
Design of Parallel Architecture For
Correlator using FPGA

Major Project Report

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

PATEL DHAVAL D
(11MECV09)

Department of Electrical Engineering

Electronics & Communication Programme

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2013

Design of Parallel Architecture For
Correlator using FPGA

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

PATEL DHAVAL D
(11MECV09)

Under the guidance of

Prof. N. P. Gajjar

Department of Electrical Engineering

Electronics & Communication Programme

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2013

ii

Declaration

This is to certify that

1. The report comprises my original work towards the Degree of Master of
Technology (Electronics & Communication) in the field of VLSI Design
at Nirma University and not been submitted elsewhere for a Degree.

2. Due acknowledgement has been made in the text to all other material
used.

PATEL DHAVAL D.

iii

Certificate

This is to certify that the Major Project entitled ”Design of Parallel Ar-
chitecture For Correlator using FPGA” submitted by DHAVAL D
PATEL, towards the partial fulfilment of the requirements for the degree of
Master of Technology in Communication Engineering of Nirma University,
Ahmedabad is the record of work carried out by him under our supervi-
sion and guidance. In our opinion, the submitted work has reached a level
required for being accepted for examination. The results embodied in this
major project, to the best of our knowledge, haven’t been submitted to any
other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Guide: Program Coordinator:

(Prof. N P Gajjar) (Dr. N M Devashrayee)
Asst. Professor, EC Professor, EC

HOD: Director:

(Dr. P N Tekwani) (Dr. K Kotecha)
Electrical Dept Computer Dept.

iv

Acknowledgements

First of all I thank almighty God for providing me good health during
the whole project work. I would like to take the opportunity to extend my
gratitude to the management of Institute of Technology, Nirma University
for providing us healthy working environment throughout the project work.
Prof. N. P. Gajjar is the main source of motivation for me in the project. He
guided me at every step of the work I have carried out. I would like to thank
Prof. N. P. Gajjar for his valuable guidance and support. I again would like
to thank Prof. N. P. Gajjar for allowing me to use the resources of ISRO
Respond Lab for carrying out the project. I would like to thank Dr. N. M.
Devashrayee for his continuous support throughout the project. I would also
like to extend my gratitude to all teaching and non teaching staff members
and my student mates who were helpful to me in direct or indirect way. At
last but not least, I thank my family for their support and love.

- Dhaval D Patel
11MECV09

v

Abstract

Modern high-performance digital signal processing (DSP) applications
face constantly increasing performance requirements and are becoming in-
creasingly challenging to develop and work with. In DSP paradigm, many
researchers see potential in achieving algorithm speed-up by employing Field
Programmable Gate Arrays (FPGAs) reconfigurable hardware with paral-
lelism feature. However, developing applications for FPGAs incur particular
challenges on the development flow.

As a similarity measure, cross-correlation has found application in a broad
range of signal processing. A dedicated hardware implementation of cross
correlation is crucial for the requirements of real-time high-speed tasks such
as automatic target matching, recognition and tracking. One efficient par-
allel architectures for real-time implementation of correlator using field pro-
grammable gate array (FPGA) are proposed in this project. In these ar-
chitectures, several novel efficient approaches are proposed to reduce logic
resource usage and computation time. These architectures can be applied in
different situations according to the practical available resource of the FPGA
chip used. Design ,Simulation, implementation realization of Multiple corre-
lator in parallel architecture using embedded platform of Xilinx FPGA and
Software suite.

The outcomes of this work are a multi-channel correlator developed in a
reconfigurable environment with new design methodology and I/O framework
with software control application. The outcomes are used to demonstrate the
potential of implementing DSP applications in a FPGA architecture and to
discuss existing challenges and suggest possible solutions.

1

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract 1

List of Figures 4

List of Tables 5

1 Introduction 6
1.1 Background . 6
1.2 Research Objectives . 11
1.3 Thesis Layout . 12

2 Theory Background and Related Work 14
2.1 Typical High-Performance Signal Processing Applications . . . 15

2.1.1 Radio Astronomy . 15
2.1.2 RADAR Applications 17
2.1.3 Medical Applications 18
2.1.4 Telecommunication . 19

2.2 Correlation as a Typical DSP Application Problem 21
2.2.1 Correlator Theory . 22
2.2.2 Digital Correlators . 23
2.2.3 Implementations of Correlators 24

2.3 DSP Technologies . 26
2.3.1 The Performance Requirements of the DSP Applications 26
2.3.2 Digital Signal Processors (DSPs) 27
2.3.3 Application-Specific Integrated Circuits (ASICs) 28
2.3.4 Hign-Performance Computing 30

2

2.3.5 FPGAs as a DSP Tool 32
2.4 Chapter Summary . 34

3 Linear Correlator Architecture 35
3.1 Auto Correlation . 35

3.1.1 Properties of Auto Correlator Function 36
3.1.2 Matlab Implementation on Auto Correlator Function . 37

3.2 Cross Correlation . 38
3.2.1 Properties of Cross Correlator Function 39
3.2.2 Matlab Implementation on Auto Correlator Function . 39

3.3 Implementation of Linear Correlator Architecture 39
3.3.1 Theory of Linear Correlator Architecture 39
3.3.2 8-bit Linear Correlator Design simulation 43

3.4 Chapter Summary . 44

4 MULTI CHANNEL CORRELATOR ARCHITECUTE 45
4.1 FPGA Architecture . 45

4.1.1 FPGA Technology . 46
4.1.2 Challenges in FPGA Programming 47
4.1.3 High-Level Programming for FPGA Architectures . . . 49

4.2 Project Design Flow and Methodology 50
4.2.1 Development Hardware Platform 51
4.2.2 Development Software Tool 55

4.3 Result . 56
4.3.1 HyperTerminal Output 57
4.3.2 Execution Time calculation 58

4.4 Chapter Summary . 58

5 CONCLUSION AND FUTURE SCOPE 60
5.1 Conclusion . 60
5.2 Future Scope . 61

A Matlab Program for Auto-Correlation 63

A Matlab Program for Cross-Correlation 64

Bibliography 65

3

List of Figures

1.1 Performance Gap Between Traditional Processor Architectures
and Growing Complexity of DSP Algorithms 9

2.1 Generic Digital Processing Scheme 15
2.2 Basic RADAR Principle . 17
2.3 The DSP Performance Gap in Communications Industry . . . 27
2.4 Single Instruction, Multiple Data (SIMD) model 31
2.5 Moore’s Law in the CPU and FPGA World 33

3.1 Matlab Simulation of Auto-Correlation 38
3.2 Matlab Simulation of Cross-Correlation 40
3.3 Linear Correlator Architecture 41
3.4 Multipe-Tau Sampling Block Structure 42
3.5 Multipe-Tau Sampling Time Block Scheme 43
3.6 Xilinx Simulation on 8-bit Correlator 44

4.1 Classification of VLSI Circuits 47
4.2 FPGA Internal Structure . 48
4.3 Low-level FPGA Design Flow 49
4.4 Hardware (a) and Software (b) Design Flows 50
4.5 Virtex 5 FPGA Development Broad 53
4.6 MicroBlaze Soft core processor Blockdigram 56
4.7 Software Development platform in xilinx EDK tool 57
4.8 HyperTerminal Output . 59

4

List of Tables

4.1 Spartan 3E Starter Broad Device Utilization Summary 52
4.2 Virtex 5 Broad Device Utilization Summary 54

5

Chapter 1

Introduction

Necessity, who is the mother of invention.
- Plato

This chapter provides an overview of a high-performance DSP applica-
tions field from its origins to its current state. Appropriate background of
the area of investigation is introduced and respective research objectives are
outlined. The chapter concludes with contributions and organisations of this
thesis.

1.1 Background

High-performance digital signal processing is very challenging work in to-
days engineering fields. Many applications face increasing performance de-
mands and constant additional functional requirements. With digital signal
processing becoming an integral part of everyday life, the demand for high-
performance processing means has expanded rapidly in recent years.

Originally, signals in devices were manipulated using analog techniques
(continuous-time domain). However, nowadays most of them are imple-
mented in digital form (discrete-time domain). The genesis of the digital
signal processing techniques can be connected to the advances in mathe-
matical fields: finite difference methods, numerical integration method and
numerical interpolation methods dating back to the seventeenth century. Of
course, one of the major developments of the DSP area started in the 1950s,
as a part of the far broader and embryonic field of digital computers. From

6

the late 1960s, digital signal processing moulded into a separate field by it-
self. Thus, in the late 1970s when LSI (large-scale integration) technology
became developed enough the realisation of a single chip DSP became prac-
tical. In 1978 AMI announced a Signal Processing Peripheral and released
S2811 a co-processor for a host micro. It was followed by Intels 2920 in 1979.
The unique feature of the latter device was the on-chip analog-to-digital and
digital-to-analog converters (ADC and DAC respectively), though it lacked
a multiplier. The DSP industry continued to grow and progress and, in
the early 1980s, the world saw a second generation of DSPs with realised
features like concurrency, multiple buses and on-chip memory. These were
added with on-chip floating point operations in the third generation of DSPs
in the early 1990s. In the late 1990s multi-processing features, image and
video processors and low-power DSPs were introduced.

Contemporary signal processors are able to demonstrate much greater
performance in many aspects: wider data buses and throughputs, higher
processing speeds of up to 24,000 of 16-bit million multiply accumulate oper-
ations (MMACs)(Texas Instruments Inc., 2008), compatibility with various
modern interfaces and buses such as PCI, USB, Ethernet and many others.

The means of performing signal processing are not, of course, limited
to digital signal processors the ever-growing field of signal processing in-
voked multiple solutions, architectures, technologies, tools and approaches:
the major of which will be covered in the subsequent chapters of this work.

Many large-scale, high-performance DSP applications in such fields as ra-
dio astronomy, telecommunication, high-energy physics, and others involve
computationally-intensive and therefore often time-consuming correlation of
wideband signals. Correlation relies on the two most common types of com-
posed DSP operations multiply and accumulate (MAC), and multiply and
add (MULT-ADD) operations. These operations have been implemented in
digital processing successfully and efficiently. However, the challenge lies in
the number of these operations, i.e. the problem size the running time and/or
space requirements of an algorithm. Many DSP applications employing cor-
relation operation in their algorithms require real-time or near real-time pro-
cessing, eg antenna aperture synthesis, medical applications, cellular and
telecommunications applications (see 2.1 for details on these applications).
Along with necessity to perform computations on-the-fly, correlation involves
considerable execution time or time complexity for wideband correlation. For
example, a multichannel antenna array operating with 128 MHz bandwidth
on each channel will yield a sampling rate of 256 MS/s with 8-bit sampling.

7

For 8-channel correlation, this will produce 2 GB/s input data stream. Such
correlation will generate 28 unique cross product outputs (the other 28 are
just a mirror reflection of the first 28 (see 2.2.1)). An estimated number of
operations required to perform a 32-lag correlation with these parameters
is about 230 Giga-operations of real-time processing. Being a classical DSP
problem, correlation itself does not usually constitute a stand-alone, full and
final application, rather it is an integral part of many DSP applications.

Here and throughout this thesis channel and antenna are used inter-
changeably. While such notation is acceptable and coomon for engineering
and DSP fields, it differs in radio -astronmy where a channel is understood
as a quantum of radio frequency bandwidth.

Although the processing capacity of DSP tools grew along with the re-
quirements of the signal processing, the latter always outstands the former
by considerable and everlasting margins. Almost as soon as the gap be-
tween ever-growing applications requirements and capabilities of the DSP
tools started shaping up (in the mid 1980s see Figure 1.1) the search for
counter-measures to close this gap started. The mostprevalent and widely-
used approach is extensive approach gradual and proactive increase of the
processing power of the DSP tools by increasing the number of employed
computational units and/or operational parameters (operating frequencies,
response times, storage capacities, etc.). Such approach proved to be pro-
ductively working for Central Processing Units (or commonly known as pro-
cessors), Digital Signal Processors (DSPs) and other conventional processing
means for several decades and then started depleting quickly. The cost of
the extensive approach hit the inevitable limitations very soon: high power
consumption, complexity of dealing with growing number of computational
units maintenance cost, etc.

No surprise, that the research vector began deviating towards technologies
and methods which could offer intensive ways of dealing with the problem as
opposed to almost exhausted extensive approaches.

Currently an intensive approach is envisioned by many researchers in
parallelismsimultaneous execution of several computational operations dur-
ing one clock cycle. Moreover, parallelisation of applications is especially
effective in the DSP field as long as many DSP algorithms possess intrinsic
parallelism and therefore potentially sustain a large capacity for acceleration.

Application-Specific Integrated Circuits (ASICs) possess parallelism fea-

8

Figure 1.1: Performance Gap Between Traditional Processor Architectures
and Growing Complexity of DSP Algorithms

tures and reach prominent efficiency of silicon utilisation for a specific oper-
ation determined during the manufacturing stage. Thus, they can be config-
ured to meet the requirements of the particular application avoiding unnec-
essary generality. Reasonably, the performance efficiency achieved by ASICs
for the targeted application is balanced by the impossibility of future modifi-
cations. Many ASICS applications do not require any updates, modifications
or alterations at all (eg integrated circuits of cell phones).

ASICS counterparts Field Programmable Gate Arrays also possess par-
allelism features. Along with this, FPGAs are reconfigurable devices, i.e.
they can be reprogrammed in the field. Adding a bug fix, a new feature or
even updating a computational core of the application, significantly increases
the flexibility of design. Due to this FPGAs have lower non-recurring engi-
neering costs than ASICS. An FPGA is a semiconductor device consisting
of programmable logic blocks and programmable interconnects. Along with
parallelism, reconfigurability significantly expands the application scope of

9

these devices. Armed with these two features over the years, FPGAs became
one of the most promising technologies in digital electronics in general and
in the DSP field in particular.

The interest towards FPGAs has risen even more radically in recent years
with the growth of the chip capacities and the number of supported interfaces,
which include, but are not limited to: PCI family interfaces, Ethernet family
interfaces, support for memory interfaces like DDR/DDR2/DDR3/QDRII,
USB, HyperTransport, RapidIO, VMEbus and many others. Moreover, FP-
GAs are particularly suitable for DSP applications due to: inherited par-
allelism in many DSP algorithms; high bandwidths to on-chip and exter-
nal memories, which support multiple access ports thus allowing further ex-
ploitation of algorithms parallelism; streaming to-be-processed data directly
to computational core implemented in FPGAs via available high-speed in-
terfaces. Hence, these FPGAs features make them a very attractive option
for applications acceleration or even a competitive alternative for traditional
DSP techniques, attracting more and more attention from the DSP industry.

With widespread availability of commercially available FPGAs in the late
1980s,the term reconfigurable computing (RC) was introduced. A reconfig-
urable computing system is a system which is built from reconfigurable com-
puting devices, eg FPGAs or FPGA-like devices. These systems have to be
reprogrammable, permit orders of magnitude speed-ups versus traditional
computational systems and support hardware-like levels of performance.

However, developing DSP applications for RC systems contain many more
challenges and complexities than implementing applications in traditional
software programming domain of DSPs, CPUs, etc. One of the main reasons
is that FPGA design flow adheres to hardware development flow, which tra-
ditionally deals with low level hardware description languages and demands
explicit configuration of available resources in FPGA. The following issues
also impose substantial challenges when employing reconfigurable hardware
in traditional DSP applications: hardware state ambiguity complicates de-
sign debugging; parallelism consideration and a run-at-aclock concept impose
certain idiosyncrasies on algorithm implementation; explicit memory struc-
ture puts constraints on storing of design variables. Moreover,conventional
processing methods (DSPs, CPU and related) have been employed in the
signal processing field considerably longer than FPGAs and therefore have
more advanced and powerful developing and debugging tools.

Therefore, employing FPGAs either as a computational accelerator or as

10

a standalone DSP application platform can be beneficial and challenging at
the same time. Nowadays the traditional approach of increasing the process-
ing capacity of computational means diverge from the traditional approach
of raising the number of employed semiconductors (Moores law) and oper-
ating frequency to a multicore and parallel execution approach. Many DSP
algorithms possess intrinsic parallelism. FPGAs are a very attractive and po-
tentially beneficial option to be employed in DSP paradigms for processing
acceleration. Compelling reported speed-ups of 10X to 100X of equivalent
software algorithms attract more and more attention from the DSP com-
munity. Another argument to employ FPGAs for DSP algorithms is that
these devices follow the International Technology Roadmap for Semiconduc-
tors (ITRS) (http://www.itrs.net/) even more narrowly than modern micro-
processors (eg in terms of contained SRAM memory or leading on the first
fabrication lines). Many researchers agree on a high potential of simultane-
ous operation of conventional processing unit(s) such as a CPU of a PC and
reconfigurable hardware such as FPGA. This architecture invokes previously
unavailable possibilities and options in signal processing but it also brings
new challenges in development flow.

In this thesis a new design methodology for developing applications in
a FPGA environment is applied. Using a mixture of traditional hardware
development tools and conventional software development tools, a multi-
channel wideband cross-correlation for DSP application on a FPGA architec-
ture will be implemented. The prime objective of this thesis is to investigate
the capabilities and challenges of this reconfigurable, hybrid architecture in
the DSP field.

1.2 Research Objectives

In this work, we will investigate the implementation of a classical DSP prob-
lem wideband multi-channel cross-correlation in a hybrid environment of a
commercial FPGA. There are a number of contributions contained within
this thesis.

First, the given work addresses the problem of computational deficiency
in DSP field. By implementing a classical DSP problem in a FPGA archi-
tecture, its abilities of achieving speed-ups for applications from DSP fields
are argued.

11

The second contribution is the platform and the workflow for developing
high performance DSP applications in a FPGA environment. The develop-
ment work flow applied in this work is different from a traditional hardware
design methodology. Rather than using low-level HDLs for hardware de-
sign implementation,the given work utilises high-level languages (HLLs) for
hardware configuration. The potential of using HLLs for FPGA designs is
evaluated and discussed. The given work delivers valuable outcomes for any
DSP engineer developing applications in reconfigurable hardware with the
aid of high-level programming (HLP) languages.

The third contribution is that this work tackles one of the most crucial
issues of DSP applications, which becomes especially challenging and dif-
ficult in the FPGA domain input/output interfaces. The I/O framework
developed in this work features original method of interfacing to FPGA via
onboard SDRAM simultaneously with high speed communication with Fast
simplex link(FSL) interfaces. The developed method can be beneficial to
many applications requiring extensive data exchange. Particularly, it can
be useful for applications targeting Xilinx virtex5 ML505 or to any xilinx
development devices featuring PCIe and DDR/DDR2 SDRAM interfaces.

The given work also introduces the possible evolution of the proposed
platform. The number of available interfaces on the exploited FPGA board
(PCIe, Ethernet, SFP,HSMC, etc) and simple connectivity options of the
conventional PC box provide a considerable degree of architectural possibil-
ities. A highly scalable platform for high performance signal processing is
proposed as a potential future development of the created design. In addi-
tion, one of the advantages of the suggested platform is the affordable cost as
compared to proprietary DSP solutions: the cost of the prospective system
is composed merely from FPGA board.

1.3 Thesis Layout

The thesis is organised into five chapters.

Chapter 2 briefly introduces the background of the investigated prob-
lem. Computationally intensive DSP applications employing correlation of
signals are discussed. Correlation theory is discussed, which is followed by a
discussion on DSP implementation technologies.

12

Chapter 3 briefly introduces the background of the Linear correlator ar-
chitecture and both the auto correlator and cross correlator. Auto correlator
and cross correlator is implementation on MATLAB and compare a golden
output and also implement a 32-bit correlator design in Xilinx ISE 13.1 and
simulated in ISE Simulator. All implementation is observer a simulation
level.

Chapter 4 briefly introduces the multi channel correlator architecture and
discussed implementation on a FPGA device. Also discussed in Microblaze
processor and device utilization on virtex 5 and Spartan 3E starter broad.
Multichannel correlator architecture is discussed to implementation on Xilinx
EDK flow and observed a result on HYPER terminal.

Chapter 5 briefly introduces on final calculation and future scope on this
project.

13

Chapter 2

Theory Background and
Related Work

We live in a moment of history where change is so speeded up
that we begin to see the present only when it is already

disappearing.
- R. D. Laing

This chapter will discuss the most common digital signal processing ap-
plications in a high-performance domain. First, a brief outline of generic
digital signal processing algorithm will be given. Then, the next section will
highlight the most common high performance DSP applications, which will
be followed by the discussion on the cross correlation problem as integral
and often one of the most computationally intensive parts of these applica-
tions. The remaining section will present and consider contemporary DSP
implementation technologies.

The term digital signal processing implies converting an analog signal into
a form of numbers (digital form), the processing of the resultant sequences
to either obtain information or to synthesise signals with desirable properties
and possibly convert the output into analog form again. The overall scheme
of the generic DSP algorithm is shown in Figure 2.1:

The high-performance DSP applications feature a considerable amount of
computations in the Digital processor stage. Several typical high-performance
DSP applications are considered in the following section.

14

Figure 2.1: Generic Digital Processing Scheme

2.1 Typical High-Performance Signal Process-

ing Applications

The number of signal processing applications in todays life is truly enor-
mous. Nevertheless, not every DSP application is suitable for reconfigurable
computing. A number of studies exist which investigate efficiency criteria
of an application to be employed in FPGAs. The applications performance
implemented in FPGA depends on :

1. Data parallelism available in the applications algorithm;

2. Data element size and arithmetic complexity;

3. Amenability to pipelining, and simple control requirements.

The following sections highlight several high-performance DSP applica-
tions,which have one common and integral operation cross-correlation of
signals. The potential of implementing these applications in or with the help
of reconfigurable hardware will be considered. The applications below will
be considered in retrospect.

2.1.1 Radio Astronomy

Throughout human history, man has been always mysteriously attracted to
the sky. With the discovery and subsequent invasion of new technologies,
traditional methods of visual investigation of the sky, Ie methods of optical
astronomy, were joined by radio astronomy techniques. Many astronomical
bodies emit radio waves, which after certain processing can tell valuable
and previously inaccessible information about their origin.Thus, in the last

15

half of the 20th century the prominent advances in radio astronomy led to
a number of foremost discoveries like masers, pulsars, radio galaxies, the
Cosmic Microwave Background Radiation, etc.

With radio astronomy, scientists can study astronomical phenomena which
are invisible to the human eye. While in optical observation the useful in-
formation is extracted from the spatial distribution of light across an object,
ie image, radio astronomy uses a different principle. RF waves emitted by
a certain phenomenon can be received and directly sampled in a time do-
main, thus the tools used for detecting and measuring this interaction are
considerably different from optical telescopes.

To produce a radio image of a celestial phenomenon a principle of inter-
ferometry is used, which entails the superposition technique - interference
(adding or overlaying) of signals from two or more antennas. This technique
is also known as antenna aperture synthesis when multiple antennas are used
to work as one using interferometry principle.

The core idea of antenna aperture synthesis is again to superimpose the
signal waves from a number of radio telescopes and, while doing so, inphase
waves will add up, while antiphase waves will cancel each other out. This cre-
ates a combined telescope with the size of the furthest observing telescopes
apart. The image quality produced by such a composed antenna depends on
the number of the projected separations between any two telescopes as seen
from the radio source (number of baselines). With each radio telescope pro-
ducing a data stream the processing and computational task can be extremely
intensive. Besides, the processing is complicated by low signal-to-noise ratios
which are common for radio astronomical observations.

The backbone operation of antenna aperture synthesis is correlation or
finding the amount of similarity in the signal between two given antennas
in an antenna array. The term correlation and underlying theory will be
discussed more deeply in 2.2.1. Even for a medium-size antenna array, com-
putation of correlation between all the elements of the array can be a very
challenging task due to the number of involved mathematical calculations.
The example considered in 1.1 with an 8-element antenna array requires
230×109 operations per second. An experienced reader will estimate that
the problem size of the given example as average to below average. Never-
theless, such a system might require a performance power of not less than
230 GFlops (depending on implementation). In real-life, large-scale systems
that correlate signal pairs of multielement arrays may contain millions of

16

correlator circuits in order to accommodate all the required antennas and
spectral channels. Hence, with an increase of any of the above parameters
the computational complexity of aperture synthesis grows drastically. That
is why antenna aperture synthesis and radio astronomy have been established
as one of the most major and demanding consumers of DSP technologies.

2.1.2 RADAR Applications

RADAR or Synthetic Aperture Radar (SAR) applications are based on the
principle of the scattering of electromagnetic waves. Originally, RADAR
meant RAdio Detection And Ranging, however later the term became used as
a standard word. The most common RADAR system consists of a transmitter
and a receiver EM waves radiated by the transmitter are reflected (scattered)
by a target, which are then collected by the receiver for further analysis. Any
change in the dielectric constants of the target and a media surrounding it
will be conveyed in the scattered waves. The basic principle of RADAR
theory is illustrated in Figure 2.2.

Figure 2.2: Basic RADAR Principle

The gathered data can include the objects position, movement or its par-
ticular features and attributes. The range of the applications, where RADAR
technique is used, is wide: weather prediction, air traffic control, threat de-
tection systems, military missile guidance and reconnaissance radars, etc.

17

Antenna aperture technique as mentioned in 2.1.1 is also used in phased
array radars. In such arrays, comprised of a number of similar properly
displaced antenna elements, the scanning beam is controlled by operating
a phase of the signal of each individual transmitting antenna. Thus, the
overall transmitted signal is maximised in a desired direction and suppressed
in undesired directions.

In modern RADAR applications DSP techniques are used extensively:
generation and forming of the transmission pulses, controlling the antenna
beams pattern and direction, filtering of clutter, and beamforming (S. Bhak-
tavatsala, 2002). Cross correlation is one of the central operations in RADAR
applications: it is used to find the relation or similarity between the origi-
nal and reflected waves. When applied on a largescale for multiple signals
and performed in a real-time fashion, such correlation becomes a challenging
task.

Substantial utilisation of RADAR techniques in military area lays par-
ticular requirements on the DSP technologies in RADAR applications, eg
a common trend is the need for smaller energy-efficient systems with high
processing capabilities. Furthermore, typical operational signals in RADAR
are very weak and with the recent tendency of radars being operated in
a dense urban environment, the task of processing such signals becomes a
major challenge. This issue can be mitigated by overlaying data from multi-
ple sensors and known terrain features. In addition, newly-emerging digital
beam-forming technologies based on a high-speed digital systems work with
an ever-increasing number of scanning beams. The latter two issues increase
RADAR system processing requirements considerably.

2.1.3 Medical Applications

Nonetheless, signal-processing technologies are not solely used for cognitive
purposes.Perceptive, non-intrusive analytical capabilities of radio imaging
make it an excellent option for diagnoses in medical areas. In the context of
digital signal processing, the most interesting category amongst all the cate-
gories comprising the medical imaging is the ultra-wideband (UWB) imaging,
which in turn is used primarily for early-stage breast cancer detection.

One of the most crucial factors in successful breast-cancer treating is de-
tecting it at the earliest stage possible. Contemporary diagnosis methods
like X-ray imaging, Magnetic Resonance Imaging (MRI), and ultrasound are

18

capable of reducing malignant tissue. However, problems with a relatively
high rate of false-negative diagnosis along with many unnecessary biopsies
due to the low positive predictive rate make the use of X-ray mammography
difficult and ineffective. Other methods like MRI and ultrasound are some-
what more effective in cancer lesions detection, yet do not always provide
the necessary level of sensitivity, can be too operator specific and are very
expensive.

Many of the existing drawbacks in early-stage breast-cancer detection can
be alleviated with ultra-wideband imaging technology. The UWB imaging
method employs the radar technique which was described in 2.1.2. A trans-
mitting antenna (or a set of antennas) radiates a scanning burst of microwave
energy. This electromagnetic energy penetrates through the target under in-
vestigation, scatters on the target, and further is collected by a receiving
antenna or with an array of antennas. Then, the processing takes place with
the primary goal to identify the presence and location of the considerable
backscattered energy an indication of the dielectric difference between ma-
lignant and healthy tissue. Thus, the post-processing of the received signals
has to be very sensitive to filter out the necessary information from the an-
tennas noise, clutter due to heterogeneity in the breast tissue etc. Moreover,
it has to be precise image resolution on the order of millimetres is desirable.
Similar to RADAR applications, during the post-processing stage correlation
is applied to find similarities or discrepancies in tissue readings provided by
transmitted and reflected waves. Therefore, modern approaches of the ex-
isting radar application have to be adapted and improved, according to the
requirements of UWB medical imaging. Now the medical diagnosis tools are
still expect the DSP instruments to deliver an efficient and reliable method
of breast-cancer testing.

2.1.4 Telecommunication

Communication technologies are one of the most actively developing areas
today. The emergence of new wireless services along with the high growth of
data rates in existing services, indicates an ever-growing demand for telecom-
munication capacity. With worldwide deployment of 3G networks, releasing
beyond-3G and 4G standards and specifications, the challenges for the DSP
area keep accumulating: high data throughputs (up to 1 Gbps), multimedia
communications, seamless global roaming, maintaining high user capacity,
and supporting migration and the compatibility between existing previous-
generation and upcoming next-generation networks, etc . Consequently, the

19

research community is focusing on different advanced signal processing issues
to achieve substantial improvements in communication systems.

To demonstrate the computation requirements that lay in the telecom-
munication area, an example of Code Division Multiple Access (CDMA)
standards can be used. CDMA based standards (CDMA2000, W-CDMA,
etc.) have become increasingly popular during the emergence of the third
generation networks due to their objective to maintain the ever-growing data
throughputs and efficient spectrum utilisation. In brief, the idea of CDMA
implies that a number of users share the same bandwidth of frequencies and
are distinguished by the individual code (pseudorandom code). Such an
approach has a much higher data bandwidth than traditional Time and Fre-
quency Division Multiple Accesses (TDMA and FDMA respectively). How-
ever, these benefits are balanced with certain difficulties. For instance, the
choice and assignment of a pseudorandom code to user is not a very simple
routine in highly populated large-scale mobile networks. This problem can
be computationally-intensive so certain solutions were proposed to address
this issue. Similarly, an analogous problem arises on the receiving side to
decode signal from multiple users in the most efficient and fastest way. It has
been indicated that this problem also has significant computational needs.

Furthermore, the underlying complexity of the CDMA algorithm implies
a challenging and complicated processing mission itself: as long as in CDMA
the users share the same bandwidth the multiple access interference (MAI)
has to be considered and alleviated. Prevention of this interference is exacer-
bated by the intersymbol interference (ISI) and multipath signal propagation
which is natural to all urban mobile networks. For this purpose sophisticated
channel estimation algorithms are applied. The computational complexity
of such algorithms is considerable and furthermore they have to be imple-
mented in real-time fashion. Therefore, the research community has turned
to elaborate DSP techniques like real-time DSPs and FPGAs to respond to
these challenges.

Tackling the processing difficulties is not of course the feature of only the
CDMA standard. As it was mentioned above, with the rapidly-growing rates,
throughputs, capacities, etc. the industry is facing expanding requirements
throughout its applications. One example is 3G and 4G mobile standards.
These standards offer high data throughputs to the end-users even compa-
rable to office LANs in 4G networks. To supply such high speeds, a number
of advanced and complex techniques are employed in these standards. One
such technique is smart antennas. To maintain high data rates in complex

20

urban environments these antennas use adaptive beamforming and direction-
of-arrival (DOA) estimation algorithms. In turn, these algorithms employ
cross-correlation operation for estimation which signals arriving from which
directions to suppress and which to maximise. Such calculations have to be
performed with complex numbers and most importantly should be done in
real-time. Thus, it is evidently seen that the necessity for high-performance
signal-processing utilities spans across the whole communication industry,
leaving researchers in unrelenting pursuit for an adequate response.

2.2 Correlation as a Typical DSP Application

Problem

In many of the aforementioned applications an integral and common part
can be singled out all of them are dealing with combined sources of informa-
tion providing a synergistic combination of knowledge about the investigated
object. In other words, whenever a system is dealing with a number of input
data streams collaboratively reducing the entropy of a studied phenomenon,
the term multi-sensor data fusion is applied. The integral part of this fusion
is to express the joint result of analysis of two or more originally different
sources. For that reason a correlation operation is applied, which in turn is
regarded no less as a backbone of the whole DSP area.

Thus, the prevailing number of high-end DSP applications such as an-
tenna aperture synthesis, radioimaging, RADAR, radio astronomy, high-
energy physics and many others, has a common and very computationally-
intensive part the multichannel wideband correlation of signals. Correlation
or, more generally speaking, finding a relation between a set of signals, is
a computational core for the majority of signal processing operations and
is considerably critical for computation performance.The result of the cross-
correlation function is a measure of similarity between a pair of energy signals
.

As it was noted before in 2.1.1, one of the applications where correlation is
applied is radio astronomy. For example, it is used in the radio-astronomical
technique known as Very Long Baseline Interferometry (VLBI). In turn, the
antenna aperture synthesis is used in VLBI. The latter technique implies that
the correlated product of signals from two radio telescopes gives visibility
frequencies of celestial object. The frequency information is obtained by
averaging additional multiplications by a lagged signal and finally the data

21

is transferred to the frequency domain by applying Fourier transform.

2.2.1 Correlator Theory

A measure of similarity between a pair of signals, x[k] and y[k], is given by
the crosscorrelation Rxy[k] sequence:

Rxx[n] =
∑
k

x[k]y[k − n] (2.1)

where the lag index n [N/2, N/21], k is the time index, N is a number
of lags and typically is a power of two. The lag term denotes the time-shift
between the pair of signals with negative (n 0) and positive (n ≥ 0) lags
being distinguished. Basically, the number of lags defines how many points
or output values the correlation produces. In real life applications, where
for example the correlation function is used together with Fourier transform,
the number of lags can be referred as the resolution of correlation. A device
which performs correlation of a set of signals is called a correlator. The
number of lags is an important characteristic of a correlator along with the
number of channels, ie number of supported input signals. When a signal is
correlated with itself, such an operation is called autocorrelation and is often
used in filtering and other processes.

One should note the incurred execution time or time complexity for wide-
band correlation. For a wideband signal according to the Nyquist condition,
the processing involves computation of a greater amount of samples, hence
the processing duration increases. In addition, the results of correlation com-
putation abide to the following law:

N =
Ns(Ns− 1)

2
(2.2)

where N is the total number of the cross-products and NS is the total num-
ber of antennas (sources) to be correlated. Hence, wideband multi-channel
correlation embraces a considerable amount of computations.

Strictly speaking, Equation (2.2) gives the number of unique correlation
results or half of the total correlation results the remaining half can be
obtained by simply reversing the results from the first half. The latter issue
is caused by the following property of correlation: correlation of x[k] with y[k]

22

is not the same as correlation of y[k] and x[k]. So, putting down mathematical
notation of correlation of y[k] with x[k]:

Ryx[n] =
n∑

k=−n

x[k]y[k − n] =
n∑

l=−n

y[l + n]x[l] = Rxy[−n] (2.3)

Thus, Ryx[n] is obtained by time-reversing sequence Rxy[-n].

2.2.2 Digital Correlators

As mentioned above, the number of lags is an important feature defining
the resolution capabilities of a correlator. The higher the number of lags,
the better a correlator can tell how similar two signals are to each other. In
reality, the number of lags is set by the applications requirements and defines
the number of multiply-and-accumulate and multiply-and-add computations.
The latter statement is true for digital correlators, ie correlators that work
with a stream of digitised samples x[n] from an analog output x(t). Two
general types of digital correlators are distinguished:

1. Lag or XF Correlator

2. FX Correlator

In the lag or XF correlator Fourier transform to the frequency domain is
performed after cross multiplication of signals. The number of channels in
such correlators is an integral power of two with the signals’ bandwidths also
divisible by two to be compatible with digital computing techniques .

Whereas in the FX correlator Fourier transform is performed before cross
multiplication of signals. Therefore, the total number of operations on the FX
correlator is proportional to the number of antennas or more correctly signals
coming from these antennas, whereas in the XF correlator the amount of
computation is proportional to the number of antenna (signal) pairs. Hence,
the FX correlators are more economical in terms of hardware requirements
especially for a considerable number of signals.

23

2.2.3 Implementations of Correlators

Correlators can be implemented in hardware or software. Normally, hardware
correlators are designed and manufactured for a certain and specific appli-
cation and are implemented in Very Large-Scale Integrated (VLSI) circuits.
The CABB Hardware Correlator is an example of a hardware correlator.
This correlator has a complex and very large-scale architecture comprising a
number of VLSIs, multiplexers, accumulators, filter banks and other devices.
It is utilized in Australia Telescope Compact Array to process signals from
six 22 m. antennas of Australia Telescope Compact Array. In addition, FP-
GAs are used in this correlator as well to produce different configurations
of filter banks.

As for software correlators, they are implemented as a set of libraries or
computer programs to perform the designated task: correlation of a given
set of signals. Amongst known and acknowledged software correlators the
following need to be mentioned:

K5 Software Correlator is probably one of the most famous correlators
implemented in software. Currently the K5 correlator is involved in the
VERA project in Japan and furthermore in collaborative work of Korea and
Japan in the project East Asian Correlator in Seoul. K5 is an FX correlator.

Swinburne University of Technology has another software-based correla-
tor.Initially this correlator was XF-type but it was considered slow and the
recently new FX correlator DiFX has been implemented and tested. Both
correlators have been implemented on the Linux parallel high-performance
parallel cluster utilizing the Message Passing Interface (MPI) standard for
process-to-process communications. There was a reported intention to ex-
plore hybrid architecture (ie comprising FPGA and Swinburne cluster) within
this FX correlator.

The Jet Propulsion Laboratory of California Institute of Technology de-
signed Softc software correlator . Launched as one of the many test programs
to replace an outdated hardware correlator Block I in the Delta-Differenced
One-way Range (DeltaDOR) spacecraft navigation system, Softc underwent
a lot of changes and finally was employed in Mars Odyssey, Mars Explo-
ration Rover, Deep Space 1 and other missions. It has significant processing
accuracy (not less than 10-13); it can correlate 1, 2, 4, and 8-bit sampled
data, upper, lower, or double sideband data and data using one of either two

24

encoding schemes.

Range (DeltaDOR) spacecraft navigation system, Softc underwent a lot of
changes and finally was employed in Mars Odyssey, Mars Exploration Rover,
Deep Space 1 and other missions. It has significant processing accuracy (not
less than 10-13); it can correlate 1, 2, 4, and 8-bit sampled data, upper, lower,
or double sideband data and data using one of either two encoding schemes.

The international TOP500 list encompasses the 500 fastest and most
powerful computing systems around the world (www.top500.org). As of
November 2007, the top supercomputer is the Department of Energy’s IBM
BlueGene/L system in USA with a performance of nearly 500 TFlops. An-
other BlueGene/L computer located at the University of Groningen performs
correlation tasks in a Low Frequency ARay (LOFAR) project. It consists of
12,288 700 MHz dual PowerPC 440 cores yielding 34.4 TFlop/s of correlation
performance.

Nevertheless, such performance comes at a price development time and
maintenance cost balance this substantial computational power. With Blue-
Gene/Ls power consumption of 27.6 kW per rack (IBM Corporation, 2006)
the LOFARs sixrack supercomputer consumes 165.6 kW per hour. Besides,
the estimated development time is one man-year . One of the reported issues
with the LOFARs correlators is the lack of the high bandwidth in BlueGene
crucial for streaming DSP applications and overall necessity of faster inter-
communication between the cores. Moreover, software correlators require
substantial debugging and testing of the code: eliminating of processing
errors and inaccuracies was one of the greatest hurdles in Softc correlator
implementation. Developing, debugging and testing can be generalised as
one of the greatest hurdles for all high-performance DSP systems.

Along with the considerable complexity of developing high-performance
DSP systems go their relevant energy requirements. At the Ninth Interna-
tional Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT’08), Pete Beckman from Argonne National Labora-
tory in his keynote speech made a strong point about the power consumption
requirements of contemporary and future supercomputers. In particular, it
was predicted that within years the power consumption of a computational
system would become the most determinative haracteristic. In time, increas-
ing the processing capabilities by increasing the operational frequency and
adding additional transistors (Moores law), depleted itself and gradually di-
verted to multi-core and parallel execution of the algorithms, where currently

25

most of the research and development work is carried out. In turn, the same
is envisioned for parallel operation parallelisation of the applications and
algorithms will eventually exhaust with Flops per Watt ratio becoming the
systems performance measuring unit. Therefore, with power requirements
becoming one of the most significant factors additional constraints are laid
upon the development of high performance DSP systems and, most impor-
tantly, on the technologies applied in these systems.

2.3 DSP Technologies

2.3.1 The Performance Requirements of the DSP Ap-
plications

The number of mathematical calculations involved in the aforementioned
high-end DSP applications is extremely high. For instance, to perform only
a 1,024-point FFT yields 10,240 complex multiplications and additions per
operational cycle. Moreover, to provide trustworthy data, a radio telescope
observing a celestial phenomenon has to employ FFT with even higher res-
olution as well as a number of other operations, eg correlation of wideband
radio-frequency signals, thus yielding even higher number of computations.
On top of that, any DSP application, whether it is an image processing
routine or telecommunication operation, demands these computations be ex-
ecuted in a rapid manner.

Besides, relentlessly expanding requirements of todays electronic systems
keep pushing the resources contemporary DSP instrumentation towards and
over the verge of depletion. Figure 2.3 illustrates the performance gap that
has emerged in the communication industry between increasing algorithm
complexity originated from recent standards revolution and existing process-
ing architectures.

So, how can one approach the ever-growing demands of the DSP field?
The most universal approach to meet the substantial and constantly growing
requirements of highend DSP applications is to increase the processing power
of computational units (CPUs, DSPs, ASICs, etc).

This has a number of limitations and drawbacks such as:

1. High power consumption, which in turn leads to necessity of efficient
power dissipation;

26

Figure 2.3: The DSP Performance Gap in Communications Industry

2. Complexity of accomodating a large number of transistors in a single
chip, which are growing with each year according to Moores Law;

3. High market costs.

Hence, this is not always feasible to cover the requirements of a certain
high-end DSP application by simply involving more computational power
(units) due to the hardware constraints in contemporary tools. Therefore, the
search focus has to be shifted towards renovating or enhancing the existing
apparatuses or creating new ones. The next sections cover the most common
tools available in the DSP field.

2.3.2 Digital Signal Processors (DSPs)

Currently there is a number of tools in the DSP area. One of the major
tools for DSP applications are Digital Signal Processors. DSPs were first

27

created in the late 1970s S2811 and Intels 2920. Although Intels device did
not have a multiplier, it already had on-chip ADC and DAC a feature still
present in the modern DSPs. The 1980s saw a second generation of DSPs
with supported concurrency, multiple buses and on-chip memory. These were
added with on-chip floating point operations in the third generation of DSPs
in the early 1990s. In the late 1990s multi-processing features, image and
video processors and lowpower DSPs were introduced.

Today DSPs are produced by semiconductor vendors such as Texas Instru-
ments,Analog Devices, Motorola and others. Contemporary top-level DSPs
are capable of achieving substantial speeds for example the high-performance
multi-core TMS320C6474 from Texas Instruments can achieve up to 24,000
million instructions per second (MIPS) or 24,000 16-bit MMACs per cycle
(Texas Instruments Inc., 2008). This DSP is also equipped with a 16/32-
bit DDR2-667 Memory Controller, EDMA3 Controller, 1000 Mbps Ethernet
MAC interface, two 1x Serial RapidIO Links and many other peripheries.

In general, DSPs are a specialized form of microprocessor designed specifi-
cally for digital signal processing. Nowadays DSPs have a well-developed tool
set typically a high-level programming language as C++. DSPs perform
real-time processing and have fixed hardware architecture with certain set
of resources. Hence, DSPs have reconfigurability freedom only to the extent
of the programming code running on them. Furthermore, the performance
requirements of todays DSP applications have now exceeded the capabilities
of even such powerful DSPs as Texas InstrumentsTMS320C6474.

Another common platform for performing DSP applications Application
Specific Integrated Circuits (ASICs) possesses an alternative approach for
performing signal processing applications.

2.3.3 Application-Specific Integrated Circuits (ASICs)

The inception of Application-Specific Integrated Circuits or more commonly
ASICs started in 1980s when the now-defunct Ferranti Company released
the first gate-array Uncommitted Logic Array (ULA). The first Uncommit-
ted Logic Arrays contained only a few thousand gate circuits (transistors,
logic gates, and other active devices) and they did not perform any specified
function. A particular function of a ULA was configured by adding a final
layer of metal interconnects to the ULA thus connecting the elements on the
ULA in the desired, customised fashion. The later versions of these early

28

developments became more complicated with a greater number of gates and
in some cases included RAM elements.

Modern ASICs retain the same ideology they perform only limited sets
of tasks laid in them during manufacturing stage. These devices are capa-
ble of performing their limited sets of functions faster than general-purpose
DSPs. Due to application-specific circuitry ASICs are able to employ high-
speed functions of the targeted algorithm in the optimized hardware (Kuo
Lee, 2001). Most commonly ASICs are used for implementing well-tested
and well-defined algorithms, eg Reed-Solomon coders in digital subscriber
loop (xDSL) modems or stack functionalities of CDMA2000 standard in cell
phones.

Depending on the grade of flexibility, three levels of ASICs are distin-
guished:

1. Gate Array is the least customisable. Transistors, gates and other de-
vices are predefined but unconnected no metallization layers exist. A
user specifies interconnection between the elements thus defining the
function of the device. Today these devices are gradually replaced by
structured ASICs where many features are predefined by the manu-
facturer: IP cores, power and clock sources, etc. This significantly
reduces the design time, as a user has to specify much fewer design
technicalities.

2. Standard cell methodology has a high degree of flexibility. It assumes
that the ASICs design is defined by a user from the cell libraries created
by the manufacturer and , therefore, has much less space for mistake
than full custom design.

3. Full custom design is the most flexible and, therefore, the most expen-
sive and time-consuming approach. It assumes developing an ASIC
from transistor level.

Despite that ASICs can perform their specified application faster than
generalpurpose DSPs, they do posses their own challenges and limitations.
The most obvious limitation of ASICs originates from their most prominent
strength: hardware optimised for performing dedicated applications means
little or, most often, absolutely no degree of algorithm flexibility.

Another challenge with ASICs is that they are configured with hardware
description languages (HDL) such as Verilog, VHDL and some other less

29

popular options. These languages are low-level programming languages and
differ significantly from high-level programming languages employed for pro-
gramming conventional general-purpose DSPs. The challenges of hardware
description languages are more broadly discussed in section 3.1.2.

Single DSP or ASIC can be employed as a platform for single or several
signal processing applications. In the case of large-scale high-performance
DSP applications, they may be employed as building blocks in sizeable com-
putational systems such as supercomputers, computational clusters, grid
computing, etc.

2.3.4 Hign-Performance Computing

For performing large-scale DSP applications, high-performance computing
(HPC) systems can be used. HPC systems (supercomputers or computer
clusters) comprising multiple computational processors communicate through
versatile types of interconnect. The types of DSP applications employed on
HPC systems are exceedingly large-scale and include but are not limited to:
correlation of wideband RF signals involved in radio observation of celestial
objects (eg CABB or DiFX), video-centric applications of new generation
wireless telecommunications standards, such as wireless videoconferencing,
real-time video streaming, etc. and many others.

Over the years, the HPC proved to be an effective and sophisticated tool
for performing DSP applications. Technologies and tools applied in HPC
have significantly developed over the past years density of transistors on
processors (Moores law), communication speeds and throughputs, number
of processors performing one task, uniform memory access with few or no
caches, etc. In addition, modern HPC systems are practically linearly scal-
able.

Moreover, HPC systems have the potential to perform the assigned task
in parallel, ie the task is split into several parts, each of which is performed
by a separate computational unit in parallel. This is achieved by either using
multiple computational processors within a single computer, ie a multipro-
cessor, or by multiple computers working on a single problem. The possibility
to perform tasks in parallel becomes radically beneficial for DSP applications
as most of them can be easily parallelised. More precisely the majority of
DSP applications fall under the Single Instruction, Multiple Data streams
(SIMD) category in taxonomy introduced by Michael J. Flynn. Figure 2.4

30

illustrates SIMD architecture.

Figure 2.4: Single Instruction, Multiple Data (SIMD) model

In the SIMD model the same set of operations from the Instruction Pool
is applied on different data streams Data A, Data B, etc from the Data Pool
simultaneously and, therefore, this processing can be naturally parallelised.

A certain application can benefit from SIMD implementation if it involves
a large number of the same repetitive operations applied on a large number
of data bits. Many DSP applications satisfy this condition. For example,
the correlation described by the Equation (2.1) consists of a number of sim-
ple mathematical operations, namely multiplication and addition which are
applied to the same data set samples of input signals. Hence, computation
of a single sample of a correlation function involves a precisely calculated
number of calculation routines on a certain input sample. These routines
can be successfully parallelised thus attaining a speed-up in the performance
which consecutively leads to power conservation and increased throughput.

Real-life SIMD implementation examples include Intels MMX processors,
their AMDs counterparts 3DNow! Processors, Graphics Processing Units of
PC video cards, and many others. The SIMD model is applied in large-scale
supercomputers as well.

31

2.3.5 FPGAs as a DSP Tool

Another prominent tool for parallelisation is a maturing field of FPGAs,
which has drawn massive attention in recent years from leading electronics
developing vendors and designers throughout the world. Recent profound ad-
vances in the Field Programmable Gate Array area demonstrate that signal,
image and video processing applications which are typically implemented on
FPGAs, comprise complicated calculations over a large amount of stream-
ing data. These applications can gain substantial speed-up from available
on-chip parallelism. The technological background of FPGAs is discussed in
more details later.

An FPGA is a semiconductor device containing programmable logic blocks
which can be interconnected and configured to meet the desired functionality
specified by a certain application. Once an FPGA is programmed it operates
as optimised hardware developed for a particular task. Designs incorporat-
ing FPGAs have at least two significant advantages in comparison with DSP
devices and ASICs:

1. Parallelism the ability to perform several operations in parallel and
therefore performs faster;

2. Reconfigurability or, in other words, the ability to be customised for a
certain application.

FPGAs parallelism feature allows them to perform more operations at a
single clock cycle than their conventional processing counterparts. Therefore,
FPGAs operate at much lower frequencies than their conventional process-
ing counterparts while achieving similar or even greater performance results.
Lower operational frequencies lead in turn to lower power consumption, which
has become one of the most crucial issues in recent years and is predicted to
play an ever more dominant role in the foreseeable future of high-performance
computational systems.

In the past years, the computational capabilities of commercially avail-
able FPGAs even overcame some commercially available CPUs in terms of
achievable performance see Figure 2.5.

Figure 2.5 demonstrates millions of floating point operationsper second
(MOPS) achievable by the FPGA representative (Xilinx FPGA) and the

32

CPU representative (Intel Xeon CPU) throughout their release dates. FPGA
field is already renowned as a new computational paradigm by the research
community.

Figure 2.5: Moore’s Law in the CPU and FPGA World

Nevertheless, along with prominent beneficial features FPGAs have cer-
tain challenges and drawbacks. First of all FPGAs are configured with low-
level hardware programming languages which incur considerable program-
ming and debugging efforts. Furthermore, all of the interfaces and features
present on FPGAs have to be explicitly configured for each particular appli-
cation/design. This and other challenges in FPGA programming discussed
in later, complicate the utilisation of FPGAs for DSP applications.

33

2.4 Chapter Summary

This chapter introduces the background of the investigated problem. The fol-
lowing typical computationally-intensive DSP applications employing cross-
correlation of signals are discussed: radio astronomy, RADAR applications,
medical applications, and telecommunication.

The theory of the targeted cross-correlation problem with the focus on
digital implementation of correlation is described. This is followed by a dis-
cussion on the computational requirements of the modern DSP applications.
Traditional technologies (DSPs and ASICs) for performing DSP applications
are considered along with methods of implementation of large-scale DSP ap-
plications (HPC). Their features and existing challenges are discussed.

34

Chapter 3

Linear Correlator Architecture

The future is always beginning now.
-Mark Strand

This chepter the investigation on a linare correlator architecture and high-
lights its potential advantages and challenges. Employment of this architec-
ture for high performance DSP application is discussed along with the ap-
plicability of contemporary reconfigurable computing system for performing
these application.

In statistics, dependence refers to any statistical relationship between
two random variables or two sets of data. Correlation refers to any of a broad
class of statistical relationships involving dependence.

Two types of correlation (I) Auto- Correlation (II) Cross-Correlation.
Both in signal and Systems analysis, the concept of autocorrelation and cross-
correlation play an important role. In the following sections, we present some
simple examples of how these two functions may be estimated in Matlab. The
final part of this section provides some applications of autocorrelation and
crosscorrelation functions in signal detection and time-delay estimations.

3.1 Auto Correlation

The autocorrelation function of a random signal describes the general
dependence of the values of the samples at one time on the values of the
samples at another time. Consider a random process x(t) (i.e. continuous-

35

time), its autocorrelation function is written as:

Rxx(τ) = lim
T→∞

1

2T

T∫
−T

x(t) x(t+ τ) dx (3.1)

Where T is the period of observation.

Rxx(τ) is always real-valued and an even function with a maximum value
at τ = 0. For sampled signal (i.e. sampled signal), the autocorrelation is
defined as either biased or unbiased defined as follows:

Rxx(m) =
1

N− | m |

N−m+1∑
n=1

x(n)x(n+m− 1)BiasedAutocorrelation (3.2)

Rxx(m) =
1

N

N−m+1∑
n=1

x(n)x(n+m− 1)UniasedAutocorrelation (3.3)

For m=1,2,..M+1. where M is the number of lags.

3.1.1 Properties of Auto Correlator Function

1. Maximum Value:

The magnitude of the autocorrelation function of a wide sense sta-
tionary random process at lag m is upper bounded by its value at lag
m = 0:

Rxx(0)≥ Rxx(k) fork6= 0

2. Periodicity:

If the autocorrelation function of a WSS random process is such that:
Rxx(m0) = Rxx(0) for some m0, then Rxx(m) is periodic with period

36

m0. Furthermore E[x(n)−x(n−m)2] = 0 and x(n) is said to be mean-
square periodic.

3. Symmetry:

The autocorrelation function of WSS process is a conjugate symmetric
function of m:

Rxx(m) = Rxx ∗ (−m)

For a real process, the autocorrelation function is symmetric:

Rxx(m) = Rxx ∗ (−m)

4. Mean Square Value: The autocorrelation function of a WSS process at
lag, m = 0, is equal to the mean-square value of the process:

Rxx(0) = E|x(n)|2 ≥ 0

5. If two random processes x(n) and y(n) are uncorrelated, then the au-
tocorrelation of the sum x(n) = s(n) +w(n) is equal to the sum of the
auto -correlations of s(n) and w(n):

Rxx(m) = Rss(m) +Rww(m)

6. The mean value: The mean or average value (or d.c.) value of a WSS
process is given by:

mean, x̄ =
√
Rxx(∞)

3.1.2 Matlab Implementation on Auto Correlator Func-
tion

Matlab provides a function called xcorr.m which may be used to imple-
ment auto correlation function. Its use is indicated in the following examples.

when using the function xcorr, to estimate the autocorrelation se-
quence , it has double the number of samples as the signal x(n). An impor-
tant point to remember when using the function xcorr is that the origin is in
the middle of the figure (here it is at lag=1024).

Plot the autocorrelation sequence of a sinewave with frequency 1 Hz,
sampling frequency of 200 Hz.

Note this version of estimating the autocorrelation function generates
the same number of samples as the signal itself and that the maximum is
now placed at the origin. (Rxx(1) is the origin).

37

Figure 3.1: Matlab Simulation of Auto-Correlation

3.2 Cross Correlation

In signal processing, cross-correlation is a measure of similarity of two
waveforms as a function of a time-lag applied to one of them. This is also
known as a sliding dot product or inner-product.

For two WSS(Wide Sense Stationary) processes x(t) and y(t) it is
described by,

Rxy(τ) = lim
T→∞

1

2T

T∫
−T

x(t) x(t+ τ) dx (3.4)

or

Ryx(τ) = lim
T→∞

1

2T

T∫
−T

x(t) x(t+ τ) dx (3.5)

where T is the observation time.

38

For sampled signals, it is defined as:

Ryx(m) =
1

N

N−m+1∑
n=1

y(n)x(n+m− 1) (3.6)

3.2.1 Properties of Cross Correlator Function

1. Rxy(m)is always a real valued function which may be positive or nega-
tive.

2. Rxy(m)may not necessarily have a maximum at m=0 nor Rxy(m)an
even function.

3. Rxy(-m)= Ryx(m)

4. Rxy(m)2 ≤ Rxx(0)Ryy(0)

5. |Rxy(m)| ≤ [Rxx(0) +Ryy(0)]

6. When Rxy(m)=0, x(n) and y(n) are Sid to be uncorrelated or they are
said to be statistically independent (assuming they have zeros mean.)

3.2.2 Matlab Implementation on Auto Correlator Func-
tion

In the same frequency at the auto correlator function in sine wave and
compare a pure noise signal, output of matlab is below :

3.3 Implementation of Linear Correlator Ar-

chitecture

3.3.1 Theory of Linear Correlator Architecture

This so called ’linear’ algorithm was used in the first commercially avail-
able correlator devices and represented the prior implementation form of
digital correlators over several years. The parameter n denotes the detected
photon count rate, i.e. the number of photon counts over one sampling time
clock (STC) interval. The STC range, which represents the inverse of the
system clock fsys, is defined as τ = t(i + 1)− t(i), Considering a linear cor-
relator structure, the dynamic range of the correlator is determined by the
spread of discrete lag times θj : θmin < j.τ < θmax . Thus, the different

39

Figure 3.2: Matlab Simulation of Cross-Correlation

lag times in the linear correlator scheme are separated by one sampling time
interval each. For every single lag time θj, an individual correlation channel
Corr(θj) exists, that simply sums the products of the direct and delayed
samples n(0) and n(θj). This multiplication/summation procedure is done
for a certain number of different lag times θj in parallel to obtain a time
discrete approximation of the full correlation function. A linear correlator
can be easily implemented of simple multiplier-accumulator structures as il-
lustrated in Figure . Apparently, the lag time range of a linear correlator is
limited by the number of channels.

To achieve the covering of a dynamic range of 1012, the number of
correlation channels must be at least as high as the temporal range, i.e.
1012. Since hardware resources are limited, the required dynamic range is
in direct conflict with a fine timing resolution to accurately approximate the
correlation time integral. One way to increase the temporal dynamic range of
a correlator without increasing the number of correlation channels too much
is to restrict the actual calculation to certain lag times only. An exponential

40

Figure 3.3: Linear Correlator Architecture

distribution may be used, so that the lag times becomes:

θ1 = τ and θi+1 = τ

where k is the delay factor which remains constant for the complete lag
time range. The number of correlation channels required to cover a given lag
time range is now a function of the delay factor and may easily be computed
as:

N = ln(
θmax

θmin
).

1

ln(DelayFactor)
(3.7)

which leads to values of about 240 correlation channels for a temporal
dynamic range of 1 : 1010 and a delay factor of 1,1. However, for large lag
times θ, the sampling of the correlation function reveals to be coarse. Simply
more and more useful information is neglected as the lag time increases and
the statistical properties of such a procedure, especially at large lag times is
lost. A more promising algorithm, the Multiple-Tau Correlation Technique
was published by K. Schaetzel. The major difference to the linear as well
as to the exponential delay correlator structure is, that the sampling time
is no longer held constant, but rather increased with the lag time. In fact,
this leads to an implicit calculation of all possible products of direct and

41

delayed samples. Blocks of eight or more correlation channels as illustrated
in Figure with common sampling time are formed (in the following referred
as sampling time blocks STB) and the sampling time is doubled from one
block to another. Thus, the input signals for the different blocks are averaged
over longer and longer periods. All events in the delayed and undelayed path
are added up for each block over two sampling time periods and serve as
input count rates for the next block, which operates again with half of the
clock frequency. If a 16 channel sampling time block structure is applied,
the first 8 of 16 correlation channels of every sampling time block STCn but
STC0 are redundant. The lag-time range of these was already covered by the
previous STC block, but even at a much higher temporal resolution due to
the decreased sampling times. It would thus not make much sense to have all
correlation channels for each of the individual STC blocks being computed
from lag time index j = 0 on, but instead only those correlation channels
should be computed which cover a not previously covered lag-time regime.
The processing is thus reduces to 16

8
.

Figure 3.4: Multipe-Tau Sampling Block Structure

The Multiple-Tau correlation function estimation of the input count
rates n and m can be summarized as follows:

Corr(n(i),m(j)) =
M∑
i=1

n(i)M(i+ j), j = 0......15 (3.8)

The additional l = 1..P sampling time blocks consisting of eight chan-
nels each similar of above equation.

42

The effective sampling time for every correlation channel block is de-
termined by:

STCl = STC0.2
l

The effective lag-time for every correlation channel can now be calcu-
lated is :

θj = STCl.j = STC0.2
l.j

Figure 3.5: Multipe-Tau Sampling Time Block Scheme

This scheme is again graphically illustrated in Figure.Using this pro-
cedure, only 40 parallel sampling time blocks (or 328 correlation channels)
are required to cover a dynamic range of nearly 1013 with sampling times as
small as 5ns for STB0 and nearly 1hr for the last STB block. Careful inspec-
tion of the Multiple Tau algorithm leads to the conclusion, that the required
total processing speed needed has an upper bound with a value exactly twice
as high as the processor speed needed to compute the first eight channels.
The number of samples taken per given time is inversely proportional to the
sampling time and as the sampling time is doubled for each block of eight
channels this leads for the required processor speed F to

F = 8.(2.
1

1
+

1

2
+

1

4
+

1

8
+)→ 24 (3.9)

The first sampling time block is multiplied by two due to its 16 channel
structure. Equation 11 states that Multiple Tau requires a fixed number
of operations, completely independent from the temporal dynamic. Thus,
for every instance in time (STC-Interval), only two different STBs must be
processed.

3.3.2 8-bit Linear Correlator Design simulation

43

Figure 3.6: Xilinx Simulation on 8-bit Correlator

3.4 Chapter Summary

This chapter introduces the background of the Linear correlator architec-
ture.Also discussed a properties of a autocorrelator and cross correlator. The
following typical both the auto correlator and cross correlator are discussed
and implementation in MATLAB. Both correlator are observed in simulation
level.

The theory of the Linear correlator problem with the focus on digital
implementation of correlation is described. This is followed by a discussion
on the computational requirements of the modern DSP applications.Their
features and existing challenges are discussed.

44

Chapter 4

MULTI CHANNEL
CORRELATOR
ARCHITECUTE

We can’t solve problems by using the same kind of thinking we
used when we created them.

-Albert Einstein

This chapter outlines the investigated FPGA architecture and highlights
its potential advantages and challenges. Employment of this architecture for
high performance DSP applications is discussed along with the applicability
of contemporary hybrid reconfigurable computing systems for performing
these applications.

There are a number of solutions on the market when FPGAs are
deployed inside a computer system. This option is of particular interest in
this work since such architecture has a computational power of a general-
purpose processor (GPP), along with an FPGAs flexibility of reconfigurable
hardware, and, therefore, the possibility for performance acceleration of DSP
applications through parallelisation.

4.1 FPGA Architecture

The hybrid technology implies simultaneous work of an FPGA chip and
a CPU of a commodity PC in one system. It might be particularly advan-
tageous for such DSP applications such as antenna aperture synthesis, radio
imaging, RADAR, radio astronomy, high-energy physics etc. A common and

45

very computationally-intensive part in the above-mentioned applications is
the multi-channel wideband correlation of signals. Such correlation can be
implemented in a parallelised manner in an FPGA. Depending on the type
of correlation (XF or FX) (Thompson et al., 2001b) both floating and fixed
point numbers can be successfully and efficiently targeted to work on this
architecture involving an FPGA as required.

0.5cm In addition, reasonably decreasing prices of FPGA devices and the
off-the-shelf availability of hardware architecture, place the FPGA approach
as a promising alternative to the large-scale and high-cost correlators such
as CABB Correlator (Ferris, 2006) or various software correlators (A. S T.
Deller et al., 2007; Kawaguchi et al.,2006; West, 2004). FPGA architec-
ture can also be more convenient as the CPU can be utilised to work with
unparallelisable tasks (fetching and streaming datasamples into an FPGA,
acquisition of correlated data, etc.) whereas an FPGA can be utilised for
actual correlations (multiplication and accumulation operations).

4.1.1 FPGA Technology

Inception of FPGAs dates back to 1960s when Gerald Estrins group at
the University of California at Los Angeles did one of the first works on
reconfigurable computing (Estrin, 1960, 2002). In 1984 Ross Freeman, co-
founder of Xilinx Corporation invented a new type of semiconductor device
which is now known as the Field Programmable Gate Array (Xilinx Inc.,
1984).

FPGAs are historically connected to complex programmable logic
devices (CPLDs). Figure 3.1 demonstrates that they belong to the same
group called field programmable logic (FPL):

The structure of an FPGA is an evenly-spaced two-dimensional array
tiled with logic blocks Configurable Logic Blocks (CLBs). Each CLB rep-
resents a simple memory used as a lookup table and flip-flops for buffering.
CLBs communicate with other logic blocks via a programmable interconnec-
tion network see Figure 4.2.

The peripheral blocks of an FPGA are I/O blocks (IOB in Figure
4.2) dedicated for communication between internal logic blocks and the I/O
pins. Modern FPGAs architecture features on-chip memory blocks as well
as dedicated circuitry to perform DSP operations - DSP blocks.

The difference between FPGAs and said CPLDs lies in the granularity
of a device, which designates the level of complexity of completing the routing
between the blocks. Thus, FPGAs fall in the medium granularity devices
group while CPLDs in the large granularity devices group. This distinction
comes from the fact that CPLDs comprise simple programmable logic devices

46

Figure 4.1: Classification of VLSI Circuits

(simple PLDs or SPLDs) with common densities of several thousand to tens of
thousands of logic gates, whereas FPGAs normally contain tens of thousands
to several millions of logic gates.

In order to define the behaviour of an FPGA it needs to be pro-
grammed with a configuration bit stream first. These bit streams are gen-
erated from structural register transfer level (RTL) specifications expressed
by a user in the form of the HDL descriptions most commonly Verilog or
VHDL. These HDL descriptions are createdby hardware designers and follow
the design flow demonstrated in Figure 4.3 before the configuration stream
is created.

4.1.2 Challenges in FPGA Programming

Nevertheless, the very flexibility that makes FPGAs so universal and
beneficial at the same time imposes a considerable challenge on the whole
RC design process. The following are the most prominent of the challenges
that need mentioning:

47

Figure 4.2: FPGA Internal Structure

1. A priori unawareness of FPGA about its I/Os. This issue implies that
an FPGA initially knows nothing about how to communicate with ex-
ternal world. Any interface featured on an FPGA board has to be
instantiated and configured in low-level specifications. To mitigate this
FPGA vendors provide IP cores for most common interfaces. Robust,
high-speed and lowlatency I/O interfaces are a crucial component in
the DSP paradigm.

2. Compilation process and compilation time. Unlike conventional soft-
ware programming where compilation normally takes seconds to min-
utes, hardware compilation is a complex task (see Figure 4.3) and may
take hours to complete.

3. Storing variables in explicit memory hierarchy. In HDL each program
variable has to be stored in the chosen memory type: external memory,
onchip memory, logic blocks configured as memory or registers. Chang-
ing the type of the selected memory might cause changes throughout

48

Figure 4.3: Low-level FPGA Design Flow

the whole design .

4. Implicit hardware state in FPGA and complicated debugging. Debug-
ging of the hardware design has to be carried out at the granularity of
nanoseconds which is complicated by the lack of transparency of the
hardwares state on FPGA.

5. Significant difference in hardware design flow and conventional software
design flow. This issue is discussed in more detail in the next section.

4.1.3 High-Level Programming for FPGA Architectures

The overall complexity of FPGA programming has been extensively stud-
ied in recent years and a number of solutions have been developed. Hardware
and software design flows are considerably different. The general case of soft-
ware and hardware design flows is depicted in Figure 4.4.

49

Figure 4.4: Hardware (a) and Software (b) Design Flows

4.2 Project Design Flow and Methodology

In order to evaluate and demonstrate the capabilities of the high-performance
hybrid DSP system proposed in 3.2 the following project roadmap was es-
tablished:

1. Feasibility study of cross-correlation implementation using a traditional
hardware development environment for MicroBlaze -based embedded
soft processor. Create a simple correlator model in HDL and evaluate
development effort.

2. Implement software (in C code) multi-channel cross-correlation of a

50

model signal with added non-coherent noise. Define problem size (cor-
relator lags and number of channels).

3. Using integrated interface between a hardware and software develop-
ment kit to create FSL (Fast Simplex Link) IPCore in MicroBlaze soft-
core processor

4. Using applicable FPGA development broad (virtex-5 xc5vlx110t fpga
or spartan 3e starter board) to develop the high-performance hybrid
DSP system discussed in 4.3.

5. In order to supply the input data into hardware design and maintain
control and management functions, develop a relevant software control
application. Measurement a execution time to performance on multi-
channel correlator processor.

4.2.1 Development Hardware Platform

The MicroBlaze is a soft core processor designed for Xilinx FPGAs from
Xilinx. As a soft-core processor, MicroBlaze is implemented entirely in the
general-purpose memory and logic fabric of Xilinx FPGAs.

In terms of its instruction-set architecture, MicroBlaze is very sim-
ilar to the RISC-based DLX architecture described in a popular computer
architecture book by Patterson and Hennessy. With few exceptions, the Mi-
croBlaze can issue a new instruction every cycle, maintaining single-cycle
throughput under most circumstances.

The MicroBlaze has a versatile interconnect system to support a vari-
ety of embedded applications. MicroBlaze’s primary I/O bus, the CoreCon-
nect PLB bus, is a traditional system-memory mapped transaction bus with
master/slave capability. A newer version of the MicroBlaze, supported in
both Spartan-6 and Virtex-6 implementations, as well as the 7-Series, sup-
ports the AXI specification. The majority of vendor-supplied and third-party
IP interface to PLB directly (or through an PLB to OPB bus bridge.) For
access to local-memory (FPGA BRAM), MicroBlaze uses a dedicated LMB
bus, which reduces loading on the other buses. User-defined coprocessors
are supported through a dedicated FIFO-style connection called FSL (Fast
Simplex Link). The coprocessor(s) interface can accelerate computationally
intensive algorithms by offloading parts or the entirety of the computation
to a user-designed hardware module.

Many aspects of the MicroBlaze can be user configured: cache size,
pipeline depth (3-stage or 5-stage), embedded peripherals, memory manage-
ment unit, and bus-interfaces can be customized. The area-optimized version

51

Table 4.1: Spartan 3E Starter Broad Device Utilization Summary

Device Utilization data-Spartan 3E Starter Broad
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 2,716 9,312 29%
Number of 4 input LUTs 3,183 9,312 34%
Number of occupied Slices 2,617 4,656 56%
Number of Slices containing only related logic 2,617 2,617 100%
Number of Slices containing unrelated logic 0 2,617 0%
Total Number of 4 input LUTs 3,307 9,312 35%
Number used as logic 2,644
Number used as a route-thru 124
Number used for Dual Port RAMs 320
Number used as Shift registers 219
Number of bonded IOBs 63 232 27%
IOB Flip Flops 31
IOB Master Pads 1
IOB Slave Pads 1
Number of ODDR2s used 22
Number of RAMB16s 9 20 45%
Number of BUFGMUXs 5 24 20%
Number of DCMs 2 4 50%
Number of BSCANs 1 1 100%
Number of MULT18X18SIOs 3 20 15%
Average Fanout of Non-Clock Nets 3.24

52

Figure 4.5: Virtex 5 FPGA Development Broad

of MicroBlaze, which uses a 3-stage pipeline, sacrifices clock-frequency for re-
duced logic-area. The performance-optimized version expands the execution-
pipeline to 5-stages, allowing top speeds of 100MHz (on Virtex-5 FPGA
family.) Also, key processor instructions which are rarely used but more
expensive to implement in hardware can be selectively adder/removed (i.e.
multiply, divide, and floating-point ops.) This customization enables a de-
veloper to make the appropriate design tradeoffs for a specific set of host
hardware and application software requirements.

With the memory management unit, MicroBlaze is capable of hosting
operating systems requiring hardware-based paging and protection, such as
the Linux kernel. Otherwise it is limited to operating systems with a simpli-
fied protection and virtual memory-model: e.g. FreeRTOS or Linux without
MMU support. MicroBlaze’s overall throughput is substantially less than a
comparable hardened CPU-core (such as the PowerPC440 in the Virtex-5.)

53

Table 4.2: Virtex 5 Broad Device Utilization Summary

Device Utilization data- Virtex 5 Broad
Slice Logic Utilization Used Available Utilization
Number of Slice Registers 5,082 69,120 7%
Number used as Flip Flops 5,062
Number used as Latch-thrus 20
Number of Slice LUTs 4,041 69,120 5%
Number used as logic 3,851 69,120 5%
Number using O6 output only 3,653
Number using O5 output only 73
Number using O5 and O6 125
Number used as Memory 178 17,920 1%
Number used as Dual Port RAM 64
Number using O5 and O6 64
Number used as Shift Register 114
Number using O6 output only 113
Number using O5 output only 1
Number used as exclusive route-thru 12
Number of route-thrus 91
Number using O6 output only 82
Number using O5 output only 7
Number using O5 and O6 2
Number of occupied Slices 2,344 17,280 13%
Number of LUT Flip Flop pairs used 6,610
Number with an unused Flip Flop 1,528 6,610 23%
Number with an unused LUT 2,569 6,610 38%
Number of fully used LUT-FF pairs 2,513 6,610 38%
Number of unique control sets 460
Number of slice register sites lost to control set
restrictions

1,004 69,120 1%

Number of bonded IOBs 148 640 23%
Number of LOCed IOBs 148 148 100%
IOB Flip Flops 286

54

Device Utilization data- Virtex 5 Broad
Slice Logic Utilization Used Available Utilization
Number of BlockRAM/FIFO 11 148 7%
Number using BlockRAM only 11
Number of 36k BlockRAM used 11
Total Memory used (KB) 396 5,328 7%
Number of BUFG/BUFGCTRLs 5 32 15%
Number used as BUFGs 5
Number of IDELAYCTRLs 3 22 13%
Number of BSCANs 1 4 25%
Number of BUFIOs 8 80 10%
Number of DSP48Es 3 64 4%
Number of PLL ADVs 1 6 16%
Average Fanout of Non-Clock Nets 3.31

4.2.2 Development Software Tool

Once the hardware platforms for implementing the stages of the project
design flow in 4.2.1 were selected, respective software development kits had
to be selected. See fig-4.7.

In this figure 4.7 , Xilinx SDK offer a various design languages (C
and C++). C-code for interface between a xps and sdk is below and upate
a download bit file and download a fpga broad.

print(”– Entering main() –}r}n”);
int i,var;
Xuint32 arr[32];
for(i=0;i¡32;i=i+1)
{
putfsl(i,0);
xil printf(”�--Sent Number–%d{n{r”,i);
}
for(i=0;i¡32;i=i++)
{
getfsl(val,0);
arr[i] = val;
xil printf(”�--Received Number–% d got %8X{n{r”, i, val);
}
for(i=0;i¡32;i=i+1)
xil printf(”˚0x%x”,arr[i]);

55

Figure 4.6: MicroBlaze Soft core processor Blockdigram

print(”– Exiting main() –˚”);

4.3 Result

Now a download a bit file in virtex 5 FPGA development broad through
a JTAG cable. Output is observed in hyper terminal in discussed and calcu-
lated a execution time on processor to process the 32 bit data.

56

Figure 4.7: Software Development platform in xilinx EDK tool

4.3.1 HyperTerminal Output

57

4.3.2 Execution Time calculation

Now that frequency of processor 100 Mhz and sample per clock is 1053248535.

T =
1

f
(4.1)

T =
1

100MHz
(4.2)

T=10−8

T=10 nsec
Execution time on processor

t= T ×SampleperClock
t= 10ns ×1053248535

t= 10.532 sec

4.4 Chapter Summary

This chapter introduces the background of the Multi channel correlator
architecture. The following typical discussed and implementation in FPGA
development broad . Multi channel correlator are observed in simulation
level.

The theory of the Multi channel correlator problem with the focus
on digital implementation of correlation is described. This is followed by
a discussion on the computational requirements of the modern DSP appli-
cations.Their features and existing challenges are discussed. Calculation on
execution time on processor are descried and discussed.

58

Figure 4.8: HyperTerminal Output

59

Chapter 5

CONCLUSION AND
FUTURE SCOPE

For everything you have missed, you have gained something else,
and for everything you gain, you lose something else.

-Ralph Waldo Emerson

The structure of this chapter is as follows: first, discussion of the obtained
results is given, which is followed by suggestions of alleviating known short-
comings and future developments. The chapter concludes with an overall
summary.

5.1 Conclusion

This work delivers two main outcomes:

1. Linear Correlator architecture design using Xilinx and Matlab.

2. Multi-channel cross-correlator design working in a FPGA architecture
and developed with new top-down design methodology.

All research objectives (see 1.2) are achieved, satisfied and are covered
by outcomes of this project. The following sections group the discussions for
these respective outcomes.

Linear Correlator architecture is design in Xilinx and Matlab (dis-
cussions in chapter 3) . Auto Correlator and Cross- correlator are imple-
mentation in Matlab in sampling frequency of 8000 Hz and simulation are
observed. Also implement a 32-leg linear correlation in VHDL and observed
a RTL view and simulation on a ISE simulator.

60

Multi-channel correlation design using high-level FPGA programming
in Stage 2 are significantly less than using traditional FPGA development
tools in EDK. Moreover, the correlator design of Stage 1 required more devel-
opment time but has less functionally than the correlator developed in Stage
2, which is more flexible and scalable. The process of developing the corre-
lator in Impulse C in SDK and required little to no HDL design techniques:
clock and parallel execution had to be considered. However, no low-level
debugging tools (signal analyzers) were used whatsoever.

The fact that Impulse C can actually generate accelerated HDL from
C input demonstrates the potential of this tool. Admittedly, certain manipu-
lations, uncommon for conventional programming, had to be performed with
the C code to produce efficiently parallelised hardware design. For the tar-
geted correlator design, these manipulations included array splitting, pipelin-
ing, and introducing stage delays. In fact, to generate HDL designs with rea-
sonable speed-ups from high-level FPGA programming tools, a knowledge
and practical understanding of hardware operation are still required. While
there is yet no green button solution to generate final and complete hardware
designs from entirely software algorithm implementations, consideration of
hardware implementation execution and understanding of parallel and clock
concepts are required.

The design of Parallel Architecture for Correlator is implemented in
VHDL. Soft-core Embedded Processor development tool that mean EDK
tool is study. The use of built in IP core reduces and resource requirement
of the system and improves the overall performance in terms of speed and
area. The design is carried out using Virtex 5 XC5VLS110t-1-1ff1136 with
speed grade of -1. The result are obtained and observed at the simulation
level. Calculated a execution time on processor.

5.2 Future Scope

For the correlator design, the primary goal was to achieve a speed-up in
the computational core of the correlation algorithm on hardware platform.
Therefore, in case of the further development of the correlator design a speed-
up might be searched outside of the correlation computation loops more
careful clock cycle considerations of input and output streaming interfaces,
eliminating or merging variables manipulation stages, etc. Besides, as it
was mentioned the implemented code of cross-correlation was not developed
with the intention of performing cross-correlation with maximum efficiency.
Therefore, the cross-correlation algorithm itself can be improved.

Additionally, in case the correlator design is applied for correlation

61

calculation in practical applications (eg for radio-astronomical applications),
an FX type of correlation might be considered. Due to the fact that in this
correlation Fourier transform is applied before calculating cross-products, it
offers some advantage in the required number of cross-products calculations,
as opposed to XF correlators where Fourier transform is applied after cross-
products are calculated.

The virtex 5 implementation of the correlator can be enhanced by em-
ploying shared memory interfaces between software and hardware processes.
This will allow to overcome the shortcoming of the slow streaming commu-
nication of the FLS.However, implement the shared memory approach asyn-
chronisation mechanism is required between the communicating processes.
Currently, such a synchronisation utility is not feasible to implement with
the supported tools. Support of such synchronisation tools will theoretically
increase communication throughput between processes and, therefore, the
overall virtex 5 performance.

The proposed approach of simultaneous involvement of the FPGA for
correlation in this thesis can be expanded to other DSP applications, such as
image processing, telecommunication, cryptography, provided that the data
input-output interfaces are fast, well-tested and reliable. As stated before,
FPGA has no knowledge about any I/O interfaces before it is configured,
whereas for any DSP application input output throughput is one of the crit-
ical questions in achieving top performance. Thus, although FPGA-based
computing can deliver a significant increase in performance for a number of
applications, the current state of FPGA development requires a substantial
amount of expertise and design efforts to achieve the respective speed-up.

62

Appendix A

Matlab Program for
Auto-Correlation

N=1024;
f1=1;
fs=200;
n=0:N-1;
x=sin(2*pi*f1*n/fs);
t=[1:N]*(1/fs);
subplot(2,1,1);
plot(t,x);
title(’sinwave of frequency 1000Hz [fs=8000Hz]’);
xlabel(’Time,[s]’);
ylabel(’Amplitude’);
grid;
Rxx=xcorr(x);
subplot(2,1,2);
plot(Rxx);
grid;
title(’autocorrelation function of the sinewave’);
xlabel(’lags’);
ylabel(’autocorrelation’);

63

Appendix B

Matlab Program for
Cross-Correlation

N=1024;
f=1;
fs=200;
n=0:N-1;
x=sin(2*pi*f*n/fs);
y=x+10*randn(1,N);
subplot(3,1,1);
plot(x);
title(’pure sinewave’);
grid;
subplot(3,1,2);
plot(y);
title(’y(n),pure sinewave +noise’);
grid;
Rxy = xcorr(x,y);
subplot(3,1,3);
plot(Rxy);
title(’Cross correlation Rxy’);
grid;

64

References

[1] Agarwal, R., B.V.R.Reddy, K.K.Aggarwal. (2006). A Switching Mech-
anism Detection to Reduce Complexity in Multiuser Detection for DS-
CDMA Systems. Journal of Mathematics and Statistics, 2(2), 368-372.

[2] Altium Limited. (2008). Altium Designer. Retrieved August 13, 2008,
from http://www.altium.com/products/altiumdesigner/

[3] Andrews, D., Niehaus, D., Jidin, R., Finley, M., Peck, W., Frisbie, M.,
et al. (2004).Programming models for hybrid FPGA-CPU computational
components: a missing link. IEEE Micro, 24(4), 42-53.

[4] Baran, P., Bodenner, R., Hanson, J. (2004). Reduce Build Costs by
Offloading DSP Functions to an FPGA. FPGA and Structured ASIC.

[5] Beckman, P. (2008). Looking toward Exascale Computing. On The Ninth
International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT’08) [Keynote Speaker]. Dunedin: Uni-
versity of Otago.

[6] Betz, V., Rose, J., Marquardt, A. (1999). Architecture and CAD for
Deep-Submicron FPGAs. Norwell: Kluwer Academic Publishers.

[7] Buell, D., El-Ghazawi, T., Gaj, K., Kindratenko, V. (2007). Guest Ed-
itors’ Introduction: High-Performance Reconfigurable Computing. Com-
puter, 40(3), 23-27.

[8] Callahan, T. J., Hauser, J. R., Wawrzynek, J. (2000). The Garp archi-
tecture and C compiler. Computer, 33(4), 62-69.

[9] Carroll, B. W., Ostlie, D. A. (2007). 6.3 Radio Telescopes. In An in-
troduction to modern astrophysics (2nd ed.). San Francisco: Pearson
Addison-Wesley.

65

[10] Cavadini, M., Wosnitza, M., Troster, G. Multiprocessor system for high-
resolution image correlation in real time. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 9(3), 439449 (2001)

[11] M. Wahab and D. Puckey, FPGA-based DSP Systems, Eds. W.R.Moore
and W. Luk, Abindon EECS books, 1994.

[12] Altera Corporation, Stratix II Device Handbook, May 2007.

[13] Almudena Lindoso, Luis Entrena. High performance FPGA-based image
correlation, J. Real-Time Image Proc. 2007, vol. 2, pp.223233

[14] Altera Corporation, Quartus II Version 8.0 Handbook, 2008.

[15] Analog Devices Inc., TigerSHARC Embedded Processor AD-
SPTS201S,2006.

[16] Xilinx Inc, Virtex 5 Handbook,May 2009.

[17] Xilinx Inc, EDK 13.1 Tool Handbook. May 2012

[18] C. Jakob, A. Th. Schwarzbacher, B. Hoppe, R. Peters, A FPGA Opti-
mised Digital Real-Time Mutichannel Correlator Architecture, IEEE Com-
puter Society 10th Euromicro Conference, 2007

66

	Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Research Objectives
	Thesis Layout

	Theory Background and Related Work
	Typical High-Performance Signal Processing Applications
	Radio Astronomy
	RADAR Applications
	Medical Applications
	Telecommunication

	Correlation as a Typical DSP Application Problem
	Correlator Theory
	Digital Correlators
	Implementations of Correlators

	DSP Technologies
	The Performance Requirements of the DSP Applications
	Digital Signal Processors (DSPs)
	Application-Specific Integrated Circuits (ASICs)
	Hign-Performance Computing
	FPGAs as a DSP Tool

	Chapter Summary

	Linear Correlator Architecture
	Auto Correlation
	Properties of Auto Correlator Function
	Matlab Implementation on Auto Correlator Function

	Cross Correlation
	Properties of Cross Correlator Function
	Matlab Implementation on Auto Correlator Function

	Implementation of Linear Correlator Architecture
	Theory of Linear Correlator Architecture
	8-bit Linear Correlator Design simulation

	Chapter Summary

	MULTI CHANNEL CORRELATOR ARCHITECUTE
	FPGA Architecture
	FPGA Technology
	Challenges in FPGA Programming
	High-Level Programming for FPGA Architectures

	Project Design Flow and Methodology
	Development Hardware Platform
	Development Software Tool

	Result
	HyperTerminal Output
	Execution Time calculation

	Chapter Summary

	CONCLUSION AND FUTURE SCOPE
	Conclusion
	Future Scope

	Matlab Program for Auto-Correlation
	Matlab Program for Cross-Correlation
	Bibliography

