussed in Chapter 3. Computer program is developed for static anal-

ysis of composite plates using finite element model as discussed in Chapter 4. in

this chapter finite element method is employed for analysis of laminated composite

plate under different static loadings with different support conditions, widh/thickness

ratio, material anisotropy. Using computer program analysis results are obtained and

nondimensionalized displacement and stresses are calculated. In order to establish

the reliability and accuracy of the present finite element formulation various examples

available in literature are solved and discussed.

5.2 Problem Descritization

From convergence study in general unless otherwise stated for all examples consid-

ered, the plate is descritized with sixteen elements (4x4 mesh size) in the quarter part

of plate as shown in Fig.5.1. The maximum displacement and stresses at a particular

point as shown in Fig.5.2 are found out by using developed program for sinusoidal

103
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loading and uniformly distributed loading as shown in Fig.5.3 with different boundary

conditions as shown in Fig.5.4.

Figure 5.1: (4x4) Meshing in quarter part of plate

Figure 5.2: Sectional view of quarter part of plate
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Figure 5.3: Loading conditions: (a) sinusoidal loading and (b) uniformly distributed
loading

Figure 5.4: Support conditions for quarter part of plate
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Figure 5.5: quarter part of plate under Simply supported boundary condition for
model-1

Figure 5.6: quarter part of plate under Simply supported boundary condition for
model-2

Boundary condition: simply supported on four side

For displacement model-1(Fig.5.5):

W0 = W ∗
0 = θy = θ∗y = 0 at X=0 and X=a

W0 = W ∗
0 = θx = θ∗x = 0 at Y=0 and Y=a

For displacement model-2(Fig.5.6):

W0 = W ∗
0 = V0 = V ∗0 = θy = θ∗y = θz = 0 at X=0 and X=a

W0 = W ∗
0 = U0 = U∗0 = θx = θ∗x = θz = 0 at Y=0 and Y=a
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Figure 5.7: quarter part of plate under Just supported boundary condition for model-1

Figure 5.8: quarter part of plate under Just supported boundary condition for model-2

Boundary condition: just supported on four side

For displacement model-1(Fig.5.7):

W0 = W ∗
0 = 0 at X=0 and X=a

W0 = W ∗
0 = 0 at Y=0 and Y=a

For displacement model-2(Fig.5.8):

W0 = W ∗
0 = θz = 0 at X=0 and X=a

W0 = W ∗
0 = θz = 0 at Y=0 and Y=a
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Figure 5.9: quarter part of plate under Clamped supported boundary condition for
model-1

Figure 5.10: quarter part of plate under Clamped supported boundary condition for
model-2

Boundary condition: clamped supported on four side

For displacement model-1(Fig.5.9):

W0 = W ∗
0 = θx = θ∗x = θy = θ∗y = 0 at X=0 and X=a

W0 = W ∗
0 = θx = θ∗x = θy = θ∗y = 0 at Y=0 and Y=a

For displacement model-2(Fig.5.10):

W0 = W ∗
0 = U0 = U∗0 = V0 = V ∗0 = θx = θ∗x = θy = θ∗y = θz = 0 at X=0 and X=a

W0 = W ∗
0 = U0 = U∗0 = V0 = V ∗0 = θx = θ∗x = θy = θ∗y = θz = 0 at Y=0 and Y=a

The numerical results of displacement due to different loadings are presented in nondi-

mensional form as defined follows,
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m1 =
100E2h

3

P0a4
(5.1)

Non-dimensional displacement(W )= m1 * Actual Displacement(W)

The non-dimensional stresses are defined as follows,

Non− dimensional stresses(σx, σy, τxy) =
h2

P0a2
∗ ActualStresses(σx, σy, τxy)

(5.2)

Unless otherwise stated the displacements(W ) is calculated at (a
2
, b
2
,0)

The stresses(σx) are calculated at (a
2
, b
2
,h
2
)

The stresses(σy) are calculated at (a
2
, b
2
,h
4
)

In solving of problems following material properties sets are considered,

Material Set-1;

E1

E2

=
E1

E3

= 25, E2 = E3 = 106,
G12

E2

=
G13

E3

= 0.5,
G23

E3

= 0.2, ν12 = ν23 = ν13 = 0.25

(5.3)

Material Set-2;

E1

E2

= 40,
G12

E2

= 0.6,
G23

E2

= 0.5, E2 = E3 = 106, G13 = G12, ν12 = ν23 = ν13 = 0.25

(5.4)

Material Set-3;

FaceSheets
E1

E2

=
E1

E3

= 25,
G12

E2

=
G13

E3

= 0.5,
G23

E3

= 0.2, ν12 = ν23 = ν13 = 0.25

(5.5)
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Core
E1

E3

=
E2

E3

= 0.08, E3 = 0.5∗106,
G13

E3

=
G23

E3

= 0.12, ν12 = 0.25, ν23 = ν13 = 0.02

(5.6)

Material Set-4;

E = 210 ∗ 103, G = 80769.23, ν = 0.3 (5.7)

5.3 Comparison of Results

The developed finite element formulation is validated and assessed for its perfor-

mance considering following cases of Laminated plate with different type of orienta-

tion scheme of lamina as shown in Fig.5.11 and 5.12.

Figure 5.11: Orientation scheme of Lamina : (a) Cross Ply (b) Angle Ply
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Figure 5.12: Cross Ply - Laminated Composite Plate

Figure 5.13: Angle Ply - Laminated Composite Plate
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Convergence Study:

A simply supported square laminated cross-ply plate (0/90/90/0) made up of four

equally thick laminas (Material set-1) subjected to a sinusoidal transverse load is

considered for convergence study and results are presented in Table 5.1.

Table 5.1: Convergence of deflections and stresses in a simply supported four layer
cross-ply (0/90/90/0) square laminate under sinusoidal transverse load (hi = h/4, i
= 1 , . . . , 4 and a/h = 10)

Mesh Size Source W σx σy
1x1 Present Model 1 0.5749 0.4653 0.2690
2x2 0.6401 0.5072 0.3030
3x3 0.6411 0.5147 0.3074
4x4 0.6409 0.5175 0.3090
5x5 0.6408 0.5187 0.3097
6x6 0.6408 0.5187 0.3097

1x1 Present Model 2 0.6460 0.5342 0.3635
2x2 0.7156 0.5614 0.3924
3x3 0.7176 0.5616 0.3917
4x4 0.7179 0.5611 0.3912
5x5 0.7179 0.5608 0.3908
6x6 0.7179 0.5605 0.3906

1x1 Higher order theory [8] 0.72402 0.5701 0.3944
2x2 0.7185 0.5676 0.3948
3x3 0.71809 0.5635 0.3924
4x4 0.71801 0.5619 0.3914

Elasticity [13] 0.7370 0.5590 0.4010

In above example convergence of results is studied by descritizing quarter part of plate

in different scheme of meshing. As from study it is concluded that at 4x4 meshing

scheme convergence is obtained. Therefore further in solving of all problems uniform

4x4 meshing is considered.
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Case : 1

The study of numerical problems are carried out for the laminated plate with equal

layer thickness as well as also variation of thickness is considered. In this case simply

supported boundary condition is considered along all four edges, where laminated

plate is subjected to sinusoidal load. The results of solved problem for different a/h

ratios and material sets are presented in tabular form and compared with available

results in literature. Schematic diagram of solved problem of laminated plate is shown

in Fig.5.12.

Table 5.2 shows the numerical values of nondimensional displacements and stresses

for simply supported laminate under sinusoidal loading. The results are obtained for

different width-to-thickness ratios. The obtained solutions are compared with avail-

able solutions based on higher order shear deformation theory (HOSDT) and first

order shear deformation theory (FOSDT) in literature. The comparisons show that

the solutions given by displacement model-1 and 2 are fairly close to higher order

theory model -2 and 3.
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Table 5.2: Comparison of non-dimensional deflection and stresses in a four- equal
layer thickness (0/90/90/0) square simply supported laminate under sinusoidal load
using Material set-1

a/h Source W σx σy
4 Present Model 1 1.6870 0.4900 0.3726

Present Model 2 1.8737 0.7076 0.6192
Higher order theory model-1 [7] 1.6813 0.4111 0.5951
Higher order theory model-2 [7] 1.8688 0.7306 0.6506
Higher order theory model-3 [7] 1.8750 0.7163 0.6250

Higher order theory [8] 1.8744 0.7163 0.6250
Mindlin Theory [8] 1.7054 0.4121 0.5829

FSDT [11] 1.7100 0.4059 0.5765
3D-FEM [12] 0.5061 0.5393 0.3043

10 Present Model 1 0.6409 0.5175 0.3011
Present Model 2 0.7178 0.5611 0.3912

Higher order theory model-1 [7] 0.6388 0.5067 0.3721
Higher order theory model-2 [7] 0.6961 0.5730 0.4038
Higher order theory model-3 [7] 0.7185 0.5676 0.3948

Higher order theory [8] 0.7185 0.5676 0.3948
Mindlin Theory [8] 0.6613 0.5063 0.3653

FSDT [11] 0.6682 0.4989 0.3615
3D-FEM [12] 0.7147 0.5456 0.3888

20 Present Model 1 0.4843 0.5297 0.2802
Present Model 2 0.5072 0.5440 0.3055

Higher order theory model-1 [7] 0.4674 0.5363 0.3018
Higher order theory model-2 [7] 0.4840 0.5535 0.3120
Higher order theory model-3 [7] 0.5076 0.5503 0.3083

FSDT [11] 0.4912 0.5273 0.2957
3D-FEM [12] 1.8937 0.6651 0.6322

100 Present Model 1 0.4334 0.5350 0.2681
Present Model 2 0.4326 0.5351 0.2676

Higher order theory model-1 [7] 0.4097 0.5459 0.2742
Higher order theory model-2 [7] 0.4104 0.5466 0.2747
Higher order theory model-3 [7] 0.4346 0.5442 0.2734

Higher order theory [8] 0.4346 0.5442 0.2734
Mindlin Theory [8] 0.4322 0.5416 0.2704

FSDT [11] 0.4337 0.5382 0.2705
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In Table 5.3 results are presented for rectangular laminate and property of laminate is

given by material set-1. The result are obtained for different a/h ratios. The present

numerical results are compared with the existing three dimensional elasticity solu-

tions and other higher order theory models. From comparison study the percentage

difference between present results and 3-D solutions are, for thick plate (a/h=10):

present model-1 = 8.78% , model-2 = 5.82%. For moderately thin plate (a/h=50):

present model-1=0.63% , model-2=2.57%. For thin plate (a/h=100): present model-1

=0.27% , model-2 = 3.28%. It is clear that Present Model-1 make better predictions

of displacements for moderately thin plate and thin plate, whereas present model-2

make better predictions of displacements for thick plate.

Table 5.3: Comparison of non-dimensional deflection and stresses in a three-
equal layer thickness (0/90/0) rectangular(b=3a) simply supported laminate under
10kN/cm2 sinusoidal load using material set-1

a/h Source W σx σy
10 Present Model 1 0.8383 0.6280 0.0385

Present Model 2 0.8655 0.7163 0.4011
Higher order theory model-1 [7] 0.7731 0.6361 0.0382
Higher order theory model-2 [7] 0.8379 0.7310 0.0409
Higher order theory model-3 [7] 0.8665 0.7249 0.0402

Elasticity [11] 0.9190 0.7250 0.0435

50 Present Model 1 0.5167 0.6239 0.02514
Present Model 2 0.5066 0.6110 0.02507

Higher order theory model-1 [7] 0.4862 0.6316 0.0259
Higher order theory model-2 [7] 0.4883 0.6344 0.0259
Higher order theory model-3 [7] 0.5183 0.6340 0.0257

Elasticity [11] 0.5200 0.6280 0.0259

100 Present Model 1 0.5066 0.6135 0.02469
Present Model 2 0.4913 0.5877 0.02414

Higher order theory model-1 [7] 0.4772 0.6307 0.0255
Higher order theory model-2 [7] 0.4773 0.6308 0.0255
Higher order theory model-3 [7] 0.5073 0.6304 0.0253

Elasticity [11] 0.5080 0.6240 0.0253
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In Table 5.4 solution of the square simply supported laminate under sinusoidal loading

is presented. The obtained results are compared with the 3-D elasticity solution and

closed form solution. The presented results of model-1 are in good agreement with

closed form solution(CFS) with maximum error less than 3.42% and of model-2 are

fairly close to the 3-D elasticity solution with maximum error less than 5.1%.

Table 5.4: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0) of varying thickness (t1 = t3 = t/4, t2 = t/2) square simply
supported laminate under sinusoidal loading using material set-1

a/h Source W σx σy
10 Present Model 1 6.4010 0.5072 0.3030

Present Model 2 7.1548 0.5614 0.3924
CFS(Closed Form Solution)[11] 6.6270 0.4960 0.3590

3-DES [11] 7.4340 0.5990 0.4030

20 Present Model 1 4.8442 0.5194 0.2746
Present Model 2 5.0444 0.5412 0.3024

CFS(Closed Form Solution)[11] 4.9110 0.5240 0.2940
3-DES [11] 5.1730 0.5430 0.3080

100 Present Model 1 4.3312 0.5234 0.2622
Present Model 2 4.1615 0.5023 0.2481

CFS(Closed Form Solution)[11] 4.3370 0.5350 0.2690
3-DES [11] 4.3850 0.2710 0.0214

Deflection and stresses are compared in Table 5.5 for five layer cross ply square plate

under sinusoidal loading. The results of present model-1 differ considerably by 1.82%

from the CFS solution, while the results of present model-2 differ considerably by

12.44% from the 3-D elasticity solution, which is relatively more for the five-layer

case compared to the three layer case shown in Table 5.4.
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Table 5.5: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0/90/0) of varied thickness (t1 = t3 = t3 = t/6, t2 = t2 = t/4)
square simply supported laminate under sinusoidal loading using material set-1

a/h Source W σx σy
2 Present Model 1 47.4700 0.6780 0.5718

Present Model 2 46.7700 0.9417 0.4114
CFS(Closed Form Solution)[11] 48.3500 0.3910 0.5370

3-DES [13] 53.4150 1.3320 1.0010

4 Present Model 1 15.6530 0.5527 0.4320
Present Model 2 15.9098 0.6126 0.3876

CFS(Closed Form Solution)[11] 15.6230 0.4250 0.4890
3-DES [13] 18.6680 0.6850 0.6330

10 Present Model 1 6.1421 0.5237 0.3707
Present Model 2 6.2569 0.5389 0.3289

CFS(Closed Form Solution)[11] 6.2130 0.4880 0.4000
3-DES [13] 6.8300 0.5450 0.4300

20 Present Model 1 4.7749 0.5239 0.3557
Present Model 2 4.7855 0.5357 0.3021

CFS(Closed Form Solution)[11] 4.7960 0.5241 0.3520
3-DES [13] 4.9810 0.5220 0.3520

50 Present Model 1 4.3911 0.5244 0.3506
Present Model 2 4.8927 0.5206 0.2820

CFS(Closed Form Solution)[11] 4.390 0.5234 0.3490
3-DES [13] 4.4510 0.5240 0.3500

100 Present Model 1 4.3273 0.5235 0.3492
Present Model 2 4.1346 0.4981 0.2684

CFS(Closed Form Solution)[11] 4.3320 0.5240 0.3500
3-DES [13] 4.3770 0.5390 0.3600

The solution of a simply supported square laminated cross-ply plate made up of four

equally thick laminas subjected to a sinusoidal load is considered. Numerical results

are presented and compared in Table 5.6 and 5.7 for width-to-thickness ratios of

10 and 100. Convergence of deflection is studied using different meshing scheme in

quarter part of plate.
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Table 5.6: Comparison of deflections and stresses using convergence in a simply sup-
ported four layer cross-ply (0/90/90/0) square laminate under sinusoidal load for a/h
= 10.

Mesh Size Source W σx σy

1x1 Present Model 1 0.5749 0.4653 0.2690
2x2 0.6401 0.5072 0.3030
3x3 0.6411 0.5147 0.3074
4x4 0.6409 0.5175 0.3090

1x1 Present Model 2 0.6460 0.5342 0.3635
2x2 0.7156 0.5614 0.3924
3x3 0.7176 0.5616 0.3917
4x4 0.7179 0.5611 0.3912

1x1 Higher order theory [8] 0.72402 0.5701 0.3944
2x2 0.7185 0.5676 0.3948
3x3 0.71809 0.5635 0.3924
4x4 0.71801 0.5619 0.3914

Elasticity [13] 0.7370 0.5590 0.4010

Table 5.7: Comparison of deflections and stresses using convergence in a simply sup-
ported four layer cross-ply (0/90/90/0) square laminate under sinusoidal load for a/h
= 100.

Mesh Size Source W σx σy

1x1 Present Model 1 0.2940 0.3222 0.1834
2x2 0.4332 0.5234 0.2622
3x3 0.4335 0.5320 0.2666
4x4 0.4334 0.5348 0.2681

1x1 Present Model 2 0.1356 0.1542 0.0752
2x2 0.4162 0.5023 0.2481
3x3 0.4299 0.5290 0.2634
4x4 0.4326 0.5351 0.2676

1x1 Higher order theory [8] 0.43659 0.5411 0.2718
2x2 0.4346 0.5442 0.2734
3x3 0.43443 0.5418 0.2723
4x4 0.43439 0.5406 0.2717

Elasticity [13] 0.4347 0.5390 0.2710

In Table 5.8 a numerical results for a laminate made up of seven layers having variation

in thickness according to the orientation of laminas. The comparative study shows

that the present model-1 and 2 gives solution in good agreement with other higher

order theories and Mindlin’s plate theory.
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Table 5.8: Comparison of non-dimensional maximum deflection and stresses in a
seven-layer (0/90/0/90/0/90/0) thickness of (h0 = h/8, h90 = h/6) square simply
supported laminate under sinusoidal loading using material set-1.

a/h Source W σx σy
4 Present Model 1 1.5259 0.5876 0.1676

Present Model 2 1.5281 0.6219 0.1959
Higher order theory [8] 1.5334 0.6275 0.5530

Mindlin Theory [8] 1.5341 0.4664 0.5092

10 Present Model 1 0.6078 0.5325 0.2141
Present Model 2 0.6123 0.5451 0.2327

Higher order theory [8] 0.6159 0.5494 0.4482
Mindlin Theory [8] 0.6114 0.5159 0.4457

100 Present Model 1 0.4326 0.5236 0.2181
Present Model 2 0.4130 0.4971 0.2068

Higher order theory [8] 0.4332 0.5439 0.4084
Mindlin Theory [8] 0.4315 0.5412 0.4060

In Table 5.9 a simply-supported square cross-ply plate under sinusoidal load is consid-

ered for comparisons of maximum deflection and stress-resultants and to understand

the behaviour of plate. The results of presented displacement model-2 are in good

agreement with other higher order models than displacement model-1.

Table 5.9: Maximum deflection and stress resultants for a simply-supported unsym-
metric cross-ply (0/90) square plate under sinusoidal load using material set-1.

a/h Source W σx σy
4 Present Model 1 0.1468 0.7245 0.0456

Present Model 2 0.2020 0.7899 0.1029
Kant and Pandya [9] 0.2055 0.8056 0.0969
Kant and Pandya [9] 0.2020 0.8000 0.1038

10 Present Model 1 0.0602 0.5688 0.0298
Present Model 2 0.1219 0.7286 0.0877

Kant and Pandya [9] 0.1224 0.7390 0.0871
Kant and Pandya [9] 0.1220 0.7367 0.0884

In Table 5.10 solutions are presented for a simply supported square isotropic plate

subjected to sinusoidal load. The results of both present models are in good agreement

with Trigonometric shear deformation theory(TSDT).
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Table 5.10: Comparison of non-dimensional maximum deflection and stresses for
square isotropic simply supported plate under sinusoidal loading using material set-4.

a/h Source W σx σy

0.1 Present Model 1 2.9410 0.2004 0.2004
Present Model 2 2.9410 0.2004 0.2004

TSDT [16] 2.9420 0.3070 0.3070

In Table 5.11 solution for a simply supported three-layered symmetric cross-ply square

plate under sinusoidal transverse load is presented. The numerical results of maximum

displacements are compared with the higher order refined theory. The results clearly

show that the values obtained using Model-2 are in close agreement for all a/h ratios.

Whereas Model-1 under predicts deflection by maximum error of 3.87% for higher

order refined theory. Also present model-1 gives results in good agreement with

closed form solution and FEM solution.
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Table 5.11: Comparison of nondimensionalized deflections and stresses in a three-
layer simply supported square plate (0/90/0) under sinusoidal transverse load using
material set-1.

a/h Source W σx σy
2 Present Model 1 5.4029 0.4999 0.3661

Present Model 2 4.9023 1.1352 0.5346
Higher order refined theory-1 [10] 4.9147 1.1355 0.5356
Higher order refined theory-2 [10] 5.2158 1.0912 0.6334

4 Present Model 1 1.8974 0.4933 0.4258
Present Model 2 1.8966 0.7672 0.4957

Higher order refined theory-1 [10] 1.8948 0.7648 0.4939
Higher order refined theory-2 [10] 1.9261 0.7670 0.5079

10 Present Model 1 0.6969 0.5226 0.2541
Present Model 2 0.7166 0.5861 0.2717

CFS(Closed Form Solution)[11] 0.6690 0.4990 0.2470
FEM 4Q8-R [11] 0.6690 0.5100 0.2520

Higher order refined theory-1 [10] 0.7151 0.5836 0.2705
Higher order refined theory-2 [10] 0.7176 0.5847 0.2712

20 Present Model 1 0.4964 0.5291 0.1988
Present Model 2 0.5024 0.5490 0.2045

CFS(Closed Form Solution)[11] 0.4920 0.5170 0.1940
FEM 4Q8-R [11] 0.4920 0.5280 0.1280

Higher order refined theory-1 [10] 0.5053 0.5504 0.2049
Higher order refined theory-2 [10] 0.5058 0.5507 0.2050

50 Present Model 1 0.4416 0.5339 0.1817
Present Model 2 0.4416 0.5389 0.1825

Higher order refined theory-1 [10] 0.4432 0.5406 0.1838
Higher order refined theory-2 [10] 0.4433 0.5406 0.1838

100 Present Model 1 0.4338 0.5360 0.1796
Present Model 2 0.4162 0.5363 0.1785

CFS(Closed Form Solution)[11] 0.4340 0.524 0.176
FEM 4Q8-R [11] 0.4340 0.535 0.179

Higher order refined theory-1 [10] 0.4343 0.5392 0.1807
Higher order refined theory-2 [10] 0.4343 0.5392 0.1807
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Case : 2

The study of numerical problems are carried out for the laminated plate with equal

layer thickness as well as also variation of thickness is considered. In this case simply

supported boundary condition is considered, where laminated plate is subjected to

uniformly distributed load. Here results of solved problem for different a/h ratios and

material sets are presented in following tables and compared with available results

in literatures.Schematic diagram of solved problem of laminated plate is shown in

Fig.5.13.

Similarly the solution for a simply supported square laminated cross-ply plate made

up of three equal thickness of laminas is presented in Table 5.12. The results of de-

flections and stresses are in good agreement with other higher order theory solutions.

Table 5.12: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0) square simply supported laminate under uniformly distributed
loading using material set-1.

a/h Source W σx σy

4 Present Model 1 2.8830 0.7189 0.6383
Present Model 2 2.9134 1.1110 0.7358

Higher order theory [8] 2.8765 1.1094 0.7244
Mindlin Theory [8] 2.6559 0.6650 0.6625

5 Present Model 1 2.1419 0.7444 0.5506
Present Model 2 2.2019 1.0085 0.6131
3D-FEM [12] 2.3218 1.0215 0.6629

10 Present Model 1 1.0631 0.7716 0.3185
Present Model 2 1.0977 0.8691 0.3427

Higher order theory [8] 1.0968 0.8739 0.3945
Mindlin Theory [8] 1.0211 0.7851 0.3844

3D-FEM [12] 1.1541 0.8709 0.3621

20 Present Model 1 0.7702 0.7994 0.2278
Present Model 2 0.7808 0.8252 0.2323
3D-FEM [12] 0.7951 0.8247 0.2391

100 Present Model 1 0.6712 0.7934 0.2015
Present Model 2 0.6555 0.7740 0.2286

Higher order theory [8] 0.6713 0.8191 0.3134
Mindlin Theory [8] 0.6701 0.8190 0.2923
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In Table 5.13 a simply-supported square cross-ply plate under uniform transverse

load is considered for comparisons of maximum deflection and stress-resultants and

to understand the behaviour of plate. The results of present model-2 are in good

agreement with other higher order models. While results of present model-1 shows

max difference of 43.82% in central deflections by comparing those to the other mod-

els, which is increase with increase of a/h ratio. Further to understand the behaviour

of laminate made up by square angle ply the numerical results are presented in Table

5.14. For angle ply at lower a/h ratio model-1 predicts deflections more accurately,

whereas at higher a/h ratio model-2 predicts deflections more accurately.

Table 5.13: Maximum deflection and stress resultants for a simply-supported unsym-
metric cross-ply (0/90) square plate under uniformly distributed load using material
set-2.

a/h Source W
5 Present Model 1 0.10830

Present Model 2 0.19330
Kant and Pandya [9] 0.19279
Kant and Pandya [9] 0.19072

10 Present Model 1 0.06072
Present Model 2 0.14180

Kant and Pandya [9] 0.14190
Kant and Pandya [9] 0.14150

40 Present Model 1 0.04574
Present Model 2 0.12550

Kant and Pandya [9] 0.12598
Kant and Pandya [9] 0.12595
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Table 5.14: Maximum deflection and stress resultants for a simply-supported un-
symmetric angle-ply (15/-15) square plate under uniformly distributed load using
material set-2.

a/h Source W
5 Present Model 1 0.12260

Present Model 2 0.20900
Kant and Pandya [9] 0.15403
Kant and Pandya [9] 0.15192

10 Present Model 1 0.05858
Present Model 2 0.05528

Kant and Pandya [9] 0.09187
Kant and Pandya [9] 0.09142

40 Present Model 1 0.03662
Present Model 2 0.05329

Kant and Pandya [9] 0.07154
Kant and Pandya [9] 0.07150

Table 5.15 shows a results of displacements and stresses of a simply supported or-

thotropic square plate with length a = 20 cm and thickness t subjected to a uniformly

distributed load q = 100 kN/m2. Present model-2 gives values in good agreement,

whereas present model-1 gives values in reasonable agreement in comparing those

with 3D-FEM solution for thin plate t/a=0.01, moderately thick plate t/a=0.1 and

thick plate t/a=0.2.
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Table 5.15: Comparison study of deflections and stresses for a orthotropic simply
supported square 20 cm length plate under 100 kN/m2 uniformly distributed loading
using material set-1.

t/a Source W σx σy
0.05 Present Model 1 0.8430 0.8105 0.0328

Present Model 2 0.7264 0.7983 0.0275
3D-FEM [12] 0.7255 0.7961 0.0277

0.1 Present Model 1 1.3882 0.8740 0.0572
Present Model 2 0.9512 0.8258 0.0355

3D-FEM [12] 0.9478 0.8227 0.0370

0.2 Present Model 1 3.1669 1.0090 0.1325
Present Model 2 1.7991 0.9268 0.0615

3D-FEM [12] 1.7783 0.9234 0.0667

Further comparison study of obtained central displacements and stresses for a sim-

ply supported square laminate with varying number of stacks of lamina subjected

to uniformly distributed load is carried out. The results of laminated plates made

up of four and five equal thickness stack of laminas for different t/a ratios are pre-

sented in Table 5.16 and 5.17 respectively. From comparison study it is clear that

from present models, model-2 predicts accurate results in agreement with 3D-FEM

solutions. Whereas results of present model-1 are differs for four layers: by 11.85%,

five layers: by 9.19%.
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Table 5.16: Comparison study of nondimensionalized deflections and stresses for a
simply supported square three layer (0/90/90/0) plate under uniformly distributed
load using material set-1.

t/a Source W σx σy
0.05 Present Model 1 0.7563 0.8057 0.3763

Present Model 2 0.7950 0.8245 0.4123
3D-FEM [12] 0.8029 0.8228 0.4168

0.1 Present Model 1 0.9842 0.7783 0.4266
Present Model 2 1.1149 0.8316 0.5481

3D-FEM [12] 1.1401 0.8280 0.5617

0.2 Present Model 1 1.8769 0.7329 0.5215
Present Model 2 2.1829 0.9142 0.8293

3D-FEM [12] 2.2383 0.9080 0.8610

Table 5.17: Comparison study of nondimensionalized deflections and stresses for a
simply supported square three layer (0/90/90/90/0) plate under uniformly distributed
load using material set-1.

t/a Source W σx σy
0.05 Present Model 1 0.7527 0.8146 0.3038

Present Model 2 0.7893 0.8149 0.3406
3D-FEM [12] 0.7794 0.8207 0.4870

0.1 Present Model 1 0.9591 0.8003 0.3030
Present Model 2 1.0790 0.7943 0.4175

3D-FEM [12] 1.0576 0.8201 0.5605

0.2 Present Model 1 1.7920 0.7799 0.2916
Present Model 2 2.0705 0.8235 0.5463

3D-FEM [12] 2.1044 0.8995 0.7386
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Case : 3

The study of numerical problem is carried out for the sandwich laminated plate with

different material properties of face sheet and the core portion of laminate. In this

case simply supported boundary condition is considered, where laminated plate is sub-

jected to sinusoidal load. Here results of solved problem for different a/h ratios are

presented in Table 5.18 and compared with available results in literatures.Schematic

diagram of solved problem of sandwich laminated plate is shown in Fig.5.13.

Figure 5.14: Sandwich laminated composite plate

In Table 5.18 numerical results of transverse displacement and in-plane stresses for

various aspect ratios (a/h) are presented for a simply supported three-layered sym-

metric square sandwich plate with the thickness of each face sheet equal to h/10 is

considered. Form comparative study it is clear that both displacement model-1 and

2 give sufficient accurate results for displacement and stresses.
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Table 5.18: Comparison of nondimensionalized deflections and stresses in a three-
layer simply supported square sandwich plate (0/core/0) under sinusoidal transverse
load using material set-3.

a/h Source W σx σy
4 Present Model 1 7.3272 1.3651 0.2779

Present Model 2 7.0566 1.5162 0.2648
Higher order redefine theory-1 [10] 7.0551 1.5137 0.2648
Higher order redefine theory-2 [10] 7.1539 1.5030 0.2391

10 Present Model 1 2.1471 1.1199 0.1128
Present Model 2 2.0795 1.1539 0.1100

Higher order redefine theory-1 [10] 2.0798 1.1523 0.1100
Higher order redefine theory-2 [10] 2.0848 1.1495 0.1042

20 Present Model 1 1.2119 1.0971 0.0709
Present Model 2 1.1930 1.1124 0.0704

Higher order redefine theory-1 [10] 1.1933 1.1110 0.0705
Higher order redefine theory-2 [10] 1.1939 1.1091 0.0682

50 Present Model 1 0.9327 1.0920 0.0576
Present Model 2 0.9288 1.1007 0.0575

Higher order redefine theory-1 [10] 0.9296 1.1005 0.0578
Higher order redefine theory-2 [10] 0.9294 1.0989 0.0566

100 Present Model 1 0.8921 1.0913 0.0556
Present Model 2 0.8892 1.0958 0.0553

Higher order redefine theory-1 [10] 0.8913 1.09901 0.0560
Higher order redefine theory-2 [10] 0.8910 1.0975 0.0549

Case : 4

The study of numerical problems are carried out for the laminated plate with equal

layer thickness as well as also variation of thickness is considered. In this case just

supported boundary condition is considered at all four edges, where laminated plate

is subjected to sinusoidal or uniformly distributed load. Here results of solved prob-

lem for different a/h ratios and material sets are presented in following tables and

compared with available results in literatures.

In Table 5.19 and 5.20 solutions are presented for a just supported square laminated

plate having seven stacks of lamina and three stacks of lamina respectively. The
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results of laminate having seven layer of lamina with unequal thickness for preset

model-1 and 2 are overestimated by 75% in comparison with Mindlin’s theory and

higher order theory. Whereas the results of present model-1 and 2 presented in Table

5.20 are in good agreement in comparison with Mindlin’s theory and other higher

order theories.

Table 5.19: Comparison of non-dimensional maximum deflection and stresses in a
seven-layer (0/90/0/90/0/90/0) cross ply (h0=h/8, h90=h/6) just supported square
laminate under sinusoidal loading using material set-1.

a/h Source W σx σy
4 Present Model 1 1.5257 0.6088 0.3052

Present Model 2 1.5408 0.6283 0.3426
Higher order theory [8] 1.5421 0.6475 0.5677

Mindlin Theory [8] 1.5495 0.4824 0.5241

10 Present Model 1 1.0848 0.8382 0.5085
Present Model 2 1.0841 0.8513 0.5147

Higher order theory [8] 0.6196 0.5623 0.4562
Mindlin Theory [8] 0.6188 0.5255 0.4531

100 Present Model 1 0.4337 0.5358 0.3125
Present Model 2 0.4312 0.5341 0.3117

Higher order theory [8] 0.4354 0.5595 0.4207
Mindlin Theory [8] 0.4343 0.5581 0.4192

In Table 5.21 solutions are presented for a just supported square laminated plate

made up of three stacks of laminas subjected to uniformly distributed load. The

results of both present models are in good agreement in comparison with Mindlin’s

theory and higher order theory.
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Table 5.20: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0) just supported square laminate under sinusoidal loading using
material set-1.

a/h Source W σx σy

4 Present Model 1 1.9256 0.5088 0.4376
Present Model 2 1.9246 0.7845 0.5062

Higher order theory [8] 1.9359 0.8113 0.5179
Mindlin Theory [8] 1.8157 0.4693 0.4986

10 Present Model 1 0.7031 0.5281 0.2556
Present Model 2 0.7222 0.5908 0.2730

Higher order theory [8] 0.7229 0.6078 0.2754
Mindlin Theory [8] 0.6773 0.5316 0.2588

100 Present Model 1 0.4361 0.5367 0.1796
Present Model 2 0.4340 0.5364 0.1785

Higher order theory [8] 0.4362 0.5604 0.1871
Mindlin Theory [8] 0.4345 0.5590 0.1858

Table 5.21: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0) just supported square laminate under uniformly distributed load
using material set-1.

a/h Source W σx σy

4 Present Model 1 2.9382 0.7545 0.6660
Present Model 2 2.9679 1.1315 0.7486

Higher order theory [8] 2.9449 1.1681 0.7563
Mindlin Theory [8] 2.7325 0.7063 0.7194

10 Present Model 1 1.0766 0.7927 0.3219
Present Model 2 1.1107 0.8731 0.3401

Higher order theory [8] 1.1094 0.9013 0.4296
Mindlin Theory [8] 1.0375 0.8026 0.4161

100 Present Model 1 0.6734 0.8063 0.1936
Present Model 2 0.6722 0.8079 0.2003

Higher order theory [8] 0.6741 0.8480 0.3192
Mindlin Theory [8] 0.6741 0.8519 0.3096
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Case : 5

The study of numerical problems are carried out for the laminated plate with equal

layer thickness as well as also variation of thickness is considered. In this case clamped

supported boundary condition is considered at all four edges, where laminated plate

is subjected to sinusoidal and uniformly distributed load. Here results of solved prob-

lem for different a/h ratios and material sets are presented in following tables and

compared with available results in literatures.

In Table 5.22 and 5.23 solutions are presented for a clamped supported square lam-

inated plate having seven stacks of lamina and three stacks of lamina respectively.

The results of laminate having seven layer of lamina with unequal thickness for preset

model-1 and 2 are overestimated by 55.19% in comparison with Mindlin’s theory and

higher order theory. Whereas the results of present model-1 and 2 presented in Table

5.23 are in good agreement in comparison with Mindlin’s theory and other higher

order theories.

Table 5.22: Comparison of non-dimensional maximum deflection and stresses in a
seven-layer (0/90/0/90/0/90/0) cross ply (h0=h/8, h90=h/6) clamped supported
square laminate under sinusoidal loading using material set-1.

a/h Source W σx σy
4 Present Model 1 1.1741 0.2731 0.1093

Present Model 2 1.1626 0.3159 0.1249
Higher order theory [8] 1.1636 0.5126 0.5108

Mindlin Theory [8] 1.1978 0.3253 0.2181

10 Present Model 1 0.4437 0.8382 0.5085
Present Model 2 0.4419 0.3393 0.2242

Higher order theory [8] 0.2893 0.3721 0.3367
Mindlin Theory [8] 0.2859 0.2766 0.2942

100 Present Model 1 0.1092 0.2195 0.1247
Present Model 2 0.1067 0.2175 0.1247

Higher order theory [8] 0.1097 0.3379 0.2610
Mindlin Theory [8] 0.1067 0.3297 0.2575
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Table 5.23: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0) clamped supported square laminate under sinusoidal loading
using material set-1.

a/h Source W σx σy
4 Present Model 1 1.4527 0.1559 0.0751

Present Model 2 1.3129 0.4215 0.2801
Higher order theory [8] 1.3146 0.6900 0.3754

Mindlin Theory [8] 1.3376 0.2113 0.4735

10 Present Model 1 0.3720 0.2014 0.1670
Present Model 2 0.3732 0.2634 0.1836

Higher order theory [8] 0.3752 0.4909 0.2932
Mindlin Theory [8] 0.3452 0.2784 0.2859

100 Present Model 1 0.1079 0.2166 0.0590
Present Model 2 0.1064 0.2171 0.0605

Higher order theory [8] 0.1081 0.3292 0.1352
Mindlin Theory [8] 0.1054 0.3162 0.1390

In Table 5.24 solutions are presented for a just supported square laminated plate

made up of three stacks of laminas subjected to uniformly distributed load. The

results of both present models are in good agreement in comparison with Mindlin’s

theory and higher order theory.



CHAPTER 5. STATIC ANALYSIS: RESULTS AND DISCUSSION 133

Table 5.24: Comparison of non-dimensional maximum deflection and stresses in a
three-layer (0/90/0) clamped supported square laminate under uniformly distributed
load using material set-1.

a/h Source W σx σy
4 Present Model 1 2.0997 0.2435 0.3211

Present Model 2 1.9023 0.5158 0.3568
Higher order theory [8] 1.8891 1.0306 0.5593

Mindlin Theory [8] 1.9203 0.3106 0.7175

10 Present Model 1 0.5208 0.2574 0.1883
Present Model 2 0.5213 0.3304 0.2051

Higher order theory [8] 0.5247 0.7282 0.4596
Mindlin Theory [8] 0.4829 0.3996 0.4600

100 Present Model 1 0.1419 0.2743 0.0405
Present Model 2 0.1428 0.2765 0.0483

Higher order theory [8] 0.1421 0.4537 0.2498
Mindlin Theory [8] 0.1388 0.4365 0.2548

5.4 Summary

In this chapter Results of Static Analysis(free vibration analysis) of laminated com-

posite plate are discussed. Nondimensional displacements and stresses are calculated

using developed computer program. In solving of problems 4x4 uniform mesh size

is considered based on convergence study. To validate the finite element formula-

tion comparison study of obtained numerical results is carried out with available re-

sults reported in literature. The computer program developed under consideration of

the present two displacement models gives sufficiently accurate results for laminated

composite plate with varying width-to-thickness ratio, material anisotropy, stacking

sequence, orientation of fibres and support conditions.



Chapter 6

Dynamic Analysis: Results and

Discussion

6.1 General

The Finite Element Method is formulated based on A Higher Order Shear Defor-

mation Theory as discussed in Chapter 3 and employed for dynamic analysis of

laminated composite plate with different support conditions, widh/thickness ratio,

material anisotropy for symmetric plate and also the plate with cutout at centre.

The computer program is developed for analysis of plate and nondimensionalized fre-

quency is calculated. In order to establish the reliability and accuracy of the present

finite element formulation various examples available in literature are solved and dis-

cussed.

6.2 Problem Discretization

In general unless otherwise stated for all problems considered, the plate is discretized

with sixteen elements (8x8 mesh size) in the full part of plate as shown in Fig.6.1 and

different boundary conditions are considered as shown in Fig.6.3.

134
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Figure 6.1: (8x8) Meshing in full part of plate

Figure 6.2: (a) Plate with square cutout at centre (b) Meshing of plate with square
cutout at centre

Figure 6.3: Support Conditons
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Figure 6.4: Plate under Simply supported boundary condition for model-1

Figure 6.5: Plate under Simply supported boundary condition WSS1 for model-2

Boundary condition: simply supported on four side

For displacement model-1(Fig.6.4):

W0 = W ∗
0 = θy = θ∗y = 0 at X=0 and X=a

W0 = W ∗
0 = θx = θ∗x = 0 at Y=0 and Y=a

WSS-1 For displacement model-2(Fig.6.5):

W0 = W ∗
0 = V0 = V ∗0 = θy = θ∗y = θz = 0 at X=0 and X=a

W0 = W ∗
0 = U0 = U∗0 = θx = θ∗x = θz = 0 at Y=0 and Y=a
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Figure 6.6: Plate under simply supported boundary condition WSS2 for model-2

WSS-2 For displacement model-2(Fig.6.6):

W0 = W ∗
0 = U0 = U∗0 = θy = θ∗y = θz = 0 at X=0 and X=a

W0 = W ∗
0 = V0 = V ∗0 = θx = θ∗x = θz = 0 at Y=0 and Y=a

Figure 6.7: Plate under clamped supported boundary condition for model-1

Boundary condition: clamped supported on four side

For displacement model-1(Fig.6.7):

W0 = W ∗
0 = θx = θ∗x = θy = θ∗y = 0 at X=0 and X=a
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Figure 6.8: Plate under clamped supported boundary condition for model-2

W0 = W ∗
0 = θx = θ∗x = θy = θ∗y = 0 at Y=0 and Y=a

For displacement model-2(Fig.6.8):

W0 = W ∗
0 = U0 = U∗0 = V0 = V ∗0 = θx = θ∗x = θy = θ∗y = θz = 0 at X=0 and X=a

W0 = W ∗
0 = U0 = U∗0 = V0 = V ∗0 = θx = θ∗x = θy = θ∗y = θz = 0 at Y=0 and Y=a

The numerical results of frequency are presented in nondimensional form. In solving

of problems following material properties sets are considered,

Material Set-1;

E1

E2

= open,E2 = E3, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = ν23 = ν13 = 0.25 (6.1)

Material Set-2;

E1

E2

= 40, E2 = E3, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = ν23 = ν13 = 0.25 (6.2)

Material Set-3;
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E = 1000, ν = 0.3, ρ = 1, G =
E

2(1 + ν)
= 384.62, D =

E ∗ h3

12(1− ν2)
(6.3)

Material Set-4;

E = 200000, ν = 0.3, ρ = 0.08, G =
E

2(1 + ν)
= 76923, D =

E ∗ h3

12(1− ν2)
(6.4)

Material Set-5;

FaceSheets : E1 = 131×103MPa,E2 = 10.34×103MPa,E2 = E3, G12 = 6.895×103MPa,

G13 = 6.205×103MPa,G23 = 6.895×103MPa, ν12 = ν13 = 0.22, ν23 = 0.49, ρ = 1627kg/m3

Core : E1 = E2 = E3 = 2G = 6.89MPa,G12 = G13 = G23 = 3.45MPa,

ν12 = ν13 = ν23 = 0, ρ = 97kg/m3 (6.5)

6.3 Comparison of Results

The developed finite element formulation is validated and assessed for its perfor-

mance considering following cases of Laminated plate with different type of orienta-

tion scheme of lamina as shown in Fig.6.9 and 6.10,6.11.
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Figure 6.9: Orientation scheme of Lamina : (a) Cross Ply (b) Angle Ply

Figure 6.10: Cross Ply - Laminated Composite Plate
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Figure 6.11: Angle Ply - Laminated Composite Plate

Case : 1

In Table 6.1 natural frequency is calculated for square simply supported isotropic

plate and compared with available results in literature.

Table 6.1: Comparison of non-dimensionalized fundamental frequency ω̄ = ωa2

π2
2

√
ρh
D

for a symmetric simply supported isotropic square plate for a
h

= 10 considering ma-
terial set-3

Support Condition ModeNo. Source ω
Simply Supported 1 Present Model 2 1.9370

3-Order [25] 1.9281

2 Present Model 2 4.7106
3-Order [25] 4.5954

3 Present Model 2 4.7106
3-Order [25] 4.5954

Clamped Supported 1 Present Model 2 3.4797
3-Order [25] 3.3047

2 Present Model 2 6.8928
3-Order [25] 6.3244

3 Present Model 2 6.8928
3-Order [25] 6.3244

It is observed that first three natural frequencies are very close to analytical results

reported in literature by maximum error less than 2.5% for simply supported plate

and 8.7% for clamped supported plate.
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Case : 2

In this case the study on effect of coupling between bending and stretching in lami-

nated plate is carried out by solving problem of cross ply and angle ply and the results

are presented in Table 6.2 and 6.3.

Table 6.2: Effect of the coupling between bending and stretching on the non-

dimensional fundamental frequencies ω̄ = ω 2

√
ρh2

E2
, of a simply supported-WSS1 square

plate with material set-2: CP- cross ply (0/90)

Lamination Source ω
a
h

5 10 20 50 100
(0/90)1 Presented Model-1 0.471052 0.159505 0.044992 0.007495 0.001885

Presented Model-2 0.348600 0.104418 0.027830 0.004593 0.001171
PHOST11[22] 0.348106 0.104157 0.027651 0.004507 0.001129
PHOST6[22] 0.469961 0.159299 0.044969 0.007495 0.001885

(0/90)2 Presented Model-1 0.471052 0.159505 0.044992 0.007495 0.001885
Presented Model-2 0.432900 0.146500 0.044240 0.007545 0.001925

PHOST11[22] 0.432405 0.146309 0.041238 0.006868 0.001727
PHOST6[22] 0.469961 0.159299 0.044969 0.007495 0.001885

(0/90)3 Presented Model-1 0.471052 0.159505 0.044992 0.007495 0.001885
Presented Model-2 0.45200 0.153600 0.043520 0.007312 0.001860

PHOST11[22] 0.451414 0.153371 0.043329 0.007222 0.001817
PHOST6[22] 0.469961 0.159299 0.044969 0.007495 0.001885

(0/90)10 Presented Model-1 0.471052 0.159505 0.044992 0.007495 0.001885
Presented Model-2 0.463500 0.157400 0.044520 0.007486 0.001906

PHOST11[22] 0.462951 0.157158 0.044382 0.007397 0.001861
PHOST6[22] 0.469961 0.159299 0.044969 0.007495 0.001885
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Table 6.3: Effect of the coupling between bending and stretching on the non-

dimensional fundamental frequencies ω̄ = ω 2

√
ρh2

E2
, of a simply supported-WSS2 square

plate with material set-2: AP- cross ply (45/-45)

Lamination Source ω
a
h

5 10 20 50 100
(45/− 45)1 Presented Model-1 0.524685 0.195808 0.059254 0.010177 0.002572

Presented Model-2 0.400590 0.128770 0.035385 0.005873 0.001483
PHOST11[22] 0.400602 0.128794 0.035329 0.005824 0.001463
PHOST6[22] 0.523067 0.195608 0.059217 0.010174 0.002572

(45/− 45)2 Presented Model-1 0.524685 0.195808 0.059254 0.010177 0.002572
Presented Model-2 0.477725 0.178605 0.054043 0.009323 0.002367

PHOST11[22] 0.477902 0.178639 0.054020 0.009274 0.002344
PHOST6[22] 0.523067 0.195608 0.059217 0.010174 0.002572

(45/− 45)3 Presented Model-1 0.524685 0.195808 0.059254 0.010177 0.002572
Presented Model-2 0.499007 0.187586 0.056921 0.009840 0.002495

PHOST11[22] 0.498825 0.187647 0.056912 0.009782 0.002473
PHOST6[22] 0.523067 0.195608 0.059217 0.010174 0.002572

(45/− 45)10 Presented Model-1 0.524685 0.195808 0.059254 0.010177 0.002572
Presented Model-2 0.513933 0.192646 0.058376 0.010072 0.002560

PHOST11[22] 0.513729 0.192685 0.058388 0.010035 0.002537
PHOST6[22] 0.523067 0.195608 0.059217 0.010174 0.002572

The effect of the coupling between bending and stretching on the fundamental fre-

quencies of simply-supported cross-ply (0/90) and angle-ply (45/-45) laminates with

material set - 2 for different a/h ratios is shown in Table 6.2 and 6.3. The six-degrees-

of-freedom solution, which includes bending action only is obtained by suppressing

the in-plane displacement degrees of freedom. As the a/h ratio increased the effect of

the coupling between bending and stretching increased for two layers and four layers.

The percentage errors are as high as 67 % for cross-ply and 75.8 % for angle-ply. The

percentage error decreased with the increase in number of layers. It is thus seen that

the coupling between bending and stretching has a significant effect on the behaviour

of antisymmetric laminates with few lamina.
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Case : 3

The nondimensionalized natural frequencies are computed using presented model-2

for two, four, six and ten layer antisymmetric cross-ply laminated plate with layers of

equal thickness for open E1/E2 ratio with consideration of material set-1 and results

are presented in Table 6.4.

Table 6.4: Non-dimensionalized fundamental frequency ω̄ = ωa2

h

√
ρ
E2

for a simply

supported antisymmetric cross-ply square laminated plates with a
h

= 5.

Lamination Source ω
E1

E2

3 10 20 30 40
(0/90)1 Presented Model-2 6.2075 6.9552 7.6965 8.2624 8.7152

3D-Elasticity[23] 6.2578 6.9845 7.6745 8.1763 8.5625
Model -1[21] 6.2336 6.9741 7.7140 8.2775 8.7272
Model-2[21] 6.1566 6.9363 7.6883 8.2570 8.7097

(0/90)2 Presented Model-2 6.4882 8.1333 9.4630 10.2725 10.8213
3D-Elasticity[23] 6.5455 8.1445 9.4055 10.1650 10.6798

Model-1[21] 6.5146 8.1482 9.4675 10.2733 10.8221
Model-2[21] 6.4319 8.1010 9.4338 10.2463 10.7993

(0/90)3 Presented Model-2 6.5454 8.3690 9.8253 10.7053 11.2988
3D-Elasticity[23] 6.6100 8.4143 9.8398 10.6958 11.2728
Model -1[21] 6.5711 8.3852 9.8346 10.7113 11.3051
Model-2[21] 6.4873 8.3372 9.8012 10.6853 11.2838

(0/90)5 Presented Model-1 6.6199 8.5919 10.1696 11.1242 11.776
Presented Model -2 6.5740 8.4955 10.0287 11.0133 12.6523
3D-Elasticity[23] 6.5458 8.5625 10.0843 11.0027 11.6245
Model -1[21] 6.6019 8.5163 10.0438 10.9699 11.5993

For comparison study three dimensional elasticity solutions and HSDT solutions are

considered. For all laminated plate the error is decrease with the increase in value of

E1/E2 ratio.For two, four and six layer lamina at higher value of E1/E2 ratio 20,30

and 40 the presented model-2 gives accurate result compare to other theories.
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Case : 4

The variation of natural frequencies with respect to side to width thickness ratio a/h

is presented in Table 6.5 by solving problem of simply supported-WSS1 cross-ply

square laminated plate using material set-2.

Table 6.5: Variation of non-dimensionalized fundamental frequency ω̄ = ωa2

h
2

√
ρ
E2

with

a/h for a symmetric simply supported cross-ply square laminated plate with material
set-2

Lamination Source ω
a
h

2 4 10 20 50 100
0/90 Presented Model-2 4.7295 7.8931 10.4419 11.1325 11.4823 11.7068

Model -1[21] 5.0918 7.9081 10.4319 11.0663 11.2688 11.2988
Model -2[21] 5.0746 7.8904 10.4156 11.0509 11.2537 11.2837

0/90/90/0 Presented Model-2 5.406 9.4159 15.2927 17.7341 18.6890 18.8472
Model -1[21] 5.4033 9.2870 15.1048 17.6470 18.6720 18.8357
Model -2[21] 5.3929 9.2710 15.0949 17.6434 18.6713 18.8355

The results show that for thick plates the results of Presented Model-2 are in good

agreement as very less negligible error is present in comparison with Model-1[21] and

Model-2[21].
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Case : 5

To study the effect of side-thickness ratio on the non-dimensional fundamental fre-

quencies , the results are obtained for the two and eight layer antisymmetric angle

ply lamina corresponding to material set-2 as shown in Table 6.6.

Table 6.6: Comparison of non-dimensionalized fundamental frequency ω̄ = ωa2

h
2

√
ρ
E2

for a symmetric simply supported cross-ply (45/-45) square laminated plates for dif-
ferent a

h
ratios.

a
h

ω
2 layer(45/-45)WSS2 8 layer(45/-45)8WSS2

Present PHOST11[22] HOST[24] Present PHOST11[22] HOST[24]
Model-2 Model-2

5 10.015 10.215 10.692 12.720 12.718 12.967

10 12.878 12.879 13.207 19.100 19.107 19.274

20 14.154 14.132 14.228 23.173 23.169 23.236

50 14.683 14.561 14.568 24.985 24.889 24.901

100 14.888 14.626 14.619 25.399 25.174 25.173

It is observed that for both 2 layer and 8 layer antisymmetric laminates the Present

Model-2 give accurate result in excellent agreement with other higher order theories.

Case : 6

To facilitate extrapolation to aspect ratio (a/b), nondimensional frequency is pre-

sented as a function of a/b for various values of a/h and lamination angle in Table

6.7.
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Table 6.7: Effects of plate aspect ratio (a/b), lamination angle and length-to-thickness

ratio (a/h) on the dimensionless fundamental frequency, ω̄ = ω 2

√
ρh2

E2
of a simply

supported rectangular plate with material set-2 of stacking sequence (θ/− θ/θ/− θ)
a
h θ Source ω

a
b

0.5 1 2 4
5 30 Present Model 2 3.5924 4.3994 7.5260 14.788

HOST [24] 3.7448 4.8554 7.5261 15.3144

45 Present Model 2 3.3324 4.7789 8.0760 16.0920
HOST [24] 3.4594 5.0178 8.5404 17.0529

60 Present Model 2 2.8724 4.7300 8.5760 11.2160
HOST [24] 2.9357 4.8554 8.9875 11.6581

10 30 Present Model 2 1.2580 1.6716 2.7320 6.284
HOST [24] 1.2829 1.7513 2.9357 6.1819

45 Present Model 2 1.1318 1.7860 3.3540 7.3920
HOST [24] 1.1501 1.8326 3.4594 7.5371

60 Present Model 2 0.9312 1.7323 3.6960 5.7920
HOST [24] 0.9376 1.7513 3.7448 5.9289

20 30 Present Model 2 0.3631 0.5088 0.9185 2.1880
HOST [24] 0.3646 0.5165 0.9376 2.1461

45 Present Model 2 0.3203 0.5404 1.1450 2.9530
HOST [24] 0.3213 0.5450 1.1501 2.8785

60 Present Model 2 0.2563 0.5151 1.2890 2.9250
HOST [24] 0.2563 0.5165 1.2829 2.9793

50 30 Present Model 2 0.0613 0.0879 0.1700 0.4468
HOST [24] 0.0609 0.0877 0.1660 0.4121

45 Present Model 2 0.0536 0.0931 0.2152 0.6524
HOST [24] 0.0533 0.0928 0.2088 0.5962

60 Present Model 2 0.0424 0.0881 0.2461 0.8256
HOST [24] 0.0422 0.0877 0.2376 0.7621

It is observed from the table 6.7 that the fundamental frequencies decrease with

the increase in lamination angle for a/b = 0.5, and for a/b = 2.0 frequencies increase

with the increase in the lamination angle. As the a/h ratio increases, the fundamental

frequency decreases.
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Case : 7

In this case the nondimensionalized natural frequencies are computed considering

presented model-2 for isotropic plate with square cutout at centre as shown in Fig.6.2.

The numerical values are presented of first 4 mode considering material set-4 for

h/a=0.01. The results are compared with available results in literatures as shown in

Table 6.8.

Table 6.8: Non dimensionalized natural frequencies, ω̄ = 4

√
ρhω2a4

D(1−ν2) of simply sup-

ported square plates with a square hole at centre considering material set-4 and
h/a=0.01

Mode ω
P resent Model-2 RPIM[26]

Without Cutout With Cutout With Cutout
1 4.6640 5.0120 4.9217
2 7.8671 7.1355 6.4810
3 7.9654 7.1355 6.4821
4 11.8302 9.4337 8.5509

It is observed from the table that results obtained by Present Model-2 overestimate

natural frequencies by 8.01% while comparing them with results available in litera-

tures. Also the rate of increase of natural frequency is more incase of plate without

cutout compare to plate with square cut out at centre.

Case : 8

In this case variation of nondimensional natural frequency is studied with respect

to the various parameters like the side-to-thickness ratio (a/h), thickness of core to

thickness of flange (tc/tf ) and the aspect ratio (a/b) of a five-layer sandwich plate

with antisymmetric cross-ply face sheets as shown in Fig.6.12 using material set-1

under simply supported boundary condition.
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Figure 6.12: Sandwich laminated composite plate

Table 6.9: Non-dimensionalized fundamental frequency ω̄ = ωb2

h
2

√
ρ
E2

of an antisym-

metric (0/90/core/0/90)sandwich plate with a
b

= 1 and tc
tf

= 10.

a
h

ω
Present HSDT HSDT
model-2 Model-1[21] Model-2[21]

2 1.2185 1.1941 1.1734
4 2.1530 2.1036 2.0913
10 4.9686 4.8594 4.8519
20 8.7532 8.5955 8.5838
30 11.2594 11.0981 11.0788
40 12.8349 12.6821 12.6555
50 13.8360 13.6899 13.6577
60 14.4958 14.3497 14.3133
70 14.9536 14.7977 14.7583
80 15.2835 15.1119 15.0702
90 15.5231 15.3380 15.2946
100 15.7175 15.5093 15.4647

The results presented in Table 6.9 clearly show that natural frequency for sandwich

laminate is increase with increase in a/h ratio. Also in comparison with Model-1[21]

and Model-2[21], the Present Model-2 gives accurate result with maximum error less

than 2.4%.
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6.4 Summary

In this chapter Results of Dynamic Analysis(free vibration analysis) of laminated

composite plate are discussed. Natural frequencies are calculated using developed

computer program. In solving of problems 8x8 uniform mesh size is considered. To

validate the finite element formulation comparison study of obtained numerical results

is carried out with available results reported in literature. The computer program de-

veloped under consideration of the present two displacement models gives sufficiently

accurate results for laminated composite plate with varying width-to-thickness ratio,

material anisotropy, stacking sequence, orientation of fibres and support conditions.



Chapter 7

Study of Piezolaminated

Composite Plate

7.1 Introduction

When a piezoelectric material is subjected to mechanical strain or stress, it devel-

ops electric polarization which generates electric charge. This occurrence is called as

direct piezoelectric effect. Conversely when piezoelectric material is electrically polar-

ized by applying electric field, it will experience strain. This action is called converse

or reciprocal piezoelectric effect. Here elastic deformation can be an expansion or

contraction in either direction according to the sign and magnitude of applied electric

field. So as piezoelectric material exhibit both direct and converse effects, the same

structural element can be used as an actuator or sensor, or both simultaneously. The

converse effect enables actuation and the direct effect accelerates sensing of structural

element vibrations [6].

7.2 Piezoelectric Constitutive relationship

Piezoelectric effect maintains a linear relationship between the mechanical strain and

electric fields. The direct and converse piezoelectric property found a characteristic

151
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electromechanical coupling that is included in the constitutive relations of the struc-

tural analysis problem. Here constitutive equations for electromechanical coupling

are derived from the relation of Electric enthalpy density with strain energy, electric

displacement density and electric field [6].

For 2-D problems the constitutive law model for a piezoelectric material

is:

Here first law equation is called actuation law and second is called sensing law.

σ = [C]ε− [e]E

D = [e]T ε− [µ]E (7.1)

Where,

In equation 7.1 first part represents the stresses developed due to mechanical load-

ing and second part represents the stresses developed due to voltage applied. From

equation it can be concluded that even in absence of mechanical load the structure

will be stressed due to application of electric field [5].

7.2.1 Actuation Problem

Here actuation action is demonstrated using Bimorph piezoelectric of dimensions L

x W x t, where L and W are the length and width of the plate and t is the thickness.

Thin piezoelectric electrodes are placed on the top and bottom surfaces of the plate,

as shown in Fig.7.1. When a voltage is applied to the electrodes, the plate will

experience the deformations in the length, width and thickness directions as shown

in Fig.7.1. Deformations in the respective directions are given by:
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Figure 7.1: Actuation effect in a piezoelectric plate

δL = d31E1L =
d31V L

t
, δW = d31E2W =

d31VW

t
, δt = d33V (7.2)

Where, d31 and d33 are the electromechanical coupling coefficients in the directions

1 and 3, respectively. For converse effect if a force F is applied in any of the length,

width or thickness directions, the voltage V will be developed across the electrodes

in the thickness direction, Which is given by:

V =
d31F

µL
orV =

d31F

µW
orV =

d33F

µLW
(7.3)

Where, µ is the dielectric permittivity of the material.

7.3 Finite Element Modeling

From constitutive law relationship which represents the electromechanical coupling,

finite element formulation is derived using 8-node isoparametric finite element based
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on considered displacement fields.

Constitutive law relationship is given by:

 {σ}{D}
 =

 Q −e

eT µ

 {ε}

{E}

 or σ̄ = [Q̄]ε̄ (7.4)

Above equation is simplified as follows:



σ11

σ22

σ33

σ12

σ23

σ13

D1

D2

D3



=



Q11 Q12 Q13 0 0 0 0 0 −e31
Q21 Q22 Q23 0 0 0 0 0 −e32
Q31 Q32 Q33 0 0 0 0 0 −e33
0 0 0 Q44 0 0 0 −e24 0

0 0 0 0 Q55 0 −e15 0 0

0 0 0 0 0 Q66 0 0 0

0 0 0 0 e15 0 µ11 0 0

0 0 0 e24 0 0 0 µ22 0

e31 e32 e33 0 0 0 0 0 µ33





ε11

ε22

ε33

ε12

ε23

ε13

E1

E2

E3


(7.5)

The constitutive model is then transformed to the global axis using transformation

7.3.1 2-D Isoparametric smart composite finite element

For 2-D analysis the stresses σ22 = σ12 = σ23 = D1 = D2 = 0 in equation 7.5.

[T ] =

 T11 0

0 T22

 (7.6)

where,
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[T11] =



C2 S2 0 0 0 −2CS

S2 C2 0 0 0 2CS

0 0 1 0 0 0

0 0 0 C S 0

0 0 0 S C 0

CS −CS 0 0 0 C2 − S2


(7.7)

[T22] =


C2 S2 0

S2 C2 0

0 0 1

 C = cos(θ), S = sin(θ) (7.8)

Here θ is angle of fibre orientation.So constitutive model can be written in global

x-y-z direction as follows:

σ = [T ]T

 Q −e

eT µ

 [T ]ε =

 Q̄ −ē

ēT µ̄

 ε (7.9)

from above equation 7.9 the expanded form can be written as follow:



σxx

σyy

σzz

τxy

τyz

τxz

Dx

Dy

Dz



=



Q̄11 Q̄12 Q̄13 0 0 0 0 0 −ē31
Q̄21 Q̄22 Q̄23 0 0 0 0 0 −ē32
Q̄31 Q̄32 Q̄33 0 0 0 0 0 −ē33
0 0 0 Q̄44 0 0 0 −ē24 0

0 0 0 0 Q̄55 0 −ē15 0 0

0 0 0 0 0 Q̄66 0 0 0

0 0 0 0 ē15 0 µ̄11 0 0

0 0 0 ē24 0 0 0 µ̄22 0

ē31 ē32 ē33 0 0 0 0 0 µ̄33





εx

εy

εz

2εxy

2εyz

2εxz

Ex

Ey

Ez


(7.10)
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The coefficients of [Q̄] and [−ē] are given by:

Q̄11 = Q11C
4 + (2Q12 + 4Q44) S

2C2 + Q22S
4

Q̄12 = (S4 + C4) Q12 + (Q11 + Q22 - 4Q44) S
2C2

Q̄13 = C2Q13 + S2Q23

Q̄14 = (Q11 - Q12 - 2Q44) C
3S + (Q12 - Q22 + 2Q44)S

3C

Q̄22 = Q11S
4 + Q22C

4 + (2Q12 + 4Q44)S
2C2

Q̄23 = C2Q23 + S2Q13

Q̄24 = (Q11 - Q12 - 2Q44) S
3C + (Q12 - Q22 + 2Q44)C

3S

Q̄33 = Q33

Q̄34 = (Q13 - Q23)SC

Q̄44 = (Q11 + Q22 - 2Q12 - 2Q44)S
2C2 + (C4 + S4)Q44

Q̄55 = C2Q55 + S2Q66

Q̄56 = (Q66 - Q55)SC

Q̄66 = S2Q55 + C2Q66

ē31 = (e31C
2 + e32S

2)

ē32 = (e31S
2 + e32C

2)

ē33 = e33

ē14 = (e15C
2S + e24CS

2)

ē24 = (e24C
3 + e15S

3)

ē15 = (e15C
3 + e24S

3)

ē25 = (e24C
2S + e15CS

2)

µ̄12 = C2S2(µ11 + µ22)

µ̄22 = µ22C
4 + µ11S

4

µ̄33 = µ33
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In present work for finite element formulation the 8-node isoparametric element is

shown in Fig.7.2.

Figure 7.2: 8-node isoparametric element with displacement fields at each node

Displacement Model: The element will have two mechanical degrees of freedom

U(x,y,t) and W(x,y,t) respectively in x and z direction and one electrical degree of

freedom Ez(x, y, z) in z - direction per node as shown in Fig.7.2. Therefore element

will have 24 degrees of freedom.

The displacement related at any point within the element is:

u(x, y, t) =
8∑
i=1

Ni(ξ, η)ui(t), w(x, y, t) =
8∑
i=1

Ni(ξ, η)wi(t), Ez(x, y, t) =
8∑
i=1

Ni(ξ, η)Ezi(t)

(7.11)

Here ζ and η are the isoparametric coordinates and ui(t), wi(t) are the mechanical

nodal degrees of freedom, and Ezi(t) is the electrical nodal degree of freedom.
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Strain - Displacement Relationship is given by:



εxx

εzz

2εxz

Ez


=


∂
∂x

0 0

0 ∂
∂z

0

∂
∂z

∂
∂x

0

0 0 1




u

w

Dz

 (7.12)

By substituting equation 7.11 in above equation, will allow to express strain in terms

of nodal displacement vector {q}e and electrical field vector {Ez}e:

{q}e = {u1 w1 u2 w2 u3 w3 u4 w4 u5 w5 u6 w6 u7 w7 u8 w8}T

{Ez}e = {E1 E2 E3 E4 E5 E6 E7 E8}T

Now from above relation [B] matrix for mechanical field [B]u and electrical field [B]E

can be written as:

[B]u =
NN∑
i=1

∣∣∣∣∣∣∣∣∣
∂Ni

∂x
0

0 ∂Ni

∂z

∂Ni

∂x
∂Ni

∂x

∣∣∣∣∣∣∣∣∣
(3X16)

∣∣∣∣∣∣ uiwi
∣∣∣∣∣∣
(16X1)

(7.13)

[B]E =
NN∑
i=1

∣∣∣ Ni

∣∣∣
(1X8)

∣∣∣ Ei ∣∣∣
(8X1)

(7.14)

Where NN = Number of node.

Concise matrix form obtained from the weak form governing equation for a compos-

ite laminate with piezoelectric smart patches using Hamilton’s principle is shown by

differential equation 7.15.
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 [Muu] [0]

[0] [0]

 {ü}e
{Ëz}e

+

 [Kuu] [KuE]

KT
uE [KEE]

 {u}e
{Ez}e

 =

 {F}e{q}e

 (7.15)

For static analysis here mass matrix form is not considered. Therefore concise form

will be as given by:

 [Kuu] [KuE]

KT
uE [KEE]

 {u}e
{Ez}e

 =

 {F}e{q}e

 (7.16)

Where the [Kuu] is the stiffness matrix corresponding to the mechanical degrees of

freedom. [KuE] is the stiffness matrix due to electromechanical coupling. [KEE] is

the stiffness matrix due to electrical degrees of freedom. Fe is the element load vector

and qe is the element charge vector. These all matrices are given by:

[Kuu] = t

∫ +1

−1

∫ +1

−1
[Bu]

T [Q̄][Bu] |J | dξ dη

[KuE] = −t
∫ +1

−1

∫ +1

−1
[Bu]

T [ē][BE] |J | dξ dη

[KEE] = t

∫ +1

−1

∫ +1

−1
[BE]T [µ̄33][BE] |J | dξ dη (7.17)

Element Load and Charge vector are given by:

Fe = Fc +

∫
s1

[N ]TFs dS1

qe = −
∫
s2

[N ]TDs dS2 (7.18)
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To solve Integration form 2x2 Gauss Integration scheme is used for both stiffness

matrix due to mechanical and electromechanical coupling.

[Kuu] =
NG∑
a=1

NG∑
b=1

t [Bu]
T [Q̄] [Bu] |J | Wa Wb

[KuE] =
NG∑
a=1

NG∑
b=1

− t [Bu]
T [ē] [BE] |J | Wa Wb

[KEE] =
NG∑
a=1

NG∑
b=1

t [BE]T [ē] [BE] |J | Wa Wb

[Fe] =
NG∑
a=1

NG∑
b=1

Fs [Ni]
T [J ]WaWb

(7.19)

After evaluating stiffness matrices and load vectors individually, they are assembled

to obtain overall stiffness matrix and load vector. Subsequently incorporating bound-

ary conditions they are solved for displacement and voltage.

In sensing problem for a given mechanical loading, developed voltage across the smart

patch is determined. First mechanical displacement due to applied load is calculated.

Then from obtained mechanical displacement the developed voltage across the patch

is determined. This sensing problem is exhibits a direct effect of piezoelectric material.

In actuation problem for a given electric field, developed strain across the smart patch

is determined. If an arbitrary value of Ez is specified, the problem comes under the

category of open-loop control and if the value of Ez comes from sensor output that

is fed back to the controller, then the control scheme is referred to as closed-loop

control. This actuation problem exhibits a converse effect of piezoelectric material.
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7.4 Computer Program Development

A computer program is developed in C++ environment for analysis of composite lam-

inate embedded with patches of piezoelectric material. The first computer program

performs a meshing of laminated plate and generates a input data file for further

analysis of problem. The second program performs a static analysis of composite

laminate using a finite element formulation with considered displacement fields.

7.4.1 Features of Computer Program

Features of computer program are as follows:

1. Automatic Mesh generation

2. Generation of element mechanical stiffness matrix

3. Generation of load vector

4. Generation of element electromechanical coupling stiffness matrix

5. Generation of overall mechanical stiffness matrix,load vector and electrome-

chanical coupling stiffness matrix in banded form

6. Incorporating Boundary conditions

7. Static solution using counterpart of global assembled governing equations

8. Calculation of displacement

9. Solution for secondary unknowns

7.4.2 Flow of Computer Program

Automatic Mesh Generation with Input Data:

The meshing of composite laminate is performed automatically. The laminated plate

is divided in number of elements by assigning the number of divisions in along length

and width direction. Numbering to the elements is assigned automatically moving in
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the direction from left to right and bottom to top. Each element has 8 nodes, which

are numbered sequentially from left to right and bottom to top as shown in Fig.7.3.

Figure 7.3: Meshing of composite laminate

After numbering the required input data for analysis are given. The required data

for analysis are as follows:

a. Plate Dimension

b. Number of Materials with properties

c. Number of Laminate

d. Laminate id with angle of orientation and thickness

e. Assigning of Load

After material properties the element incidences and element coordinates are eval-

uated automatically. And based on support condition the boundary condition is

assigned to the each node. Flow chart is shown in Fig.??.
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Generation of Constitutive Law Matrix:

A formulation of constitutive law matrix is executed in computer program based on

the finite element formulation discussed in previous section. Constitutive law matrix

is formulated using the entered material properties, which exhibits the coupling of

mechanical and electrical field.

Generation of [B] Matrix:

Matrix is formulated using shape functions and curvature - nodal displacement rela-

tionship. Here two [B] matrices are derived, one is for mechanical field [Bu] and other

one is for electrical field [BE] as shown in flow chart Fig.7.5.

Generation of Overall Stiffness Matrix and Load Vector:

The element stiffness matrix of mechanical field for the laminate is generated by lami-

nate constitutive relation [Q̄] and [Bu] matrix. Similarly stiffness matrix for electrical

field is generated by piezoelectric coefficient matrix [ē], [Bu] and [BE] matrix. Then

generated element stiffness matrices for the laminate are assembled in banded form.

The integration for stiffness matrix is evaluated by 2x2 Gauss integration scheme.

Load Vector and Electrical Charge Vector:

For load vector each element load vector is generated by reading loading type and

value from input data. Then element load vectors are assembled in banded form. For

charge vector also at each node it is obtained from applied voltage and thickness of

laminate. Then element charge vectors are assembled in banded form.

Incorporating Boundary conditions :

In input data file at each node based on displacement model and according to degrees

of freedom 0 or 1 value is assigned to each degree of freedom. From this data file

boundary condition is assigned to all overall stiffness matrices in core program.

Solution Using Governing Equation :
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After assigning boundary condition to overall stiffness matrices from counterpart of

global assembled governing equations 7.16, displacement is calculated using subrou-

tine based on Gauss Elimination method. The procedure of solution is as follows:

[Kuu] ∗ ue + [KuE] ∗ Eze = F

[Kuu] ∗ ue = F − [KuE] ∗ Eze

[Kuu] ∗ ue = F ∗ (7.20)

Output :

Output data file is consist of following data and results:

1. Plate Dimension

2. Number of elements, nodes and materials

3. Material Properties

4. Laminate data: id, angle of orientation, thickness

5. Element incidences

6. Joint Coordinates

7. Boundary condition

8. Lamina thickness

9. Overall mechanical, electromechanical stiffness matrices

10. Overall load vector

11. Overall field intensity vector

12. Displacement vector

13. Stresses in various elements
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Flow Chart for the program of Meshing of laminated composite plate with

Input Data

Figure 7.4: Input data with meshing of composite laminate
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Flow Chart for the static analysis program

Figure 7.5: Analysis of composite laminate embedded with smart patches of piezo-
electric material
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7.5 Illustrative Example

The Finite Element Method is formulated based on considered displacement fields

and employed for analysis of composite laminate embedded with smart patches of

piezoelectric material. In order to establish the reliability and accuracy of the present

finite element formulation an illustrative example is solved and results are compared

with that available comparison is made with available in literature.

Material Properties:

e1 = 0.2 ∗ 1010, e2 = 0.2 ∗ 1010, e3 = 0.2 ∗ 1010, g12 = 0.775 ∗ 109, g23 =

0.775 ∗ 109, g13 = 0.775 ∗ 109

v12 = 0.29, v21 = 0.28, v13 = 0, v31 = 0, v23 = 0, v32 = 0 E31 = 0.046, e32 =

0.046, e33 = 0, u11 = 0.1062 ∗ 10−9, u22 = 0.1062 ∗ 10−9, u33 = 0.1062 ∗ 10−9

A bimorph beam with dimensions of 100mm x 5.0mm x 0.5mm is considered. Theo-

retical solution is also obtained and compared with analytical. Theoretical equation:

w(x) = 0.375 e31V
E

x
t
2 w(x) = 0.345 * 10−6 mm

Figure 7.6: Schematic of the piezoelectric PVDF bimorph cantilever beam
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7.5.1 Problem Discretization

Here modelling and analysis of a piezoelectric bimorph beam is done. The beam is

discretized with 29 elements in the direction of length and 1 element in the direction

of width (29x1 mesh size) as shown in Fig.7.7 Here deflection is calculated at various

points on beam by applying voltage to each node. The bimorph beam consists of two

identical PVDF beams laminated together with opposite polarities.

Figure 7.7: (29x1) Meshing of bimorph PVDF beam
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A unit voltage is applied across the thickness and the deflections at the nodes are

computed. The deflection of the beam along the central longitudinal axis obtained

from the present formulation is compared with the value given by theoretical equation

and reported in literature as shown in Table 7.1.

Table 7.1: comparison of deflection along the length of beam for a unit voltage applied
across the thickness

Source Deflection(W)
Present Model 0.23x10−6

Theoretical 0.345x10−6

Chen[33] 0.35x10−6

Hwang[32] 0.35x10−6

7.6 Summary

The behaviour of the composite laminates embedded with smart patches of piezoelec-

tric materials is studied. The electromechanical coupling behaviour and constitutive

relationship are studied from actuation and sensing action of embedded patches. Fi-

nite element formulation is derived using 8-node isoparametric quadrilateral element

considering two-mechanical displacements and one-electrical fields at each node for 2

- dimensional problem. For validation of formulated model an example of bimorph

beam constructed by two PVDF beam is analysed using developed computer program

and analysis results are compared with that available in literature.



Chapter 8

Summary and Conclusion

8.1 Summary

This present study comprises the introduction of fibre reinforced composites, classi-

fication of composites especially focusing on laminated composites with introduction

of piezoelectric laminated composite material with their applications in structural

engineering.

Basic Mechanics of Laminated Composite is studied and presented. The finite ele-

ment analysis of composite plate using Higher Order Shear Deformation Theory is

discussed. Finite element formulation for static and dynamic analysis of laminated

composite plate by considering two displacement models based on Higher Order Shear

Deformation Theory is presented. First displacement model is having 6 - degrees of

freedom (w, θx, θy, w
∗, θ∗x, θ

∗
y) and second one is having 11 - degrees of freedom (u0,

v0,w0,θx,θy,θz,u
∗
0, v

∗
0, w∗0, θ

∗
x, θ

∗
y). Using these two displacement models, properties of

eight node isoparametric Quadrilateral element i.e. stiffness matrix, load vector and

mass matrix are dirived.

To perform static analysis of laminated composite plate a computer program is de-

veloped. The program is capable for analysis of laminated composite plate with

different loading condition like uniformly distributed load and sinusoidal load, sup-
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port conditions, width to thickness ratio and material anisotropy. In static solution,

nondimensional displacement and stresses are calculated for both the considered dis-

placement models. To perform free vibration analysis of laminated composite plate

another computer program is developed. The program is capable of obtaining natural

frequencies and mode shapes of composite plates with different support conditions and

material anisotropy through Eigen value analysis. The validity of program is checked

by comparing the analysis results with that reported in literature. Further variety

of problems are solved by considering different parameters like material properties,

stacking sequence, fibre angle, support conditions etc.

This study is extended to include composite laminates embedded with smart patches

of piezoelectric materials to understand the behaviour of composite smart structure.

The electromechanical coupling behaviour and constitutive relationship are studied

from actuation and sensing action of embedded patches. For analysis of piezoelectric

laminated composite, a finite element formulation is derived using 8-node isoparamet-

ric quadrilateral element considering mechanical displacements and electrical fields at

each node for 2 - dimensional problem. For validation of formulated model an exam-

ple of bimorph beam constructed by two PVDF beam is analysed using developed

computer program and analysis results are compared with that available in literature.

8.2 Conclusion

Generally in classical plate theory a transverse displacement is assumed constant

through the thickness. Therefore to perform analysis of laminated composite plates

a Higher Order Shear Deformation Theory is used. Based on static and dynamic

finite element analysis of laminated composite plate using eight node isoparametric

elements with 48 degrees of freedom and 88 degrees of freedom, following conclusions

are derived:
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Static Analysis:

1. In case of square plate, due to symmetry quarter part is discretized with 1x1,

2x2, 3x3, 4x4, 5x5 and 6x6 mesh size. It is observed that 4x4 mesh size give

sufficiently accurate results.

2. In static analysis of square laminated composite plates concept of symmetry is

exploited in solving problems, to reduce computational effort.

3. In analysis of rectangular plate using displacement model-1 the values of max-

imum deflection and stresses are differ by 8.78% for thick plate in comparison

with 3D-elasticity solution. And using displacement model-2 values differ by

5.82%. Whereas for thin plate the values are differ by 0.27% in model-1 and

3.28% in model-2. So with higher a/h ratio i.e. for thinner laminated plate,

displacement model-1 gives better results compared to model-2.

4. From comparison of analysis results of various problems in terms of nondi-

mensional displacements, it is observed that displacement model-2 gives more

accurate result than displacement model-1. As displacement model-2 is having

additional inplane degrees of freedom and their higher order terms, it yields

more accurate constant value of transverse displacement through thickness.

5. For two-equal layer cross ply laminate for all a/h ratios the displacement model-

2 gives excellent results, whereas model-1 under estimate the displacement by

3.87%.

6. In static analysis of orthotropic plate model-2 gives results in good agreement

with 3D-FEM solution, whereas by using model-1 over estimate the displace-

ment by 6.01%, 11.85% and 9.19% in two layers, four layers and five layers

laminated composite.

Dynamic Analysis:

1. In free vibration analysis of isotropic plate displacement Present Model-2 pre-

dicts natural frequencies in good agreement with literature values, as results are
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differ by less than 2.5% for simply supported boundary condition and 8.7% for

clamped supported boundary condition.

2. In the case of solution with displacement model-1, which includes bending ac-

tion only, as the a/h ratio increase the effect of the coupling between bending

and stretching increases for two layers and four layers.The percentage errors in

natural frequency of laminated composite plate are as high as 67% for cross-ply

and 75.8% for angle-ply. The percentage error decreases with the increase in

number of layers. Therefore it is concluded that the coupling between bend-

ing and stretching has a significant effect on the behaviour of antisymmetric

laminates with few lamina. So displacement model - 1 can be considered for

vibration analysis of laminated composite plate having symmetrical lamina ori-

entation but can not be used for unsymmetrical orientation. For antisymmetric

orientation of lamina displacement model - 2 should be used, for obtaining

natural frequencies and modeshapes.

3. For all laminated plate displacement model-2 gives less error in solution at lower

value of E1/E2 ratio i.e. 3 and 10, compared to other theories. Whereas for

two, four and six layer lamina with higher value of E1/E2 ratio of 20,30 and 40

the displacement model-2 gives accurate result with negligible error compared

to other theories.

4. It can be also concluded that the fundamental frequencies decrease with the

increase in lamination angle for a/b = 0.5, and increases for a/b = 2.0 with the

increase in the lamination angle. As the a/h ratio increases, the fundamental

frequency decreases.

5. It is observed that for laminated plate with square cutout of a0 = 0.5 ∗ a

size at centre, results of natural frequencies are overestimated by 8.01% while

comparing those with literature. Also the rate of increase of natural frequency

is more incase of plate without cutout compare to plate with square cut out at

centre.
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6. The developed computer program is capable to carry out static and dynamic

analysis of laminated composite plates with any geometry, support conditions,

loading conditions and with varying width-to-thickness ratio, material anisotropy,

and number of layers and orientation of layers.

In present project analysis of laminated composite embedded with piezoelectric ma-

terial is also studied. From study of analysis results and behaviour of plate under

electromechanical coupling following conclusions are made:

• Finite element formulation derived using 8-node isoparametric finite element

gives accurate results.

• To make structure smart and multifunctional, piezoelectric material can be

introduced. By taking advantage of direct piezoelectric effect, electrical field

can be generated and could be employed for energy harvesting. By converse

piezoelectric effect, mechanical displacement and vibration can be controlled.

8.3 Future Scope of Work

The present work can be extended in future to include following aspects:

• Static and dynamic analysis of laminated composite plate having different shapes

and geometry.

• Static and dynamic analysis of laminated composite plate with cut outs.

• Analysis of piezolaminated composite plate of closed - loop control system do-

main.

• Study of vibration control of structure by using piezoelectric material.

• Finite element analysis of laminated composite plate constructed from Function-

ally Graded Material(FGM) to explore the applications and to make structure

multifunctional.
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