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Abstract

Increasing design complexity, shrinking time to market, and high cost
of fixing a bug in a released product make pre-silicon validation of mi-
croprocessors a major ingredient in the product development cycle. The
complexity and hence the cost of validating a microprocessor increases
from one generation to the next, making it a very important and chal-
lenging problem for current and future designs.

HW/SW interaction of any microprocessor relies on an accurate im-
plementation of the specification which can be obtained with the help of
Boot sequences, Device Driver functionality and Control & Status. These
processes are done by different register programming of the microproces-
sor.

CR Validation refers to ’Attributes Validation’ of all the registers
present in the microprocessor. Attributes that needs to be covered for
validation are all the properties of a register that are supposed to be
obeyed by it, except functions that it triggers upon configuration of it.

Some of the key challenges to the CR Validation are large number of
registers under validation,ultra complex attributes of registers.

This report introduces type of configuration registers, basic validation
environment required to validate them, attributes complexities and sub-
sequent verification complexities and optimal approach to address this
problem at different steps of validation.
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Chapter 1

Intoduction

1.1 Processor Register

A register is a very small amount of very fast memory that is built
into the CPU (central processing unit) in order to speed up its operations
by providing quick access to commonly used values.

Memory refers to semiconductor devices whose contents can be ac-
cessed (i.e., read and written to) at extremely high speeds but which
are held there only temporarily (i.e., while in use or only as long as the
power supply remains on). Most memory consists of main memory, which
is comprised of RAM (random access memory) chips that are connected
to the CPU by a bus (i.e., a set of dedicated wires).

Registers are the top of the memory hierarchy and are the fastest way
for the system to manipulate data. Below them are several levels of cache
memory, at least some of which is also built into the CPU and some of
which might be on other, dedicated chips. Cache memory is slower than
registers but much more abundant. Below the various levels of cache is
the main memory, which is even slower but vastly more abundant (e.g.,
hundreds of megabytes as compared with only 32 registers). But it, in
turn, is still far faster and much less capacious than storage devices and
media (e.g., hard disk drives and CDROMs).

Most registers are implemented as an array of SRAM (static random
access memory) cells. SRAM is a type of RAM that is much faster and
more reliable than the DRAM (dynamic random access memory), which
is used for main memory because of its lower cost and smaller space
consumption. The term static is employed because SRAM does not need
to be electrically refreshed as does DRAM, although it is still volatile
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(i.e., it needs to be connected to a power supply in order to retain its
contents).

Figure shows a typical processor register using D flip-flop as basic
storage element. The field writing logic drives the data input into the
register with controlling write enables of the register. Similarly the read-
ing logic reads the data out of the FF using the read enable signals. It
drives the data out of FF to the read buffer according to the read enable
signals. The registers could be controlled bitwise/bytewise or custom
by sharing the read/write logic across the fields. Here, bit 0:9 of the
registers are making field 1, and 10:32 bits making field 2.

Figure 1.1: Register bitwise achitecture
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The access types of the register field could also be controlled based
on the presence/absence of the read/write logic. The field 1 having read
and write logic connected to the FF shows all FF can be written and read
by the source giving access type RW (Read/Write) to the field. The field
2 does not contain any FF as it is having all the constant bits. These bits
are constant as they do not have any associated write logic. These bits
can be read by read logic. Bits of field 2 is known as RO (Read Only)
bits

Figure 1.2: Registers inside a endpoint

There can be more than one register in particular endpoint. The
Endpoint distribution of the registers is shown in the below figure. Each
endpoint has its address to communicate with processor. Register within
endpoint will have address as summation of endpoint address and reg-
ister offset. For each register this address is unique. Register endpoint
is having the offset address decoder which will enable the registers only
when correct offset address is selected via address bus for correct end-
point. The write and read select lines are the offset address lines decoded
to enable particular register of the endpoint. It will make sure that pro-
cessor is updating/getting correct data at correct place. Output of the
register is being read via read multiplexer.
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1.2 Types of Processor Register

Architecturally, a 32 bit Intel processor consists of two or more logical
processors, each of which has its own architectural state. Each logical
processor consists of a full set of 32 bit data registers, segment registers,
control registers, debug registers, IO mapped registers etc. This registers
are briefly described here.

1. Control Registers (CR)

2. PCI configuration Registers

3. IO and Memory Mapped IO Registers (IO/MMIO)

1.2.1 Control Registers

A control register is a processor register which changes or controls
the general behavior of a Central Processing Unit (CPU). Common tasks
performed by control registers include interrupt control, switching the ad-
dressing mode, paging control, and coprocessor control. Control registers
are not visible to the software access.

1.2.2 PCI configuration Registers

PCI is a complete specification set that defines how different parts
of the computer should interact. PCI is currently used extensively on
IA-64 systems. A PCI device driver must be able to find its hardware,
gain access to it and initialize it.

PCI configuration space is the underlying way that the Conventional
PCI, PCI-X and PCI Express perform auto configure the cards inserted
into their bus. One of the major improvements that PCI had over other
I/O architectures was its configuration mechanism. In addition to the
normal memory-mapped and I/O port spaces, each device function on
the bus has a configuration space. This is 256 bytes that are addressable
by knowing the 8-bit PCI bus, 5-bit device, and 3-bit function numbers
for the device (commonly referred to as the BDF busdevicefunction).

This allows up to 256 buses, each with up to 32 devices, each support-
ing 8 functions. A single PCI expansion card can respond as a device and
must implement at least function zero. The first 64 bytes of configura-
tion space are standardized; the remainder is available for vendor-defined
purposes.
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Figure 1.3: PCIE Configuration Register

In order to allow more parts of configuration space to be standardized
without conflicting with existing uses, there can be a list of capabilities
defined within the first 192 bytes of PCI configuration space. Each capa-
bility has one byte that describes which capability it is, and one byte to
point to the next capability. The number of additional bytes depends on
the capability ID. If capabilities are being used, a bit in the Status reg-
ister is set, and a pointer to the first entry in a linked list of capabilities
is provided in the capability pointer register defined in the Standardized
Registers.

The Vendor ID and Device ID registers identify the device model,
and are commonly called the PCI ID. The 16-bit vendor ID is allocated
by the PCI-SIG. The 16-bit device ID is then assigned by the vendor.
There is an ongoing project to collect all known Vendor and Device IDs.
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The Subsystem Vendor ID and the Subsystem Device ID further iden-
tify the device model. The Vendor ID is that of the chip manufacturer,
and the Subsystem Vendor ID is that of the card manufacturer. The Sub-
system Device ID is assigned by the subsystem vendor, but is assigned
from the same number space as the Device ID.

The Status register is used to report which features are supported
and whether certain kinds of error have occurred. The Command regis-
ter contains a bitmask of features that can be individually enabled and
disabled.

The Header Type register values determine the different layouts of
remaining 48 bytes (64-16) of the header, depending on the function of
the device. That is, Type 1 header for Root Complex, switches, and
bridges, type 0 for endpoints etc.

1.2.3 IO and Memory Mapped IO Registers

Memory-mapped I/O and Port mapped I/O are two complementary
methods of performing input/output between the CPU and peripheral
devices in a computer. Memory-mapped I/O uses the same address bus
to address both memory and I/O devices the memory and registers of
the I/O devices are mapped to address values; So when an address is
accessed by the CPU, it may refer to a portion of physical RAM, but it
can also refer to memory of the I/O device. Thus, the CPU instructions
used to access the memory can also be used for accessing devices. Port-
mapped I/O often uses a special class of CPU instructions specifically for
performing I/O. This is found on Intel microprocessors, with the IN and
OUT instructions.

Figure 1.4: Memeory mapped Base Register
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Figure 1.5: IO mapped Base Register

The processor contains two registers that reside in the processor I/O
address space the Configuration Address (CONFIG ADDRESS) Regis-
ter and the Configuration Data (CONFIG DATA) Register. The Con-
figuration Address Register enables/disables the configuration space and
determines what portion of configuration space is visible through the
Configuration Data window.

For example PCI targets (except host bus bridges) are required to im-
plement Base Address Registers (BARs) to request a range of addresses
which can be used to provide access to internal registers of the devices.
The configuration SW for the device uses BARs to determine how much
space a device requires in a given address space and then assigns where
in that space the device will reside.

• BARs that map into IO space are always 32b wide

• BARs that map into Memory space are either 32b or 64b wide

I/O and Memory addresses are supposed to be unique to one device.
SW may erroneously configure two devices to the same address, making
it impossible to access either one. This will never happen unless a driver
is playing with registers it shouldn’t touch.

Devices are configured at System Boot time. A powered-up unini-
tialized device only responds to configuration transactions. It has no
memory and no IO ports mapped in the system address space. BIOS
offers access to the device configuration address space by reading and
writing registers in the PCI controller. At boot time, BIOS performs the
necessary configuration transactions with every PCI peripheral in order
to allocate place for each memory and/or IO region that it needs. By the
time a device driver accesses the device, its Memory and IO regions have
already been mapped into the system address space. Driver may change
the default assignment if it wants.
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SW accesses MMIO space using the MOV instruction. Core sends
the request to Memory space to access device. Memory requests may
be of any size. It is recommended that a device request that its internal
registers be mapped into Memory Space and not I/O Space.

I/O Space is limited and highly fragmented in PC systems and will
become more difficult to allocate in the future. A device may map its
internal register into both Memory Space and optionally I/O Space by
using two Base Address registers (one for I/O and the other for Memory).
Both BARs provide access to the same registers internally. SW access
IO space using the In/Out instructions.

1.3 Pre-Silicon Verification

Verification is over all process of verifying that the processor conforms
to specification. As complex task, it consumes the majority of time and
effort in processor design. During the pre-silicon process, engineers test
devices in an emulated environment with simulation, emulation, and for-
mal verification tools.

Attribute verification of the system is defined as process of verify-
ing the properties of the RTL which ensures that correct logic is im-
plemented. Logic designers implement processor architecture in RTL.
The verification engineers write several properties using the information
available in the architecture specification document to ensure that the im-
plementation satisfies the specification. One of the approaches is Logic
simulation.

A logic simulation environment is typically composed of several com-
ponents. Each component and its significance in the register property
verification are described with an example register as follows. The ex-
ample register A of size 32 bits have RW and RO as bit access type.

• Transaction generator: The Transaction generator generates input vectors that
are used to search for anomalies that exist between the intent (specifications)
and the implementation (HDL Code). Modern generators create directed-
random and random stimuli that are statistically driven to verify random parts
of the design. The randomness is important to achieve a high distribution
over the huge space of the available input stimuli. Generators also bias the
stimuli toward design corner cases to further stress the logic. Biasing and
randomness serve different goals and there are tradeoffs between them, hence
different generators have a different mix of these characteristics. The input for
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the design must be valid (legal) and many targets (such as biasing) should be
maintained. The model-based generators use this model to produce the correct
stimuli for the target design. Transaction generator for register verification
normally generates directed random data for the bit access type, partial access
verification of registers. For register A the data generated by transaction
generator is 0xFFFF with full register access.

Figure 1.6: Verification Envirnoment for Register Validation

• Driver: The drivers translate the stimuli produced by the generator into the
actual inputs for the Design Under Verification (DUV). Generators create
inputs at a high level of abstraction, namely, as transactions or assembly
language. The drivers convert this input into actual design inputs as defined
in the specification of the design’s interface. For register verification driver
works as the interface between stimuli generator and RTL code. It converts
the stimuli to the signals understood by the RTL code of the DUV.

• Simulator: The simulator produces the outputs of the design, based on the
design’s current state (the state of the flip-flops) and the injected inputs. As
shown in the figure, simulator stimulates the register RTL for the stimuli given
to the input and generates the output signals according to the register RTL
description.

• Monitor: The monitor converts the state of the design and its outputs to a
transaction abstraction level so it can be stored in a ’score-boards’ database
to be checked later on. The outputs of the register stimulus can be checked in
two ways i.e. either via reading the register back or via checking the processor
states triggered by the register changes. Register attribute validation covers
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only property, not functional verification; normally monitor is used to capture
the registers stored values after some write transaction on the registers.

• Checker: The checker validates that the contents of the ’score-boards’ are legal.
The checker needs to validate that the actual results match the expected ones.
The expected value for the register attribute validation is generated by the
register reference model.

• Reference Model: Reference model generates the expected RTL output from
the specification. Register Reference Model (RMM) contains all attributes
information of the registers under validation. It also keeps track of current
& next values of these registers, and implements Expected Value Evaluation
Algorithm (discussed later). Upon issuing a transaction to the RTL, Reference
Model evaluates the expected values of the register according to the transaction
of the driver. Reference model counted the expected read value of 0x003F here
as the bits (10:31) is having RO access type with constant value of 0.

For the closure of the verification, coverage of the design is defined to
assess that the functional verification is done on design up to correct ex-
tinct. These can be functional coverage, statement coverage, and branch
coverage or more than one type of coverage.



Chapter 2

Register Attributes

2.1 Basic Attributes

Register serves as an interface between SW and HW for configu-
ration of the chip’s functionality. Each register consists of properties
(attributes) associated with it, like its size, reset values, access types etc.
There would be a significant advantage if these common attributes of the
registers are validated together using a common methodology. Config-
uration Register Validation (CRV) refers to such attributes verification
without focusing on functional aspects of the registers.

Figure 2.1: Register Attributes
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Register attributesproperties can be classified as attributes pertaining
to the register itself and inter register relations that represent how a
programming to some complex register in a certain way affects other
dependent registers. Figure 5.1 represents the important attributes of a
register from the CR Validation perspective.

2.1.1 Bit Access type

Bit Access Types of a register refers to individual bit read and write
accessibility. In current generation processor there are more than 54
different kinds of access types like RO (read-only), RW (read-write), WO
(write-only), RW1C and RW1S etc.

A common type of bit is the readwrite bit. The read andor write
ability of the bit is documented from the debug firmware’s perspective
and software driver perspective. Driver can read the bit to see its value.
Driver can change the value of a read/write bit by writing 1’s or 0’s to
the bit. The hardware, however, can only read the bit; it cannot change
the value of the bit (except during power-on resets). Common uses of
read/write bits include configuring and controlling of hardware block,
interrupts enabling, controlling the level of output pins on the chip etc.
In all of these uses, driver writes to read/write bits to configure the
block’s behavior.

Another common type of bit is the read-only bit. This means that
debug firmware and software driver can read the bit but cannot change
the value of the bit by writing to it. Only the hardware can change the
value of the bit. Any attempt by driver to change the value is ignored by
the block. Common uses of read-only bits includes showing status of an
internal condition such as active, idle, full, empty, or error, storing value
of an input pin on the chip, storing results of a timercounter etc.

Write-only bits are rare. It means that debug firmware and software
driver can write to it and change its value but driver cannot read back
what the value is. Since driver cannot read the register, it cannot confirm
that the register contains what it wrote. If driver needs to later on
remember the value of what it wrote, it must keep its own copy of what
it last wrote. Obviously, the hardware can read it and respond to it
appropriately.

Reasons are very few to have write-only bits. Here are two reasons
where it might be appropriate: For security purposes, register might be
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rendered write-only so that rogue driversoftware modules cannot read the
settings. The register might not have storage elements behind it. Writing
to it causes some task to start, such as a state machine, but there is no
need to keep a 1 in an inputoutput. Generally a status register keeps
track of the status of the task. Even if a register is deemed write-only, a
read should still work and should return zeros.

RW1C bit can be read by software driver and it can write ’1’ to
the bit, which will clear the bit automatically. There will be no change
in the value of this bit, if ’0’ is written. The hardware sets a bit and
driversoftware clears it. Driver cannot set this bit, only clear it after the
hardware has first set it. RW1C bits are used to inform driver which
event has occurred within the block. Driver then acknowledges the event
by writing a 1 in that bit position to clear it. This behavior is also known
as Write 1 Clear (W1C). This behavior permits more than one different
event to occur at different times while allowing firmware to clear one
without risk of inadvertently clearing another.

In RW1S bit, the driver writes a one to set that bit in a register.
But driversoftware cannot clear the bit. Only the hardware can clear
the bit. This is known as Write 1 Set (W1S). RW1S bits are typically
used to queue some action in the hardware. When the hardware is done
with that task, it then clears the bit. Driver can read the bit, and if it
is cleared, it knows that it can queue the action again. Driver can queue
any bit at any time, without regard to other bits in the register that may
be set or that are about to be cleared by the block. Driver writes a 1
to the desired position and a zero everywhere else. Zeros in the other
positions do not affect the settings of the other bits.

The bit access type of registers have different attribute modifiers
which changes the behavior of the bit from its original access type with
respect to some other register property.

The bit which can be updated by hardware can be identified by ” V”
at the end of the normal access type. These bits are called variant bits.
For example, if a bit have RW V access type, the software can read and
write the bit in addition to the hardware. RW1C and RW1S bits need
to be updated by hardware as their original access type property. They
are called semi variant bits as hardware and software can write only
particular logic on it. These bits are not required to append with V
attribute as hardware updateability can be implicitly known by original
access type.
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Other attribute modifier is ”S” at the end of the access type. The S
stands for sticky property of bit. The processor goes under different kind
of reset like cold and warm reset. Only difference between two resets are
that in cold reset the power to the processor is fully removed and the
system is restarted again; whereas in warm reset the system is restarted
without removing power to the system. During warm reset some of the
bits will store their original values in spite of reset. These bits are known
as having sticky property and named as sticky bit with S at the end of
their original access type (like RWS).

There is a pair of attribute modifier known as L and K. They are
known as lock and key bits. They are described in coming sections.

2.1.2 Partial Access

Each register bit is connected to its own bit enable signal. Partial
Access refers to accessibility (Write & Read) of granularity like 012348
bytes per transaction using Byte Enables (BE). Register can support
the partial access according to its functionality and design requirement.
If any register supports the partial access that means that each bits of
the register can be accessed individually independent of the other bits
in the register. Partial access can be given to the register at different
granularity levels also.

Figure 2.2: Partial Access Granularity

If a register is defined to have partial access at byte level, each byte
in the register can be accessed individually, and it is the last level of
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the partial access the software can have on the register. It can have
partial access in upper level partial access like any two byte of register
can be accessed in parallels. Concept of granularity for the partial access
of register is shown in below fig. If a register does not support partial
access, it should be accessed as full register only.

2.1.3 Accessibility

Each register can be accessible via different request initiators. Re-
quest initiators can be defined as source of the write or read request to
the register. The initiator can be software driver, or debug firmware
driver or hardware signal. Request generated by each initiators have dif-
ferent effects on the register bits according to the register visibility to the
particular request initiator. Accessibility of a register refers to visibility
of the register to Software (SW), Firmware (FW) and Hardware (HW).

Registers which are accessible via software driver are used for the
software configuration of particular hardware block. These registers are
visible to operating system programmer to have some control over hard-
ware behavior of the processor. All the software visible registers are also
visible to the firmware.

All the configuration registers are visible to debug firmware driver.
As the firmware is used for processor testing and debug purpose it can
access all the registers across the board for the testing purpose.

Hardware visibility of the register is dependent on bit access type of
the register and register inter relational attributes. RW1C and RW1S
bits of the registers are hardware visible by access types as these bits
needs to be updated by hardware.

2.1.4 Reset Values

Reset Values refer to values of register on various resets like cold
reset (Hard Reset), Warm Reset and FLR (Function Level Reset). In
Coldhard reset power to the system is physically turned off and back on
again. Values of the each registers in this phase are known as the cold
reset values of the register.

Warm reset of the processor is reset without the removal of power to
the system. This kind of reset can preserve the values of the some regis-
ters which have sticky attributes. Warm reset will clear all the register
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data if the register does not contain sticky bit properties. This kind of
register will get their cold reset values after the warm reset flow.

When processor needs to reset a particular function, softwarefirmware
triggers functional level reset flow. This resets particular list of registers
which falls under the function, for which the reset is triggered. The
reset will preserve the values of registers which does not fall under the
particular function. Functional level reset always get triggered by the
softwaredebug firmware, it cannot be triggered by hardware.

2.1.5 Register Type

Register Type refers to whether register is CR (Control Register) or
CFG (PCIe Configuration Register) or MMIO or IO registers.

2.1.6 Register Size

Size refers to size of the register in terms of Bytes. Register can be
of size 4B (32 bits) or can be of 8B (64 bits) etc.

2.2 Register Dependencies

In Processor architecture it is possible that programming of some of
the registers impacts not only the register being programmed but also
other set of registers and/or their attributes. This kind of register inter
dependencies are known as inter register relations. There are basically
four type of inter register dependencies which can be described as follows.

2.2.1 Broadcast (BC) Registers

Figure 2.3: Broadcast Relation
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If write on the particular register of the processor is broadcasted to
other registers in processor, relations between these registers are known
as broadcast (BC) relation. The register which is broadcasting writes
is known as the BC parent register. Registers which will receive the
broadcasted writes and getting updated accordingly are known as BC
child.

Broadcast parent registers are normally virtual registers. Virtual reg-
isters are defined as the register in programming model of processor but
physically they do not exist. Writes on the virtual register is redirected
as broadcast to more than one register. These child registers are physical
copies of the virtual registers having same attributes as the virtual parent
register. Because of the same attributes of the parent and child registers
in broadcast it is also known as unidirectional architecture mirroring. A
broadcast parent register can have two or more physical copies in the
design.

Broadcast parent and child registers are both visible to the software
driver. If driver updates any one of the child registers, values will not
be propagated to the parent register and other children. It can happen
that each of child registers can hold different value than each other. If
any writes happen to the parent it will flood through all children, recon-
figuring all of them.

2.2.2 Design Shadow Registers:

Figure 2.4: Design Shadow Relation

Design shadow registers are special case of broadcast registers where
the broadcast children are not visible to the software access. Shadow
registers are also known as Non-Architectural Unidirectional Mirroring
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Figure 2.5: Design Mirror Relation

2.2.3 Design Mirror Registers:

There is multiple ways to define a register in memory as described in
IO and memory mapped IO registers. It can happen that two different
addresses generated by the processor can map to the same physical ad-
dress in memory. This relational attribute is known as the design mirror.
It can happen that due to two different kind of mapping the access type
of register seen to the mapping endpoint is different from both the side.
Anyone of the endpoint updating the register will automatically update
the value seen by the other endpoint. From the software perspective
there will be two different registers which are mapped to the two differ-
ent memory locations, but actually they will be redirected via internal
mechanism to the same register. Figure below shows the Mirror relation
of the register

2.2.4 Keylock Registers:

Some of the architecture registers must not be updated under par-
ticular processor states and flows. These registers are locked via a key
lock mechanism. This lock mechanism is used to control the write access
to some of the fields of the same register andor other registers by pro-
gramming a special field in it called the Key Field (access types RW K*).
The fields that get locked by this key are called Lock Fields (access types
RW L*). Once the key field is locked, the lockable field will not be up-
dated via writes even if the bit access types are writable with respect to
request initiator. The Keylock mechanism is to prevent software driver
to write certain registers. It is not applicable on debug firmware (i.e.
firmware can access the locked bits even if key bit is locked). If the ac-
cess type is RW KL, the bit acts as key as well as lock, so, the bit gets
self-locked when it is written.



Chapter 3

Configuration Register
Validation(CRV) Challenges

CRV validation involves the development of an intelligent verification
environment, which can validate all the attributes of the registers resid-
ing in the current generation processor. It strives to achieve very good
coverage of the design, hence providing enough confidence. The CRV
focuses on validation of all the attributes of the register like, size, access
type, dependencies, connectivity, without focusing on the functionality
aspect of the register.

Developing CRV infrastructure posed several challenges which the
validator has to address, which are explained below.

1. Attribute Challeges

2. Validation Environment Challeges

3. Test results and debug

4. Coverage and clouser

3.1 Attribute Challenges

As defined in above section registers are having the different sim-
ple and complex attributes. These attributes when combined together
increases the complexity of validating the behavior of the register.

3.1.1 Access type challenges

There are 54 different kind of access type in current generation pro-
cessor. Some of the attributes like RW and RO can be easily validated
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Figure 3.1: Complex Access types

using a writeread transaction. But the attribute modifiers increase the
complexity of these simple access types. Few of the very complex at-
tributes are given below:

A single register can have multiple access type combinations which
poses a challenge. Let us consider an example of a register which con-
tains a mixture of readwrite bits and interrupt bits. (RW1C). Readwrite
bits are often handled by software with a read-modify-write sequence.
Software sets bit X (RW) by reading the current contents of the register,
then writing the contents back out to the register. All the other bits are
left the same-but RW1C bit is now set.

RW1C are often handled by firmware with a read-write-Ack sequence.
Firmware discovers that bit Z (RW1C) is set, indicating a pending inter-
rupt, by reading the interrupt status register which set the value of bit
Z. Firmware Acks that pending interrupt by writing just that bit, to the
register.

Combining these two types of bits in the same register requires extra
handling by firmware to avoid inadvertent changes of the read/write bits
and inadvertent acknowledgment of RW1C bits. The mixture of different
attributes in the register would also increase the complexity of the logic
used to implement the register. Hence validating such scenarios would
be a challenging task.

3.1.2 Partial Access

Based on the functionality each registers fields could be controlled
at different granularity level. At the worst case a register could have a
facility to control each bit independently. Given a 32 bit register in the
processor, the stimulus would have to explore a large validation space.
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3.1.3 Accessibility

Register Endpoint can be accessible via software and hardware. Soft-
ware accessibility is very much easy to validate, but hardware updates
are very hard to trace in simulation. This would be challenge since the
validation environment would have to continuously monitor the hardware
updates of the register based on the access types.

3.1.4 Reset Value

Reset Values checking needs prior programming of register to its
complement of reset value and then applying the reset (cold resetwarm
reset and FLR etc.). As this prior programming to some of the registers
disturbs the configuration of the chip, the reset flow would not go through
smooth and blocks the further validation of the register. After each phase
of the reset flow, there would be configuration phases which results in
register value modification.

3.1.5 Register Inter relations

In many cases a register field can be influenced by changing the field
of some other register. Since a register can have different fields being
influenced by different registers, these relations become really complex
and validating them would be a challenge. Some of the typical relational
combinations are Keylock + [Broadcast or Shadow or Mirror], two level
Broadcast etc.

• Keylock among two Shadow relations:
The Keylock registers basically containing key register and lockable registers.
RX register is lockable shadow parent register. The register has shadow chil-
dren which are invisible to software access. Each child has its own lockable
bits which are getting locked via child of shadow parent RY. The relations
gets complex as each child not having software access and having key bits of
locking.

• Shadow child defined also as a mirror register:
The shadow child cannot be seen to the operating system fabric. The archi-
tecture mirroring of the child will be having the software access. The relation
gets complex and challenging as the security issues.

• A broadcast child to BC parent also acts like broadcast child to a different BC
Parent:
The broadcast relation get extend to the two level of hierarchy. The virtual
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Figure 3.2: Keylock and Shadow relations in same registers

Figure 3.3: Shadow and Mirror relations in same registers

grandparent registers having two hierarchies of children. Middle level register
may or may not be virtual.

3.2 Validation Environment Challenges

Developing a validation environment to validate all the attributes
of registers is itself a challenging task, as explained in previous section.
Along with this the validation environment would pose several other chal-
lenges which would need to be tackled.

3.2.1 Legal-illegal stimulus

The configuration registers controls different modes and flows of the
processor. CRV would randomize the register values for validation of dif-
ferent attributes, hence triggering lot of unwantedobstructive background
noise. These background noises would block the further verification of
the register, by causing the processor to hang or changing the state of the
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Figure 3.4: Multilevel Broadcast Relations

register such the intended behavior of the register cannot be validated.

3.2.2 Modeling Registers Behavior

Building a Register Reference Model (RMM) which can evaluate
expected values for written register as well as all its dependent registers is
complex due to complex access types and multiple complex inter register
relations pertaining to same register. Hardware has capability to update
some of the registers based on functionality of the register. Modeling
this variant behavior for the purpose of CRV is complex.

3.2.3 Huge Number of Registers, 10000+ configurations reg-
isters

The validation of 10,000 registers in current generation processor
would need massive regressions, debug, status reporting, longer turn-
around time and overall a large database to handle. It also proportionally
increases in Exceptions, Compute Resources and complex environment
Handling.

3.2.4 Driver according to accessibility

Each register Endpoint poses different kind of accessibility to the
software and hardware request initiators. Either environment needs the
different driver for each request initiator or a single driver must be able to
mimic all the request initiator. It is also required to be having additional
arbiter logic to stimulate the RTL behavior of driver when more than
one request initiator generates device handling requests.
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3.3 Test Results and debug

The number of registers and complex attribute poses enough chal-
lenges in debug and handling such a massive data. A lot of Compute
and Engineering Resources would be required for this purpose. To gain
enough confidence in validation it is required to run large regressions
on the register for each RTL change at system level in small durations.
This will lead to iterative and Long Debug turnaround times for such
huge number of registers. Since lot of late breaking features might get
introduced, which might lead to finding the bugs at the later stage of the
design cycle. From CRV perspective bugs which are found at the later
stage can lead to RTL changes which might ultimately change the flows
of the processor. This might even effect the time to market for the given
product. Also there would lot of onion peeling of issues which would
increase the complexity.

3.4 Coverage and Closure

There are many registers and each of them contains many attributes.
CRV Closure Criteria should be such that all the registers attributes need
to be validated completely. Evaluating coverage for individual registers
and their attributes is a new challenge. The register regressions strategy
should be such that, all the registers should be exercised with all the
applicable CRV Ops. An orthogonal approach to CRV Ops coverage is
to collect actual toggling of RTL Register Values by the CRV Ops.



Chapter 4

Solution Space

Attributes Validation (CR Validation) can be performed by random
programming of registers focusing on validation of various attributes of
the registers. The following set of major systematic approaches would
help to define CRV strategy for a project.

• Prepare the Test bench suitable for CRV

• Define a strategy to perform complete/comprehensive testing of given set of
registers possibly in a single test

• Define Verification process for validating each of the attributes

• Build CRV Testing Infrastructure on top of Existing Test bench to perform
the above mentioned comprehensive testing

• Build Registers Reference Model (RMM) for modeling register behavior

• Define Cold and Warm Reset Values verification strategy

• Define a smart coverage based stimulus to validate each of the attributes

• Define tests coding as simple as possible

• Define strategy for handling various exceptions

• Define Coverage strategy & CRV closure criteria

The rest of the chapter discusses details of the above.
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4.1 Prepare the Test bench suitable for CRV

CRV involves a lot of random programming of the registers; funda-
mentally keep toggling the register values. During this flow, there is a
significant possibility that the registers attain unsupported/illegal values,
and they trigger assertion failures, checker failures, unwanted flows etc.
As the idea is to test only the attributes of the registers, the functional
effects of the registers need to be ignored. Disabling all the assertions and
checkers is the first step in the CRV flow. The CRV test should come out
of reset with minimal configuration to enable SW and FW transactions.

4.2 Verify a set of registers in a single test

Figure 4.1: Test Flow for Register Validation

There is a significant advantage of compute resources if a given set of
registers are completely validated in a single dynamic simulations test.
Figure depicts how the register verification flows in a test.

After the end of the reset phase, the CRV test performs Data Pattern
testing (applying various predefined data & BE patterns) to validate most
of the basic attributes of the registers. Then the test would perform all
the applicable Relations Testing like BC, Mirror, Shadow and KL. Next
step is to perform the warm reset testing for sticky bits verification, FLR
testing for FLR reset enabled register fields. During the every stage of
this verification process, the test keeps dumping pass fail status of the
registers against each of its attributes.
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4.3 Verification Process for the Attributes

Figure 4.2: Broadcast, Shadow and Mirror testing

All the basic attributes of the registers, excluding some of the complex
bit access types, can be validated through Data Patterns testing. A Reg-
ister Reference Model (RMM, discussed in next sections) needs to be im-
plemented to evaluate expected value based on transaction (ReadWrite)
that is applied on a register.

Verification procedure for Broadcast, Shadow and Mirror Relations
is shown in the Figure. Keylock testing procedure is shown in Figure.
The figures are assumed to be self-explanatory and understanding these
verification procedures is left to the readers.

There are some access types like RW1S (write 1 to set, write 0 has
no effect, hardware can clear it), RW1C (write 1 to clear, write 0 has no
effect, hardware can clear it) etc. which have both SW and HW control on
them. Effect of SW writing can be tested easily but emulating hardware
behavior to setclear needs functional flow. To emulate hardware behavior
in a simplified manner, simulators capabilities can be utilized to force the
register bit to the required value and then send SW write to setclear it.
Verification of such RW[1—0][C—S]* kind of access types (called RWCS
testing) is depicted in the Figure. The success of this RWCS operation
is not guaranteed because hardware can modify the register value too
quickly that CRV testing fails to catch it.
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Figure 4.3: Keylock and RWCS testing

4.4 CRV Testing Infrastructure

CR Verification Flow, as depicted in Figure , consists of a. CRV tests,
which are generated based on the list of registers in the given model, b. a
dynamic simulation environment to perform the register testing. Log files
will be analyzed to understand passfail status of the registers, followed
by debug.

Figure depicts CRV infrastructure which performs the CRV testing
in the dynamic simulations environment. Given the list of Registers Un-
der Validation (RUV) by the CRV test, Attributes Collector gathers all
the required list of basic and relational attributes of the registers. At-
tributes Analyzer analyzes the attributes to determine the set of CRV
Operations (CRV Ops) like BC, Shadow, Mirror, KL etc. that need to be
performed to completely validate RUV registers. Transactions Generator
(TG) generates a set of micro level transactions (RdWr) for each of the
CRV Ops. TG also controls the Test bench to initiate various flows like
warm reset; FLR etc. Read & Write Logic interacts with Test Bench to
perform actual register Read & Write in the specified interface (SW or
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Figure 4.4: CRV Infrastructure

FW). Register Reference Model (RMM) maintains RUV registers and
their relation registers expected values (discussed later). Checker per-
forms the comparison of expected values vs actual register value and
dumps out checking status in log files.

4.5 Register Reference Model (RMM)

A registers expected value calculation is based on the following data.

• Transaction: Transaction type like ReadWrite, Read BE (Byte Enables), Write
Data, Write BE.

• Source (SRC): Request initiator like SWHW.

• Register Base attributes: Access types of individual bits of the register, Reg-
isters Partial Accessibility (Byte Enables) etc.

• Inter Relation Register Attributes: Relation with other registers and the rela-
tional registers attributes. Transactions may also affect expected value of the
relational registers.
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Figure 4.5: Register Refrence Model

RMM contains all attributes information of the registers under vali-
dation and their relation registers. It also keeps track of current & next
values of these registers, and implements Expected Value Evaluation Al-
gorithm (discussed later). RMM is depicted in Figure.

Some of the bit access types in the lock category (RW L etc.) acts
as RO during Keylock testing. To handle such scenarios, RMM keeps a
copy of the bit access types (called local access types) and keeps modifying
them dynamically to reflect expected behavior of the register.

Upon issuing a transaction to the RTL, RMM evaluates the expected
values of the register and its relation registers based on the local ac-
cess types; on completion of the transaction, it copies the next values to
the current value. This process is required because Read also impacts
the register contents (example: RC*(Read Clear), RS*(Read Set) access
types) and Actual Read Return Data (RTL data) needs to be compared
against the Register Current Values, because next value holds the future
value of the register upon completion of the transaction.

4.6 Expected Value Evaluation Algorithm

Expected Value Evaluation is based on the bit access types (rather
local access types), Read or WrData & WrBE, SRC of the transaction
(FWSW).
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All the bit access types can be classified into the major categories
which simplifies the algorithm implementation;

• WRITE TRANSPARENT ACC TYPES :Access types that causes WrData
get written to register bit independent of SRC (ex: RW kind of bits).

• SET(CLR)ON SwWr1 ACC TYPES :Access types that turn the bit to 1(0) if
SW writes 1. (ex: RW1S, RW1C kind of bits)

Based on (a) Read or Write transaction (b) Write Data & BE value
(c) SRC of the transaction, the algorithm is to scan through each of
the bits access types and find out the suitable category for the bit; and
there by determine the expected value which could be WrData 1 0. For
example, if the bit access type belongs to SETON SwWr1 ACC TYPES,
transaction is write transaction, BE enabled the current bit for the write
and WrData bit is 1, then the expected value of the bit is 0.

4.7 Cold Reset and Warm Reset Verification

In the initial cycles of the simulation, prior to the arrival of hard re-
set, initialize the registers to complement of the reset values Zeros Ones
Random Values. After the end of the reset phases, the values of the
registers can be compared against expected reset values. This process
works for most of the registers but not for the registers which undergo
the configuration during the reset phases. Avoiding such configuration
is not possible because the configuration is required for healthy bring up
of the simulation environment. If we can identify the cluster endpoint
reset signal, then, process of toggling of the reset and then checking the
reset values significantly simplifies the process of both Cold and Warm
Reset verification. In the environments where such a mechanism is not
convenient, the following steps can be applied.(a) Collecting the config-
ured registers and simulation time stamps when they get configured (b)
Utilize the DIRECT READ mechanism (explained in next sections) to
sample the register values prior to the configuration.

4.8 Stimulus Selection

Transactions Generator (TG) is not only needed to select CRV Ops
that need to apply to the registers, but also actual write data for indi-
vidual micro level transactions. Stimulus selection should be such that
minimum number of transactions is able to complete each CRV Op. So,
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instead of random data patterns, predetermined patterns need to be con-
textually selected like ALL ONE (0xFFFF), ALL ZERO (0x0000), MOV-
ING ZERO (0xEDB7 DEBD DBED BED7), alternative ones (0x5555,
0xAAAA), double ones (0x36C6 3C63), triple ones (0xE7E7 E77E) etc.
For Byte Enable Testing, only consecutive bytes selection is permitted
in the processor projects. So, ALL BYTES (0xF, 0xFF), TRI BYTES
(0x7, 0xE), DOUBLE BYTES (0x3, 0x6, 0xC), SINGLE BYTE (0x1,
0x2, 0x4, 0x8) and ZERO LENGTH (0x0 no bytes transaction) are the
possible values for BE testing.

4.9 Tests Simplification and Exceptions Handling

Tests need to be as simplified as possible so that, even non-CRV
person should be able to write a test for list of registers that needs to
be validated. This enables the register owner to run a simple test to
find bugs in the register code that is just written, thereby avoiding bug
propagation. This calls for a lot of automation of CRV Infrastructure
which is depicted in Figure. However there is a contradictory requirement
for some of the Registers as described below.

It is ideal to have all registers be able to sustain any illegal configura-
tion, which is not possible with all the registers. Although attributes of
a register requires certain CRV Ops to perform, due to various reasons,
some CRV Ops and/or some specific values need to be excluded. Some
registers have definitions and implementations different from classic defi-
nitions of register attributes. These registers need special attention. Any
register that needs such special handling whileprior to applying arbitrary
programming can be called as an Exception. For handling exceptional
registers, the CRV infrastructure needs to be flexible and provide com-
plete control to the test, so that, it can be tuned, modified according to
the requirements of exception. CRV Infrastructure should provide knobs
(control parameters, command line switches) to do the same, so that, the
CRV owner would be able to write complex tests for handling exceptional
cases by reusing the components of CRV infrastructure with ease.

A typical CRV test can be as simple as one liner as shown be-
low. Add reg for crv(Reg1); To completely validate a single register
Add regs for crv(Regs l); To completely validate a list of registers

All the above exception data needs to be communicated from Reg-
isters Owners to CR Val owner on preferably proactive basis. In-spite
of that, some of the registers validation may not be possible by CR Val
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owner. In such situations, Automation scripts run these registers in a de-
bug mode and pass the debug ownership to Register OwnerCTE owner.

4.10 Coverage and CRV Closure Criteria

There are many registers and each of them contains many attributes.
CRV Closure Criteria should be such that all the registers attributes need
to be validated completely. Evaluating coverage for individual registers
and their attributes is cumbersome task.

Having well defined verification flow for individual CRV attributes
using CRV Ops, coverage of the CRV Ops gives good indication of stim-
ulus applied on the registers. The register regressions strategy should
be such that, all the registers should be exercised with all the applicable
CRV Ops.

An orthogonal approach to CRV Ops coverage is to collect actual
toggling of RTL Register Values by the CRV Ops. This can be computed
through post processing of the simulation dump file that tracks the reg-
ister values. The CRV Ops Coverage, CR Toggle Coverage together with
Register Exceptions provides simple but very good indication of coverage.
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Debug and Automation

5.1 Test debug

To understand full debug flow, let us take an example of a configura-
tion register called ”My Ex Reg”. Specification:

• Name of register: My Ex Reg

• Size: 16 bit wide

• Access types: [RW, RO, RW, RW, RO, RO, RW, RW, RW, RW, RW, RW,
RW, RW, RW, RW]

• Default value: 0x4000

For Validation of the register we initially need to launch test on the
register. Once the test completes we need to follow bellow steps to know
whether register is working properly or not.

1. Step 1: Check the status of the register in Status file: As the test completes,
status of register (Pass/Fail) is generated by CRV owner in .XLS (Excel sheet)
format. The process of grabbing status from the test checker is done via
automations in Perl. Validator needs to look into the status file from the .XLS
file. For our example register below is snapshot of the Excel sheet showing the
register test status. As shown in snapshot our register has failed the validation
test.

2. Step 2: Check values in the checker: From above snapshot it is clear that the
second test has failed. We need to debug the failure from bottom up. As shown
below we will start by checking of the values and status at the checker. At
checker level we use self-checking mechanism to check if the current operation
has passed or failed. For that we calculate the expected values in reference
Model according to the input we have given to the DUT via driver. For

40
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Figure 5.1: Status.xls file

Figure 5.2: Checker file

example snapshot of the checker file for our example register can be given as
follow:

3. Step 3: Check the captured values in Tracker file: Tracker file actually tracks
the input and output of the DUT (here registers). We need to proceed with
the debug using the tracker. It contains time stamps and the transaction ids
of the transactions for particular endpoint ids. Snapshot of the tracker: The
transactions are traced using the time stamps. The register endpoint id would
not be needed at this point. But it could be used to find the register written
values if more than one registers are running in parallel in given test

4. Step 4: Check logger files Logger files logs all the operations done during the
test. After the test environment comes up it will make the log of all the writes
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Figure 5.3: Tracker file

followed by read in the current test. For our register we need to make sure
that during the validation process, our test environment is working properly.
Logger file will also give us the access types and other attributes of the register.
Snapshot of the logger files: In logger file we can see that checker has flagged
the mismatch of data between expected and actual value of the register. As
shown in the snapshot expected values are according to the access types which
is compared with actual value of the register. To see the values at the register
endpoint in the RTL the debug needs to be taken to next level using Waveform
Debug.

5. Step 5: Waveform Debug We can get waveform of the register endpoint in
simulation tool and see whether the value reflected over logger and tracker
files are same as that of end point or not. As shown in the figure, the value
of the register is constant after some cycles and is not getting updated to the
required value.

6. Conclusion: According to waveforms and the trackers we can see that there
can be different possible bugs in the design for the registers. They are: (a)
Register transaction is not correctly decoded/routed (b) Register transaction
is obstructed by internal flow/Prior Programming (c) Register decoding logic
in the End Point is incorrect (d) One of the inputs may be illegal (e) May be
prior configuration of register is required

5.2 Automation

As the number and complexities of registers increases, process au-
tomation for verification becomes inevitable. Test generation, test status
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Figure 5.4: Logger file

Figure 5.5: Waveform
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Figure 5.6: Flow for register attribute comparison

counting and data maintenance tasks, require very efficient and fast au-
tomation wrapper around the verification environment. This automation
reduces lots of manual effort and enhances the speed of verification pro-
cess. For register validation we have used PERL automation. In the
following chapter, we described some major automation we have done
for CRV.

5.2.1 Test Generation Automation

Due to automation CRV test is made simple. Each of the tests is
written to run 20-50 registers based on complexity of the registers. The
registers which have multiple relations consume more number of simula-
tion cycles, so few such registers are put in such test.

A script is developed to compare register attributes across two RTL
models (previous model vs current model) to produce (a) New registers
(b) Modified registers (c) Deleted registers (d) Unchanged registers. New
registers and Modified registers together is called Delta Registers.

Tests Generation script is developed, which provides knobs to control
(a) number of registers per test, (b) tests generation based on CRV Ops
(like Broadcast tests, KL tests etc.), (c) tests generation based on clusters
and (d) delta tests. Register attribute comparison

As shown in flowchart below the comparison take place with the help
of the regular expression. The input to the script is register info files
from two models.
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Figure 5.7: pseudo code for attribute comparison

Which produces the output containing following details.

• New registers: Registers which are newly added to current model and have
not been introduced in RTL until now.

• Deleted registers: Registers which have been removed from the RTL.

• Modified attributes Registers: The registers having change in their attribute
values starting from the change in access types or reset values to the complex
modification of register relations. The file also shows the attribute values
which have been changed after comparing the previous and current values.

• Unmodified registers: The registers having same attributes in both the model.

Pseudo code is shown below:

Script will give a list from which delta regressions are generated and
debugged. Delta Registers regressions and their debug are prioritized.
Simple test generation

Test generation script simply generates the test case according to the
user requirement. It can control the number of registers per tests, oper-
ation on the registers, registers request initiators, simulation waveform
generation etc.

At very basic level we can understand it as following flow chart:

Different components of the flowcart can be explained as below:
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Figure 5.8: Flowchart for simple test generation



47

Registers info is given to the test according to the test constraints
like register cluster and attributes.

For each test there will be more than 20 register according to test
run limit and register access types.

Validator himself can decide the number of registers per test. After
getting the register number from user the script counts the total number
of tests need to be launched. Let the total number of registers be n and
user constraint be A register per test. Then the script will generate nA
tests each having A register per test.

Waveform simulation of the RTL takes more time and space as com-
pare not dumping the waveforms. Because of these constraints normally
waveform simulation of the registers are not done. If there is precise RTL
errorbug which needs to be debugged, waveform for that particular test
and for particular time duration is dumped.

Application of swicthes are the knob to handle all kind of constraints
on the test. It can define request initiator, assign cluster specifice signals,
operations to be done on registers and so on.

Launching of the test is predefined process need to be done by val-
idator.

5.2.2 Status Collection and Maintence for Register Regres-
sion

Failures in configuration registers are spread across various categories
such as bugs, issues, ongoing debug tracking using email discussions with
stakeholders, temporary or permanent ignorable issues etc. The simple
pictorial view of it is shown in fig below.

A major portion of them are previously encountered issues which
constitute more than 90% of the failures. Tracking them and filtering
to get the real failures for debug in the current regression is tedious
job. Evaluation of indicators like pass percentages across various clusters,
pending bugs impacted registers, tracking previous debug information
constitute major resources and bug finding is getting delayed due to
this. Hence a mechanism is needed to carry forward previous debug
information to current regressions and direct attention to the debug of
fresh issues.
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Figure 5.9: Status generation Mechanism without automation

To avoid manual efforts and improve accuracy a new automated flow
is developed. This flow takes in three inputs i.e. current regression re-
sults data, register attributes file (RF) and central record file (CRF). RF
holds names and attributes of all the registers in current model. Central
Record File (CRF) is a reusable history of debug information containing
issues/bugs impacted registers, ignores, known issues and exceptions.

Figure briefly shows the flow of automated process wherein inputs
are taken from CRF, RF and current regression data. These 3 inputs go
through automated flow and we get following outputs:

• Excel sheet specifying individual register status with description and owner of
the register if it is failing and debugged.

• List of newly passing register which were failing in previous regressions.

• Number of registers passed, debugged, ignored, CTE owned and exceptions
across individual clusters and in overall regression.

The main advantage of this script is it can count the pass and de-
bug % very efficiently, for current regression including data of previous
regression. The register regression data must not be checked for all the
failures as the generated excel sheet will mark all the known is to be
debugged. It helps to connect to the designer also to fix the bug very
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Figure 5.10: Automated Status generation mechanism
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easily. The only disadvantage here is ECRF should always be updated
manually via validator himself.



Chapter 6

Results and Summary

6.1 Results

The CRV methodology in general with all its special features covers
broad area of register validation in processor. It has given following
results in current microprocessor validation.

• Compute optimization Verification of each register requires loading complete
simulation environment of microprocessor chip. It takes much more compute
time and disk space for each test case. Complete parallelized verification of 20-
50 registers in a single test through smart coverage based stimulus has reduced
compute by at least 20 times compared to any of the previous projects.

• Complex Attributes Verification All the complex attributes are effectively vali-
dated and found bugs which were not found by previous projects. Reset values
are completely validated by CRV for the first time.

• Exceptions Handling & Status Reporting Centralized data base in user friendly
format for CRV debug-data and exceptions has increased the productivity by
enabling automated debug, onion peeling avoidance, automated status collec-
tion & reporting to the stakeholders. In the previous projects status tracking
is carried out using XLS sheets which was time laborious.

• Bug Finding Techniques like delta regressions, automatically identifying the
new failures to be debugged, have helped to find the bugs very quickly; the
bug number is at least two-three times higher than that of any of the three
previous projects.

6.2 Summary and Future work

This report discussed in detail about complexities of some of the
register access types, and multiple inter-register-relations that pose chal-
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lenges in the pre-silicon verification. We developed a strong, comprehen-
sive CR validation methodology, which efficiently addressed all the CRV
challenges. Proposed solutions like defining comprehensive verification
process for each of the attributes, complete verification of 20-50 registers
in a single test there by optimizing compute resources, avoidance of bug
propagation, quick bug finding techniques etc. are found to be a leap
ahead of the previous projects methodologies.

Variant registers verification continued to be a challenge in CRV.
Around 20% of the variant registers verification is owned by designer in
current processor. Analysis of these registers reveals that most of these
registers are non-cooperative to the randomized stimulus. We need to
explore methods to validate these categories of the registers by the CRV
process itself.

This report discussed in detail about the proposed methodologies
and algorithms. As the CR validation is a general challenge, the work
presented in this paper can be useful for other projects also.
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