
Cryptography Algorithm On Reconfigurable Hardware

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

In

VLSI Design

By

MANSUR RIYAZ LATIFBHAI

(11MECV07)

Department of Electrical Engineering

Electronics and Communication Programme

Institute of Technology,

Nirma University, Ahmedabad-382 481

MAY 2013

Cryptography Algorithm On Reconfigurable Hardware

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

In

Electronics & Communication

(Vlsi Design)

By

MANSUR RIYAZ LATIFBHAI

(11MECV07)

Under the Guidance of

Prof. N. P. Gajjar

Department of Electrical Engineering

Electronics and Communication Programme

Institute of Technology,

Nirma University, Ahmedabad-382 481

MAY 2013

1

Declaration

.

This is to certify that

(i) The thesis comprises my original work towards the degree of Master of Tech-

nology in VLSI Design at Nirma University and has not been submitted elsewhere

for a degree.

(ii) Due acknowledgement has been made in the text to all other material used.

MANSUR RIYAZ LATIFBHAI

2

Certificate

This is to certify that the Major Project entitled ”Cryptography Algorithm On

Reconfigurable Hardware” submitted by MANSUR RIYAZ LATIFBHAI,

towards the partial fulfilment of the requirements for the degree of Master of Technol-

ogy in Communication Engineering of Nirma University, Ahmedabad is the record

of work carried out by him under our supervision and guidance. In our opinion,

the submitted work has reached a level required for being accepted for examination.

The results embodied in this major project, to the best of our knowledge, haven’t

been submitted to any other university or institution for award of any degree or

diploma.

Date: Place:Ahmedabad

Internal Guide

Prof.N P Gajjar

(Associate Prof.)

Program Coordinator Head of Department Director

Dr. N M Devashrayee Dr. P N Tekwani Dr. K Kotecha

3

Acknowledgement

First of all I thank almighty God for providing me good health during the

whole project work.

I would like to take the opportunity to extend my gratitude to the management

of Institute of Technology, Nirma University for providing us healthy working envi-

ronment throughout the project work. Prof. N. P. Gajjar is the main source of

motivation for me in the project. He guided me at every step of the work I have

carried out. I would like to thank Prof. N. P. Gajjar for his valuable guidance and

support. I again would like to thank Prof. N. P. Gajjar for allowing me to use the

resources of ISRO Respond Lab for carrying out the project. I would like to thank

Dr. N. M. Devashrayee for his continuous support throughout the project.

I would also like to extend my gratitude to all teaching and non teaching staff

members and my student mates who were helpful to me in direct or indirect way.

At last but not least, I thank my family for their support and love.

4

Abstract

The Cryptographic Algorithm which is most widely used throughout the world

for protecting information. Cryptography is the art of secret writing, followed by

the guarantee to authenticate data and messages and protect the systems from valid

attacks .It comprises of encryption and decryption operations each associated with a

key which is supposed to be kept secret. We have implement RC6 Algorithm. Which

is considered as a secured and elegant choice for AES. RC6 supports 32 bit and 64

bit processing. An eight step operation is used to encipher the 64 bit plain text

block. The encrypted data is then decrypted by performing the reverse operations

on the same.The hardware implementation of RC6 algorithm is done using VHDL

Hardware Description Language.

The choice of reconfigurable logic as a target platform for cryptographic algo-

rithm implementations appears to be a practical solution for embedded systems and

high-speed applications. Both efficient and cost effective solutions of cryptographic

algorithms are desired on reconfigurable logic platform. The term”efficient” nor-

mally refers to ”high speed” solutions.That implies careful considerations of cryp-

tographic algorithm formulations, which often will lead to modify the traditional

specifications of those algorithms. That also implies knowledge of the target device:

devicestructure, device resources, and device suitability to the given task.

Contents

Declaration 1

Certificate 2

Acknowledgement 3

Abstract 4

List of Figures 8

List of Tables 10

1 Introduction 11

1.1 Main Goal . 12

2 Background Information 14

2.1 RC6 Algorythm . 14

2.1.1 Why We have selected RC6 Algorythm 15

2.2 Strength of the Cryptosystem . 16

2.3 Types of Cryptographic Algorythm 17

2.3.1 Symmetric Cryptographic Algorythm 17

2.3.2 Stream Cipher . 18

2.3.3 Block Cipher . 18

2.3.4 Drawbacks of Secret key Cryptography[4] 19

5

6

2.3.5 Asymmetric Cryptographic Algorythms (Public Key Algorithms): 21

2.3.6 Difference between Symmetric and Asymmetric Algorythms . 22

2.4 Basic of RC6 Algorythm . 23

2.4.1 RC6 Block Diagram . 23

2.4.2 Basic Operation . 23

2.4.3 Basic steps for RC6 Algorythm 24

2.5 Encryption . 25

2.5.1 Signal Specification . 25

2.5.2 RC6 Encryption Algorythm 26

2.6 Decryption . 27

3 Theoritical Analysis 30

3.1 Modules Block Diagrams . 30

3.2 Key Scheduling[8] . 31

3.2.1 Key scheduling operation . 32

3.3 Finite State Machines . 33

3.3.1 Introduction . 33

3.3.2 Concept of Finite State Machine 33

3.4 Multiplier . 37

3.4.1 Wallace Tree . 38

3.4.2 Carry Save Adder . 39

3.4.3 Carry Look Ahead Method 41

3.5 Swap Operation . 42

4 Reconfigurable Hardware Technology 44

4.1 Introduction . 44

4.1.1 Why Reconfigurable H/W Technology??[10] 44

4.1.2 Applications of FPGAs . 45

4.2 FPGA Design Flow . 45

4.3 AES Cipher Core . 46

7

4.4 Timing Diagram . 47

5 Implementation & Simmulation Result 48

5.1 How to Simulate & Implement RC6 Algorythm? 48

5.2 Testing Methodology . 48

5.2.1 About RTL Schematic . 49

5.2.2 RTL Schematic for Encryptior 49

5.2.3 RTL Schematic for Decryptior 50

5.3 About Test Bench Waveform . 50

5.4 Steps for Hardware Implementation of RC6 Algorythm[15] 53

5.4.1 Synthesis Report for Encryption: 58

5.4.2 Synthesis Report for Decryption: 59

5.4.3 Synthesis Report for Encryption: 60

5.4.4 Synthesis Report for Decryption: 61

5.4.5 Synthesis Report for Encryption: 62

5.4.6 Synthesis Report for Decryption: 63

Application Area 64

Conclusion 65

Bibliography 66

List of Figures

2.1 RC6 Cipher[12] . 23

2.2 Basic Steps[13] . 24

2.3 Encryption block diagram . 25

2.4 Decryption block diagram . 27

3.1 Digital circuit block diagram for Encryption 30

3.2 Digital circuit block diagram for Decryption 31

3.3 Finite state machine for input Encryption 34

3.4 Finite State Machines for input Decryption 35

3.5 Finite State Machines for output Encryption 36

3.6 Finite State Machines for output Decryption 37

3.7 Wallace tree multiplier[4] . 38

3.8 Wallace structure[4] . 39

3.9 Carry Save Adder[4] . 40

3.10 Carry Look Ahead Method[4] . 41

3.11 Block diagram for swaping[4] . 43

4.1 Fpga design Flow[10] . 45

4.2 AES Cipher Core[10] . 46

4.3 Timing diagram[10] . 47

5.1 RTL Schematic for Encryptior . 49

5.2 RTL Schematic for Decryptior . 50

8

9

5.3 Simulation of Encryption . 51

5.4 Simulation of Decryption . 52

5.5 Select the device and design flow . 53

5.6 Step for Generate programming file 54

5.7 Step for Configure device . 54

5.8 Step for select Boundry-Scan . 55

5.9 Boundary-Scan Mode Selection . 55

5.10 Downloading program in Fpga . 56

5.11 Operation Status . 57

List of Tables

5.1 Device utilization summary Encryption Spartan 3 58

5.2 Timing summary Encryption Spartan 3 58

5.3 Device utilization summary Decryption Spartan 3 59

5.4 Timing summary Decryption Spartan 3 59

5.5 Device utilization summary Encryption Spartan 3E 60

5.6 Timing summary Encryption Spartan 3E 60

5.7 Device utilization summary Decryption Spartan 3E 61

5.8 Timing summary Decryption Spartan 3E 61

5.9 Device utilization summary Vertex 5 Encryption 62

5.10 Timing summary Vertex 5 Encryption 62

5.11 Device utilization summary Vertex 5 Decryption 63

5.12 Timing summary Vertex 5 for Decryption 63

10

Chapter 1

Introduction

Encryption is the transformation of plain data (known as plaintext) into unintel-

ligible data (known as ciphertext) through an algorithm referred to as cipher. There

are numerous encryption algorithms that are now commonly used in computation,

but the U.S. government has adopted the Advanced Encryption Standard (AES) to

be used by Federal departments and agencies for protecting sensitive information.

The National Institute of Standards and Technology (NIST) has published the spec-

ifications of this encryption standard in the Federal Information Processing Stan-

dards (FIPS) Publication.

Any conventional symmetric cipher, such as AES, requires a single key for both

encryption and decryption, which is independent of the plaintext and the cipher

itself. It should be impractical to retrieve the plaintext solely based on the cipher-

text and the encryption algorithm, without knowing the encryption key. Thus, the

secrecy of the encryption key is of high importance in symmetric ciphers such as

AES.

Software implementation of encryption algorithms does not provide ultimate se-

crecy of the key since the operating system, on which the encryption software runs,

11

CHAPTER 1. INTRODUCTION 12

is always vulnerable to attacks

There are other important drawbacks in software implementation of any encryption

algorithm, including lack of CPU instructions operating on very large operands, word

size mismatch on different operating systems and less parallelism in software. In ad-

dition, software implementation does not fulfill the required speed for time critical

encryption applications. Thus, hardware implementation of encryption algorithms

is an important alternative, since it provides ultimate secrecy of the encryption key,

faster speed and more efficiency through higher levels of parallelism.

1.1 Main Goal

The local electron density measurement in plasma is important for:

• The choice of reconfigurable logic as a target platform for cryptographic algo-

rithm implementations appears to be a practical solution for embedded sys-

tems and high- speed applications.

• Both efficient and cost effective solutions of cryptographic algorithms are de-

sired on reconfigurable logic platform. The term ”efficient” normally refers to

”high speed” solutions.

• So here main objective is to find high speed and low area implementations

of cryptographic algorithms using reconfigurable logic devices. That implies

careful considerations of cryptographic algorithm formulations, which often

will lead to modify the traditional specifications of those algorithms. That

also implies knowledge of the target device: device structure, device resources,

and device suitability to the given task.

CHAPTER 1. INTRODUCTION 13

• So in this Cryptography algorithm like AES will be developed by using verilog

HDl language and uses a FPGA as a target

Chapter 2

Background Information

Cryptography

The Cryptographic Algorithm which is most widely used throughout the world

for protecting information. Cryptography is the art of secret writing, followed by

the guarantee to authenticate data and messages and protect the systems from valid

attacks .It comprises of encryption and decryption operations each associated with

a key which is supposed to be kept secret. We have implement RC6 Algorithm.

Which is considered as a secured and elegant choice for AES due to its simplicity,

security, performance and efficiency. RC6 supports 32 bit and 64 bit processing. An

eight step operation is used to encipher the 64 bit plain text block. The encrypted

data is then decrypted by performing the reverse operations on the same. The hard-

ware implementation of RC6 algorithm is done using VHDL Hardware Description

Language. For this implementation Xilinx foundation series 13.1i software

2.1 RC6 Algorythm

We introduce the RC6 TM block cipher. RC6 is an evolutionary improvement

of RC5, designed to meet the requirements of the Advanced Encryption Standard

(AES). Like RC5, RC6 makes essential use of data-dependent rotations. New fea-

14

CHAPTER 2. BACKGROUND INFORMATION 15

tures of RC6 include the use of four working registers instead of two, and the in-

clusion of integer multiplication as an additional primitive operation. The use mul-

tiplication greatly increases the diffusion achieved per round, allowing for greater

security, fewer rounds, and increased throughput.

2.1.1 Why We have selected RC6 Algorythm

RC6 is considered as a secured and elegant choice due to its simplicity, security,

performance and efficiency. It appears that RC6 is best suited for implementation

in the targeted Xilinx FPGA (Spartan-3). Our studies reveal that multiplication

and addition are the major bottlenecks as far as speed of encryption in the RC6 ci-

pher is Concerned. Nevertheless, up to a great extent this shortcoming was Tackled

using pipelining in our design.Consequently, since RC6 works best in non-feedback

mode, the highest Speed/Area ratio can be achieved in the same RC6 is a symmetric

key block cipher derived from RC5. It was designed by Ron Rivest,Matt Robshaw,

Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the Advanced Encryp-

tion Standard (AES) competition. The algorithm was one of the five finalists, and

was also submitted to the NESSIE and CRYPTREC projects. It is a proprietary

algorithm, patented by RSA Security.

RC6 proper has a block size of 64 OR 128 bits and supports key sizes of 128,

192 and 256 bits, but, like RC5, it can be parameterized to support a wide variety

of word-lengths, key sizes and number of rounds. RC6 is very similar to RC5 in

structure, using data-dependent rotations, modular addition and XOR operations;

in fact, RC6 could be viewed as interweaving two parallel RC5 encryption processes.

However, RC6 does use an extra multiplication operation not present in RC5 in

order to make the rotation dependent on every bit in a word, and not just the least

significant few bits.

CHAPTER 2. BACKGROUND INFORMATION 16

2.2 Strength of the Cryptosystem

The strength of the encryption method comes from the algorithm, secrecy of the

key,length of the key, initialization vectors, and how they all work together. When

strength is discussed in encryption, it refers to how hard it is to figure out the

algorithm or key, whic hever is not made public. Breaking a key has to do with

processing an amazing number of possible values in the hopes of finding the one

value that can be used to decrypt a specific message. The strength correlates to

the amount of necessary processing power and time it takes to break the key or

figure out the value of the key. Breaking a key can be accomplished by a brute force

attack, which means trying every possible key value until the resulting plaintext

is meaningful. Depending on the algorithm and length of the key, this can be a

very easy task or a task that is close to impossible. If a key can be broken with a

Pentium II processor in three hours, the cipher is not strong at all.If the key can

only be broken with the use of a thousand multiprocessing systems, and it takes 1.2

million years, then it is pretty darn strong.

The goal of designing an encryption method is to make compromise too expensive

or too time consuming. Another name for cryptography strength is work factor,

which is an estimate of the effort it would take an attacker to penetrate an encryption

method.

The strength of the protection mechanism should be used in correlation to the

sensitivity of the data being encrypted. It is not necessary to encrypt information

about a friends Saturday barbeque with a top secret NSA encryption algorithm, and

it is not a good idea to send the intercepted KGB spy information using Pretty Good

Privacy (PGP). Each type of encryption mechanism has its place and purpose.

Even if the algorithm is very complex and thorough, there are other issues within

encryption that can weaken the strength of encryption methods. Because the key is

CHAPTER 2. BACKGROUND INFORMATION 17

usually the secret value needed to actually encrypt and decrypt messages, improper

protection of the key can weaken the encryption strength. An extremely strong

algorithm can be used, using a large keyspace, and a large and random key value,

which are all the requirements for strong encryption, but if a user shares her key

with others, these other pieces of the equation really dont matter.

An algorithm with no flaws, a large key, using all possible values within a keyspace,and

protecting the actual key are important elements of encryption. If one is weak, it

can prove to be the weak link that affects the whole process.

2.3 Types of Cryptographic Algorythm[11]

1. Symmetric encryption algorithms (secret or private key algorithms) and

2. Asymmetric encryption algorithms (or public key algorithms).

The difference is that symmetric encryption algorithms use the same key for en-

cryption and decryption (or the decryption key is easily derived from the encryption

key), whereas asymmetric encryption algorithms use a different key for encryption

and decryption.

2.3.1 Symmetric Cryptographic Algorythm

Symmetric encryption algorithms can be divided into stream ciphers and block

ciphers. Stream ciphers encrypt a single bit of plaintext at a time, whereas block

ciphers take a number of bits (typically 64 bits in modern ciphers), and encrypt

them as a single unit.

CHAPTER 2. BACKGROUND INFORMATION 18

2.3.2 Stream Cipher

Stream ciphers are an important class of encryption algorithms. They encrypt in-

dividual characters (usually binary digits) of a plaintext message one at a time,

using an encryption transformation which varies with time. By contrast, block ci-

phers tend to simultaneously encrypt groups of characters of a plaintext message

using a fixed encryption transformation. Stream ciphers are generally faster than

block ciphers in hardware, and have less complex hardware circuitry. They are also

more appropriate, and in some cases mandatory (e.g., in some telecommunications

applications), when buffering is limited or when characters must be individually

processed as they are received. Because they have limited or no error propagation,

stream ciphers may also be advantageous in situations where transmission errors are

highly probable.

2.3.3 Block Cipher

Symmetric-key block ciphers are the most prominent and important elements in

many cryptographic systems. Individually, they provide confidentiality. As a funda-

mental building block, their versatility allows construction of pseudorandom num-

ber generators, stream ciphers, MACs, and hash functions. They may furthermore

serve as a central component in message authentication techniques, data integrity

mechanisms, entity authentication protocols, and (symmetric-key) digital signature

schemes. A block cipher is a function which maps n-bit plaintext blocks to n-bit

ciphertext blocks; n is called the blocklength. It may be viewed as a simple sub-

stitution cipher with large character size. The function is parameterized by a k-bit

key K,1 taking values from a subset K (the key space) of the set of all k-bit vectors

Vk. It is generally assumed that the key is chosen at random. Use of plaintext and

ciphertext blocks of equal size avoids data expansion.

CHAPTER 2. BACKGROUND INFORMATION 19

To allow unique decryption, the encryption function must be one-to-one (i.e.,

invertible). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption

function is a bijection, defining a permutation on n-bit vectors. Each key potentially

defines a different bijection. The number of keys is [K], and the effective key size is

lg [K]; this equals the key length if all k-bit vectors are valid keys (K = Vk). If keys

are equiprobable and each defines a different bijection, the entropy of the key space

is also lg [K].

2.3.4 Drawbacks of Secret key Cryptography[4]

The Drawbacks of Secret Key Cryptography:

• Key distribution and key exchange: The master key used in this kind of

cryptosystems must be known by the sender and receiver only. Hence, both

parties should prevent that this key can get compromised by unauthorized

entities.

• Key management: Those system having many users, must generate/manage

many keys. For security given key should be changed frequently, even in every

session.

• Incompleteness: It is impossible to implement some of the security services

mentioned before. In particular, Authentication and non-repudiation cannot

be fully implemented by only using secret key cryptography.

.

Some examples of popular symmetric encryption algorithms:

DES (Data Encrytion Standard): DES (Data Encrytion Standard)

DES accepts a 64-bit key, the key setup routines effectively discard 8 bits, giving

DES a 56-bit effective keylength.. DES was designed to be implemented only in

hardware, and is therefore extremely slow in software. A recent successful effort to

crack DES took several thousand computers several months.

CHAPTER 2. BACKGROUND INFORMATION 20

RC5:

RC5 is a group of algorithms designed by Ron Rivest of RSA Data Security that

can take on a variable block size, key size, and number of rounds. The block size is

generally dependent on the word size of the machine the particular version of RC5

was designed to run on; on 32-bit processors (with 32-bit words), RC5 generally has

a 64-bit block size. David Wagner, John Kelsey, and Bruce Schneier have found

weak keys in RC5, with the probability of selecting a weak key to be 2-10r, where

r is the number of rounds. For sufficiently large r values (greater than 10), this is

not a problem as long as you are not trying to build a hash function based on RC5.

Kundsen has also found a differential attack on RC5. RC5 is described in this RSA

document. RC5 is patented by RSA Security, Inc.

RC6:

RC6 is Ronald Rivest’s AES submission. Like all AES ciphers, RC6 works on 128 bit

blocks. It can accept variable length keys. It is very similar to RC5, incorporating

the results of various studies on RC5 to improve the algorithm. The studies of RC5

found that not all bits of data are used to determine the rotation amount (rotation is

used extensively in RC5); RC6 uses multiplication to determine the rotation amount

and uses all bits of input data to determine the rotation amount, strengthening the

avalanche effect.

RIJNDEAL:

Rijndael is an AES winner by Joan Daemen and Vincent Rijmen. The cipher has

a variable block and key length, and the authors have demonstrated how to extend

the block length and key length by multiples of 32 bits. The design of Rijndael was

influenced by the SQUARE algorithm. The authors provide a Rijndael specification

and a more theoretical paper on theirdesign principles. The authors have vowed to

never patent Rijndael.

CHAPTER 2. BACKGROUND INFORMATION 21

RC4:

The RC4 algorithm is a stream cipher from RSA Data Security, Inc. Though RC4

was originally a trade secret, the alleged source code was published anonymously

in 1994. The published algorithm performs identically to RC4 implementations in

official RSA products. RC4 is widely used in many applications and is generally re-

garded to be secure. There are no known attacks against RC4. RC4 is not patented

by RSA Data Security, Inc; it is just protected as a trade secret. The 40-bit ex-

portable version of RC4 has been broken by brute force! RC4 is implemented in

Kremlin.

MD5:

While MD4 was designed for speed, a more conservative approach was taken in the

design of MD5. However, applying the same techniques he used to attack MD4,

Hans Dobbertin has shown that collisions can be found for the MD5 compression

function in about 10 hours on a PC. While these attacks have not been extended to

the full MD5 algorithm, they still do not inspire confidence in the algorithm. RSA

is quick to point out that these collision attacks do not compromise the integrity of

MD5 when used with existing digital signatures. MD5, like MD4, produces a 128-bit

digest. An RFC describing MD5 in detail is available here. The use of MD5, as well

as MD4, is not recommended in new applications.

2.3.5 Asymmetric Cryptographic Algorythms (Public Key

Algorithms):

Asymmetric encryption algorithms (public key algorithms) use different keys for

encryption and decryption, and the decryption key cannot (practically) be derived

from the encryption key. Public key methods are important because they can be

used for transmitting encryption keys or other data securely even when the parties

CHAPTER 2. BACKGROUND INFORMATION 22

have no opportunity to agree on a secret key in private.

2.3.6 Difference between Symmetric and Asymmetric Al-

gorythms

Symmetric encryption algorithms encrypt and decrypt with the same key.Main ad-

vantages of symmetric encryption algorithms are its security and high speed. Asym-

metric encryption algorithms encrypt and decrypt with different keys. Data is en-

crypted with a public key, and decrypted with a private key. Asymmetric encryption

algorithms (also known as public-key algorithms) need at least a 3,000-bit key to

achieve the same level of security of a 128-bit symmetric algorithm. Asymmetric

algorithms are incredibly slow and it is impractical to use them to encrypt large

amounts of data. Generally, symmetric encryption algorithms are much faster to

execute on a computer than asymmetric ones. The keys used in public-key encryp-

tion algorithms are usually much longer than those used in symmetric encryption

algorithms. This is caused by the extra structure that is available to the cryptan-

alyst. There the problem is not that of guessing the right key, but deriving the

matching private key from the public key .In practice they are often used together,

so that a public-key algorithm is used to encrypt a randomly generated encryption

key, and the random key is used to encrypt the actual message using a symmetric

algorithm. This is sometimes called hybrid encryption.

CHAPTER 2. BACKGROUND INFORMATION 23

2.4 Basic of RC6 Algorythm

2.4.1 RC6 Block Diagram

Figure 2.1: RC6 Cipher[12]

2.4.2 Basic Operation

RC6-w/r/b operates on units of four w-bit words using the following six basic op-

erations. The base-two logarithm of w will be denoted by lg w.

• a + b integer addition modulo 2w

• a - b integer subtraction modulo 2w

CHAPTER 2. BACKGROUND INFORMATION 24

• a XOR b bitwise exclusive-or of w-bit words

• a X b integer multiplication modulo

• a� b rotate the w-bit word a to the left by the Amount given by the least

significant lg w bits of b

• a�b rotate the w-bit word a to the right by the Amount given by the least

significant lg w bits of

2.4.3 Basic steps for RC6 Algorythm

Figure 2.2: Basic Steps[13]

CHAPTER 2. BACKGROUND INFORMATION 25

2.5 Encryption

Figure 2.3: Encryption block diagram

2.5.1 Signal Specification

A block diagram of the 16-bit RC6 encryptor and decryptor is shown in Figure 1.

Control signals are active high. The following gives a description of the input and

output signals for the encryptor.

1. Plaintext e: This 16-bit data input signal corresponds to a word of plaintext

data that is to be encrypted. Four consecutive 16-bit Plaintext evalues form

a 64-bit block that is to be encrypted.

2. Round keys e: This 16-bit data input signal corresponds to one encryption

round key. A total of 44 round keys are used to encrypt and decrypt the data.

Although the encryptor and decryptor use identical round keys for a given

block of data, separate encryptor and decryptor round keys are provided, since

they receive the round keys at different times and processor the round keys

in reverse order. This also allows the decryptor to be deciphering one block,

while the encryptor is ciphering the next.

CHAPTER 2. BACKGROUND INFORMATION 26

3. Start e: This 1-bit control input signal tells the encryptor that it will start

receiving Plaintext e during the next cycle. This signal should only go high

for one cycle.

4. Reset: This 1-bit control input signal resets both the encryptor and decryptor.

When reset occurs, all registers are cleared and the controllers go to a known

state.

5. Clock : This 1-bit input signal corresponds to the system clock for the en-

cryptor and decryptor. Values are to be latched into registers at the positive

edge of the clock.

6. Ciphertext : This 16-bit data output signal corresponds to a word of cipher-

text data that has been encrypted and needs to be decrypted. Four consecutive

16-bit ciphertext values form a 64-bit block that has been encrypted. The same

signal is used as an input to the decryptor.

7. Ready e: This 1-bit control output signal indicates that the encryptor is

ready to receive new plaintext. It goes high following a reset signal and stays

high until the Start e goes high. Once the encryptor has finished encrypting

the dataReady egoes high, until the next time Start e goes high.

8. Start d : This 1-bit control output signal tells the decryptor that the en-

cryptor will start sending ciphertext during the next cycle. This signal should

only go high for only one cycle. This same signal is used as an input to the

decryptor

2.5.2 RC6 Encryption Algorythm

Input:

• Plain text stored in four w-bit input registers A, B, C,D

• Number r of rounds

CHAPTER 2. BACKGROUND INFORMATION 27

• w-bit round keys S[0,. . . ,2r + 3]

Output:

• Cipher text stored in A, B, C, D

Procedure:

B = B + S [0]

D = D + S [1]

for i = 1 to r do

t = (B X (2B + 1)) � lg w

u = (D X (2D + 1)) � lg w

A = ((A XOR t) � u) + S [2i]

C = ((C XOR u) � t) + S [2i+ 1]

(A, B, C, D) = (B, C, D, A)

A = A + S [2r + 2]

C = C + S [2r + 3]

2.6 Decryption

Figure 2.4: Decryption block diagram

CHAPTER 2. BACKGROUND INFORMATION 28

The following gives a description of the input and output signals for

the decryptor.

1. Plaintext d : This 16-bit data output signal corresponds to a word of plain-

text data that has been decrypted. Four consecutive 16-bit plaintext d values

form a 64-bit block that has been decrypted. When the same round keys are

used, the plaintext d produced should be equivalent to the plaintext e that

was originally input.

2. Round keys d : This 16-bit data input signal corresponds to one decryption

round key. (see the description of round key e for further details).

3. Start d : This 1-bit control input signal tells the encryptor that it will start

receiving Plaintext e during the next cycle. This signal should only go high

for one cycle.

4. Reset : This 1-bit control input signal resets both the encryptor and decryp-

tor. When reset occurs, all registers are cleared and the controllers go to a

known state.

5. Clock : This 1-bit input signal corresponds to the system clock for the en-

cryptor and decryptor. Values are to be latched into registers at the positive

edge of the clock.

6. Ciphertext : This 16-bit data output signal corresponds to a word of cipher-

text data that has been encrypted and needs to be decrypted. Four consecutive

16-bit ciphertext values form a 64-bit block that has been encrypted. The same

signal is used as an input to the decryptor.

7. Ready d : This 1-bit control output signal indicates that the decryptor is

ready to receive new ciphertext. It goes high following a reset signal and stays

high until the start d goes high. Once the decryptor has finished decrypting

the data ready d goes high, until the next time start d goes high.

CHAPTER 2. BACKGROUND INFORMATION 29

Input:

• Cipher text stored in four w-bit input registers A, B,C, D

• Number r of rounds

• w-bit round keys S[0,. . . ,2r + 3]

Output:

• Plaintext stored in A, B, C, D

Procedure:

C = C S [2r + 3]

A = A S [2r + 2]

for i = r down to 1 do

{

(A, B, C, D) = (D, A, B, C)

u = (D X (2D + 1)) � lg w

t = (B X (2B + 1)) � lg w

C = ((C S [2i + 1]) � t) u

A = ((A S [2i]) � u) t

}

D = D S [1]

B = B S [0]

Chapter 3

Theoritical Analysis

3.1 Modules Block Diagrams

Figure 3.1: Digital circuit block diagram for Encryption

30

CHAPTER 3. THEORITICAL ANALYSIS 31

Figure 3.2: Digital circuit block diagram for Decryption

3.2 Key Scheduling[8]

The key schedule of RC6-w/r/b is practically identical to the key schedule of RC5-

w/r/b. Indeed, the only difference is that for RC6-w/r/b, more words are derived

from the user-supplied key for use during encryption and decryption.

The user supplies a key of b bytes, where 0 ≤ b≤ 255. From this key, 2r + 4 words

(w bits each) are derived and stored in the array S[0,. . . ,2r + 3]. This array is used

in both encryption and decryption. The user supplies a key of b bytes. Sufficient

zero bytes are appended to give a key length equal to a non-zero integral number

of words; these key bytes are then loaded in little-endian fashion into an array of c

w-bit (w = 32 bits in our case) words L [0],. . . , L [c - 1]. Thus the first byte of key

is stored as the low-order byte of L [0], etc., and L [c - 1] is padded

With high-order zero bytes if necessary. The number of w bit (32 bit) words

that will be generated for the additive round keys is 2r + 4 and these are stored

CHAPTER 3. THEORITICAL ANALYSIS 32

in the array S [0;. . . ;2r+3]. the constants P32 = B7E15163 and Q32 = 9E3779B9

(hexadecimal) are the same magic constants” as used in the RC5. You may have

wondered why there is array of 44. Because in encryption and decryption process

we add round keys to A and C in

A = ((A xor t) � u) + S [2i]

C = ((C xor u) � t) + S [2i + 1]

So we need

20(for a as rounds are 20) +20(for C) +2(in starting for adding to B and

D) +2(For adding in end in A and C) = 44

3.2.1 Key scheduling operation

Inputs:

User-supplied b byte key preload into the c-word array L[0,. . . ,c-1]

Number r of rounds

Output:

W-bit round keys S [0,. . . , 2r+3]

Procedure:

s(0)<= P ; – initialize constant array

l(0)<= (round keyse +s(0));

s(1)<= (l(0)+ s(0)+ q);

l(1)<= (l(0)+s(1));

In general:

S(i) = l(i-1) + s(i-1) +q ;

L(i) = l(i) +s(i);

CHAPTER 3. THEORITICAL ANALYSIS 33

3.3 Finite State Machines

3.3.1 Introduction

Outputs are Function of State (and Inputs) Next States are Functions of State

and Inputs Used to implement circuits that control other circuits ”Decision Making”

logic.

3.3.2 Concept of Finite State Machine

State diagram is a representation of different state and each state have different

operation. The state diagram of cryptographic algorithms are shown below. The

function in each state is also described in diagram. .

.

CHAPTER 3. THEORITICAL ANALYSIS 34

Figure 3.3: Finite state machine for input Encryption

CHAPTER 3. THEORITICAL ANALYSIS 35

Figure 3.4: Finite State Machines for input Decryption

.

CHAPTER 3. THEORITICAL ANALYSIS 36

Figure 3.5: Finite State Machines for output Encryption

CHAPTER 3. THEORITICAL ANALYSIS 37

Figure 3.6: Finite State Machines for output Decryption

3.4 Multiplier

The multiplier is used to compute the operation B*(2B+1). It is implemented as

222B222+B. so we need to do a squaring and a addition. the partial product array for a

parallel square using a multiplier The boxes indicate which terms may be combined

using the equivalence aij+aji=2aij. In the lower portion of figure 2aij is represented

by placing aij one column to the left which has a weighting of two times that of

the current column. The square of operand a can be computed with the reduced

partial product array. So for 2b we place whole product one place to left which has

weighting 2 times that of previous. Our product is reduced to 9 from 16 due to

this technique. In product1 (p1) we have value of B for +B operation in 222B222+B

CHAPTER 3. THEORITICAL ANALYSIS 38

operation and normal 16 products formed are reduced to 8 products due to partial

product reduction array. Now you may have wondered that why there are only 16

products while we are multiplying 16*16 so 32 products of 32 bits should be there.

But there are only 16 bits and 16 products because we are using only lower 16 bits.

This is so because we are having 20 rounds so for 20 rounds we are multiplying b*b

so if we use all 32 bits and multiply at end of 20 rounds our product will be too

large so we are using only lower 16 bits .

Figure 3.7: Wallace tree multiplier[4]

These 9 products formed are then input of Wallace tree multiplier. Wall ace tree

will take 9 inputs and will produce final 16 bits one product. This is required by us

to use as output of 222B222+B.

3.4.1 Wallace Tree

Figure below show the diagram of Wallace tree. Wallace tree have 2 components.

1. Carry save adder-CSA

CHAPTER 3. THEORITICAL ANALYSIS 39

2. Carry look ahead-CLA

A Wallace tree is an efficient hardware implementation of a digital circuit that

multiplies two integers. The Wallace tree has three steps:

1. Multiply (that is - AND) each bit of one of the arguments, by each bit of the

other, yielding n2 results. Depending on position of the multiplied bits, the

wires carry different weights, for example wire of bit carrying result of a2b3 is

32 (see explanation of weights below).

2. Reduce the number of partial products to two by layers of full and half adders.

3. Group the wires in two numbers, and add them with a conventional adder.

Figure 3.8: Wallace structure[4]

3.4.2 Carry Save Adder

The carry-save unit consists of n full adders, each of which computes a single sum

and carry bit based solely on the corresponding bits of the three input numbers.

CHAPTER 3. THEORITICAL ANALYSIS 40

Given the three n - bit numbers a, b, and c, it produces a partial sum ps and a

shift-carry sc:

psi= ai
⊕

bi
⊕

ci

sci=(ai
∧

bi)
∨

(ai
∧

ci)
∨

(bi
∧

ci)

The entire sum can then be computed by:

1. Shifting the carry sequence sc left by one place.

2. Appending a 0 to the front (most significant bit) of the partial sum sequence

ps.

3. Using a ripple carry adder to add these two together and produce the resulting

n + 1-bit value. A ripple carry adder cannot compute a sum bit without

waiting for the previous carry bit to be produced, and thus has a delay equal

to that of n full adders. A carry-save adder produces all of its output values

in parallel. we have seven full adder in our carry save adder.

Figure 3.9: Carry Save Adder[4]

CHAPTER 3. THEORITICAL ANALYSIS 41

3.4.3 Carry Look Ahead Method

Carry look ahead logic uses the concepts of generating and propagating carries.

Although in the context of a carry look ahead adder, it is most natural to think

of generating and propagating in the context of binary addition, the concepts can

be used more generally than this. In the descriptions below, the word digit can be

replaced by bit when referring to binary addition.

Figure 3.10: Carry Look Ahead Method[4]

The addition of two 1-digit inputs A and B is said to generate if the addition will

always carry, regardless of whether there is an input carry (equivalently, regardless

of whether any less significant digits in the sum carry). For example, in the decimal

addition 52 + 67, the addition of the tens digits 5 and 6 generates because the

result carries to the hundreds digit regardless of whether the ones digit carries (in

the example, the ones digit does not carry (2+7=9)). In the case of binary addition,

A + B generates if and only if both A and B are 1. If we write G(A,B) to represent

the binary predicate that is true if and only if A + B generates, we have:

CHAPTER 3. THEORITICAL ANALYSIS 42

G(A,B) = A · B

The addition of two 1-digit inputs A and B is said to propagate if the addition will

carry whenever there is an input carry (equivalently, when the next less significant

digit in the sum carries).. In the case of binary addition, A + B propagates if

and only if at least one of A or B is 1. If we write P(A,B) to represent the binary

predicate that is true if and only if A + B propagates, In the case of binary addition,

this definition is expressed by:

P′(A,B) = A
⊕

B

Carry is given by,

Ci+1 = Gi + Pi · Ci

Implementation details

Here we add sum and carry which are the output of carry save adder series and

3rd digit is taken as 0 as we have only two 16 bit arrays to add. We add individual

bits for example

P0(A,B)=A0 XOR B0

G0=A0 AND B0

C1=G0+(P0·C0)

C0=0

3.5 Swap Operation

As shown in block diagram, first we perform XOR operation between two inputs

then store the result into temporary variable. After that temporary variable is

further XORed with any of two inputs.so we get swapped output.In RC6 algorithm

by performing swap operation we get,

(A,B,C,D)=(B,C,D,A)

Formula for swapping can be written as,

CHAPTER 3. THEORITICAL ANALYSIS 43

Figure 3.11: Block diagram for swaping[4]

temp AB:= tempA xor tempB;

A≤ temp AB xor tempA;

Chapter 4

Reconfigurable Hardware

Technology

4.1 Introduction

• An FPGA is an integrated circuit that belongs to a family of programmable

devices called Programmable Logic Devices (PLDs).

• An FPGA contains tenths of thousands of building blocks, known as Configu-

ration Logic Blocks (CLB) connected through programmable interconnections.

• In recent years, FPGAs have been used for reconfigurable computing when the

main goal is to obtain high performance at a reasonable cost out of hardware

implemented algorithms.

4.1.1 Why Reconfigurable H/W Technology??[10]

The main advantage of FPGAs is their reconfigurability, i.e., they can be used

for different purposes at different stages of a computation and they can be, at least

partially, reprogrammed on run-time.

44

CHAPTER 4. RECONFIGURABLE HARDWARE TECHNOLOGY 45

4.1.2 Applications of FPGAs

1. Network processors

2. Real-time systems

3. Rapid ASIC prototyping

4. Digital signal processing

5. Robotics

6. Cryptography

7. Computer graphics etc...

4.2 FPGA Design Flow

Figure 4.1: Fpga design Flow[10]

CHAPTER 4. RECONFIGURABLE HARDWARE TECHNOLOGY 46

Figure 4.2: AES Cipher Core[10]

4.3 AES Cipher Core

The AES cipher core consists of a key expansion module, an initial permutation 0

module, a round permutation module and a final permutation module. The round

permutation module will loop internally to perform 10 iteration (for 128 bit keys).

CHAPTER 4. RECONFIGURABLE HARDWARE TECHNOLOGY 47

4.4 Timing Diagram

Figure 4.3: Timing diagram[10]

Chapter 5

Implementation & Simmulation

Result

5.1 How to Simulate & Implement RC6 Algory-

thm?

We have implemented cryptography in Xilinx 13.1i edition software.We have seen

how to make a program in Xilinx now we will see the results. And we will also come

to know that how to give inputs and how to check test bench and see output. RTL

schematic shows a functional digital circuit having inputs and outputs. Test bench

waveform is used to check whethre our digital circuit works perfectly or not.for that

specific steps must be followed as described in this section.

5.2 Testing Methodology

We can test our project by two ways.

1. Design project using RTL SCHEMETIC

2. Simulate project using TEST BENCH WAVEFORM

48

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 49

5.2.1 About RTL Schematic

Our design can be viewed using RTLschematic that,

1. A diagram showing the logical hierarchy of your modules including module

names and brief descriptions of what each module does.

2. Detailed block diagrams for the encryptor and decryptor, which show registers,

functional units, multiplexers, control signals, etc.

3. State transition graphs or ASM charts for the finite state machines that control

your encryptor and decryptor.

4. VHDL code for your encryptor, decryptor, key scheduler, and testbench. This

code should be commented well.

5.2.2 RTL Schematic for Encryptior

After checking syntex successfully, RTL schematic can be viewed from PRO-

CESSES/ VIEW RTL SCHEMATIC .It shows digital circuit input and output dia-

gram for RC6 ENCRYPTION algorithm.

Figure 5.1: RTL Schematic for Encryptior

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 50

5.2.3 RTL Schematic for Decryptior

After checking syntex successfully, RTL schematic can be viewed from PRO-

CESSES/ VIEW RTL SCHEMATIC .It shows digital circuit input and output dia-

gram for RC6 DECRYPTION algorithm

Figure 5.2: RTL Schematic for Decryptior

5.3 About Test Bench Waveform

Our design should be tested by developing a testbench that ,

1. Reads in plaintext, user-supplied keys, and expected ciphertext from a file.

2. Uses the key scheduler to take the user-supplied keys and generate the round

keys.

3. Send the appropriate the control signals, plaintext, and round keys to the

encryptor and decryptor.

4. Tests to ensure that the ciphertext is correctly generated and that the plaintext

from the decryptor matches the plaintext to the encryptor. If discrepancies

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 51

occur between the expected results and actual results, errors should be re-

ported.

In fig below we can see the output test bench of encryptor the cipher text is

available after 1800ns. The cipher text is available after ready e signal goes high.this

cipher text is given to decryptor

Figure 5.3: Simulation of Encryption

. When simulation is done we can see output of decryptor as shown below. The

plain text which was given in encryptor is obtained in decryptor output.

.

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 52

Figure 5.4: Simulation of Decryption

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 53

5.4 Steps for Hardware Implementation of RC6

Algorythm[15]

STEP 1: Select the device and design flow for the project. .

Figure 5.5: Select the device and design flow

Device Family: Choose Spartan 3, the device we will be using.

Device: xs3s400, the specific Spartan 3 device we use.

Package: PQ208, this is the package type of our device (Ball Grid Array, 256 pins).

Speed Grade: The speed grade for this device is -4

STEP II: Create and save the user constraint file and run the Generate Program-

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 54

ming File option.

Figure 5.6: Step for Generate programming file

. STEP III: Hook up the FGPA to the PC using the supplied JTAG cable.

1. Start the iMPACT program by selecting it in the main Xilinx window under

Generate Programming File. .

Figure 5.7: Step for Configure device

2. When the Configure Devices dialog appears, select Boundary-Scan Mode and

press Next. .

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 55

Figure 5.8: Step for select Boundry-Scan

3. In the next dialog select Automatically connect to cable and press Next.

Figure 5.9: Boundary-Scan Mode Selection

.

4. iMPACT should autodetect the FPGA and alert you that 2 devices were found,

press OK.

5. When the select file menu appears, select the .bit file you generated earlier.

You should have only one of these files in your project directory and it should

have the same name as your schematic. Select that file and press Open.

6. If iMPACT warns you about the JTagClk being changed, simply press OK

and move on.

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 56

7. Another Open File dialog will appear. This is used for programming the Flash-

rom on the board and will not be used here. Select the Bypass button on this

dialog.

8. With the programming files assigned, right click on the leftmost device and

select Program..

Figure 5.10: Downloading program in Fpga

.

9. Within the Program menu, unselect the Verify check if it is checked. If you

try to program this FPGA with verify turned on, the programming will fail.

10. Select OK. The FPGA will take a moment to program, and should return

with a Programming Successful message.

.

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 57

Figure 5.11: Operation Status

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 58

5.4.1 Synthesis Report for Encryption:

Device utilization summary for SPARTAN 3(3s400pq208-4):

Used Available Utilization

Number of Slices: 1273 3584 35

Number of Slice Flip Flops: 211 7168 2

Number of 4 input LUTs: 2460 7168 34

Number of IOs: 52

Number of bonded IOBs: 52 141 36

IOB Flip Flops:: 16

Number of GCLKs: 1 8 12

Table 5.1: Device utilization summary Encryption Spartan 3

Timing Summary(Speed Grade: -4):

Minimum period: (Maximum
Frequency:74.571MHz)

13.410ns

Minimum input arrival time
before clock:

206.128ns

Maximum output required
time after clock:

7.271ns

Table 5.2: Timing summary Encryption Spartan 3

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 59

5.4.2 Synthesis Report for Decryption:

Device utilization summary for SPARTAN 3(3s400pq208-4):

Used Available Utilization

Number of Slices: 1285 3584 35

Number of Slice Flip Flops: 221 7168 3

Number of 4 input LUTs: 2490 7168 34

Number of IOs: 52

Number of bonded IOBs: 52 141 36

Number of GCLKs: 1 8 24

Table 5.3: Device utilization summary Decryption Spartan 3

Timing Summary(Speed Grade: -4):

Minimum period: (Maximum
Frequency:78.339MHz)

12.765ns

Minimum input arrival time
before clock:

207.548ns

Maximum output required
time after clock:

7.241ns

Table 5.4: Timing summary Decryption Spartan 3

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 60

5.4.3 Synthesis Report for Encryption:

Device utilization summary for SPARTAN 3E(3s500efg320-4):

Used Available Utilization

Number of Slices: 1269 4656 35

Number of Slice Flip Flops: 203 9312 2

Number of 4 input LUTs: 2454 9312 26

Number of IOs: 52

Number of bonded IOBs: 52 232 22

IOB Flip Flops:: 16

Number of GCLKs: 1 24 4

Table 5.5: Device utilization summary Encryption Spartan 3E

Timing Summary(Speed Grade: -4):

Minimum period: (Maximum
Frequency:90.38MHz)

11.064ns

Minimum input arrival time
before clock:

170.864ns

Maximum output required
time after clock:

4.39ns

Table 5.6: Timing summary Encryption Spartan 3E

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 61

5.4.4 Synthesis Report for Decryption:

Device utilization summary for SPARTAN 3E(3s500efg320-4):

Used Available Utilization

Number of Slices: 1280 4656 27

Number of Slice Flip Flops: 213 9312 2

Number of 4 input LUTs: 2482 9312 26

Number of IOs: 52

Number of bonded IOBs: 52 232 22

Number of GCLKs: 1 24 4

Table 5.7: Device utilization summary Decryption Spartan 3E

Timing Summary(Speed Grade: -4):

Minimum period: (Maximum
Frequency:78.339MHz)

12.765ns

Minimum input arrival time
before clock:

207.548ns

Maximum output required
time after clock:

7.241ns

Table 5.8: Timing summary Decryption Spartan 3E

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 62

5.4.5 Synthesis Report for Encryption:

Device utilization summary for VERTEX 5(5vlx110tff1136-1):

Used Available Utilization

Number of Slices: 199 69120 0

Number of Slice Flip Flops: 2282 2481 91

Number of 4 input LUTs: 152 2481 6

Number of IOs: 52

Number of bonded IOBs: 52 232 22

IOB Flip Flops:: 16

Number of GCLKs: 1 32 3

Table 5.9: Device utilization summary Vertex 5 Encryption

Timing Summary(Speed Grade: -4):

Minimum period: (Maximum
Frequency:194.704MHz)

5.136ns

Minimum input arrival time
before clock:

79.473ns

Maximum output required
time after clock:

3.520ns

Table 5.10: Timing summary Vertex 5 Encryption

CHAPTER 5. IMPLEMENTATION & SIMMULATION RESULT 63

5.4.6 Synthesis Report for Decryption:

Device utilization summary for VERTEX 5(5vlx110tff1136-1):

Used Available Utilization

Number of Slices: 201 69120 0

Number of Slice Flip Flops: 2278 2479 91

Number of 4 input LUTs: 120 2479 4

Number of IOs: 52

Number of bonded IOBs: 52 232 22

Number of GCLKs: 1 32 3

Table 5.11: Device utilization summary Vertex 5 Decryption

Timing Summary(Speed Grade: -4):

Minimum period: (Maximum
Frequency:78.339MHz)

12.765ns

Minimum input arrival time
before clock:

207.548ns

Maximum output required
time after clock:

7.241ns

Table 5.12: Timing summary Vertex 5 for Decryption

Application Area

1. INTERNET E-COMMERCE

2. MOBILE TELEPHON ENETWORKS

3. BANK AUTOMATED TELLER MACHINE

4. SECRET COMMUNICATION

64

Conclusion

We have implemented the RC6 cipher core and RC6 inverse cipher core on FPGA

spartan 3,spartan 3E and Vertex 5 reconfigurable hardware.

We have used two finite state machines for implementing pipeline in our de-

sign.One fsm controls the calculation of the various rounds. Another fsm is re-

sponsible for outputting the ciphertext so the encryptor can accept plain text while

cipher text is still in the process of going out.

Multiplication and addition are the major bottleneck as far as speed of encryption

in RC6 cipher is concerned. Nevertheless up to a great extent this short coming was

tackled using pipelining in our design.

65

Bibliography

[1] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I: Efficient Algo-

rithms.Kluwer Academic Publishers, Boston, MA, 1996. 15. D. Bae, G. Kim, .

Kim, S. Park, and O. Song. An Efficient.

[2] M. Bednara, M. Daldrup, J. Shokrollahi, J. Teich, and J. von zur Gathen. Recon-

figurable Implementation of Elliptic Curve Crypto Algorithms. In 9 th Recon-

figurable Architectures Workshop (RAW- 02), pages 157-164, Fort Lauderdale,

Florida, U.S.A., April 2002.

[3] C. D.Walter, Q. K. Kog, and C. Paar, editors. Cryptographic Hardware and Em-

bedded Systems - CHES 2003, 5th International Workshop, Cologne, Germany,

September 8-10, 2003, Proceedings, volume 2779 of Lecture Notes in Computer

Science. Springer, 2003.

[4] http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.htmlitem

[5] N. A. Saqib, A. Diaz-Perez, and F. Rodriguez-Henriquez. Highly Optimized

Single-Chip FPGA Implementations of AES Encryption and Decryption Cores

In X Workshop Iberchip, pages 117-118, Cartagena-Colombia, March 2004.

[6] A. Rudra, P. K. Dubey, C. S. Julta, V. Kumar, J. R. Rao, and P. Rohatgi.

Efficient Rijndael Encryption Implementation with Composite Field Arithmetic.

In Proceedings of the CHES 2001, volume 2162 of Lecture Notes in Computer

Science, pages 171-184. Springer, 2001.

66

BIBLIOGRAPHY 67

[7] V. A. Pedroni. Circuit Design with VHDL. The MIT Press, August 2004.

[8] National Institute of Standards and Technology. NIST Special Publication 800-

57: Recommendation for Key Management Part 1: General, August 2005

[9] Douglas L. Perry, VHDL Programming by Example, Tata McGraw-Hill Edition

2002, 1-266.

[10] Adesara Ankit M. Prof. N.P. Gajjar Heeral P. Sheth.”Cryptography algorithm

on reconfigure hardware.”Laljibhai Chaturbhai Institute of Technology,Bhandu-

384120,13-14 Apirl,2012

[11] Atul Kahate, Cryptography and Network Security, Tata McGraw-Hill Edition

2003,2,29,40,43,63,75,98,107.

[12] Ioan Mang, Greda Erica Mang, Hardware Implementation with offline test ca-

pabilities of the RC6 block cipher 0-7803-7625-0/02/17.00 2002 IEEE. British

Crown Copyright.

[13] Ronald L. Rivest,M.J.B. Robshaw et al ”The RC6 Block Cipher”,Version 1.1 -

August 20, 1998

[14] L. Henzen VLSI Circuits for Cryptographic Authentication, PhD Thesis ETH-

No. 19351, Hartung-Gorre Printing House, Konstanz, Germany, 2010

[15] Spartan 3 Tutorial

[16] S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin, The Security of the

RC6 Block Cipher, Version 1.0, RSA laboratories, August 20, 1998.

	Declaration
	Certificate
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Main Goal

	Background Information
	RC6 Algorythm
	Why We have selected RC6 Algorythm

	Strength of the Cryptosystem
	Types of Cryptographic Algorythm
	Symmetric Cryptographic Algorythm
	Stream Cipher
	Block Cipher
	Drawbacks of Secret key Cryptography[4]
	Asymmetric Cryptographic Algorythms (Public Key Algorithms):
	 Difference between Symmetric and Asymmetric Algorythms

	Basic of RC6 Algorythm
	RC6 Block Diagram
	Basic Operation
	Basic steps for RC6 Algorythm

	Encryption
	Signal Specification
	 RC6 Encryption Algorythm

	Decryption

	 Theoritical Analysis
	Modules Block Diagrams
	Key Scheduling[8]
	Key scheduling operation

	 Finite State Machines
	Introduction
	Concept of Finite State Machine

	Multiplier
	 Wallace Tree
	 Carry Save Adder
	 Carry Look Ahead Method

	Swap Operation

	 Reconfigurable Hardware Technology
	Introduction
	Why Reconfigurable H/W Technology??[10]
	Applications of FPGAs

	FPGA Design Flow
	AES Cipher Core
	Timing Diagram

	Implementation & Simmulation Result
	How to Simulate & Implement RC6 Algorythm?
	 Testing Methodology
	 About RTL Schematic
	RTL Schematic for Encryptior
	RTL Schematic for Decryptior

	About Test Bench Waveform
	Steps for Hardware Implementation of RC6 Algorythm[15]
	Synthesis Report for Encryption:
	Synthesis Report for Decryption:
	Synthesis Report for Encryption:
	Synthesis Report for Decryption:
	Synthesis Report for Encryption:
	Synthesis Report for Decryption:

	Application Area
	Conclusion
	Bibliography

