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Abstract

Straight free standing staircases have come into fairly wide use now-a-days. Its at-

tractiveness coupled with the elimination of obstructing columns under the landing

which enables designers to maximize the utilization of the floor area have encouraged

its use in many modern buildings. Its use, however, has been restricted due to the

lack of an adequate and simple method of analysis.

Fuchssteiner has proposed the simplification of the basic structure by substituting a

space frame composed of linear bar elements, the frame consisting of two cantilevered

joined by a bow girder. Analysis of free standing stair has also been studied by A.C.

Liebenberg, A.R. Cusens & J.G.Kuang, Sauter & A. Siev, et al.

Analysis of free standing stair requires long & complex equations. The aim of present

study is to develop a simplified method for analysis of free standing stair. Normally,

free standing stair is an indeterminate to the six degree but in this report a simplifi-

cation such as symmetrical loading condition is made in such a way that it reduces

to two degree of freedom & also it is further assumed that torsional modulus by

neglecting poisson’s ratio of the material & Ix/Iy(Ratio of moment of inertia about

X axis & Y axis) is neglected due to stair slab width is very wide as compare to

its thickness based on above assumption a stair with equal flight under symmetrical

loading, displacement are calculated using virtual work method.

Analysis and design of free standing stair is carried out using simplified method &

A.Siev, W. Fuchssteiner and A.R. Cusens-J.G. Kuang. The comparison of simplified

method and above methods is also presented.

Design example is presented & structural detailing is provided.
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Nomenclature

b..................................................................Width of the flight

tf ............................................................Thickness of the flight

tL............................................................Thickness of the landing

L..................................................................Length of the flight

g..................................................................Width of the landing

h..................................................................Height of the flight

α...........................................................Angle of the flight

ψ.............................................................Horizontal angle of the landing

c..................................................................Spacing between two flights

fck..........................................Characterisic cube compressive strength of the concrete

fy............................................................Characteristic strength of the steel

E..................................................................Modulus of elasticity in bending

G..................................................................Modulus of elasticity in shear

IX ............................................................Moment of inertia of landing in horizontal

axis

IY ............................................................Moment of inertia of landing in vertical axis

Mr............................................................Bending moment about X axis

Ms............................................................Bending moment about Y axis

Mt............................................................Bending moment about Z axis

X5............................................................Bending moment redundant

X6............................................................Shearing force redundant
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Chapter 1

Introduction

1.1 General

A Stair is a set of steps leading from one floor to the other. It is provided to afford

the means of ascent & descent between various floors of a building. The room or

enclosure of the building, in which the stair is located, is known as staircase. The

opening or space occupied by the stair is known as a stairway.

Stairs must be provided in building having more than one floor level, even if adequate

numbers of elevators are provided between floor levels. Stairs consists of risers, treads

& landing. Normally risers & treads are constructed on a waist slab. The riser and

tread dimensions are kept such that an easy and comfortable access to a floor level is

maintained.

The normal dimensions of the riser and tread in a building are related by some

empirical rules and are governed by the building codes. For example:

Tread+Riser = 450mm (1.1)

2 ∗Riser + Tread = 635mm (1.2)

Riser ∗ Tread = 50000mm2 (1.3)

1
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The finishing on the stairs varies from building to building and its type of material

used. The stair must be designed for a minimum live load governed by the building

codes.

1.2 History

The stairs are one of the oldest buildings in architectural history, they have always

played a central role in the history of humanity, although it is difficult to tell exactly

in which year they were born, it is believed his appearance was by the year 6000

before Christ. The stairs seems to change shape with the change of architectural

eras, reflecting the trends used in different ages and revealing the talent of those who

designed them.The 1st stair in the history was wood trunk stair Fig.1.1, these kind

of stairs were used to acquire strategic positions for survival.In a basic sense, the

1st use which was given to the stairs was to overcome the difficulties presented by

the terrain, such as valleys or mountains Fig.1.2. In the history of the stairs they

Figure 1.1: Wood trunk stair

1st emerged as a solution to a problem, although, years later it was found in China

the 1st granite staircase leading to the sacred mountain in Tai Shan.This indicates

that one of the utilities that was given to the stairs in his story was for religious

purposes. Confucius in one of his stories said to have gone up this ladder to the top
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Figure 1.2: Stairs in mountain

in the year 55 BC. The ladder was used in a metaphoric way reach the divine height

and establish a connection between earth and sky. Other examples of stairs built for

religious purposes are: the biblical Jacob’s ladder, the tower of Babel, which was a

helical tower, the pyramids of Egypt that had stairs, the celestial ladder of Shantung

in China, the stairs in India, a peculiarity of the stairs in India is that they had also

scientific utility. All these stairs have something in common, they symbolize the rise

of the light, the sun, and a way in to the gods path. Later in the history of stairs,

spiral stairs were used in clastles for military reasons, the proliferation of spiral stairs

in castles was not casual, they allow a strategic position to the soldier who defended

the castle, these spiral staircases and railings were built in order to make the solder

placed in top an advantage, this soldier would have his right hand full of space to

move his sword, while the woldier placed on the bottom would constantly hit the wall

whily fighting, because he would have blocked part of the range of motion of his right,

besides, his head would be easy to reach for his opponent, the lack of handrails was

not casual, the aim was to push the opponent over the edge of the stair.
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1.3 Stairs in present

The end of the nineteenth century is regarded by many as the golden era of con-

struction of stairs; Peter Nicholson developed a mathematical system for stairs and

railings approaching the art of the stairs to the workers of wood and metal. By the

end of 1980 Eva Jiricna in London started designing stairs in glass and stainless steel

which gave the stairs a sleek and futuristic look. Today it is increasingly common

to exit the conventional design of iron and wood and move on to different materials

such as stainless steel, glass and titanium.

1.4 Common types of stairs

There are different type of stairs which depends on the type and function of the

building. The following are most common types of stairs used in the buildings.

1.4.1 Straight stairs

Straight stairs runs straight between the two floors. It is used for small houses where

there are restrictions in available width. The stair may consist of either one single

flight or more than one flight with a landing.

The structural behaviour of a flight of stairs is similar to that of a one-way slab

supporting at both ends. The thickness of the slab is referred as the waist (slab) in

Fig.1.3. When the flight of stairs contains landing, it may be more economical to

provide beams at B and C between landing as shown in Fig.1.4.

1.4.2 Two flight stairs

A two flight stairs with an intermediate landing is the most common type of stairs as

shown in Fig.1.6 When the flight span including landing are longer, central beams

may be considered to support the flight slabs which may be cantilever out on either

side.In some buildings, stairs can be built in double flight between floors. This type
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Figure 1.3: (a)Loads(b)Section at B-B(c)Plan

of stairs commonly used are quarter turn and closed or open well stair as shown in

Fig.1.5 The structural behavior of each flight of stair is designed as a one way slab

supported at both ends.

1.4.3 Three or more flight stairs

Three or more flight stairs are used where the overall dimensions of the staircase are

limited. In Fig.1.7,two long flights of span as a main flight and short flight of span

as an intermediate flight can be considered. The intermediate short flight of span
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Figure 1.4: Supporting system of single flight

could be considered as a suspended flight supported on two main flights. In fig.1.7b

, each flight may be considered as a simply supported one with flight span and half

the landing loading in each direction. When the staircase area is rectangular in plan,

long flights can be considered as main flights which support the short flight and is

being regarded as suspended flight.
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Figure 1.5: a) Quarter turn stair b) Closed Well Stair

Figure 1.6: (a)Open Well Stair (b) Section at B-B

1.4.4 Cantilever stairs

Cantilever stairs are commonly used in fire escape stairs and they are supported by

either concrete walls or beams. The tread and riser can be of the full flight type

cantilever from one side of the wall since each step acts as a cantilever, the main

reinforcement is placed in the tension side of the tread and rebars anchored within the

concrete wall. Shrinkage and temperature reinforcement is provided in the transverse

direction as shown in below Fig.1.8.

The cantilever stair can be opened riser steps supported by a central beam. The

central beam has a similar function as flight stairs and receives the steps on its

horizontal prepared portion. Normally, in this type of stairs precast steps are used

with special provision of anchorage that fix the steps into the beam.
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Figure 1.7: (a) Three flight (b) Four flight

Figure 1.8: Steps projecting from one or two sides of the supporting wall

1.4.5 Precast flights of stairs

To accelerate the construction,use of precast flight of stair is beneficial.The flight can

be cast separately and then fixed to cast-in-place landings or both flight and landing

are cast and then placed in a position on their supporting walls or beams as shown in

below Fig.1.9.They are designed as a simply supported one way slabs or beams with

main reinforcement at the bottom of the waist slab or beam. Adequate reinforcement

is required at the joints. Provision must be made for lifting and handling of stair

units such as slab or beam, steps etc.



Chapter 1: Introduction 9

Figure 1.9: Precast cantilever stair supported by central beam (a)section A-A (b)
Plan

1.4.6 slabless stairs

Stairs can be made slabless as shown in below Fig.1.111.10.In this stair waist slab

can be eliminated and treads and risers are rigidly connected. This type of stairs

has elegant appearance and is many times favored by the architects. The structural

analysis of slab less stairs can be simplified by assuming the effect of axial force is neg-

ligible and can be neglected and that the load on each tread is by Cusens(1966)[3] [4],

Saenz and Martin(1961),Benjamin (1962), Fuchstteiner(1965)[1] and Koseoglu(1980).

Figure 1.10: Cross Section of Run riser staircase
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Figure 1.11: (a) Elastic Curve (b) Bending Moment Diagram

1.4.7 Free standing stairs

Free standing stairs has an elegance appearance. It is similar to a two flight common

flight stairs with its landing remaining completely unsupported as shown in below

Fig.1.12 The stairs behave in a springboard manner. This type of stair is a trian-

gular space structure and for safe analysis, its both ends can be assumed fixed. The

structural analysis of this type of stairs has been given by A.R.Cusens and J.W.Kuang

(1965,1966)[3][4],Sauter (1961)[7], Fuchssteiner (1953,1965)[1].

1.4.8 Helicoidal stairs

Helicoidal stairs as shown in Fig.1.13are elegant access way to floor and it is provided

in prestigious building. The stair can be circular or elliptical in plan. The stair can

be supported at same edges within the adjacent wall or it can be designed as a

free standing(columnless) helicoidal staircase. The structural analysis of helicoidal

staircase is complicated and discussed by A.R.cusens and Trirojna (1964), Cusens

and Santathadaporn (1966) and Fuchssteiner (1953,1955)[1].
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Figure 1.12: (a) Plan of free standing staircase (b) Section of free standing staircase

Figure 1.13: Helical Stair
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1.5 Objective of study

• To study the Fuchssteiner’s method, Cusens and Kuang’s method and siev’s

method for analysis free standing stair

• To Simplify method by considering virtual work method for scissor, horse type

and L-shape type of free standing stair

• To elaborate the simplify method for analysis of free standing stair

• Compare Fuchssteiner’s method and simplified method for analysis of free stand-

ing stair

• To compare the results of simplified method with finite element analysis

• To design and detail of different type of free standing stair

1.6 Scope of work

• Study the Fuchssteiner’s, Siev’s and Cusens and Kuang’s method for analysis

of scissor type of free standing stair

• Develop the simplify method by considering virtual work method for different

types of free standing stairs

• Evaluate methods and compare the results (Bending moment and Torsional

moment) with results of simplified method for free standing stair

• Study the scissor type of stair with finite element analysis and compare the

results with the simplified method

• Design and detailing for free standing stair
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1.7 Organization of Major project

Chapter 2 covers the literature review from research paper and books. It gives overall

idea about method of analysis.

Chapter 3 includes analysis of free standing stairs based on Siev’s method,Cusens and

Kuang’s method,Fuchssteiner’s method and Simplified method based on Fuchssteiner’s

assumptions and analysis example based on this method.It also covers analysis of

Horse shoe type of stair and L shape type of stairs based on Fuchssteiner’s method

and find out the vertical,lateral and torsional moment. It also includes the analysis

result of free standing stairs using finite element analysis.

Chapter 4 presents the analysis of free standing stairs using different types of support

conditions using Gould’s method.

Chapter 5 presents the design of free standing stairs based on analysis by simplified

method.It also includes the design of Horse shoe type of stairs and L shape type of

stairs.It also includes detail drawing.

Chapter 6 summarizes the work done in the major project. It consists summary of

work done, various conclusions obtained from the study and future scope of work.



Chapter 2

Literature review

2.1 General

Recently, free standing staircase has been constructed, supported only at the top

and bottom. Although they are dog legged in plan projection, in elevation their de-

scription is Scissor type. Various analyses are available to solve such a complicated

problem. From each analysis torsional moment, bending moment is resulted. The

geometry of each free standing staircase affects the application of load and hence the

results. This subject has been thoroughly reviewed in depth by various researchers.

2.2 Literature review

Various papers have been referred for Analysis of free standing stairs. Some of the

important Papers and books are summarized below.

W.Fuchssteiner[1] was first who has developed the method of analyzing the

statically indeterminate staircase formed by a series of bar elements. He has consid-

ered free standing basic staircase as a rigid space frame. He has considered flights

as sloping cantilever beams & landing as a semicircular bow girder. In his type of

14
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staircase, due to geometrical and loading symmetry, he has cut the whole frame at the

mid point of landing into two equal halves, which will be act as a two separate can-

tilever beams. Then from the cantilever structure, the two unknown redundant can be

found out. i.e., bending moment Mo and shear force H acting along at the cut section.

Avinadav Siev[2] has analyzed the free standing stair as similar to folded plate

analysis. He has extended the theory to include the determination of the secondary

stresses resulting from the compatibility condition at the intersection between the

flights and the landing. He has concluded that the torsional moments were usually

small and may be considered as secondary stresses; for most practical purposes it was

sufficient to compute primary stresses.

A.R. Cusens and J.W. Kuang [3][4] has also developed method for analyze

the basic free standing staircase as rigid space frame. They have analyzed staircase

by reducing plates to beam elements. Thus the stair will be in the form of a space

frame consisting of beams located in a position coincident with their longitudinal

axes. They have used strain energy method for analyzing the staircase.

Phillip L Gould[5] has analyzed the staircase by considering torsional moment

at the intermediate landing and the support condition of the upper leg.

A.C. Liebenberg[6] has introduced the concept of the space interaction of plates

of basic staircase. He has made an analysis for an indeterminate structure. In his

analysis, torsional moment was very small so he made an assumption to neglect the

effect of torsional moment.

Franz Sauter[7] has analyzed basic staircase based on the method of Fuchssteiner’s

theory. He has converted the stair structure into a space frame composed of linear

bar elements. He has determined the deformations from the work integral with the
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application of the principle of least work and redundant are determined by solving

elastic equations.

Nazih J Taleb[8] has described for calculating the six bending moments and

reactions at each support of reinforced concrete stairs comprising two flights and an

unsupported indeterminate landing. His method was based on the principle of least

work.



Chapter 3

Free standing stairs

3.1 General

Free standing stairs without a landing support are attractive, structurally and create

architectural effects. The elimination of columns under the landing frequently has

both structurally and aesthetic advantages. Lack of an adequate and simple method

of analysis has restricted their use and has hindered architects and engineers from

adopting more widely this impressive stair design. Methods of analyzing a concrete

cantilever staircase comprising two straight flights and a landing and supported only

on the upper and the lower floors are presented herein.

Theoretical analyses have been published by W.Fuchsteiner, G.Szabo, A.Siev, A.C.

Liebenberg[6], P.L. Gould[5], A.R. Cusens and J.G. Kuang[3][4] and F. Sauter[7].

Siev has extended Liebenberg’s theory to include the determination of the torsional

restraining moment resulting from the compatibility of deformations between the

flights and the landing. The restraining moment is usually small and may be consid-

ered as a secondary effect.

Cusens and Kuang’s method is based on the strain energy method with the assump-

tion that the flight plates can be reduced to bar elements which coincide with their

longitudinal axes. The landing bar element will be a straight line to be located in a

17
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position near the line of intersection.

W.Fuchsteiner is the 1st person who suggested the space bar method which is sim-

ilar to that of Cusens and Kuang with the only difference being that the landing is

replaced by a curved bar instead of a straight one.

This chapter also includes the analysis results of free standing stairs using SAP 2000

software.

3.2 Siev’s analytical method

3.2.1 Introduction

Free straight multi flight as shown in Fig.3.1 stairs without landing support are at-

tractive. The elimination of columns under the landing frequently has both structural

and aesthetic advantages.Siev approaches the problem of the free straight multi flight

staircase in a procedure similar to that of a folded plate analysis. The stress analysis

for this structure will be accomplished in stages and only the case of a symmetrical

loading is considered.

3.2.2 Statically determinate structure

As shown in Fig.3.1, free standing staircase is considered as a truss system in which

torsional rigidity is not considered.Elements A,C,E; B,D,N; J,G,M; K,H,F; C,D,G,H;

each represent a single part, all connections being pin joints. It is imperative that

these elements be rigid in the vertical planes.

Another element, a diagonal A,D must be added in order to supply resistance to any

horizontal forces in the direction so under vertical load, the stress in this bar will be

zero. Thus, the structure is statically determinate.

There are five unknown forces: X’j-g;X’k-h;X’b-d;X’a-c as shown in Fig.3.2 and the
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Figure 3.1: Free standing stair

force in the bar a-d. The forces are noted in accordance with the axes. The forces X

and Z Fig.3.2[e.]and Fig.3.2[f], acting on the landing, are the horizontal and vertical

components of X’, respectively.(

X = X ′ ∗ cosα and Y = Y ′ ∗ sinα

).

On the other side, 5 equilibrium conditions for the landing must be satisfied. These

conditions are as follows:

(1.)ΣFx = 0(2.)ΣMx = 0(3.)ΣFy = 0(4.)ΣFz = 0and(5.)ΣMz = 0

. So, degree of externally redundancy

E = R− r = 5− 5 = 0

. Thus the structure is statically determinate.

Where, R=Total number of reaction components and
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r=Total number of equations of equilibrium.

Finding the forces by writing the five equations is a tedious mathematical solution.

So an easier approach will be used herein.

3.2.3 Symmetrical loading

The resultant R as shown in Fig.3.2[b] of the forces acting on beam C-H is at O as

shown in Fig.3.2[d]. A vertical plane is introduced, perpendicular to line C-H through

O. This plane intersects with the planes of the upper and lower flights at lines OL

and OU as shown in Fig.3.2[a] The resultant R is now resolved into components X ′ol

and X ′ou, in the direction of OL and OU, respectively as shown in Fig.3.2[a].

Figure 3.2: (a.)Truss system(b.)Notations of axes and
forces(c.)Resultant(d.)Axonometric view of landing(e.) Equilibrium of landing
in horizontal plane(f.)Equilibrium of beam C-H in vertical plane

X ′ = X ′ol = X ′ou =
R

2 ∗ sinα
(3.1)

in which is the slope of a flight and the forces are noted in accordance with the axes

in Fig.3.2[a]. The components X ′ol is again resolved into forces X’ in bars A-C and
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B-D yielding

X ′AC =
X ′OL ∗ c

2 ∗ b
(3.2)

Substituting X ′ol from Eq.3.1 into Eq.3.2 yields

X ′AC =
R ∗ c

4 ∗ b ∗ sinα
(3.3)

and

X ′BD =
−R ∗ (c+ 2 ∗ b)

4 ∗ b ∗ sinα
(3.4)

In which the positive sign denotes tension. Similarly,

X ′JG =
R ∗ c

4 ∗ b ∗ sinα
(3.5)

and

X ′KH =
−R ∗ (c+ 2 ∗ b)

4 ∗ b ∗ sinα
(3.6)

An axonometric view of these and of the external forces acting on beam C-H is shown

in Fig.3.1[d].

The forces X’ are transmitted at joints A-B-C-D to the lower and upper floors, where

as in joints C-D-G-H they act in the landing. Their horizontal component,

X = X ′ ∗ cosα

, acts on the horizontal truss C-E-F-H[Fig.3.2(e)], whereas the vertical components,

Z = X ′ ∗ sinα

Fig.3.2[f], act on the vertical beam C-H. Fig.3.2[e] and Fig.3.1[f] immediately show

the equilibrium of the landing. Stress analysis of the beam C-H and of the truss C-

E-F-H is elementary.
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Remarks:-The calculation of stresses under any load may be accomplished (1.) By

resolving the load into symmetrical components, using the given solutions, and su-

perposing the results or (2.) By resolving the resultant R of the forces acting on

beam C-H and then proceeding as before. The resultant R must not necessarily pass

through O.

Beam C-H may be considered as a support of the cantilevered beams A-E, B-N, J-M

and K-F and the moments in these beams are calculated accordingly having obtained

the forces on beam C-H. The flight beams are often fixed in the vertical planes at

points A-B-J-K. In this case, the indeterminate character of the structure must be

considered.

3.2.4 Monolithic staircases of reinforced concrete

The stress analysis for this structure will be accomplished in stages. Initially as in

the cases of hipped plates, a support is assumed at line C-HFig.3.2[a] and the stairs

is then analyzed as two separate slabs being fixed at one end and hinged at the in-

tersectionFig.3.3. The degree of restraint at lines A-B and J-K is determined by

specific conditions. The support moments of the slabs under various possible loading

conditions can be easily obtained by using any classical method for solving statically

indeterminate structure. This system subsequently will be referred to as a slab struc-

ture. The reactions at the imaginary supports due to external loads acting along the

line of intersection of the slab structure.

The structure supporting the beam C-H will be referred to as a plate structure.

The stresses in the plate structure may be considered as a superposition of two types

of stresses :(1) Primary stresses caused by the determinate structure, with the only

differences being that the forces X’ shown in Eq.3.1, act as eccentric forces on the

flight plates instead of on bars in the truss; and (2) Secondary stresses necessitated

by the compatibility between stress and displacements. It may be assumed that part
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Figure 3.3: Moments due to slab action with imaginary support at C-H

of the load is resisted by the primary stresses, and another part by secondary stresses.

The solution of the plate system will be as follows: First the system will be solved

for primary stresses and the corresponding deformation under an arbitrary load R’.

Next, the secondary moments are calculated, from which follows, in certain cases, a

resistance to an additional load R”. The combined resistance is

R = R′ +R′′ (3.7)

However, as will be shown subsequently,

R′′ ≪ R′

and therefore

R ' R′ (3.8)

In this case, only symmetrical loading condition is given for calculating the stresses

at each point but for deriving maximum stresses, superposition of symmetrical and

asymmetrical loading is necessary. Moreover, the displacements of the system under

each load, because of strains in the various elements, will be studied separately for
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the effect of each factor. Thus, strains will be considered in a single element with

all others being assumed to have infinite rigidity. Thus, the flight deformation will

be considered first with the landing and beam C-H Fig.3.2[a] being considered as

having infinite rigidity, and so forth. The overall stresses and displacement are the

sum of all effects.

There are 3 types of secondary moments or redundant at the junction with the lower

and upper floors: Mx’, Mz’ and My. Mx’ will be calculated by considering the effect

of each factor on the differential deflections between points C and D or G and H. The

same differential deflections must be obtained for beam C-H and the flights. Mz′ will

be calculated by assuming that the distance between points D and G is constant. My

will be calculated by considering the deflection of beam C-HFig.3.2[a] as settlement

of supports.

Symmetrical loading- Primary stresses Assume a load R’ along C-D-G-H as

Figure 3.4: Stresses and displacements resulting from symmetrical loading due to
strain in plates(a.)Stresses strains and deflections(b.)Resultant(e.)Deformation land-
ing(f.)Williot diagram of displacements due to strains in plates

shown in Fig.3.4[b]. The resultant of this load, 2bR’ is resolved, as previously, into

two diagonal forces X’ passing through point O.

X ′ = X ′ol = X ′ou =
b ∗R′

sinα
(3.9)
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Figure 3.5: (c.)strains in upper flight(d.)strains in lower flight

Each component acts on the corresponding flight plate, through point O, as eccentric

tension or compression, and the resulting stresses, f, are as shown in Fig.3.5[c][d],

yielding

It is obivous that the upper flight is subjected to an axial force in addition to a

bending moment about its own plane and the lower flight is subjected to a axial

compression in addition to a bending moment to its own plane.

f ′GJ = −f ′DB =
X

A
+
X ∗ (b+ c) ∗ b

4 ∗ Iz
=
X ∗ (1 + 3 ∗ b+c

b
)

b ∗ t
=
R′ ∗ (1 + 3 ∗ b+c

b
)

t ∗ sinα
(3.10)

−f ′CA = f ′HK =
X

A
−X ∗ (b+ c) ∗ b

4 ∗ Iz
=
X ∗ (1− 3 ∗ b+c

b
)

b ∗ t
=
R′ ∗ (1− 3 ∗ b+c

b
)

t ∗ sinα
(3.11)

In which t represents the overall depth of slab, A is the cross sectional area of the

flight, and Iz’ denotes the moment of inertia about the Z’ axis.(The axis perpendic-
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ular to the plate surface). The resultant of the vertical components of these stresses

gives the reaction on the landing C-E-F-H which can be considered as a beam(beam

CH) because the slab is usually to designed that the section tapered to the end will

have the centroid close to the inner edge. Fig.3.7.The reactions at points D and C,

respectively, are

R′(1 + 3 ∗ b+ c

b
) and R′(−1 + 3 ∗ b+ c

b
)

It is now necessary to consider the primary bending moments in beam C-H. As shown

in Fig.3.7[b], in addition to the load R’, the beam is subjected to the reactive forces

from the flights. It is apparent that the resultant of these forces will pass through

point O. Owing to the symmetrical forces on the beam, it is therefore possible to

calculate the bending moment in beam C-H taking it as free at the ends and fixed at

point O. The maximum (midspan) primary negative bending moment for beam C-H is

M ′
O = −3 ∗R′ ∗ (b+ c)

b
∗ b

4
∗ 2 ∗ b

3
= −b ∗R′ ∗ b+ c

2
(3.12)

The horizontal components of X̄ is X̄cosα.

X = X ∗ cosα =
b ∗R′ ∗ cosα

sinα
= b ∗R′ ∗ cotα (3.13)

Substituting X’h into Eq.3.10 and 3.11 and multiplying by t, the horizontal loads on

the landing at points D and C, respectively, are

−t ∗ fD = R′ ∗ cotα ∗ (1 + 3 ∗ b+ c

b
) and t ∗ fC = R′ ∗ cotα ∗ (−1 + 3 ∗ b+ c

b
)

Where a positive sign represents the tensile force and a negative sign the compressive

force. It is seen that, from symmetry in loading, Mz and My are both equal to zero.

At this stage, all primary moments have been known. Subsequently, the secondary

moments will be calculated and shown to be small. Therefore, the calculations to the

present stage are sufficient for most practical design use. The displacements caused



Chapter 3: Analysis of free standing stairs 27

by the primary stresses are produced by deformation of the flight and the landing.

For simplification, the effect of shear deformation will be neglected.

Symmetrical loading- Displacement and Secondary stresses The displace-

ment caused by the primary stresses is produced by deformation of the flights and

the landing. For simplification, the effect of shear deformation will be neglected in

the following calculations.

Flights ends undergo displacements in the x and y directions ( directions of the lon-

gitudinal axis of the landing and each flight). From Fig.3.4[c][d], if the flights are

equal in length, both the flight and have equal displacements in the Y direction, there

will be no change in stresses in the plate system and therefore, the magnitude of the

deformation is of no further interest to the discussion. It is worthwhile to note, how-

ever, the strains of the end fibers of each flight in the X direction. From Hooke’s law,

ε′G = ε′D =
f ′GJ
E

and ε′C = ε′H =
f ′CA
E

In which E is the Modulus of elasticity, hence the total elongations and contractions

of the end fibers are

δ′G = −δ′D =
f ′GJ ∗ a
E

=
R′ ∗ a ∗ (1 + 3 ∗ b+c

b
)

t ∗ E ∗ sinα
(3.14)

δ′C = −δ′H =
f ′CA ∗ a
E

=
R′ ∗ a ∗ (−1 + 3 ∗ b+c

b
)

t ∗ E ∗ sinα
(3.15)

If the deformed lines C-D and G-H are extended to the central point, the additional

extensions δu, o and δl,o at point O can be determined by simple geometric relations,

That is

|δ′H |+ |δ′G|
|δ′H |+ |δ′u,O|

=
b

b+ c
2

(3.16)
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Substituting the corresponding values of δ′g and δ′h in Eq. 3.16

δu,O = −δl,O =
R′ ∗ a ∗ (1 + 3( b+c

b
)2)

t ∗ E ∗ sinα
(3.17)

A williot diagram Fig.3.6 is now drawn for the projection of all point displacements

in the flights on the X-Z plane and the vertical deflection OO’ of point O is found to be

δO,O′ =
δu,O
sinα

(3.18)

Introducing the known value of δu,O in Eq. 3.17

δO,O′ =
R′ ∗ a ∗ (1 + 3( b+c

b
)2)

t ∗ E ∗ sin2α
(3.19)

The final step in the analysis of the cantilever staircase is to calculate the torsional

restraining moment by substituting all related displacements of the flights and the

landing into the compatibility equation. As shown in Fig.3.5[c][d] the difference be-

tween the displacements of point C and point D normal to the flight is

W I
C −W I

D = (| − δ′D|+ |δ′C |) ∗ tanα (3.20)

Substituting Eq. 3.14 and 3.15 into Eq. 3.20,

W I
C −W I

D =
6 ∗R′ ∗ a ∗ (b+ c)

E ∗ b ∗ t ∗ cosα
(3.21)

The difference between the vertical displacements of points C and D in the landing

will now be considered, As previously stated, the beam C-H is subjected to the load R’

and the vertical reactions from the flights; thus the beam will deflect as though it were

fixed at mid span or point O and free at either end as shown in Fig.3.6. However,

this clearly shows that the deflection of point C is greater than that of point D, the

flight plate is therefore twisted and a torsional moment Mx′ is introduced therein. As

a result of this effect, it can be visualized from the Fig.3.7 beam C-H, in addition
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to the negative bending, is restrained at the centre by a positive moment Mx which

tends to decrease the deflection of the beam shown in Fig.3.4[b].

Thus the difference between the vertical deflections of points C and D may be obtained

as

Figure 3.6: Displacement resulting from symmetrical loading due to bending of beam
C-H(a.)Displacement due to bending of beam C-H(c.)Williot diagram

∆II
C −∆II

D =
R′b2 ∗ (b+ c) ∗ (c+ 0.7 ∗ b)

4 ∗ E ∗ Ib
− b ∗MX ∗ (3 ∗ c+ 2 ∗ b)

6 ∗ E ∗ Ib
(3.22)

Where Ib is the moment of inertia of beam C-H. the relative displacement, W II , in

the direction normal to the flight plane Fig.3.6[a] is

W II
C −W II

D =
∆II
C −∆II

D

cosα
(3.23)

The third term of the relative displacement, W III , caused by the torsional moment

Mx′( component of Mx) in the flight, can be easily found by Castigliano’s Theorem

W III
C −W III

D =
MX ∗ b ∗ a
G ∗ J

=
MX ∗ cosα ∗ b ∗ a

G ∗ J
=
MX ∗ b ∗ l
G ∗ J

(3.24)

In which G is the modulus of elasticity in shear, GJ is the torsional rigidity and L is

the horizontal projection of the plate length.
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Figure 3.7: Loading and deflections of beam C-H

The last relative displacement W IV in the flight plate caused by Mz, the component

of restraining moment Mx, will be obtained in a way similar to the first term, but in

the opposite sense. The stresses due to Mz are

f IVCA = −f IVDB = f IVGJ = −f IVHK = −6 ∗MZ

t ∗ b2
(3.25)

and the total elongations and contractions of the end fibers are

δIV CA = −δIVDB = δIVGJ = −δIVHK = − 6 ∗MZ

E ∗ t ∗ b2
(3.26)

The relative deflection W IV is

W IV
C −W IV

D = (| − δ′D|+ |δ′C |) ∗ tanα = −12 ∗Mz ∗ a ∗ tanα
E ∗ t ∗ b2

(3.27)

but,since

MZ = MX ∗ sinα h = a ∗ sinα
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Therefore,

W IV
C −W IV

D = −12 ∗MX ∗ h ∗ tanα
E ∗ t ∗ b2

(3.28)

At this stage, all displacements in the same direction are known. All that must be

done in the final step is to apply the compatibility condition which can be accounted

for as follows: Along the line of intersection, the deflection of each flight and the land-

ing, which are caused by both the primary and secondary stresses, should coincide

with each other. Thus the compatibility equation will be of the form

W I
C −W I

D +W III
C −W III

D +W IV
C −W IV

D = W II
C −W II

D (3.29)

As W II , W III and W IV are represented in terms of the restraining moment Mx, solve

the above equation and the moment Mx is then obtained.

The effect of the vertical deflection δOO′ , obtained from Eq. 3.19 is similar to that of

the settlement of the supports and is governed by the specific conditions. If the flights

are completely fixed at both floors, this effect may be considered by introducing an

additional load R” acting on the line of intersection, producing the same amount of

deflection δOO′ in Fig.3.4[f] the cantilevered plates. Hence,

δOO′ =
R′′ ∗ b ∗ a3

3 ∗ E ∗ b∗t3
12

=
4 ∗R′′ ∗ a3

E ∗ t3
(3.30)

By equating Eq. 3.29 with Eq. 3.19 and rearranging,

R′′ =
R′ ∗ t2 ∗ (1 + 3( b+c

b
)2)

4 ∗ a2 ∗ sin2α
(3.31)

And the additional negative bending moment at the floor support is

M = R′′ ∗ b ∗ l (3.32)
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At thickness of flight(t) is much smaller than inclined length of the flight(a), it can

be concluded that the fraction t2/a2 in Eq. 3.30 will load R” to be only a very small

portion of R’. Thus, Eq. 3.9 is a reasonably good approximation Eq. 3.8.

3.2.5 Example based on Siev’s method

Fig.3.8 andFig.3.9 is to be displayed.

Step-1 Load calculation

Figure 3.8: Elevation

W=Total weight of one flight

W = (2.6 ∗ 0.110 ∗ 1.2 ∗ 25) + (8 ∗ 0.15

2
∗ 0.3 ∗ 1.2 ∗ 25) = 13.98kN

Live Load=5 kN/m2 for both flights and landing

DL of the flight =13.98/2.6 ∗ 1.2 =4.5 kN/m2

DL of the landing =25*0.15=3.75 kN/m2

Now, W1=DL of the flight=4.5 kN/m2
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Figure 3.9: Plan

W2=DL of the landing=3.75 kN/m2

W3=LL of the lower and upper flight=5 kN/m2

W5=LL of the landing=5 kN/m2

W1+3=DL+LL on the lower flight=9.5 kN/m2

W1+4=DL+LL on the upper flight=9.5 kN/m2

W2+5=DL+LL on the landing =8.75 kN/m2

Step-2 M.I. of the inertia of the flights and the landing

I1=M.I. of the inertia of the landing about horizonal axes =(1.1 ∗ 0.153)/12 = 3.1 ∗

10−4m4

I ′1=M.I. of the inertia of the landing about vertical axes =(1.13 ∗ 0.15)/12 = 166.4 ∗

10−4m4

I2=M.I. of the inertia of the flight about horizonal axes =(1.2 ∗ 0.123)/12 = 1.33 ∗

10−4m4

I ′2=M.I. of the inertia of the flight about vertical axes =(0.12∗1.23)/12 = 173∗10−4m4

Torsional rigidity of the rectangular section

Using Saint-Venant’s forula, when b/t≫ 2.5

GJ1=Torsional rigidity of the landing

=(b/3) ∗ t3 ∗ (1− 0.63 ∗ (t/b)) ∗GN ∗m2
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=(1.1/3) ∗ 0.153 ∗ (1− 0.63 ∗ (0.15/1.1)) ∗G = 7.898GN ∗m2

GJ2=Torsional rigidity of the flight

=(b/3) ∗ t3 ∗ (1− 0.63 ∗ (t/b)) ∗G

=(1.2/3) ∗ 0.123 ∗ (1− 0.63 ∗ (0.12/1.2)) ∗G=4.5G N ∗m2

Step-3 Moments in slab structure

(a.)Max. cantilevered moment in the landing

M1 = −(W2+5/2) ∗ (b+ (c/2)) ∗ g2

= −(8.75/2) ∗ (1.2 + (0.3/2)) ∗ 1.12 = −7.15kNm

(b.)Min. cantilevered moment in the landing

M1 = −(W2/2) ∗ (b+ (c/2)) ∗ g2

= −(3.75/2) ∗ (1.2 + (0.3/2)) ∗ 1.12 = −3.1kNm

(c.)Max.-ve moment at the floor supports assuming that the flights are completely

fixed

M3 = −(W1+3/8) ∗ (b) ∗ l2 + (M2/2)

= −(9.5/8) ∗ (1.2) ∗ 2.62 + (3.1/2) = −8.08kNm

(d.)Max.-ve moment at the floor supports for full load in the landing

M4 = −(W1+3/8) ∗ (b) ∗ l2 + (M1/2)

= −(9.5/8) ∗ (1.2) ∗ 2.62 + (7.15/2) = −6.06kNm

(e.)Max. positive moment in each flight

Fig.3.10 x = V1/WandM5 = (V1 ∗ x/2)−Ml

1 For full load

M4 = Ml = 6.06kNm

Mr = M1 = 7.15kNm

W = W1+3 ∗ b = 9.5 ∗ 1.2 = 11.4kNm

Vl = (W ∗ l/2) + (Ml −Mr)/2

= (11.4 ∗ 2.6/2) + (6.06− 7.15)/2 = 14.4kN

Vr = 11.4 ∗ 2.6− 14.4 = 15.24kN

M5 = (15.242/(2 ∗ 11.4))− 6.06 = 4.13kNm

x = V1/W = 15.24/11.4 = 1.34mfrom left support.
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Figure 3.10: Notations for computing positive moments in the flights

2 For Dead Load

M3 = Ml = 6.06kNm

M2 = M1 = 7.15kNm

W = W1+3 ∗ b = 9.5 ∗ 1.2 = 11.4kNm

Vl = (W ∗ l/2) + (Ml −Mr)/2

= (11.4 ∗ 2.6/2) + (8.08− 3.1)/2 = 16.73kN

Vr = 11.4 ∗ 2.6− 16.73 = 12.34kN

M5 = (16.732/(2 ∗ 11.4))− 8.08 = 4.2kNm

x = V1/W = 17.3/11.4 = 1.52mfrom left support.

(f.)Max. reaction along the line of intersection

b ∗R = Vr +W2+5 ∗ g ∗ (b+ (c/2)) = 15.24 + 8.75 ∗ 1.1 ∗ (1.2 + (0.15/2))

R=28.24/1.2 R=23.53kN/m Now, R = R′ + R′′ R’=The forces resisted by primary

stresses R”=The forces resisted by secondary stresses

R′′ =
R′ ∗ t2 ∗ (1 + 3( b+c

b
)2)

4 ∗ a2 ∗ sin2α

=
R′ ∗ 0.122 ∗ (1 + 3(1.2+0.3

1.2
)2)

4 ∗ 2.62 ∗ sin226′34′
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= 0.011R′

R′′/R′ = 0.011

R′′/(R′ +R′′) = 0.011/1.011

R′′/R = 0.011

(g.)Min. reaction along the line of intersection

b ∗R = Vr +W2 ∗ g ∗ (b+ (c/2))

= 12.34 + 3.75 ∗ 1.1 ∗ (1.2 + (0.15/2))

R=17.9/1.2

R=14.92kN/m

(h.)Additional -ve moment at the floor support

1 Due to full load,

M6=-0.011*R*b*l

=-0.011*23.53*1.2*2.6

=-0.805 kNm

2 Due to Live load

M ′
6=-0.011*R*b*l

=-0.011*14.92*1.2*2.6

=-0.512 kNm

(i.)Total -ve moment at the floor support

M7 = M6 +M4 = −0.805− 6.06 = −6.865kNm

M ′
7 = M ′

6 +M3 = −0.512− 8.08 = −8.592kNm

Step 4 Computation of the torsional restraining moment Mx

R′′ ≪ R and R = R′ + R′′ therefore, neglect R” so, R=R’ For full load, R=23.534

kN/m (a.)Due to deformation of the flight plates caused by primary stresses
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E ∗ (W I
C −W I

D) =
6 ∗R′ ∗ a ∗ (b+ c)

b ∗ t ∗ cosα

=
6 ∗ 23.53 ∗ 2.9 ∗ (1.2 + 0.3)

1.2 ∗ 0.12 ∗ 0.8944

= 4768.3kN/m

(b.)Due to twist of the flights caused by the torsional moment MX̄

Take,ν = 0.15

E = 2 ∗ (1 + ν) ∗G = 2 ∗ (1 + 0.15) ∗G = 2.3G

E ∗ (W III
C −W III

D ) =
b ∗ l ∗MX

G ∗ J2
=

1.2 ∗ 2.9 ∗ 6890 ∗ 0.113 ∗MX

0.435 ∗ E ∗ 4.5

= 1.384 ∗MXkN/m

(c.)Due to bending of the flights caused by the moment MZ̄

E ∗ (W IV
C −W IV

D ) =
−12 ∗ h ∗MX ∗ tanα

b2 ∗ t
=
−12 ∗ 1.3 ∗ 0.5 ∗MX

1.22 ∗ 0.12

= −5.1 ∗MXN/m

(d.)Due to bending of the landing caused by the load R’ and moment MX̄

E ∗ (W II
C −W II

D ) =
R′ ∗ b2 ∗ (b+ c) ∗ (c+ 0.7 ∗ b)

4 ∗ E ∗ Ib ∗ cosα
− b ∗MX ∗ (3 ∗ c+ 2 ∗ b)

6 ∗ E ∗ Ib ∗ cosα

=
23.53 ∗ 1.22 ∗ (1.2 + 0.3) ∗ (0.3 + 0.7 ∗ 1.2)

4 ∗ 3.1 ∗ 10−4 ∗ 0.8944
− 1.2 ∗MX ∗ (3 ∗ 0.3 + 2 ∗ 1.2)

6 ∗ 3.1 ∗ 10−4 ∗ 0.8944

= 52242870− 342.34 ∗MXN/m
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By using compatibility equation

(W I
C −W I

D) + (W III
C −W III

D ) + (W IV
C −W IV

D ) = (W II
C −W II

D )

MX = 3.12kNm

The torsional moment

MT = MX ∗ cosα = 3.12 ∗ 0.8944 = 2.79kNm

Saint Venant’s formula for shear stress for less narrow section

The maximum torsional shear stress on the flight is,

b/t = 1.2/0.12 = 10so,K2 = 0.212

τ =
MT

K2 ∗ b ∗ t2

=
2.79 ∗ 1000

0.212 ∗ 1.2 ∗ 0.122

= 762kN/m2

Step 5 Computation of the torsional restraining moment Mx in case of

LL on flights only

(a.)Due to deformation of the flight plates caused by primary stresses

E ∗ (W I
C −W I

D) = 3023.5kN/m

(b.)Due to twist of the flights caused by the torsional moment MX̄

E ∗ (W III
C −W III

D ) = 1.384 ∗MXkN/m

(c.)Due to bending of the flights caused by the moment MZ̄
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E ∗ (W IV
C −W IV

D ) = −5.1 ∗MXN/m

(d.)Due to bending of the landing caused by the load R’ and moment MX̄

E ∗ (W II
C −W II

D ) = 33129200− 342.34 ∗MXN/m

By using compatibility equation

(W I
C −W I

D) + (W III
C −W III

D ) + (W IV
C −W IV

D ) = (W II
C −W II

D )

MX = 1.976kNm

Step 6 Computation of the bending moment in the landing

Total BM at the horizontal axis in the landing at point O=Primary moment-Torsional

restraining moment,MX

1 For full load condition

MO = −(R′∗b∗(b+c)/2)+MX = −23.53∗1.2∗(1.2+0.3)/2+3.12 = −18.1kNm

2 For LL on the flights only

MO = −(R′ ∗ b ∗ (b + c)/2) + MX = −14.92 ∗ 1.2 ∗ (1.2 + 0.3)/2 + 1.976 =

−11.452kNm

Step 7 Computation of the bending moment in the flights about the ver-

tical axis

Total BM at the vertical axis in the flight at point M=Primary moment-Torsional

restraining moment,MZ
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Table I: Results for moments in kNm obtained from Siev’s method
Method Mr Ms Mt

Points N M O K MN MN
Siev’s method -6.865 -7.15 -18.1 4.13 46.34 -2.79

1 For full load condition

X = Xl = Xu = b ∗R′/sinα = 1.2 ∗ 23.72/0.4472 = 63.65kN

Mm = X ∗ (b+ c)/2−MZ = 63.65 ∗ (1.2 + 0.3)/2− 3.12 ∗ 0.4472 = 46.34kNm

2 For Live load condition

X = Xl = Xu = b ∗R′/sinα = 1.2 ∗ 14.92/0.4472 = 40kN

Mm = X ∗ (b+ c)/2−MZ = 40 ∗ (1.2 + 0.3)/2− 1.976 ∗ 0.4472 = 29.12kNm
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3.3 Cusens and Kuang’s method

3.3.1 Introduction

It is widely known that the principle of least work is a powerful tool in solving stati-

cally indeterminate structural problems.This is true when the structure is a 3-D frame

of which the members are subjected to torsional members are subjected to torsional

stresses in addition to the conventional bending and the axial stresses.

3.3.2 Method of analysis

According to Cusens and Kuang’s assumptions, the staircase can be analyzed by re-

ducing the plates to beam elements.Thus the stair will be in the form of a space

frame consisting of the beam located in a position coincident with their longitudinal

axes.The following analysis will be based on the application of these assumption and

the method of least work.

In Fig.3.11 shows the staircase with the beam elements represented by heavy lines.The

beam is cut at point O and the horizontal forces and moments are applied to the two

halves of the stair as shown in Fig.3.13.Notations and sign conventions for all mem-

bers are shown in Fig.3.12.The bending and torsional moment along the members

of the space frame are given below.

For the purpose of analysis the stair is simplified to the rigid frame in Fig.3.11;

side and end elevation and a plan are given in Fig.3.12[a][b].The positive vectors for

moments are given in Fig.3.12[c] and the usual right hand is applied. The frame is

cut at O and the horizontal restraining forces H and the restraining moment MO are

applied to the two halves of the stairs as shown in Fig.3.13

The bending and torsional moments along the member forming the upper part of the

frame are as follows:
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Figure 3.11: Skeletal rigid frame representing the cantilever staircase

For member OM,

MR = −MO − (W2+5)/2 ∗ y2

MS = −H ∗ y

MT = −(W2+5)/2 ∗ y ∗ g

For member MH,

MR = −W2+5 ∗ (2 ∗ b1 + b2− y)2/2

MS = 0

MT = −W2+5 ∗ (2 ∗ b1 + b2− y) ∗ g/2

For member MN,

MR = H ∗ (sinα ∗ s) − (W1+3 ∗ s2)/2 ∗ (cosα)2 −W2+5 ∗ (b2 + 2 ∗ b1) ∗ (cosα ∗ s) −

W2+5 ∗ (b2 + 2 ∗ b1) ∗ g/2

MS = −H∗(cosα∗b2)/2−MO∗sinα+W2+5∗(sinα)∗(b2/2+b1)∗1/2∗((b2/2+b1)−b2)

MT = −H ∗(sinα∗b2)+MO∗cosα−W2+5∗(cosα)∗(b2/2+b1)∗1/2∗((b2/2+b1)−b2)

Where, W1+3=DL+LL on the lower flight in kN/m

W1+4=DL+LL on the upper flight in kN/m

W2+5=DL+LL on the landing in kN/m

s=distance measured along axis of flight

y=distance measured along y axis
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Figure 3.12: Side Elevation and End elevation of the staircase

α=angle of elevation of flight axis with the horizontal

g=width of landing

Since the floor supports are assumed to be perfectly rigid,it can be concluded that

no deflections or rotations occur at the end support Q.Then from the theory of least

work it follows that

∂U

∂H
= 0

∂U

∂MO

= 0 (3.33)

Where U is the total strain energy due to flexure and torsion in all members(the strain

energy due to shearing and direct forces may be neglected). The complete expression

for the total strain energy of the force will be

U =

∫
M2

R

2 ∗ E ∗ I2
ds+

∫
M2

S

2 ∗ E ∗ I ′2
ds+

∫
M2

T

2 ∗G ∗ J2
ds+

∫
M2

R

2 ∗ E ∗ I1
dy+

∫
M2

S

2 ∗ E ∗ I ′1
dy+

∫
M2

T

2 ∗G ∗ J1
dy

(3.34)

Where E,G,I1, I2, I
′
1, I
′
2andJ1, J2 have the same meaning as in the preceding method.

Differentiating the total strain energy U in Eq.3.34 w.r.t.H,MO respectively and

substituting the corresponding moment expressions shows in above expressions into

Eq.3.33; integrating and simplifying,2 linear equations will be obtained.

(1.)∂U/∂H =
∫ b2

2

0
Ms∗(∂Ms/∂H)

E∗I′1
dy+

∫ a
0
Mr∗(∂Mr/∂H)

E∗I2 ds+
∫ a
0
Ms∗(∂Ms/∂H)

E∗I′2
ds+

∫ a
0
Mt∗(∂Mt/∂H)

G∗J2 ds =
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Figure 3.13: Plan of the staircase

0

(2.)∂U/∂M0 =
∫ b2

2

0
Mr∗(∂Mr/∂M0)

E∗I1 dy +
∫ a
0
Ms∗(∂Ms/∂M0)

E∗I′2
ds+

∫ a
0
Mt∗(∂Mt/∂M0)

G∗J2 ds = 0

The details of the procedure will be illustrated in the following numerical example.

3.3.3 Numerical example based on Cusens and Kuang’s method

The concrete cantilever as shown in Fig.3.14 and Fig.3.15 staircase will be analyzed

by this method. The additional dimensions for the landing are:

b1 = 0.6m and b2 = 1.5m

(1.) Symmetrical loading

Step-1 Load calculation

W=Total weight of one flight

= (2.6 ∗ 0.110 ∗ 1.2 ∗ 25) + (8 ∗ 0.15

2
∗ 0.3 ∗ 1.2 ∗ 25) = 13.98kN

Live Load=5 kN/m2 for both flights and landing

DL of the flight =13.98/2.6 ∗ 1.2 =4.5 kN/m2
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Figure 3.14: Elevation of the staircase

DL of the landing =25*0.15=3.75 kN/m2

Now, W1 =DL of the flight= 4.5kN/m2 ∗ 1.2 = 5.4kN/m

W2 =DL of the landing= 3.75kN/m2 ∗ 1.35 = 5.0625kN/m

W3 =LL of the lower and upper flight= 5kN/m2 ∗ 1.2 = 6kN/m

W5 =LL of the landing= 5kN/m2 ∗ 1.35 = 6.75kN/m

W1+3 =DL+LL on the lower flight= 5.4 + 6 = 11.4kN/m

W1+4 =DL+LL on the upper flight= 5.4 + 6 = 11.4kN/m

W2+5 =DL+LL on the landing = 5.0625 + 6.75 = 11.81kN/m

Step-2 M.I. of the inertia of the flights and the landing

I1=M.I. of the inertia of the landing about horizonal axes

=(1.1 ∗ 0.153)/12 = 3.1 ∗ 10−4m4

I ′1=M.I. of the inertia of the landing about vertical axes

=(1.13 ∗ 0.15)/12 = 166.4 ∗ 10−4m4

I2=M.I. of the inertia of the flight about horizonal axes

=(1.2 ∗ 0.123)/12 = 1.33 ∗ 10−4m4

I ′2=M.I. of the inertia of the flight about vertical axes



Chapter 3: Analysis of free standing stairs 46

Figure 3.15: Plan of the staircase

=(0.12 ∗ 1.23)/12 = 173 ∗ 10−4m4

Torsional rigidity of the rectangular section

Using Saint-Venant’s forula, when b/t≫ 2.5

J1=Polar M.I. of the inertia of the landing

=(b/3) ∗ t3 ∗ (1− 0.63 ∗ (t/b))N/m2

=(1.1/3) ∗ 0.153 ∗ (1− 0.63 ∗ (0.15/1.1)) = 1.145 ∗ 10−3m4

J2=Polar M.I. of the inertia of the flight

=(b/3) ∗ t3 ∗ (1− 0.63 ∗ (t/b))

=(1.2/3) ∗ 0.123 ∗ (1− 0.63 ∗ (0.12/1.2)) = 6.5 ∗ 10−4m4
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Table II: Results for moments in kNm obtained from Cusens and Kuang’s method
Method Mr Ms Mt

Points N M O K MN MN
Cusens and Kuang’s method -20.71 -8.77 -14.3 7.04 25.4 -4.45

Step-3 Computation of the redundant in the structure substituting

the appropriate values into Eq.(1) to (2), two simultaneous equation

will be obtained as follows:

(1.)3314.1 ∗ H − 669.26 ∗ MO = 150 ∗ 106(2.)4866.13 ∗ MO − 1338.52 ∗ H =

−5.52 ∗ 106

Solving,

H = 48.12kNMO = 14.273kNm
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3.4 Fuchssteiner’s method

3.4.1 Introduction

Free standing stairs without a landing support are attractive,structurally and create

special architectural effects.Their light and slender form emphasizes the many pos-

sibilities offered and the advantages obtained by proper consideration of the space

action of structural elements. Nevertheless,lack of an adequate and simple method

of analysis has restricted their use and has hindered architects and engineers from

adopting more widely this impressive stair design.Unfortunately, apparent complica-

tions derived from space action have compelled the use of empirical design methods

and the introduction of undesirable and unnecessary simplification, with consequent

loss of economy and slenderness.

3.4.2 Method of analysis

A rigorous method for analyzing the statically indeterminate space structure formed

by the combination and joint action of stair and landing slabs, was developed by

W.Fuchssteiner.The procedure developed by the author consists in assuming the stair

supported along the intersection line between the landing and the flights Fig.3.16.Moments

in the slabs are calculated for several loading conditions as for a continuous straight

beam, fixed at one end and cantilevered at the other, and the corresponding reactions

at the Edge B are determined. As the imaginary support is nonexistent, the effect

of reaction B has to be counteracted by a force, equal in magnitude but of opposite

sign, applied to the unsupported space frame.

The Theoretical Solution by Fuchssteiner is based on these assumptions:

a. The stair is made of a homogeneous and isotropic material which follows Hooke’s

law.
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Figure 3.16: Fuchssteiner’s assumed form for the cantilever staircase

b. The stresses across a section of the flights or landing vary in the same manner

as they vary in a beam (linear variation due to moments, uniform stress across

a section due to normal forces.)

c. The deformations due to normal and shear stresses are neglected.

d. Flights and landing have the same uniform rectangular cross section.

The staircase is indeterminate to the sixth degree, but geometric and load symmetry

reduces the redundant to only 2 unknowns. To solve these, the stair is cut at the

landingFig.3.17, resulting in two cantilever beams acted on by reaction B, consid-

ered as an exterior load, and 2 unknown redundant, i.e., a bending moment X6 and

shearing force X5 acting both along the cut section.

For this load condition the flexural and torsional moments are determined and the

deformations due to the external load and the 2 unknown internal forces are calcu-

lated from the work integral, whose general expressions is as follows:

E∗IX ∗δik =

∫
MXi∗MXkds+

∫
MY i∗MY k∗

IX
IY
ds+

∫
MT i∗MTk∗

E ∗ IX
G ∗ IT

ds (3.35)
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In this equation the differential element ds is:

ds = r ∗ dφ and ds =
dx

cosα

The torsional rigidity is taken as:

G ∗ IT =
2 ∗ E ∗ IX ∗ IY

IX + IY

Author has presented design formulas for the deformations as a function of the geo-

metric properties of the stair and of reaction B. By substituting these in the elastic

equation:

X5 ∗ δ55 +X6 ∗ δ56 + δ50 = 0 (3.36)

X5 ∗ δ65 +X6 ∗ δ66 + δ60 = 0 (3.37)

one obtains the desired unknowns X5andX6.

With the known shear force X5 and bending moment X6 all the other moments

Figure 3.17: Cantilever beams as statically determinate system acted on by reaction
B and redundant X5 and X6

and forces in the landing and flights slabs due to reaction B can be calculated for

the various lading conditions, i.e., for the corresponding reactions at the imaginary
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support B. These forces and moments have to be superimposed to those calculated

for the continuous straight beam supported at edge B.

This method is based on the application of the principle of least work for the deter-

mination of deformations and the calculation of the redundant by solving the elastic

equations, reduces the space structure composed by plates or slabs to a space frame

composed of linear bar elements Fig.3.17. Thus Author represents a convenient way

to solve an otherwise highly complex structure. Unfortunately, the method has the

limitation that the assumed statically determinate system with the two cantilever

beams analyzes only the case of fixed supports at the upper and lower floor levels.

Actually the flight slabs are not always continuous with the floor slab, as in the case of

precast floors, and are often supported by concrete edge beams which cannot provide

fixity, resulting in a simple or elastic support condition.

Due to the redundant X5 and X6 and the reactive force B the following forces and

moments are generated.

In the landing

QX = 0

QY =
X5 ∗ cosφ

r

QZ = −X5 ∗ sinφ
r

MX = X6 ∗ cosφ

MY = X5 ∗ sinφ

MZ = −X6 ∗ sinφ

In the lower flight

QX = ±(B ∗ cosα +
X5 ∗ cosα

r
)

QY = 0
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QZ = ±(B ∗ sinα− X5 ∗ cosα
r

)

MX = −B ∗ x− X5 ∗ tanα ∗ x
r

MY = ±(X5 ∗ cosα +X6 ∗ sinα)

MZ = ±(X5 ∗ sinα−X6 ∗ cosα)

Where QX and QY are shear forces,N is a normal force, MX and MY are constants.MT

is a torsional momentX5 andX6 are redundant.These quantities are shown in Fig.3.17

as they act on an element of the stair of width b;all arrows in this Figure point in the

positive direction.The redundant X5 and X6 are

X5 = − δ05 ∗ δ66
(δ55 ∗ δ66)− δ256

X6 = − δ05 ∗ δ56
(δ55 ∗ δ66)− δ256

For the special case considered i.e.;φ = 0 to φ = π
2

for landing and X=0 to X=l for

flight

E ∗ IX ∗ δik = (
∫ π/2
0

[MXi ∗MXk + MY i ∗MY k ∗ (IX/IY ) + MT i ∗MTk ∗ 1/2 ∗ (1 +

(IX/IY ))])dφ + (
∫ l
0
[MXi ∗ MXk + MY i ∗ MY k ∗ (IX/IY ) + MT i ∗ MTk ∗ 1/2 ∗ (1 +

(IX/IY ))])dx/r ∗ cosα By integrating,

δ05 =
B ∗ l3 ∗ tanα
3 ∗ r2 ∗ cosα

δ06 = 0

δ55 =
π

4
∗ IX
IY

+
l

r ∗ cosα
∗ [
IX
IY

+
1

2
∗ sin2α ∗ (1− IX

IY
) +

l2 ∗ tan2α

3 ∗ r2
]

δ56 = −1

2
∗ (1− IX

IY
) ∗ l

r
∗ sinα

δ66 =
π

8
∗ (3 +

IX
IY

) +
l

r ∗ cosα
∗ [
IX
IY

+
1

2
∗ cos2α ∗ (1− IX

IY
)]
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3.4.3 Numerical Example based on Fuchssteiner’s method

The concrete cantilever staircase shown in Fig.3.18 and Fig.3.19 will be analyzed

by this method. The additional dimensions for the landing are:

α = 26′34′

R =
b+m

2
=

1.2 + 0.3

2
= 0.75m

IX
IY

=
d2

b2
=

0.152

0.122
= 0.02

Step 1 Deformation at section i in the direction of redundant Xi du to

Figure 3.18: Elevation of the staircase

Xk = 1

δ05 =
B ∗ l3 ∗ tanα
3 ∗ r2 ∗ cosα

=
B ∗ 2.63 ∗ tan26′34′

3 ∗ 0.752 ∗ cos26′34′

= 5.823 ∗B
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Figure 3.19: Plan of the staircase

δ06 = 0

δ55 =
π

4
∗ IX
IY

+
l

r ∗ cosα
∗ [
IX
IY

+
1

2
∗ sin2α ∗ (1− IX

IY
) +

l2 ∗ tan2α

3 ∗ r2
]

=
π

4
∗ 0.02 +

2.6

0.75 ∗ cos26′34′
∗ [0.02 +

1

2
∗ sin226′34′ ∗ (1− 0.02) +

2.62 ∗ tan226′34′

3 ∗ 0.752
]

= 4.355

δ56 = −1

2
∗ (1− IX

IY
) ∗ l

r
∗ sinα

= −1

2
∗ (1− 0.02) ∗ 2.6

0.75
∗ sin26′34′

= −0.76

δ66 =
π

8
∗ (3 +

IX
IY

) +
l

r ∗ cosα
∗ [
IX
IY

+
1

2
∗ cos2α ∗ (1− IX

IY
)]

=
π

8
∗ (3 + 0.02) +

2.6

0.75 ∗ cos26′34′
∗ [0.02 +

1

2
∗ cos226′34′ ∗ (1− 0.02)]

= 2.783

δ55 ∗ δ66 − δ256 = 4.355 ∗ 2.783− 0.762 = 11.5
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Step 2 Determine unknown redundant X5 and X6

X5 = − δ05 ∗ δ66
δ55 ∗ δ66 − δ256

= −5.823 ∗B ∗ 2.783

11.5

= −1.41 ∗B

X6 =
δ05 ∗ δ56

δ55 ∗ δ66 − δ256

=
5.823 ∗B ∗ (−0.76)

11.5

= −0.385 ∗B

Step 3 Determine reactions and moments B = 28.755kN

a. In the landing

QX = 0

QY =
X5 ∗ cosφ

r
= −1.41 ∗B ∗ sinφ

0.75
= −1.88 ∗B ∗ cosφ

N = −X5 ∗ sinφ
r

= −(−1) ∗ 1.41 ∗B ∗ sinφ
0.75

= 1.88B ∗ sinφ

MX = −1.41 ∗B ∗ cosφ

MY = −1.41 ∗B ∗ sinφ

MT = 0.385B ∗ sinφ

b. In the flight

QX = B ∗ cosα +
X5 ∗ sinα

r
= B ∗ cosα− 1.41 ∗B ∗ sinα

0.75
= 0.054 ∗B

QY = 0

N = B ∗ sinα− X5 ∗ cosα
r

= B ∗ sinα +
1.41 ∗B ∗ cosα

0.75
= 2.13 ∗B
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Table III: Results for moments in kNm obtained from Fuchsstener’s method
Method Mr Ms Mt

Points N M O K MN MN
Fuchssteiner’s method -4.5 0 -11.45 2.25 42.61 -8.51

MX = −B ∗ x− x ∗X5 ∗ tanα
r

= −B ∗ x+
x ∗ 1.41 ∗ tan26′34′

0.75
= −1.7253 ∗ x

MY = X5 ∗ cosα +X6 ∗ sinα

= −1.41 ∗B ∗ cos26′34′ − 0.385 ∗B ∗ sin26′34′

= −1.433 ∗B

MT = X5 ∗ sinα−X6 ∗ cosα

= −1.41 ∗B ∗ sin26′34′ + 0.385 ∗B ∗ cos26′34′

= −0.286 ∗B

3.5 A Simplified method for free standing stairs

based on Fuchssteiner’s method

Where,The torsional rigidity is taken as:

G ∗ IT =
2 ∗ E ∗ IX ∗ IY

IX + IY

E ∗ IX
G ∗ IT

=
1

2
[1 +

IX
IY

]

Now, IX/IY ≪ 1.Therefore, neglect it.

E ∗ IX
G ∗ IT

=
1

2
[1 +

IX
IY

] =
1

2
[1 + 0] =

1

2
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Equations of deformations

δ05 =
B ∗ l3 ∗ tanα
3 ∗ r2 ∗ cosα

δ06 = 0

δ55 =
π

4
∗ IX
IY

+
l

r ∗ cosα
∗ [
IX
IY

+
1

2
∗ sin2α ∗ (1− IX

IY
) +

l2 ∗ tan2α

3 ∗ r2
]

=
π

4
∗ 0 +

l

r ∗ cosα
∗ [0 +

1

2
∗ sin2α ∗ (1− 0) +

l2 ∗ tan2α

3 ∗ r2
]

=
l

r ∗ cosα
∗ [

1

2
∗ sin2α +

l2 ∗ tan2α

3 ∗ r2
]

δ56 = −1

2
∗ (1− IX

IY
) ∗ l

r
∗ sinα

= −1

2
∗ (1− 0) ∗ l

r
∗ sinα

= −1

2
∗ l
r
∗ sinα

δ66 =
π

8
∗ (3 +

IX
IY

) +
l

r ∗ cosα
∗ [
IX
IY

+
1

2
∗ cos2α ∗ (1− IX

IY
)]

=
π

8
∗ (3 + 0) +

l

r ∗ cosα
∗ [0 +

1

2
∗ cos2α(1− 0)]

=
3 ∗ π

8
+

l

r ∗ cosα
∗ [

1

2
∗ cos2α]

Equations of reactions and moments:

In the landing

QX = 0

QY =
X5 ∗ cosφ

r

QZ = −X5 ∗ sinφ
r

MX = X6 ∗ cosφ

MY = X5 ∗ sinφ

MZ = −X6 ∗ sinφ



Chapter 3: Analysis of free standing stairs 58

In the lower flight

QX = ±(B ∗ cosα +
X5 ∗ cosα

r
)

QY = 0

QZ = ±(B ∗ sinα− X5 ∗ cosα
r

)

MX = −B ∗ x− X5 ∗ tanα ∗ x
r

MY = ±(X5 ∗ cosα +X6 ∗ sinα)

MZ = ±(X5 ∗ sinα−X6 ∗ cosα)

3.5.1 Numerical Example based on simplified method

Data are as same as Fuchssteiner’s method.

Step 1 Deformation at section i in the direction of redundant Xi du to

Xk = 1

δ05 =
B ∗ l3 ∗ tanα
3 ∗ r2 ∗ cosα

=
B ∗ 2.63 ∗ tan26′34′

3 ∗ 0.752 ∗ cos26′34′

= 5.823 ∗B

δ06 = 0

δ55 =
l

r ∗ cosα
∗ [

1

2
∗ sin2α +

l2 ∗ tan2α

3 ∗ r2
]

=
2.6

0.75 ∗ cos26′34′
∗ [

1

2
∗ sin226′34′ +

2.62 ∗ tan226′34′

3 ∗ 0.752
]

= 4.27
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δ56 = −1

2
∗ l
r
∗ sinα

= −1

2
∗ 2.6

0.75
∗ sin26′34′

= −0.7751

δ66 =
3π

8
+

l

r ∗ cosα
∗ [

1

2
∗ cos2α]

=
3π

8
+

2.6

0.75 ∗ cos26′34′
∗ [

1

2
∗ cos226′34′]

= 2.73

δ55 ∗ δ66 − δ256 = 4.27 ∗ 2.73− 0.77512 = 11.06

Step 2 Determine unknown redundant X5 and X6

X5 = − δ05 ∗ δ66
δ55 ∗ δ66 − δ256

= −5.823 ∗B ∗ 2.73

11.06

= −1.44 ∗B

X6 =
δ05 ∗ δ56

δ55 ∗ δ66 − δ256

=
5.823 ∗B ∗ (−0.7751)

11.06

= −0.408 ∗B

Step 3 Determine reactions and moments

B = 28.755kN

a. In the landing

QX = 0

QY =
X5 ∗ cosφ

r
= −1.44 ∗B ∗ sinφ

0.75
= −1.92 ∗B ∗ cosφ

N = −X5 ∗ sinφ
r

= −(−1) ∗ 1.44 ∗B ∗ sinφ
0.75

= 1.92B ∗ sinφ
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MX = −1.44 ∗B ∗ cosφ

MY = −1.44 ∗B ∗ sinφ

MT = 0.408B ∗ sinφ

b. In the flight QX = B ∗ cosα + X5∗sinα
r

= B ∗ cosα− 1.44∗B∗sinα
0.75

= 0.036 ∗B

QY = 0

N = B ∗ sinα− X5∗cosα
r

= B ∗ sinα + 1.44∗B∗cosα
0.75

= 2.165 ∗B

MX = −B ∗ x− x∗X5∗tanα
r

= −B ∗ x+ x∗1.44∗tan26′34′
0.75

= −B ∗ x+ 0.96x

MY = X5 ∗ cosα +X6 ∗ sinα

= −1.44 ∗B ∗ cos26′34′ − 0.408 ∗B ∗ sin26′34′ = −1.47 ∗B

MT = X5 ∗ sinα−X6 ∗ cosα

= −1.44 ∗B ∗ sin26′34′ + 0.408 ∗B ∗ cos26′34′ = −0.28 ∗B

Comparison of the analysis results

Figure 3.20: Plan of free standing stair
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Table IV: Comparison of results of the different type of method of analysis
Method Mr Ms Mt

kNm kNm kNm
Points N M O K MN MN

Siev’s method -6.865 -7.15 -18.1 4.13 46.34 -2.79
Cusens and Kuang’s method -20.71 -8.77 -14.3 7.04 25.4 -4.45

Fuchssteiner’s method -4.5 0 -11.45 2.25 42.61 -8.51
Simplified method -3.1 0 -12.13 1.55 43.71 -8.3

FEM using SAP2000 -5.86 -0.117 -11.9 0.905 1.2 -6.6

3.6 Analysis of Horse shoe type of stairs

Analysis of horse shoe type of stairs has been derived using Fuchssteiner’s method.

Fuchssteiner’s method is based on virtual work method.Dimensions and Fig.3.21 is

given below.

3.6.1 Dimensions of the Horse shoe type of stairs

Figure 3.21: Plan of Horse shoe type of stair

hL=4.2m

2 ∗ n = 26

R=165mm and T=300 mm

α=28’36’
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b=1.4 m

r=1.2m

ll=2*n*T=26*300=7.8 m

2 ∗ ψ=210’

arclength = 2 ∗ π ∗R ∗ 2∗φ
360

=4.4m

l = 7.8−4.4
2

= 1.7m

d=160mm

β = IX
IY

= d2

b2
= 0.1652

1.42
= 0.014

ke = 1 + e
r

= 1 + b2

12∗r2 = 1 + 1.42

12∗1.22 = 1.113

Q = l
r

= 1.7
1.2

= 1.42

3.6.2 Load calculation

W=Selfwt.+Wt.ofthesteps

=0.165 ∗ 25 + 1
2
∗ 0.165 ∗ 25

=7.05kN/m2

Live Load=5 kN/m2 for both flights and landing

Total load=7.05 + 5 = 12.05kN/m2

w = 12.05 ∗ 1.4 = 16.87kN/m

3.6.3 Determination of deformation

For 2ψ=210’,

The results for the redundant are as follows:

A = 0.1746 B = 1.4402 C = 1.0413 D = 0.7913

A′ = 0.3343 B′ = 0.3635 C ′ = 1.7799 D′ = 0.2717

The deformation can be derived as same as described in Fuchssteiner’s method.

δ55 = tan2 α ∗ C ′ + 1+β
2
∗ sin2 α(Q ∗B2 + C − 2A′ +D′)

+Q ∗ tan2 α ∗ sin2 ψ0 ∗ [ψ0 ∗ (ψ0 +Q) + Q2

3
∗ cos2 α]

+ (β) ∗ [cos2 α ∗ C + 2 sin2 α ∗ A′ + tan2 α ∗ sin2 α ∗D′
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+Q ∗ (cos2 α ∗ sin2 ψ0 + c2α ∗ ψ0 ∗ sin 2ψ0 + sin2 α ∗ tan2 α ∗ ψ2
0 ∗ cos2 ψ0)

+Q ∗ cosψ0 ∗ (sinψ0 + tan2 α ∗ ψ0 ∗ cosψ0) + Q3

3
∗ cos2 ψ0

cos2 α
]

δ55 = 3.515

δ56 = −A′ ∗ tanα− 1+β
4
∗ sin 2α(Q ∗B sinψ0 + C − A′)

− Q
2

tanα ∗ sin 2ψ0(ψ0 + Q
2

cosα) + (β) ∗ sinα[cosα(C + tan2 α ∗ A′)

+Q ∗ cosα ∗ sinψ0(sinψ0 + tan2 α ∗ ψ0 ∗ cosψ0 +Q ∗ cosψ0

2∗cos2 α)]

δ56 = −0.267

δ66 = D + 1+β
2
∗ cos2 α(C +Q ∗ sin2 ψ0) +Q ∗ cos2 ψ0

+ (β) ∗ sin2 α(C +Q ∗ sin2 ψ0)

δ66 = 2.622

δ50 = qr2[ke(B − A′) ∗ tanα +Q2 ∗ sinα ∗ sinψ0 ∗ (ke
2

(1− cosψ0) + ψ0 ∗ Q3 + Q3

8
)

Q ∗ tanα ∗ ψ0 ∗ sinψ0 ∗ (ke(1− cosψ0) + ψ0
Q
2

+ Q2

6
)

+ 1+β
4

sin 2α(B −B′ +Q ∗B(ψ0 − ke sinψ0) + ke(A
′ − C))]

−(β)∗qr2 sinα[cosα(B−keC)+tanα∗sinα(B−keA′)+Q∗(ψ0−ke sinψ0)(cosα sinψ0+

sin2 α
cosα

ψ0 cosψ0 +Q cosψ0

2∗cosα)]

δ50 = 6.306 ∗ qr2

δ60 = −qr2[keA+ 1+β
2

cos2 α ∗ (B−keC+Q sinψ0(ψ0−ke sinψ0)) +Q cosψ0 ∗ (ke(1−

cosψ0) + ψ0
Q
2

+ Q2

6
)]

− β ∗ qr2 sin2 α(B − keC +Q sinψ0(ψ0 − ke sinψ0))

δ60 = 0.4066qr2

• Moments and reactions in the landing and flight

(1.) In the landing

QX = qr ∗X5 cosφ

QY = −qr ∗ [cosα ∗ ψ +X5 ∗ sinα sinψ]

N = −qr ∗ [sinα ∗ ψ +X5 ∗ cosα sinψ]

MX = −qr2 ∗ [ke(1− cosψ) +X5 tanα ∗ ψ sinψ −X6 ∗ cosψ]

MY = qr2 ∗ [sinα(ψ − ke sinψ)−X5 ∗ cosα(sinψ + tan2 α ∗ ψ cosψ)

−X6 ∗ sinψ ∗ sinα]
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Moment MX MY MT

X5 = 1 − tanα sinψ0(ψ0 +Q cosα) -(sinψ0 +Q cosψ0) tanα cosψ0(ψ0 +Q)
X6 = 1 cosψ0 0 sinψ0

qr2 = 1 -[ke(1− cosψ0) +Qψ0 +
Q2

2 ] 0 −(ψ0 − ke sinψ0)

MT = −qr2 ∗ [cosα(ψ−ke sinψ)+X5 ∗ sinα(sinψ−ψ cosψ)−X6 ∗ sinψ ∗ cosα]

(2.) In the flight

QX = qr ∗X5 cosφ0

QY = −qr ∗ [cosα ∗ (ψ0 +Qξ) +X5 ∗ sinα sinψ0]

N = −qr ∗ [sinα ∗ (ψ0 +Qξ)−X5 ∗ cosα sinψ0]

MX = −qr2 ∗ [ke(1− cosψ0) + ψ0Qξ + Q2

2
ξ2

+X5 tanα sinψ0(ψ0 + cosα ∗Qξ)−X6 ∗ cosψ0]

MY = qr2 ∗ [sinα(ψ0 − ke sinψ0)

−X5 ∗ cosα(sinψ0 + tan2 α ∗ ψ0 cosψ0 + cosψ0

cos2 α
Qξ)

−X6 ∗ sinψ0 ∗ sinα]

MT = −qr2 ∗ [cosα(ψ0 − ke sinψ0) +X5 ∗ sinα(sinψ0 − ψ0 cosψ0)

−X6 ∗ sinψ0 ∗ cosα]

By putting the values of X5 = X6 = qr2 = ξ = 1

These values can be put into above equations, From the above table,the deformation

equations can be made:

The deformation equation are as follows:

δ∗55 = δ55 + 2θy ∗ [tanα sinψ0(ψ0 +Q cosα)]2

+ 2θx ∗ [sinψ0 +Q cosψ0]
2

+ 2θz ∗ [tanα cosψ0(ψ0 +Q)]2

δ∗55 = 3.515 + 5.256θy

δ∗56 = δ56 − θy[tanα sin 2ψ0(ψ0 +Q cosα)]

+ θx ∗ tanα sin 2ψ0[ψ0 +Q]

δ∗56 = −0.267 + 0.839θy

δ∗66 = δ66 + 2θy[cos2 ψ0]



Chapter 3: Analysis of free standing stairs 65

+ 2θx ∗ sin2 ψ

δ∗66 = 2.622 + 0.134θy

δ∗50 = δ50 + 2θyqr
2[tanα sinψ0(ψ0 +Q cosα)] ∗ [ke(1− cosψ0)

+Qψ0 + Q2

2
]

− 2θxqr
2[tanα cosψ0(ψ0 +Q)](ψ0 − ke sinψ0)

δ∗50 = qr2(6.306 + 16.24θy)

δ∗60 = δ50 − 2θyqr
2 cosψ0 ∗ [ke(1− cosψ0) +Qψ0 + Q2

2
]

− 2θxqr
2 sinψ0(ψ0 − ke sinψ0)

δ∗60 = qr2(0.4066 + 2.6θy)

3.6.4 Determination of redundant

Forθy = 0.5

X5 =
δ∗50∗δ∗66

δ∗55δ
∗
66−δ∗256

= −2.36

X6 =
δ∗50∗δ∗56

δ∗55δ
∗
66−δ∗256

= 0.134

3.6.5 Determination of moment and reactions in the landing

and the flight

a. In the landing

Case (1.) For ψ = ψ

QX=14.430kN

QY =-12.20kN

N=-68.13kN

MX=0.2630kNm

MY =66.610kNm

MT=34.130kNm

Case (2.) For ψ = ψ/2

QX=-33.93kN
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QY =2.3900kN

N=11.030kN

MX=19.50kNm

MY =42.39kNm

MT=11.50kNm

Case (3.) For ψ = 0

QX=-55.74kN

QY =0

N=0

MX=-32.4kNm

MY =0

MT=0

b. In the flight

Case (1.) For ξ = 1

QX=14.500kN

QY =-41.71kN

N=-84.10kN

MX=39.88kNm

MY =33.83kNm

MT=36.10kNm

Case (2.) For ξ = 0

QX=14.500kN

QY =-12.20kN

N=-67.98kN

MX=27.70kNm

MY =66.62kNm

MT=36.10kNm
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3.7 Analysis of L shape of type stairs

Analysis of L shape type of stairs can be done using Fuchssteiner’s method as shown

in Fig.3.23.In L shape stair case,the angle between 2 flights are having 90 degrees is

as shown in the Fig.3.22.Analysis of L shape type of stair is given below:

3.7.1 Dimensions of the L type of stairs

Width of the flight =b=1.1m

Depth of the flight =Df=120mm Height of the one storey=H=1.3m

No. of risers =8

Riser=150mm and Tread =300mm

α =26’34’

Length of the flight =L=2.6m

r = 1.1
2

+ 0.2 = 0.75m

Depth of the landing =Dl=150mm Step 1 Deformation at section i in the

Figure 3.22: Plan of L shape type of stair

direction of redundant Xi du to Xk = 1
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Figure 3.23: Redundant in the L shape type of stair

δ05 =
B ∗ l3 ∗ tanα
3 ∗ r2 ∗ cosα

=
B ∗ 2.63 ∗ tan26′34′

3 ∗ 0.752 ∗ cos26′34′

= 5.823 ∗B

δ06 = 0

δ55 =
π

8
∗ IX
IY

+
l

r ∗ cosα
∗ [
IX
IY
∗ 1

2
(1 + cos2α) +

l2 ∗ tan2α

3 ∗ r2
]

= 3.955

δ56 = −1

2
∗ (−1 +

IX
IY

) ∗ l
r
∗ sinα

= −0.76

δ66 =
π

4
∗ (0.75 +

IX
IY

) +
1

8
[1− IX

IY
] +

l

2rcosα
∗ (cos2 α +

IX
IY

(1 + sin2 α))

= 3.055

δ55 ∗ δ66 − δ256 = 4.355 ∗ 2.783− 0.762 = 11.5
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B=19.634kN

Step 2 Determine unknown redundant X5 and X6

X5 = − δ05 ∗ δ66
δ55 ∗ δ66 − δ256

= −5.823 ∗B ∗ 2.783

11.5

= −30.4

X6 =
δ05 ∗ δ56

δ55 ∗ δ66 − δ256

=
5.823 ∗B ∗ (−0.76)

11.5

= −7.556

Step 3 Determine reactions and moments B = 19.634kN

a. In the landing

QX = 0

QY =
X5 ∗ cosφ

r
= −−30.4 ∗ cos45

0.75
= −28.66kN

N = −X5 ∗ cosφ
r

= −−30.4 ∗ cosφ
0.75

= 28.66kN

MX = −30.4 ∗ cosφ = −5.343kNm

MY = −30.4 ∗B ∗ sinφ = −21.5kNm

MT = 7.556 ∗ sinφ = 5.343kNm

b. In the flight

QX = B ∗ cosα +
X5 ∗ sinα

r
= B ∗ cosα− 1.41 ∗B ∗ sinα

0.75
= −0.567kN

QY = 0

N = B ∗ sinα− X5 ∗ cosα
r

= B ∗ sinα +
1.41 ∗B ∗ cosα

0.75
= 45.034kN
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MX = −B ∗ x− x ∗X5 ∗ tanα
r

= −B ∗ x+
x ∗ 1.41 ∗ tan26′34′

0.75
= −1.7253 ∗ x

MY = X5 ∗ cosα +X6 ∗ sinα

= −30.6kNm

MT = X5 ∗ sinα−X6 ∗ cosα

= −6.838kNm



Chapter 4

Design of free standing stairs

4.1 Introduction

In this chapter design of free standing stairs is derived using analysis result of Sim-

plified method.The design and reinforcement detailing of free standing stair are done

using limit state method.The design method is based on Indian standards.

This chapter also deals with the design and reinforcement detailing of L shape and

Horse shoe type of staircase.The analysis result of Horse shoe and L shape type of

staircase were taken from Fuchssteiner’s method and the design was done by limit

state method by using IS code.

71



Chapter 4: Design and detailing of free standing stairs 72

4.2 Design of the free standing stairs

4.2.1 Dimensions of the free standing stairs

Elevation and Plan of the staircase are as shown in the Fig.4.1 and Fig.4.2.

Figure 4.1: Elevation

Figure 4.2: Plan
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4.2.2 Load calculation

M-20 grade of concrete and Fe-415 grade of steel is to be used.

W=Total weight of one flight

W = (2.6 ∗ 0.110 ∗ 1.2 ∗ 25) + (8 ∗ 0.15

2
∗ 0.3 ∗ 1.2 ∗ 25) = 13.98kN

Live Load=5 kN/m2 for both flights and landing

DL of the flight =13.98/2.6 ∗ 1.2 =4.5 kN/m2

DL of the landing =25*0.15=3.75 kN/m2

W1 =DL of the flight= 4.5kN/m2 ∗ 1.2 = 5.4kN/m

W2 =DL of the landing= 3.75kN/m2 ∗ 1.35 = 5.0625kN/m

W3 =LL of the lower and upper flight= 5kN/m2 ∗ 1.2 = 6kN/m

W5 =LL of the landing= 5kN/m2 ∗ 1.35 = 6.75kN/m

W1+3 =DL+LL on the lower flight= 5.4 + 6 = 11.4kN/m

W1+4 =DL+LL on the upper flight= 5.4 + 6 = 11.4kN/m

W2+5 =DL+LL on the landing = 5.0625 + 6.75 = 11.81kN/m

4.2.3 Design results of the Simplified method

(1.) Flight section

Flexural moment MX=3.1 kNm

Torsional moment MZ=8.3 kNm

Flexural moment MY =43.71 kNm

Shear force Vu=1.03 kN

MX=1.5*3.1=4.65 kNm

MY =1.5*43.71=65.6 kNm

MZ=1.5*8.3=12.45 kNm

Vu=1.5*1.03=1.545 kN
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(2.) Landing section

Flexural moment MX=12.13 kNm

MX=1.5*12.13=18.2 kNm

4.2.4 Main reinforcement of the flight

Overall thickness of the flight,D=120 mm

cover d’=20 mm

Effective depth d=100 mm

Width of the flight,b=1200mm

Main reinforcement of the flight

For MX=4.65 kNm

b=1200 mm and d=100 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 12.45 ∗ 1+ 120

1200

1.7
= 8.055kNm

Mue = MX +Mt = 4.65 + 8.055 = 12.7kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
1− 4.6∗Mu

fck∗b∗d2
]

= 20∗1200∗100
2∗415 ∗ [1−

√
1− 4.6∗12.7∗106

20∗1200∗1002 ] = 376mm2

Provide 5 No.s of 10 mm dia bars.

For MY =65.6 kNm

D=1.2 m and b=120 mm

d’=50 mm and d=1150 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
Mt = 12.45 ∗ 1+ 1200

120

1.7
= 80.56kNm

Mue = MX +Mt = 65.6 + 80.56 = 146.16kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
(1− 4.6∗Mu

fck∗b∗d2
)]

= 20∗1200∗100
2∗415 ∗ [1−

√
(1− 4.6∗146.16∗106

20∗120∗11502 )] = 373mm2

Provide 2 No.s of 12 mm and 2 No.s of 10 mm dia bars are provided on
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each vertical face.

4.2.5 Transverse reinforcement of the flight

Equivalent shear force

Vue = Vu + 1.6 ∗ Tu
b

= 1.545 + 1.6 ∗ 12.45
1.2

= 18.545kN

Equivalent nominal shear stress

τve = Vue
bd

= 18.545∗1000
1200∗100 = 0.151MPa

pt = Ast∗100
bd

= 393∗100
1200∗100 = 0.33

From Is 456-2000,pg.84,Table 23,

τc=0.2456 MPa

So,τc¿τve

Hence, it is safe.

However, nominal torsion/shear reinforcement shall be provided in the form of closed

stirrups with spacing not exceeding the smallest of the following.

x=120-20-20-10-10-10=50 mm

y=1200-50-50-10-10-10=1070 mm

Spacing should be less than

a. (x+ y)/4=280mm

b. 300 mm

Provide 10 mm dia @ 280mm c/c spacing.

4.2.6 Main and distribution reinforcement of landing

Mu=18.2 kNm

Width of the landing, g=1.1 m

Depth of the landing, D=150 mm

Effective dept of the landing, d=130 mm

Mu

b∗d2 = 18.2∗106
1200∗1302 = 0.9
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For M-20 grade concrete and Fe-415 grade of steel,

From SP-16,

%pt = 0.264%

Ast = 1000∗130∗0.264
100

= 343mm2

Provide 10 mm dia.@ 200 mm c/c spacing as main reinforcement.

Distribution steel

Ast = 0.0012 ∗ b ∗D = 0.0012 ∗ 1100 ∗ 150 = 198mm2

Provide 10 mm dia.@ 200 mm c/c spacing at near supports and 10 mm

dia.@300 mm c/c as distribution reinforcement.

The reinforcement detailing is shown in the Fig.4.3 and Fig.4.4.
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4.3 Design of the Horse shoe type of stairs

4.3.1 Dimensions of the Horse shoe type of stairs

hL=4.2m

2 ∗ n = 26

R=165mm and T=300 mm

α=28’36’

b=1.4 m

r=1.2m

ll=2*n*T=26*300=7.8 m

2 ∗ ψ=210’

arclength = 2 ∗ π ∗R ∗ 2∗φ
360

=4.4m

l = 7.8−4.4
2

= 1.7m

d=160mm

4.3.2 Load calculation

W=Total weight of one flight

=Selfwt.+Wt.ofthesteps

=0.165 ∗ 25 + 1
2
∗ 0.165 ∗ 25

=7.05kN/m2

Live Load=5 kN/m2 for both flights and landing

Total load=7.05 + 5 = 12.05kN/m2

w = 12.05 ∗ 1.4 = 16.87kN/m

4.3.3 Design results of the Fuchssteiner’s method

(1.) Flight section

At the intersection of flight and landing

Flexural moment MX=27.7 kNm
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Torsional moment MZ=36.1 kNm

Flexural moment MY =66.62 kNm

Shear force Vu=21.61 kN

MX=1.5*27.70=41.55 kNm

MY =1.5*66.62=99.93 kNm

MZ=1.5*36.10=54.15 kNm

Vu=1.5*21.61=32.415 kN

At the flight supports

Flexural moment MX=39.88 kNm

Torsional moment MZ=36.1 kNm

Flexural moment MY =33.83 kNm

Shear force Vu=41.71 kN

MX=1.5*39.88=59.82 kNm

MY =1.5*33.83=50.74 kNm

MZ=1.5*36.10=54.15 kNm

Vu=1.5*41.71=62.66 kN

(2.) Landing section

Flexural moment MX=32.4 kNm

MX=1.5*32.4=48.6 kNm

4.3.4 Main and Transverse reinforcement of the flight

Overall thickness of the flight,D=165 mm

cover d’=20 mm

Effective depth d=145 mm

Width of the flight,b=1400mm

Main reinforcement of the flight at the intersection of the landing and the
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flight

For MX=41.55 kNm

b=1400 mm and d=145 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 54.15 ∗ (1+ 165

1400

1.7
= 35.61kNm

Mue = MX +Mt = 41.55 + 35.61 = 77.16kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
1− 4.6∗Mu

fck∗b∗d2
]

= 20∗1400∗145
2∗415 ∗ [1−

√
1− 4.6∗77.16∗106

20∗1400∗1452 ] = 1809mm2

Provide 10 No.s of 16 mm dia bars at top and bottom.

For MY =99.93 kNm

D=1.4 m and b=165 mm

d’=50 mm and d=1350 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 54.15 ∗ 1+ 1400

165

1.7
= 302.12kNm

Mue = MX +Mt = 99.93 + 302.12 = 402.1kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
(1− 4.6∗Mu

fck∗b∗d2
)]

= 20∗165∗1350
2∗415 ∗ [1−

√
(1− 4.6∗402.1∗106

20∗165∗13502 )] = 900mm2

Provide 2 No.s of 20 mm and 2 No.s of 16 mm dia bars are provided on

each vertical face.

Transverse reinforcement of the flight at the intersection of the landing

and the flight

Vu=18.3 kN

Equivalent shear force

Vue = Vu + 1.6 ∗ Tu
b

= 18.3 + 1.6 ∗ 54.15
1.4

= 80.2kN

Equivalent nominal shear stress

τve = Vue
bd

= 80.2∗1000
1400∗145 = 0.39MPa

pt = Ast∗100
bd

= 2011∗100
1400∗145 = 1.00

From Is 456-2000,pg.84,Table 23,

τc=0.395 MPa



Chapter 4: Design and detailing of free standing stairs 80

So,τc ≥ τve

Hence, it is safe.

However, nominal torsion/shear reinforcement shall be provided in the form of closed

stirrups with spacing not exceeding the smallest of the following.

x=165-20-20-10-10-16=89 mm

y=1400-50-50-10-10-16=1264 mm Should be less than

a. (x+ y)/4=339mm

b. 300 mm

Provide 10 mm dia @ 300mm c/c spacing

Main reinforcement of the flight at the flight support

For MX=59.82 kNm

b=1400 mm and d=145 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 54.15 ∗ (1+ 165

1400

1.7
= 35.61kNm

Mue = MX +Mt = 59.82 + 35.61 = 95.43kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
1− 4.6∗Mu

fck∗b∗d2
]

= 20∗1400∗145
2∗415 ∗ [1−

√
1− 4.6∗95.43∗106

20∗1400∗1452 ] = 2425mm2

Provide 13 No.s of 16 mm dia bars at top and bottom.

For MY =50.75 kNm

D=1.4 m and b=165 mm

d’=50 mm and d=1350 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 54.15 ∗ 1+ 1400

165

1.7
Mt = 302.12kNm

Mue = MX +Mt = 50.75 + 302.12 = 352.87kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
(1− 4.6∗Mu

fck∗b∗d2
)]

= 20∗165∗1350
2∗415 ∗ [1−

√
(1− 4.6∗352.87∗106

20∗165∗13502 )] = 782mm2

Provide 1 No.s of 20 mm and 2 No.s of 16 mm dia bars are provided on

each vertical face.
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Transverse reinforcement of the flight at the flight support

Vu=62.565 kN

Equivalent shear force

Vue = Vu + 1.6 ∗ Tu
b

= 62.565 + 1.6 ∗ 54.15
1.4

= 12.45kN

Equivalent nominal shear stress

τve = Vue
bd

= 124.45∗1000
1400∗145 = 0.613MPa

pt = Ast∗100
bd

= 2614∗100
1400∗145 = 1.30

From Is 456-2000,pg.84,Table 23,

τc=0.426 MPa

So,τve τc

So, section is acceptable with shear reinforcement.

Consider transverse reinforcement considering 10 mm dia.(Asv = 157mm2).

Minimum reinforcement to be provided is given by,

Asv = (τve−τc)∗Sv∗b
0.87∗fy

Thus,

Sv = 0.87∗fy∗Asv

(τve−τc)∗b = 0.87∗415∗157
0.187∗1400 = 217mm

However, nominal torsion/shear reinforcement shall be provided in the form of closed

stirrups with spacing not exceeding the smallest of the following.

x=165-20-20-10-10-16=89 mm and y=1400-50-50-10-10-16=1264 mm

Spacing should be less than

a. (x+y)/4=339mm

b. 300 mm

c. 89 mm

d. 0.75*d=0.75*145=109mm

Provide 10 mm dia @ 100 mm near support and increase the spacing to

300 mm c/c spacing from support
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4.3.5 Main and distribution reinforcement in the landing

For MX=48.6 kNm

b=1400 mm and d=145 mm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
1− 4.6∗Mu

fck∗b∗d2
]

= 20∗1400∗145
2∗415 ∗ [1−

√
1− 4.6∗48.6∗106

20∗1400∗1452 ] = 1039mm2

Provide 10 No.s of 16 mm dia bars at top and bottom and 2 No.s of 20mm

and 2 No.s of 16 mm dia. of bars at each vertical face.

The reinforcement detailing of the horse shoe type of stairs is as shown in Fig.4.5.
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4.4 Design of the L type of stairs

4.4.1 Dimensions of the L type of stairs

Width of the flight =b=1.1m

Depth of the flight =Df=120mm Height of the one storey=H=1.3m

No. of risers =8

Riser=150mm and Tread =300mm

α =26’34’

Length of the flight =L=2.6m

r = 1.1
2

+ 0.2 = 0.75m

Depth of the landing =Dl=150mm

4.4.2 Design moment and shear force of flight and landing

(1.) Flight section

Flexural moment MX=1.6484 kNm

Torsional moment MZ=6.838 kNm

Flexural moment MY =30.6 kNm

Shear force Vu=0.567 kN

MX=1.5*1.6484=2.4726 kNm

MY =1.5*30.6 =45.9 kNm

MZ=1.5*6.838 =10.257 kNm

Vu=1.5*0.567 =0.85 kN

(2.) Landing section

Flexural moment MX=5.343 kNm

Torsional moment MZ=21.5 kNm

Flexural moment MY =5.343 kNm

Shear force Vu=0 kN
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MX=1.5*5.343=8.0145 kNm

MY =1.5*21.5 =32.25 kNm

MZ=1.5*5.343=8.0145 kNm

Vu=1.5*0 =0 kN

4.4.3 Main reinforcement of the flight

Overall thickness of the flight,D=120 mm

cover d’=20 mm

Effective depth d=100 mm

Width of the flight,b=1100mm

Main reinforcement of the flight

At the intersection of the landing and the flight

For MX=2.4726 kNm

b=1100 mm and d=100 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 10.257 ∗ 1+ 120

1100

1.7
= 6.7kNm

Mue = MX +Mt = 2.4726 + 6.7 = 9.2kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
1− 4.6∗Mu

fck∗b∗d2
]

= 20∗1100∗100
2∗415 ∗ [1−

√
1− 4.6∗9.2∗106

20∗1100∗1002 ] = 269mm2

Provide 4 No.s of 10 mm dia bars at top and bottom.

For MY =45.9 kNm

D=1.1 m and b=120 mm

d’=50 mm and d=1050 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 10.257 ∗ 1+ 1100

120

1.7
= 61.34kNm

Mue = MX +Mt = 45.9 + 61.34 = 107.24kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
(1− 4.6∗Mu

fck∗b∗d2
)] =
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20∗120∗1050
2∗415 ∗ [1−

√
(1− 4.6∗107.24∗106

20∗120∗10502 )] = 298mm2

Provide 4 No.s of 10 mm bars are provided on each vertical face.

4.4.4 Transverse reinforcement of the flight

Vu=0.85 kN

Equivalent shear force

Vue = Vu + 1.6 ∗ Tu
b

= 0.85 + 1.6 ∗ 10.257

1.1
= 15.77kN

Equivalent nominal shear stress

τve = Vue
bd

= 15.77∗1000
1100∗100 = 0.144MPa

pt = Ast∗100
bd

= 314∗100
1100∗100 = 0.3

From Is 456-2000,pg.84,Table 23,

τc=0.236 MPa

So,τc τve

Hence, it is safe.

However, nominal torsion/shear reinforcement shall be provided in the form of closed

stirrups with spacing not exceeding the smallest of the following.

x=120-20-20-10-10-10=50 mm and y=1100-50-50-10-10-10=970 mm

Spacing should be less than

a. (x+y)/4=255mm

b. 300 mm

c. 0.75*d=75 mm

d. 50 mm

Provide 10 mm dia @ 100 mm c/c near support and increase the spacing

to from 250 mm c/c spacing.
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4.4.5 Main reinforcement of the landing

Overall thickness of the flight,D=150 mm

cover d’=20 mm

Effective depth d=130 mm

Width of the flight,b=1300 mm

Main reinforcement of the landing

For MX=8.01 kNm

b=1300 mm and d=130 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 8.01 ∗ (1+ 150

1300

1.7
= 5.255kNm

Mue = MX +Mt = 8.01 + 5.255 = 13.265kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
1− 4.6∗Mu

fck∗b∗d2
]

= 20∗1300∗130
2∗415 ∗ [1−

√
1− 4.6∗13.265∗106

20∗1300∗1302 ] = 293mm2

Provide 4 No.s of 10 mm dia bars at top and bottom.

For MY =32.25 kNm

D=1.3 m and b=150 mm

d’=50 mm and d=1250 mm

Equivalent bending moment

Mt = Tu ∗
1+D

b

1.7
= 8.01 ∗ 1+ 1300

150

1.7
= 45.55kNm

Mue = MX +Mt = 32.25 + 45.55 = 77.8kNm

Ast = fck∗b∗d
2∗fy ∗ [1−

√
(1− 4.6∗Mu

fck∗b∗d2
)]

= 20∗150∗1250
2∗415 ∗ [1−

√
(1− 4.6∗77.8∗106

20∗150∗12502 )] = 176mm2

Provide 3 No.s of 10 mm dia bars are provided on each vertical face.

4.4.6 Transverse reinforcement of the landing

Vu=0 kN

Equivalent shear force

Vue = Vu + 1.6 ∗ Tu
b

= 0 + 1.6 ∗ 8.01
1.3

= 9.86kN
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Equivalent nominal shear stress

τve = Vue
bd

= 9.86∗1000
1300∗130 = 0.06MPa

pt = Ast∗100
bd

= 314∗100
1300∗130 = 0.2

From Is 456-2000,pg.84,Table 23,

τc=0.2 MPa

So,τc ¿ τve

Hence, it is safe.

However, nominal torsion/shear reinforcement shall be provided in the form of closed

stirrups with spacing not exceeding the smallest of the following.

x=150-20-20-10-10-10=80 mm and y=1300-50-50-10-10-10=1170 mm

Spacing should be less than

a. (x+ y)/4=313mm

b. 300 mm

Provide 10 mm dia @ 300mm c/c spacing

Reinforcement detailing of L shape type of stairs is as shown below Fig.4.6
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Figure 4.3: Reinforcement detailing of free standing stairs
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Figure 4.4: Reinforcement detailing of free standing stairs
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Figure 4.5: Reinforcement detailing of Horse shoe type of stairs
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Figure 4.6: Reinforcement detailing of ELL type of stairs



Chapter 5

Analysis of FSS using different

support conditions

5.1 General

In recent years the free standing staircase has become quite popular. Many variations

of this type of staircase are possible and some will be described herein. A discussion of

the factors that affect the behavior of the staircase is presented together with an ab-

breviated design example which illustrates only those calculations which are peculiar

to this type of design.Once the forces and moments are determined, the calculations

are generally routine.

5.2 Discussion of support conditions using Gould’s

method

The behavior of the staircase is greatly influenced by the support at point A in

Fig.5.1.If a horizontal thrust can be developed at point A, the moment at the base is

quite small;however, if only a vertical reaction can be developed, the moment at the

92
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base is greatly increased. The various possibilities are illustrated in Fig.5.2.If the

horizontal reaction is to be developed, consideration must be given to the construction

procedure as well as the final finished stair to insure that the structure is never free

standing.The great variation in base moment between the two conditions is illustrated

in the design example.

To reduce the moment at the base, it seems logical to take advantage of the large

Figure 5.1: Vertical and Horizontal reaction at point A

Figure 5.2: Torsion at the intermediate landing

lever arm afforded by the stair height and, thereby, reduce the overturning moment by
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developing the horizontal reaction.However, there are certain situations in which this

is not practical such as the case when the upper end of the staircase rests on a spandrel

beam which is designed to resist only vertical loads and is frequently restricted in size

because of architectural considerations.The example illustrates the treatment of this

type of support.

5.2.1 Analysis

For the analysis the staircase is considered as a frame with the moment at the in-

termediate landing being transferred between the legs by torsion developed through

the landing.The method of analysis used depends again on the support conditions

at the upper landing.If the horizontal reaction can be developed, classical moment

distribution can be used with point B Fig5.1 considered fixed against translation.On

the other hand if only the vertical reaction can be developed, point B can translate.To

avoid a deflection correction to the moment distribution procedure ,the problem can

be solved by Castigliano’s theorem of strain energy.This is the approach used in the

example.For a fixed support at point A, moment distribution can again be used and

for a completely free standing stair, the moment may be solved by statics.For the

case where the upper support is flexible, the structure may be solved by Castigliano’s

theorem as illustrated in the examples.

5.2.2 Torsion at intermediate landing

As shown in Fig.5.2,the torsional moment in the landing at the junction of the upper

and lower legs can be found by statics.The maximum torsional shear stress can be

approximated by the formula

ω =
T

α ∗ b ∗ h2

The coefficient α is itself proportional to b/h but approaches a limit of 0.333 for large

values of b/h.There is considerable doubt as to the distribution of shear stress on the
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landing may be regarded as effective. For the design example, the reinforcing will be

proportioned on the basis of the entire cross section resisting the torsion.

5.2.3 Additional moments on upper and lower legs

For the staircase to behave as a frame, vertical and horizontal forces (HB and VB)

must be transmitted between the legs of the staircase through the landing. Since these

forces act on a section through the center of the landing parallel to the longitudinal

axis of the legs, they are eccentric with respect to the legs and produce bending in the

plane of the legs, as well as torsion of the legs. The staircase should be investigated

for the effects of these additional torsional and bending moments as well as primary

moment and axial force acting on the legs.

In as much as the legs are generally quite stiff in their own plane and have considerable

torsional resistance, these additional moments should have only a minor effect on the

design.

Figure 5.3: Different support conditions applied on the free standing stairs
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5.3 Design examples

The staircase which is shown in Fig.5.4,will be studied for the various support con-

ditions at point A mentioned in Fig.5.3.The dimensions of the stairs are given in

Fig.5.4.

Case A: Vertical reaction at point A

Figure 5.4: Elevation of the stair

The forces acting on the structure are shown in Fig.5.5.Castigliano’s theorem states

that

∂U

∂VA
= ∆VA (5.1)

Where,VA=Vertical reaction at point A, and

∆VA= Vertical deflection at point A
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Figure 5.5: Vertical reaction at point A

Since the vertical deflection at point A equals zero:

∂U

∂VA
= 0 (5.2)

Only the strain energy due to bending is considered.

U =

∫
M2dx

2EI
(5.3)

∂U

∂VA
=

∫
Mdx

EI
∗ ∂M
∂VA

(5.4)

To simplify the algebraic expressions the integration will be performed with the for-

mulas for moment and the limits based on the horizontal dimensions as shown in

Fig.5.6. After integration and simplification of the expressions, they will be multi-

plied by the ratio of the actual length of the member to the horizontal projection(F)

to obtain the actual value of the integral. For the case A this is not necessary since

the factor will not affect VA.The value of F is computed below.

Integration factor

F1 =
2.9

2.6
= 1.12 F2 =

2.9

2.6
= 1.12
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Substituting the expressions for bending moment and the partial derivatives into

Figure 5.6: Moments and reactions

Eq.5.4.

EI ∂U
∂VA

=
∫ 26

10

0
[(VA−2.85x)(x)(x)+(VA(2.6−x)−32.71+40.2275x+2.85x2)(2.6−x)]dx

11.72 ∗ VA − 36.13 = 0

VA = 3.083

From the equations given in Fig.5.6.

MD = 63kNm(anticlockwise)

VD = 69.87− VA = 69.87− 3.083 = 66.8kN

MBA = 2.6 ∗ VA − 38.532 = −25.423kNm(clockwise)

MBD = 2.6 ∗ VA − 32.71 = −19.6kNm(anticlockwise)

T = 25.423+19.6
2

= 22.51kNm

Case B:Horizontal and Vertical reaction at point A

The moment distribution procedure is used in this solution in which is illustrated in
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Figure 5.7: Hinged support at point A

Fig.5.3 and Fig.5.8.To solve for HA and VA moments are taken about Point B in

Fig.5.9and about Point D in Fig.5.10.∑
MB = 29.64 ∗ 1.3− 5.233− 2.6 ∗ VA + 1.3 ∗HA = 0

Figure 5.8: Moment distribution

∑
MD = 2 ∗ 29.64 ∗ 1.3 + 10.5875 ∗ (1.1

2
+ 2.6)− 9.34− 2.6 ∗HA = 0

By solving above equations,

HA = 38.875kN

VA = 32.25kN

From the Fig.5.9 and Fig.5.10,

MD = 8.98kNm(anticlockwise)
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Figure 5.9: Moment at point B

Figure 5.10: Moment at point D

VD = 69.87− VA = 69.87− 32.25 = 37.62kN

MBA = 5.233kNm(clockwise)

MBD = 0.592kNm(clockwise)

T = 5.233−0.592
2

= 2.91kNm

Case C: Fixed at point A

The moment distribution procedure is used in this solution in which is illustrated in

Fig.5.3 and Fig.5.12.To solve for HA and VA moments are taken about Point B in

Fig.5.13 and about Point D in Fig.5.14.∑
MB = 29.64 ∗ 1.3− 2.911− 2.6 ∗ VA + 1.3 ∗HA + 6.423 = 0
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Figure 5.11: Fixed support at point A

Figure 5.12: Moment distribution

∑
MD = 2 ∗ 29.64 ∗ 1.3 + 10.5875 ∗ (1.1

2
+ 2.6)− 7.883− 2.6 ∗HA = 0

By solving above equations,

HA = 39.43kN

VA = 35.89kN

From the Fig.5.13 and Fig.5.14,

MD = 7.883kNm(anticlockwise)

VD = 69.87− VA = 69.87− 35.89 = 33.98kN

MBA = 2.911kNm(clockwise)

MBD = 2.911kNm(clockwise)
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Figure 5.13: Moment at point B

Figure 5.14: Moment at point D

T = 2.911−2.911
2

= 0kNm

Case D: Vertical reaction of flexible support at point A

This case is similar to case A except that the support at point A is flexible as shown

in Fig.5.3. Assume that the support may be represented by a spring such that

KV =
VA

∆VA
(5.5)

∂U

∂VA
= − VA

KV

(5.6)
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Figure 5.15: Vertical spring constant at point A

Where,

VA=Vertical reaction at point A

∆VA= Vertical deflection at point A

KV =Vertical spring constant

∂U

∂VA
=

∫
Mdx

EI
∗ ∂M
∂VA

From the Fig.5.6,

1.12 ∗ (11.72 ∗ VA − 36.13) = −VA∗EI
KV

VA(13.13 + EI
KV

) = 40.5

VA = 40.5
(13.13+ EI

KV
)

Integration factor is multiplied to obtain the actual value of the integral.

Case E: Horizontal and Vertical reaction of flexible support at point

A

This case is similar to case B.However, since the deflections are involved the solv-

ing method is different. The supports will be treated as KH and KV as shown in

Fig.5.16.

As per Castigliano’s theorem,

∂U

∂VA
= − VA

KV

(5.7)
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Figure 5.16: Horizontal and vertical spring constant at point A

∂U

∂HA

= −HA

KH

(5.8)

The expressions for bending moment and partial derivatives are as shown in Fig.5.17.

Figure 5.17: Moment and reactions due to spring constants at point A

From Eq. 4.7 and 4.8

EI ∂U
∂VA

=
∫ 26

10

0
[(VA − 0.5HA − 2.85x)(x)(x) +

(VA(2.6− x)− 32.71 + 40.2275x+ 5.7x2 − 1.3HA − 0.9HAx)(2.6− x)dx]

EI ∂U
∂HA

=
∫ 26

10

0
[(VA − 0.5HA − 2.85x)(x)(−0.5x) +
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(VA(2.6− x)− 32.71 + 40.2275x+ 5.7x2 − 1.3HA − 0.9HAx)(−1.3− 0.9x)]dx

From the above Equations,

1.12 ∗ 1

EI
∗ (11.72 ∗ VA − 9.96 ∗HA − 36.47) = − VA

KV

VA ∗ C1 = 11.15 ∗HA + 40.85

1.12 ∗ 1

EI
∗ (18.515 ∗ VA − 9.96 ∗ VA − 248.31) = −HA

KH

HA ∗ C2 = 11.16 ∗ VA + 278.11

Where,

C1 = 13.13 +
EI

KV

C2 = 20.74 +
EI

KH

Form the Above equations,

HA =
278.11 ∗ C1− 455.89

C1C2− 124.434

VA =
40.85 ∗ C2 + 3100.93

C1C2− 124.434

Case F:Partial fixity at point A

If a restraint to rotation proportional to the angle of twist is assumed at point

Figure 5.18: Partial fixity at point A

A(KM = M/φ), the effect of the moment may be accounted for in a similar manner
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as the elastic deflections of the supports.The equations of case E Fig.5.17,may easily

be modified by the addition of a −MA term to the moment expressions as shown in

Fig.5.19.An additional equations is obtained from this condition.

∂U

∂MA

= −MA

KM

The three equations are then

Figure 5.19: Moments and reactions due to partial fixity at point A

EI ∂U
∂MA

=
∫ 26

10

0
[(VAx− 0.5HAx− 2.85x2 −MA)(−1) +

(VA(2.6− x)− 32.71 + 40.2275x+ 5.7x2 − 1.3HA − 0.9HAx−MA)(−1)]dx

EI ∂U
∂VA

=
∫ 26

10

0
[(VAx− 0.5HAx− 2.85x2 −MA)(x) +

(VA(2.6− x)− 32.71 + 40.2275x+ 5.7x2 − 1.3HA − 0.9HAx−MA)(2.6− x)]dx

EI ∂U
∂HA

=
∫ 2.6

0
[(VAx− 0.5HAx− 2.85x2 −MA)(−0.5x) +

(VA(2.6− x)− 32.71 + 40.2275x+ 5.7x2 − 1.3HA − 0.9HAx−MA)(−1.3− 0.9x)]dx

From the above Equations,
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1.12 ∗ 1

EI
∗ (11.72 ∗ VA − 9.96 ∗HA − 6.76 ∗MA − 36.47) = − VA

KV

(5.9)

VA ∗ C1 = 11.15 ∗HA + 7.571 ∗MA + 40.85

1.12 ∗ 1

EI
∗ (18.515 ∗ VA − 9.96 ∗ VA + 8.112 ∗MA − 248.31) = −HA

KH

(5.10)

HA ∗ C2 = 11.16 ∗ VA − 9.085 ∗MA + 278.11

1.12 ∗ 1

EI
∗ (11.72 ∗ VA − 9.96 ∗HA − 36.47) = −MA

KM

(5.11)

MA ∗ C3 = 7.5712 ∗ VA − 9.085 ∗HA + 57.043

Where,

C1 = 13.13 +
EI

KV

C2 = 20.74 +
EI

KH

C3 = 5.824 +
EI

KM

From the Above equations,

HA =
518.23 ∗ C1− 455.5 ∗ C3− 278.11 ∗ C1C3 + 13935.36

82.54 ∗ C1 + 57.32 ∗ C2 + 124.32 ∗ C3− C1C2C3− 1534

VA =
−40.85 ∗ C2C3− 3100.93C3− 431.87 ∗ C2 + 28728.62

82.54 ∗ C1 + 57.32 ∗ C2 + 124.32 ∗ C3− C1C2C3− 1534

MA =
2526 ∗ C1− 309.2 ∗ C2− 57.043 ∗ C1C2− 12248.23

82.54 ∗ C1 + 57.32 ∗ C2 + 124.32 ∗ C3− C1C2C3− 1534

Properties of supporting members

Supporting beam

For cases D, E and F a supporting beam is assumed with the following dimensions

and section properties.

L=Length of the beam=5m

B=width of the beam=300mm

D=Depth of the beam=450mm

E = 5000 ∗
√

20 = 22360.7MPa G = E
2∗(1+µ) = 22360.7

2∗(1+0.15)
= 9722MPa

Ibx = B∗D3

12
= 2.278 ∗ 109mm4 Iby = D∗B3

12
= 1.0125 ∗ 109mm4
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KH =
48∗E∗Iby

L3 = 8693.84N/mm KV = 48∗E∗Ibx
L3 = 19560.06N/mm

KM = τ ∗ β ∗D ∗B3 ∗G

τ = φ
L

= 1
5000

D
B

= 1.5

β = 0.196

KM = 4630.4 ∗ 106N/mm

g=Width of stair slab=1.1m

d=Depth of stair slab=0.15m

IL = g∗d3
12

= 309.4 ∗ 106mm4

C1 = 13.5m3 C2 = 21.54m3 C3 = 5.825m3

Case D

VA = 40.5
C1

= 3kN

VD = 69.87− VA = 66.87kN

MD = 63kNm(anticlockwise)

MBA = 2.6 ∗ VA − 38.532 = −30.732kNm(clockwise)

MBD = 2.6 ∗ VA − 32.71 = −24.91kNm(anticlockwise)

T = 30.732+24.91
2

= 27.821kNm

Case E

HA = 278.11∗C1−455.89
C1C2−124.434 = 25.31kN

VA = 40.85∗C2+3100.93
C1C2−124.434 = 23.93kN

VD = 69.87− VA = 45.94kN

MD = 110.422− 1.3 ∗HA = 77.519kNm(anticlockwise)

MBA = 2.6 ∗ VA − 1.3 ∗HA − 38.532 = −9.22(clockwise)kNm

MBD = 2.6 ∗ VA − 1.3 ∗HA − 32.71 = −3.395(anticlockwise)kNm

T = 9.22+3.395
2

= 6.31kNm

Case F

HA = 23.21kN

VA = 27.22kN

MA = 8.96kNm
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Table I: Summary of Moment and Reactions
Case VA(kN) HA(kN) MA(kNm) VD(kN) MD(kNm) MBA(kNm) MBD(kNm) T(kNm)
A 3.083 - - 66.8 63 25.423 19.6 22.51
B 32.25 38.875 - 37.62 8.98 5.233 0.592 2.91
C 35.89 39.43 6.423 33.98 7.883 2.911 2.911 0
D 3 - - 66.87 63 30.732 24.91 27.821
E 23.93 25.31 - 45.94 77.519 9.22 3.395 6.31
F 27.22 23.21 8.96 42.65 71.289 2.1 7.9 5

VD = 69.87− VA = 42.65kN

MD = 110.422− 1.3 ∗HA −MA = 71.289kNm(anticlockwise)

MBA = 2.6 ∗ VA − 1.3 ∗HA − 38.532 = 2.1kNm(clockwise)

MBD = 2.6 ∗ VA − 1.3 ∗HA − 32.71 = 7.9kNm(anticlockwise)

T = 2.1+7.9
2

= 5kNm

In below table,the analysis results of Gould’s method is above.

When the only vertical reaction is applied to the flight support at A Fig.5.1,the

torsion in the landing is much more but in the case when the both horizontal and

vertical reactions are to be applied to the flight support then the torsion can be re-

duced in larger no. of amount.It is to be because the lever arm effect afforded by the

stair height so more of the stair height the more will be horizontal thrust so it will

reduce the overturning moment of the stair.It is to be noted that in fully fixed con-

dition,th effect of torsion is becoming zero it means that the it will be better option

for support condition but that condition can not achieve as fully fixed support so it

will be impractical condition.
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Summary and Conclusion

6.1 Summary

From the summary of results shown in Table 3.1, it is apparent that there were dif-

ferences in values in the different type of methods.The main reason can be stated as

the application of method is totally different from each other so the in every method

there will be different assumptions were made.This type of structure is very highly

complex structure which has six degree of indeterminacy and it seems to be impracti-

cal for solving therefore it is required to analyze the structure as for practical use, the

application of a simple and approximate approach is necessary therefore the structure

is required to be converted into statically determinate structure.

In Siev’s method of analysis,the whole structure is assumed as two separate plates

with one end is fixed and the other end has an imaginary support is considered.In this

analysis, the loading condition is given as symmetrical.The slab moments are com-

puted and the secondary stresses are computed from the result of the compatibility

equations and also concluded as torsional moment is small.It is very difficult to solve

when the two flights are having unequal flights.

In Cusens and Kuang’s method,the whole structure is considered as a rigid frame and

the flights and landing portion is considered as a beam and it is assumed that it is cut

110
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from the midsection of the whole structure and using strain energy method moment

can be computed at specified point.In this analysis, the loading condition is given as

symmetric condition.

In Fuchssteiner’s method,the Whole structure is considered as a rigid frame ex-

cept that the landing portion is considered as a horizontal bow girder and done

the analysis using virtual work method.The loading condition is symmetrical.In this

method,redundant are determined solving elastic equations and from the redundant

the moment and reactions can be determined.

Simplified method is based on the Fuchssteiner’s assumptions in which the ratio of

moment of inertia in horizontal axis and M.I. in vertical axis of landing portion is

considered as zero and analyze the structure and determined the moments and reac-

tions.

Finite element analysis is done using SAP 2000 software,in which the structure is

considered as a thick shell element and the loading are given as area load and do the

analysis.

In Gould’s method,the behavior of the staircase can be known as shown in Table 5.1

using applying different support conditions.In which the torsion in the landing is to

be considered as main objective.In which at different support condition the effect of

torsion can be measured using Strain energy and moment distribution method is to

be applied and finding out which is the most appropriate support condition.

6.2 Conclusion

Based on work carried out the following conclusions are to be made:

• Using simplified method the computation time can be saved as compare to other

methods.
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• The simplified method can be applied to calculate the bending moment,torsional

moment and lateral moment and the forces for the design of the free standing

stairs.

• The ratio of IX/IY can be neglected without significant errors in calculating

forces and moments.

• The torsional and bending moment, in Simplified method and finite element

method are very close to each other.

• In the free standing stair,when the different types of support condition are to

be applied then the torsion can be reduced by applying horizontal thrust at the

flight support.In fixed condition at the flight support, the torsion is zero but is

a impractical condition to achieve the fully fixed condition at the flight.

• In the design of the free standing stairs, at the intersection of the flight and

landing the reinforcement bars spacing will be more to avoid the torsion of the

landing.

6.3 Future Scope work

• To develop finite element analysis for Horse shoe and L shape type of structure.

• Testing can be carried out to know the actual behavior of the stairs.

• To know the behavior of the free standing stairs while applying the lateral

loading.

• To know the behavior of the Horse shoe type of stair and l shape type of stair

while applying the lateral loading.

• To do the parametric study of the Horse shoe type of stairs and know its actual

behavior.
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