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Abstract

Creating reusable models typically requires that general-purpose models be written with
re-definable parameters such as SIZE, WIDTH and DEPTH. With respect to coding
parametrized Verilog models, two Verilog constructs that are over-used and abused are
the global macro definition (‘define) and the infinitely abusable parameter redefinition
statement (defparam). This report will detail techniques for coding proper parametrized
model for SRAM Controller, detail the differences between parameters and macro defi-
nitions, present guidelines for using macros, parameters, parameter definitions and also
some added features in existing design with RTL quality check like Lintra and LEC on
whole design for making it easy to synthesize. And also verifying the updated design by
creating new test case which will mostly concentrating on verification of updated features
in the design
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Chapter 1

Introduction

1.1 What is SoC?

A system on a chip or system on chip (SoC or SOC) is an Integrated circuit(IC) that
integrates all components of a computer or other electronic system into a single chip. It
may contain digital, analog or mixed - signal and often radio-frequency functions-all on
a single chip substrate.
The VLSI manufacturing technology advances has made possible to put millions of tran-
sistors on a single die. This enables designers to put systems on a single chip thus moving
everything from board to single chip resulting to growth of system on chip (SOC) tech-
nology. SOC design includes efforts to integrate heterogeneous or different types of silicon
IPs (intellectual properties) on to the same chip, like memory, Micro Processor, random
logics, and analog circuitry. SOC often incorporates analog components, and can also
include opto/micro-electronic mechanical system components in the future.
An SOC design provide significant advantages in terms of speed , area ,reliability ,security
and power however suffers from high system complexity , fabrication costs and increase
verification requirements. However increasing reusability of IP and highly sophisticated
tools (hardware/software) are making the SOC designs an extremely favorable and ex-
citing option for modern applications.
SOC will design in two phases first SIP (Soft Intellectual Property) and then HIP (Hard
Intellectual Property) we are working on SIP design. So the tradition flow for SIP design
is as follows.

1. Specification and RTL coding
2. Verification
3. Synthesis
4. Formal Equivalence Verification
5. Engineering change order

1.1.1 Specification and RTL coding

Chip design commences with the conception of an idea dictated by the market. These
ideas are then translated into architectural and electrical specifications. The architectural
specifications define the functionality and partitioning of the chip into several manage-
able blocks, while the electrical specifications define the relationship between the blocks in
terms of timing information. The next phase involves the implementation of these speci-
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fications. In the past this was achieved by manually drawing the schematics, utilizing the
components found in a cell library. This process was time consuming and was impractical
for design reuse. To overcome this problem, hardware description languages (HDL) were
developed. As the name suggests, the functionality of the design is coded using the HDL.
There are two main HDLs in use today, Verilog and VHDL. Both languages perform the
same function, each having their own advantages and disadvantages. There are three
levels of abstraction that may be used to represent the design; Behavioral, RTL (Register
Transfer Level) and Structural. The Behavioral level code is at a higher level of abstrac-
tion. It is used primarily for translating the architectural specification, to a code that
can be simulated. Behavioral coding is initially performed to explore the authenticity
and feasibility of the chosen implementation for the design. Conversely, the RTL coding
actually describes and infers the structural components and their connections. This type
of coding is used to describe the functionality of the design and is synthesizable to form
a structural netlist. This netlist comprises of the components from a target library and
their respective connections; very similar to the schematic based approach. The design is
coded using the RTL style, in either Verilog or VHDL, or both. It can also be partitioned
if necessary, into a number of smaller blocks to form a hierarchy, with a top-level block
connecting all lower level blocks.
In the register transfer level model we split the complete system state up into registers
and consider the flow of information ’in bulk’ from one register to the next on each clock
tick.

Figure 1.1: RTL Model

1.1.2 Verification

The next step is to check the functionality of the design by simulating the RTL code. All
currently available simulators are capable of simulating the behavior level as well as RTL
level coding styles. In addition, they are also used to simulate the mapped gate-level
design. The test bench is normally written in behavior HDL while the actual design is
coded in RTL. Usually the simulators are language dependent (either Verilog or VHDL),
although there are a few simulators in the market, capable of simulating a mixed HDL
design. The purpose of the test bench is to provide necessary stimuli to the design. It
is important to note that the coverage of the design is totally dependent on the number
of tests performed and the quality of the test bench. This is the reason why a sound
test bench is extremely critical to the design. During the simulation of the RTL, the
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component (or gate) timing is not considered. Therefore, to minimize the difference
between the RTL simulation and the synthesized gate-level simulation at a later stage,
the delays are usually coded within the RTL source, usually for sequential elements.

1.1.3 Synthesis

For a long time, the HDLs were used for logic verification. Designers would manually
translate the HDL into schematics and draw the interconnections between the components
to produce a gate-level netlist. With the advent of synthesis tools, this manual task has
been rendered obsolete. The tool has taken over and performs the task of reducing the
RTL to the gate-level netlist. This process is termed as synthesis. Synopsys’s Design
Compiler (DC) is the de-facto standard and by far the most popular synthesis tool in
the SOC industry today. Synthesizing a design is an iterative process and begins with
defining timing constraints for each block of the design. These timing constraints define
the relationship of each signal with respect to the clock input for a particular block. In
addition to the constraints, a file defining the synthesis environment is also needed. The
environment file specifies the technology cell libraries and other relevant information that
DC uses during synthesis. DC reads the RTL code of the design and using the timing
constraints, synthesizes the code to structural level, thereby producing a mapped gate
level netlist.

1.1.4 Formal Equivalence Verification (FEV)

The purpose of the formal equivalence verification in the design flow is to validate the
RTL against RTL, gate-level netlist against the RTL code, or the comparison between
gate-level to gate-level netlists. The RTL to RTL verification is used to validate the new
RTL against the old functionally correct RTL. This is usually performed for designs that
are subject to frequent changes in order to accommodate additional features. When these
features are added to the source RTL, there is always a risk of breaking the old functionally
correct feature. To prevent this, formal verification may be performed between the old
RTL and the new RTL to check the validity of the old functionality.

1.1.5 Engineering Change Order (ECO)

Many designers regard engineering change order (ECO) as the change required in the
netlist at the very last stage of the SOC design flow. For instance, ECO is performed when
there is a hardware bug encountered in the design at the very last stage (say, after tape-
out), and it is necessary to perform a metal mask change by re-routing a small portion
of the design. As a result ECO is performed on a small portion of the chip to prevent
disturbing the placement and routing of the rest of the chip, thereby preserving the rest
of the chips timing. Only the part that is affected is modified. This can be achieved,
either by targeting the spare gates incorporated in the chip, or by routing only some of
the metal layers. This process is termed as metal mask change. Normally, this procedure
is executed for changes that require less than 10% modification of the whole chip (or a
block, if doing hierarchical place and route). If the bug fix requires more than 10% change
then it is best to repeat the whole procedure and re-route the chip (or the block). The
latest version of DC incorporates the ECO compiler. It makes use of the mathematical
algorithms (also used by the formal verification techniques), to automatically implement
the required changes. Making use of the ECO compiler provides designers an alternative
to the tedium of manually inserting the required changes in the netlist, thus minimizing
the turn-around time of the chip. Some layout tools have incorporated the ECO algorithm
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within their tool. The layout tool has a built-in advantage that it does not suffer from
the limitation of crossing the hierarchical boundaries associated with a design. Also, the
layout tool benefits from knowing the placement location of the spare cells (normally
included by the designers in the design), thus can target the nearest location of spare
cells in order to implement the required ECO changes and achieve minimized routing.

1.2 Conclusion
In this chapter SIP flow incorporating the latest tools and technology for very deep
sub-micron (VDSM) technologies were reviewed. The flow started with the definition of
specification, and ended with Formal Equivalence Verification.
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Chapter 2

TOP LEVEL DIAGRAM

2.1 Block Diagram

Figure 2.1: Block Diagram of ISH

2.2 Description
The above schematic shows the generalized block diagram for the project. It consists of
2 basic units

• Analog Unit

• Digital Unit

Sensors are attached to the both analog as well as digital side of the design and these
sensor data is sampled and given to the different IP’s to processing. The IP’s talk to each
other through an on chip bus which can be easily seen in the rtl code. Transactions take
place using various protocols and interfaces present in the chip level design. The SoC
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architecture contains various devices like DMA, Memory, microcontroller and different
types of IPs with the connectivity bridges. Mainly these bridges are just connectivity
between the various IPs for compatibility purpose. One IPs information may be not suit
to communicate with the another IPs, so bridge can acts as mediator to accommodate
the service.
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Chapter 3

SRAM SUB-SYSTEM

3.1 Block Diagram

Figure 3.1: Block Diagram of SRAM sub-system

3.2 Open Core Protocol (OCP)

The Open Core Protocol (OCP) is an openly licensed, core-centric protocol intended to
meet contemporary system level integration challenges. OCP defines a bus-independent,
configurable and scalable interface for on-chip subsystem communications. OCP further
extends capabilities in high performance multithreading, synchronization primitives and
single-request/multiple-data transactions. OCP data transfer models range from simple
request-grant handshaking through pipelined request-response to complex out-of-order
operations.
Legacy IP cores can be adapted to OCP, while new implementations may take full advan-
tage of advanced features: designers select only those features and signals encompassing
a cores specific data, control and test configuration. Core definition using OCP en-
capsulates a complete system integration description enabling core and test bench reuse
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without rework. Not only does OCP provide clear delineation of design responsibilities for
core authors and System-on-Chip (SoC) integrators, but also institutes a key partitioning
formalism for verification engineers and automation software.

3.2.1 Highlights

The OCP promotes IP core reusability and reduces design time, design risk and man-
ufacturing costs for SoC designs. It focuses exclusively on IP core interfacing without
preempting interconnect topology or other application-specific integration choices.

• Enables IP core creation to be independent of system architecture and application
domain.

• Describes all inter-core communications.

• Optimizes die area by configuring into the OCP interface only those features needed
by the core.

• Specified timing categories assure core interoperability.

• Facilitates rapid, plug-and-play IP integration.

3.2.2 Theory of operation

The Open Core Protocol interface addresses communications between the functional units
(or IP cores) that comprise a system on a chip. The OCP provides independence from bus
protocols without having to sacrifice high performance access to on-chip interconnects.
By designing to the interface boundary defined by the OCP, you can develop reusable
IP cores without regard for the ultimate target system. Given the wide range of IP core
functionality, performance and interface requirements, a fixed definition interface proto-
col cannot address the full spectrum of requirements. The need to support verification
and test requirements adds an even higher level of complexity to the interface. To address
this spectrum of interface definitions, the OCP defines a highly configurable interface.
The OCPs structured methodology includes all of the signals required to describe an IP
cores communications including data flow, control, and verification and test signals. This
chapter provides an overview of the concepts behind the Open Core Protocol, introduces
the terminology used to describe the interface and offers a high-level view of the protocol.

Point-to-Point Synchronous Interface

To simplify timing analysis, physical design, and general comprehension, the OCP is com-
posed of uni-directional signals driven with respect to, and sampled by the rising edge of
the OCP clock. The OCP is fully synchronous and contains no multi-cycle timing paths.
All signals other than the clock are strictly point-to-point.

Bus Independence

A core utilizing the OCP can be interfaced to any bus. A test of any bus-independent
interface is to connect a master to a slave without an intervening on chip bus. This test
not only drives the specification towards a fully symmetric interface but helps to clarify
other issues. For instance, device selection techniques vary greatly among on-chip buses.
Some use address decoders. Others generate independent device select signals (analogous
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to a board level chip select). This complexity should be hidden from IP cores, especially
since in the directly-connected case there is no decode/selection logic. OCP-compliant
slaves receive device selection information integrated into the basic command field.
Arbitration schemes vary widely. Since there is virtually no arbitration in the directly-
connected case, arbitration for any shared resource is the sole responsibility of the logic
on the bus side of the OCP. This permits OCP compliant masters to pass a command
field across the OCP that the bus interface logic converts into an arbitration request
sequence.

Commands

There are two basic commands, Read and Write and five command extensions. The
WriteNonPost and Broadcast commands have semantics that are similar to the Write
command. A WriteNonPost explicitly instructs the slave not to post a write. For the
Broadcast command, the master indicates that it is attempting to write to several or all
remote target devices that are connected on the other side of the slave. As such, Broad-
cast is typically useful only for slaves that are in turn a master on another communication
medium (such as an attached bus).
The other command extensions, ReadExclusive, ReadLinked and WriteConditional, are
used for synchronization between system initiators. ReadExclusive is paired with Write
or WriteNonPost, and has blocking semantics. ReadLinked, used in conjunction with
WriteConditional has non-blocking (lazy) semantics. These synchronization primitives
correspond to those available natively in the instruction sets of different processors.

Address/Data

Wide widths, characteristic of shared on-chip address and data buses, make tuning the
OCP address and data widths essential for area-efficient implementation. Only those
address bits that are significant to the IP core should cross the OCP to the slave. The
OCP address space is flat and composed of 8- bit bytes (octets). To increase transfer
efficiencies, many IP cores have data field widths significantly greater than an octet. The
OCP supports a configurable data width to allow multiple bytes to be transferred simul-
taneously. The OCP refers to the chosen data field width as the word size of the OCP.
The term word is used in the traditional computer system context; that is, a word is the
natural transfer unit of the block. OCP supports word sizes of power-of-two and non
power- of-two as would be needed for a 12-bit DSP core. The OCP address is a byte
address that is word aligned. Transfers of less than a full word of data are supported by
providing byte enable information that specifies which octets are to be transferred. Byte
enables are linked to specific data bits (byte lanes). Byte lanes are not associated with
particular byte addresses. This makes the OCP endian-neutral, able to support both big
and little-endian cores.

Pipelining

The OCP allows pipelining of transfers. To support this feature, the return of read data
and the provision of write data may be delayed after the presentation of the associated
request.
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Response

The OCP separates requests from responses. A slave can accept a command request
from a master on one cycle and respond in a later cycle. The division of request from
response permits pipelining. The OCP provides the option of having responses for Write
commands, or completing them immediately without an explicit response.

Burst

To provide high transfer efficiency, burst support is essential for many IP cores. The
extended OCP supports annotation of transfers with burst information. Bursts can ei-
ther include addressing information for each successive command (which simplifies the
requirements for address sequencing/burst count processing in the slave), or include ad-
dressing information only once for the entire burst.

In-band Information

Cores can pass core-specific information in-band in company with the other information
being exchanged. In-band extensions exist for requests and responses, as well as read and
write data. A typical use of in-band extensions is to pass cacheable information or data
parity.

Tags

Tags are available in the OCP interface to control the ordering of responses. Without
tags, a slave must return responses in the order that the requests were issued by the
master. Similarly, writes must be committed in order. With the addition of tags, re-
sponses can be returned out-of-order, and write data can be committed out-of-order with
respect to requests, as long as the transactions target different addresses. The tag links
the response back to the original request. Tagging is useful when a master core such as a
processor can handle out-of order return, because it allows a slave core such as a DRAM
controller to service requests in the order that is most convenient, rather than the order
in which requests were sent by the master. Out-of-order request and response delivery
can also be enabled using multiple threads. The major differences between threads and
tags are that threads can have independent flow control for each thread and have no
ordering rules for transactions on different threads. Tags, on the other hand, exist within
a single thread and are restricted to shared flow control. Tagged transactions cannot be
re-ordered with respect to overlapping addresses. Implementing independent flow control
requires independent buffering for each thread, leading to more complex implementations.
Tags enable lower overhead implementations for out-of-order return of responses at the
expense of some concurrency.

Threads and Connection

To support concurrency and out-of-order processing of transfers, the extended OCP sup-
ports the notion of multiple threads. Transactions within different threads have no or-
dering requirements, and independent flow control from one another. Within a single
thread of data flow, all OCP transfers must remain ordered unless tags are in use. Trans-
fers within a single thread must remain ordered unless tags are in use. The concepts
of threads and tags are hierarchical: each thread has its own flow control, and ordering
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within a thread either follows the request order strictly, or is governed by tags. While
the notion of a thread is a local concept between a master and a slave communicating
over an OCP, it is possible to globally pass thread information from initiator to target
using connection identifiers. Connection information helps to identify the initiator and
determine priorities or access permissions at the target.

Interrupts, Errors, and other Sideband Signaling

While moving data between devices is a central requirement of on-chip communication
systems, other types of communications are also important. Different types of control
signaling are required to coordinate data transfers (for instance, high-level flow control) or
signal system events (such as interrupts). Dedicated point-to-point data communication
is sometimes required. Many devices also require the ability to notify the system of errors
that may be unrelated to address/data transfers.
The OCP refers to all such communication as sideband (or out-of-band) signaling, since
it is not directly related to the protocol state machines of the dataflow portion of the
OCP. The OCP provides support for such signals through sideband signaling extensions.
Errors are reported across the OCP using two mechanisms. The error response code in
the response field describes errors resulting from OCP transfers that provide responses.
Write-type commands without responses cannot use the in-band reporting mechanism.
The second method for reporting errors across the OCP uses out-of band error fields.
These signals report more generic sideband errors, including those associated with posted
write commands.

3.2.3 Basic signals of OCP
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Figure 3.2: Waveform for simple Read and Write

3.2.4 Simple Read and Write Transfer

Sequence

[A]. The master starts a request phase on clock 1 by switching the MCmd field from
IDLE to WR. At the same time, it presents a valid address (A1) on MAddr and valid
data (D1) on MData. The slave asserts SCmdAccept in the same cycle, making this a
0-latency transfer.
[B]. The slave captures the values from MAddr and MData and uses them internally to
perform the write. Since SCmdAccept is asserted, the request phase ends.
[C]. The master starts a read request by driving RD on MCmd. At the same time, it
presents a valid address on MAddr. The slave asserts SCmdAccept in the same cycle for
a request accept latency of 0.
[D]. The slave captures the value from MAddr and uses it internally to determine what
data to present. The slave starts the response phase by switching SResp from NULL to
DVA. The slave also drives the selected data on SData. Since SCmdAccept is asserted,
the request phase ends.
[E]. The master recognizes that SResp indicates data valid and captures the read data
from SData, completing the response phase. This transfer has a request-to-response la-
tency of 1.

3.2.5 Burst Write

Sequence

[A]. The master starts the burst write by driving WR on MCmd, the first address of
the burst on MAddr, valid data on MData, a burst length of four on MBurstLength,
the burst code INCR on MBurstSeq, and asserts MBurstPrecise. MReqLast must be
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Figure 3.3: Waveform for Burst Write
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deasserted until the last request in the burst. The burst signals indicate that this is an
incrementing burst of precisely four transfers. The slave is not ready for anything, so it
deasserts SCmdAccept.
[B]. The slave asserts SCmdAccept for a request accept latency of 1.
[C]. The master issues the next write in the burst. MAddr is set to the next word-aligned
address. For 32-bit words, the address is incremented by 4. The slave captures the data
and address of the first request.
[D]. The master issues the next write in the burst, incrementing MAddr. The slave cap-
tures the data and address of the second request.
[E]. The master issues the final write in the burst, incrementing MAddr, and asserting
MBurstLast. The slave captures the data and address of the third request.
[F]. The slave captures the data and address of the last request.

3.3 SRAM Controller
The basic architecture of a SRAM includes one or more rectangular arrays of memory
cells with support circuitry to decode addresses, and implement the required read and
write operations. Additional support circuitry used to implement special features, such
as burst operation, may also be present on the chip.

Figure 3.4: SRAM basic Architecture

3.3.1 Block diagram of SRAM controller

SRAM memory arrays are arranged in rows and columns of memory cells called word lines
and bit lines, respectively. Each memory cell has a unique location or address defined
by the intersection of a row and column. Each address is linked to a particular data
input/output pin. The number of arrays on a memory chip is determined by the total
size of the memory, the speed at which the memory must operate, layout and testing
requirements, and the number of data I/Os on the chip.
An SRAM memory cell is a bi-stable flip-flop made up of four to six transistors. The
flip-flop may be in either of two states that can be interpreted by the support circuitry
to be a 1 or a 0.

3.3.2 Module wise hierarchy of SRAM sub-system

SRAM subsystem hierarchy is as shown in the fig 3.5.
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Figure 3.5: Hierarchy of SRAM sub-system
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Controller:
SRAM memory controllers contain the logic necessary to read and write to SRAM. Read-
ing and writing to SRAM is performed by selecting the row and column data addresses
of the SRAM as the inputs to the multiplexer circuit, where the demultiplexer on the
SRAM uses the converted inputs to select the correct memory location and return the
data, which is then passed back through a multiplexer to consolidate the data in order
to reduce the required bus width for the operation.

Redundancy Logic:
While reading or writing data from SRAM HIP by controller wrapper this block plays
its role. When SRAM HIP is designed in Fab lab it has an accuracy of 99.99% so there
may be chances that out of 1 million transistor one may not work well for that while
fabrication itself they will have one extra column for redundancy. So the function of re-
dundancy logic is to get the location of that particular damaged transistor from the top
level module which is provided by the SRAM HIP provider and skip that entire column
which will have faulty transistor in it and remaining function is same for accessing data.

ECC Logic:
This block will correct the error up to certain level of corruption in the data, if data is
corrupted beyond that certain level than this block will raise and interrupt.

Control Reg:
This block contain different kind of control registers i.e., register for enable bit of bank,
register for interrupt bit, interrupt mask register, erase address register.

3.3.3 Why use an SRAM?

There are many reasons to use an SRAM or a DRAM in a system design. Design trade-
offs include density, speed, volatility and cost. All of these factors should be considered
before you select a RAM for your system design.

Speed:
The primary advantage of an SRAM over a DRAM is its speed. The fastest DRAMs on
the market still require five to ten processor clock cycles to access the first bit of data.
Although features such as EDO and Fast Page Mode have improved the speed with which
subsequent bits of data can be accessed, bus performance and other limitations mean the
processor must wait for data coming from DRAM. Fast, synchronous SRAMs can oper-
ate at processor speeds of 250 MHz and beyond, with access and cycle times equal to
the clock cycle used by the microprocessor. With a well designed cache using ultra-fast
SRAMs, conditions in which the processor has to wait for a DRAM access become rare.

Density:
Because of the way DRAM and SRAM memory cells are designed, readily available
DRAMs have significantly higher densities than the largest SRAMs. Thus, when 64 Mb
DRAMs are rolling off the production lines, the largest SRAMs are expected to be only
16 Mb.

Volatility:
While SRAM memory cells require more space on the silicon chip, they have other ad-
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vantages that translate directly into improved performance. Unlike DRAMs, SRAM cells
do not need to be efreshed. This means they are available for reading and writing data
100% of the time.

Cost:
If cost is the primary factor in a memory design, then DRAMs win hands down. If, on the
other hand, performance is a critical factor, then a well-designed SRAM is an effective
cost performance solution.
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Chapter 4

Verilog for Parametrized module

In Verilog, there are two ways to define constants: the parameter, a constant that is
local to a module and macro definitions, created using the ‘define compiler directive. A
parameter, after it is declared, is referenced using the parameter name. A ‘define macro
definition, after it is defined, is referenced using the macro name with a preceding ‘ (back-
tic) character.
It is easy to distinguish between parameter and macro because macro have ‘identi-
fier name and parameter has identifier name without ‘(back-tick).

4.1 Parameter
Parameters must be defined within module boundaries using the keyword parameter. A
parameter is a constant that is local to a module that can optionally be redefined on
an instance-by-instance basis. When instantiating modules with parameters, in Verilog
there are two ways to change the parameters for some or all of the instantiated modules;
parameter redefinition in the instantiation itself, or separate defparam statements. Pa-
rameter redefinition during instantiation of a module uses the # character to indicate
that the parameters of the instantiated module are to be redefined.
In Example, two copies of the register are instantiated into the two regs1 module. The
SIZE parameter for both instances is set to 16 by the #(16)parameter redefinition values
on the same lines as the register instantiations themselves.
The biggest problem with this type of parameter redefinition is that the parameters must
be passed to the instantiated module in the order that they appear in the module being
instantiated.
The defparam statement explicitly identifies the instance and the individual parameter
that is to be redefined by each defparam statement. The defparam statement can be
placed before the instance, after the instance or anywhere else in the file.

Unfortunately, the well-intentioned defparam statement is easily abused by:

1. Using defparam to hierarchically change the parameters of a module.
2. Placing the defparam statement in a separate file from the instance being modified.
3. Using multiple defparam statements in the same file to change the parameters of an
instance.
4. Using multiple defparam statements in multiple different files to change the parame-
ters of an instance.
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In the case of multiple defparams for a single parameter, the parameter takes the value
of the last defparam statement encountered in the source text.

Figure 4.1: Parameterized register model

Figure 4.2: Instantiation using parameter redefinition

4.2 Macro definition

The d̀efine compiler directive is used to perform ”global” macro substitution, similar
to the C-language #define directive. Macro substitutions are global from the point of
definition and remain active for all files read after the macro definition is made or until
another macro definition changes the value of the defined macro or until the macro un-
defined using the ‘undef compiler directive.
Macro definitions can exist either inside or outside of a module declaration, and both
are treated the same. parameter declarations can only be made inside of module bound-
aries. Since macros are defined for all files read after the macro definition, using macro
definitions generally makes compiling a design file-order dependent. A typical problem
associated with using macro definitions is that another file might also make a macro
definition to the same macro name. When this occurs, Verilog compilers issue warnings
related to ”macro redefinition” but an unnoticed warning can be costly to the design or
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to the debug effort.
Why is it bad to redefine macros? The Verilog language allows hierarchical referencing
of identifiers. This proves to be very valuable for probing and debugging a design. If the
same macro name has been given multiple definitions in a design, only the last definition
will be available to the testbench for probing and debugging purposes. If you find your-
self making multiple macro definitions to the same macro name, consider that the macro
should probably be a local parameter as opposed to a global macro.
An enhancement added to the Verilog-2001 Standard is the localparam. Unlike a param-
eter, a localparam cannot be modified by parameter redefinition (positional or named
redefinition) nor can a localparam be redefined by a defparam statement. The local-
param can be defined in terms of parameters that can be redefined by positional pa-
rameter redefinition, named parameter redefinition (preferred) or defparam statements.
The idea behind the localparam is to permit generation of some local parameter values
based on other parameters while protecting the localparams from accidental or incorrect
redefinition by an end-user.

4.3 Conclusion
In conclusion to this each time a new macro definition is made, that macro name can-
not be safely used elsewhere in the design (name-space pollution). As more and more
modules are compiled into large system simulations, the likelihood of macro-name col-
lision increases. The practice of making macro definitions for constants such as port or
data sizes and state names is an ill-advised practice. Macro definitions using the ‘define
compiler directive should not be used to define constants that can be better localized
to individual modules. Verilog parameters are intended to represent constants that are
local to a module. A parameter has the added benefit that each different instance of the
module can have different values for the parameters in each module.

Following is a summary of important guideline

1. do not use defparams in any Verilog designs.
2. only use macro definitions for identifiers that clearly require global definition of an
identifier that will not be modified elsewhere in the design.
3. where possible, place all macro definitions into one ”definitions.vh” file and read the
file first when compiling the design.
4. do not use macro definitions to define constants that are local to a module.
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Chapter 5

Features added in the current
project

• Adding a dedicated port for DMA to SRAM Controller which will support data
width of 32.

• Parameterization of adding new banks to controller.

• Parameterization for adding different form factors, Example : 32k*4, 16k*8, 8k*16,
4k*32.

5.1 Dedicated port for DMA
To have a dedicated for DMA we can have two option either we can directly connect
DMA to SRAM controller or we can have DMA connection via OCP fabric, these two
configuration are shown in figure 4.1 and 4.2 respectively.

Figure 5.1: DMA port directly connected to SRAM controller

5.1.1 Arbiter

Many systems exist in which a large number of requesters must access a common resource.
The common resource may be a shared memory, a networking switch fabric, a specialized
state machine, or a complex computational element. An arbiter is required to determine
how the resource is shared amongst the many requesters. When putting an arbiter into
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Figure 5.2: DMA port connected through OCP to SRAM controller

a design, many factors must be considered. The interface between the requesters and the
arbiter must be appropriate for the size and speed of the arbiter. Also, the coding style
used will usually impact the synthesis results.
Interfacing to an arbiter can appear very straight forward at first. The requester sends a
request (req) signal, and the arbiter returns a grant. Requests to an arbiter are generally
driven by either a FIFO queue or a state machine. A state machine requester is commonly
used when the arbiter is used in a memory controller. If a portion of the memory is used
for variable storage, a state machine may need to periodically read and/or write those
variables.

Figure 5.3: Arbiter FSM

As show in the FSM there are three states of it i.e., IDLE, A(uIA) and B(DMA). As long
as the MCmd received from the OCP fabric from either DMA or uIA it will go in the
respective state to complete the transaction. As soon as SRespLast and MRespAccep
goes high at same instance of MDataLast and SdataAccept goes high at same instance
it will return from the A or B state to IDLE state.
Following type of waveform observed in the DVE for the burst read mode and burst write
mode. MRespAccept, SRespLast, MDataLast and SDataAccept these signals need to be
under surveillance for designing FSM.

5.2 Parameterization for adding new banks to con-

troller
Then main reason behind parameterizing is to have increase or decrease size of SRAM
with few quick changes in Param file. So I have added on Parameter BANK NUM in the
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Figure 5.4: Waveform for burst read

Figure 5.5: Waveform for burst write
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current project which will changed depending on the requirement of the project.
One limitation for the design I have done for Parameterization of number of banks is that
we cant increase the number of bank beyond 30 banks as there is one control register in
the SRAM controller which will have 32 bit size out of them 2 bit are reserved for some
interrupt status bit. This issue could also be solved if we have some more register for
storing status bit.

5.3 Parameterization for adding different form fac-

tors
We can increase or decrease the size of SRAM by two approaches either we have increase
the number of bank in current SRAM or we can increase size of each bank in current
SRAM. So this second approach i.e., to increase size of each bank.
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Chapter 6

RTL QUALITY CHECK (LINTRA
TOOL)

Lintra is a tool for linting RTL code i.e., analysing RTL code to verify that it conforms to
design rules and coding guidelines. Lintra is built for RTL languages, providing an RTL
Data Model with a C++/Perl application program interface (API), and a built-in light
synthesis capability. Lira supports iHDL, Verilog and System Verilog. The warnings and
errors issued during Lira’s compilation flow form Lintra’s ’built in rules.

6.1 LINTRA INPUTS AND OUTPUTS

Figure 6.1: Lintra requirements

• Lintra Inputs: RTL code configuration fille (.f), waiver fille (.w), map file (.map),
bblist.

• Lintra Outputs: Report file (.rep), Violation file (.xml).
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6.1.1 Lintra Input

• RTL code: Lintra can be run on any .v and .sv file. This the input for lintra as
we perform linta on RTL code for this file we will check the errors and warnings.

• Map file : It contains commands for setting environmental variables which are
utilized by the lintra script. For the lintra script, the top module name and Lintra
run directory are required.

• BB list : BB list is a black box list. Sometimes, we don’t want to perform the
lint on sub-modules with in a module. In such conditions, those sub module names
should be kept in the bblist file. Eg: Since SPI is an external IP, we might not want
to run Lintra on this module.

• Configuration file : It should contain the paths of directories where Lintra can
search for the modules. The mode of usage of BB list and the path for BB list also
need to be mentioned here. There are different modes in which Lintra process the
BB list. Full mode implies Lintra won’t analyze the entire module and modules
mode implies it will analyze the given module but wont analyze the sub-modules
within the given module.

• Waiver file : It can be used to mask the errors or warnings which are of low
priority or which are invalid. Lintra supports two types of waiver mechanisms.
Each waiver contains the following filter fields: rule id, message regexp, fileregexp,
and limit. The waiver will filter out violations that match the given rule id, whose
message matches the given message (whether as an exact string match or as a regular
expression match) and whose location matches the given file expression. If any of
the filters are left unspecified, messages will not be filtered by this attribute (e.g.
if only the message is specified, the rule id and file will be ignored). In addition,
if a number greater than zero is specified for the limit, the number of violations
caught by the waiver will be thus be limited. This is particularly useful when the
violation message is the same for all violations of the rule, and offers a way to waive
a particular violation, yet be warned when additional violations of this rule occur
(in the same file). The regular expression semantics used by Lintra is QT regular
expression, which is similar to PERL, where QT’s quantifiers are the same as Perl’s
greedy quantifiers. Note - when using regular expressions, it may be necessary to
escape characters in the original message text (such as brackets) by adding / before
them. In addition to the filter, the waiver contains a description field, a unique id,
an owner, opening date and expiration date. The description field is optional, and
contains free text. The unique id, owner, and opening date fields are mandatory,
and are automatically set to the userid , system date, and combination of user plus
timestamp when the waiver is created through Lintra GUI. The expiration date can
be used to create temporary waivers.

6.1.2 Lintra Output

• Report file : It reports all the errors and warnings. It contains all the violation
which are occurred in (.v) and (.sv) file. It gives all the details of the file like path
of the file ,on which line error occurred ,severity of the violation, which lintra rule
it follows and a message of the error.
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Figure 6.2: Waiver example

Figure 6.3: Report file example
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• Violation file : The violation file uses configuration file that allows customizing
Lintra runs to the project requirements. It provides control over which severity
levels will cause Lintra to terminate with a ’failed’ exit status, and provides capa-
bilities for determining which rules are active and tailoring the rules by changing
the value of configurable parameters that are coded into the rules.

6.1.3 Lintra exit status

Lintra will terminate with one of the following

• One: If errors detected in the command line or when loading the configuration file
or the UDRs prevented the lint run, Lintra will terminate with an exit status of 1

• Two: If during lint violations of a severity declared as ’cause failure’ in the con-
figuration file were reported, Lintra will report ’lint Failed’ and terminate with an
exist status of 2.

Types of Violation in Lintra

• FATAL: If fatal violation comes then the lintra will get terminiated.so, to remove
the fatal error is the first priority of Lintra.

• ERROR: Depending on the type of error it can be fixed or waived.

• WARNING: It is decided by the designer whether he wants to fix the warning or
to waive it.
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Chapter 7

LEC or FEV

7.1 Introducation

The register transfer level (RTL) behavior of a digital chip is usually described with a
hardware description language, such as Verilog or VHDL. This description is the golden
reference model that describes in detail which operations will be executed during which
clock cycle and by which pieces of hardware. Once the logic designers, by simulations
and other verification methods, have verified register transfer description, the design is
usually converted into a netlist by a logic synthesis tool. Equivalence is not to be confused
with functional correctness, which must be determined by functional verification.
The initial netlist will usually undergo a number of transformations such as optimiza-
tion, addition of Design For Test (DFT) structures, etc., before it is used as the basis
for the placement of the logic elements into a physical layout. Contemporary physical
design software will occasionally also make significant modifications (such as replacing
logic elements with equivalent elements that have a higher or lower drive strength) to
the netlist. Throughout every step of a very complex, multi-step procedure, the original
functionality and the behavior described by the original code must be maintained. When
the final tape-out is made of a digital chip, many different EDA programs and possibly
some manual edits will have altered the netlist.
In theory, a logic synthesis tool guarantees that the first netlist is logically equivalent to
the RTL source code. All the programs later in the process that make changes to the
netlist also, in theory, ensure that these changes are logically equivalent to a previous
version.
In practice, programs have bugs and it would be a major risk to assume that all steps
from RTL through the final tape-out netlist have been performed without error. Also,
in real life, it is common for designers to make manual changes to a netlist, commonly
known as Engineering Change Orders, or ECOs, thereby introducing a major additional
error factor. Therefore, instead of blindly assuming that no mistakes were made, a ver-
ification step is needed to check the logical equivalence of the final version of the netlist
to the original description of the design (golden reference model).
Historically, one way to check the equivalence was to re-simulate, using the final netlist,
the test cases that were developed for verifying the correctness of the RTL. This process
is called gate level logic simulation. However, the problem with this is that the quality
of the check is only as good as the quality of the test cases. Also, gate-level simulations
are notoriously slow to execute, which is a major problem as the size of digital designs
continues to grow exponentially.
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An alternative way to solve this is to formally prove that the RTL code and the netlist
synthesized from it have exactly the same behavior in all (relevant) cases. This process is
called formal equivalence checking or logical equivalence checking and is a problem that
is studied under the broader area of formal verification.
Since the RTL is dynamically simulated to be functionally correct, the formal verification
of the design between the RTL and the scan inserted gate-level netlist assures us that the
gate-level also has the same functionality. In this instance if we were to use the dynamic
simulation method to verify the gate-level, it would have taken a long time (days and
weeks, depending on the size of the design) to verify the design. In comparison, the formal
method would take a few hours to perform a similar verification. The last part involves
verifying the gate-level netlist against the gate-level netlist. This too is a significant step
for the verification process, since it is mainly used to verify what has gone into the layout
versus what has come out of the layout. What comes out of the layout is obviously the
clock tree inserted netlist (flat or hierarchical). This means that the original netlist that
goes into the layout tool is modified.

The figure shows the simplification of the general equivalence checking problem to logic
equivalence.

Figure 7.1: FEV at each stage

7.2 LEC do file
set log file lec.log -replace
read design -systemverilog -gold -f myrtl.filelist
read design -systemverilog -rev -f mynetlist.filelist
add renaming rule r1 foo bar -gold
set sys mode lec
report unmapped points
add compare points -all
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compare
report compare data

7.3 Steps to run LEC
• Create work area for the design on which LEC is to be performed.

• Copy the necessary files i.e. golden and revised netlist and libraries into their
corresponding path in the work area.

• Run command for LEC. This command will give the result for key points and
compared points.

• Debug the key points and diagnose the not mapped key points.

• Make changes in local copy in order to solve the non-equivalent points.

• Report the compared points, if they are the major issues.

• Prepare Lec.do file which will automatically run the script to make LEC clean.

7.4 Inputs to LEC

• RTL/BMOD

• Schematic netlist (With correct tagging info)

• Black Block list
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Chapter 8

Verification

8.1 Introduction to Open Verification Methodology

(OVM)

8.1.1 OVM and Coverage-Driven Verification (CDV)

OVM provides the best framework to achieve coverage-driven verification (CDV). CDV
combines automatic test generation, self-checking testbenches, and coverage metrics to
significantly reduce the time spent verifying a design. The purpose of CDV is to:

• Eliminate the effort and time spent creating hundreds of tests.

• Ensure thorough verification using up-front goal setting.

• Receive early error notifications and deploy run-time checking and error analysis to
simplify debugging.

The CDV flow is different than the traditional directed-testing flow. With CDV, you
start by setting verification goals using an organized planning process. You then create a
smart testbench that generates legal stimuli and sends it to the DUT. Coverage monitors
are added to the environment to measure progress and identify non-exercised functional-
ity. Checkers are added to identify undesired DUT behavior. Simulations are launched
after both the coverage model and testbench have been implemented. Verification then
can be achieved.
Using CDV, you can thoroughly verify your design by changing testbench parameters or
changing the randomization seed. Test constraints can be added on top of the smart in-
frastructure to tune the simulation to meet verification goals sooner. Ranking technology
allows you to identify the tests and seeds that contribute to the verification goals, and to
remove redundant tests from a test-suite regression.
CDV environments support both directed and constrained-random testing. However, the
preferred approach is to let constrained-random testing do most of the work before de-
voting effort to writing time-consuming, deterministic tests to reach specific scenarios
that are too difficult to reach randomly. Significant efficiency and visibility into the ver-
ification process can be achieved by proper planning. Creating an executable plan with
concrete metrics enables you to accurately measure progress and thoroughness through-
out the design and verification project. By using this method, sources of coverage can
be planned, observed, ranked, and reported at the feature level. Using an abstracted,
feature-based approach (and not relying on implementation details) enables you to have
a more readable, scalable, and reusable verification plan.
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8.1.2 OVM Testbench and Environments

An OVM testbench is composed of reusable verification environments called OVM ver-
ification components (OVCs). An OVC is an encapsulated, ready-to-use, configurable
verification environment for an interface protocol, a design submodule, or a full system.
Each OVC follows a consistent architecture and consists of a complete set of elements for
stimulating, checking, and collecting coverage information for a specific protocol or de-
sign. The OVC is applied to the device under test (DUT) to verify your implementation
of the protocol or design architecture. OVCs expedite creation of efficient testbenches for
your DUT and are structured to work with any hardware description language (HDL)
and high-level verification language (HVL) including Verilog, VHDL, e, SystemVerilog,
and SystemC.
OVCs might be stored in a company repository and reused for multiple verification en-
vironments. The interface OVC is instantiated and configured for a desired operational
mode. The verification environment also contains a multi-channel sequence mechanism
(that is, virtual sequencer) which synchronizes the timing and the data between the dif-
ferent interfaces and allows fine control of the test environment for a particular test.

Figure 8.1: OVM Environment

• Generator

The generator component generates stimulus which are sent to DUT by driver. Stimulus
generation is modeled to generate the stimulus based on the specification. For simple
memory stimulus generator generates read, write operations, address and data to be
stored in the address if its write operation. Scenarios like generate alternate read/write
operations are specified in scenario generator. SystemVerilog provided construct to con-
trol the random generation distribution and order. Constraints defined in stimulus are
combinatioural in nature where as constraints defined in stimulus generators are sequen-
tial in nature.
Stimulus generation can be directed or directed random or automatic and user should
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have proper controllability from test case. It should also consider the generation of stimu-
lus which depends on the state of the DUT for example, Generating read cycle as soon as
interrupt is seen. Error injection is a mechanism in which the DUT is verified by sending
error input stimulus. Generally it is also taken care in this module. Generally generator
should be able to generate every possible scenario and the user should be able to control
the gener;ation from directed and directed random testcases.

• Driver

The drivers translate the operations produced by the generator into the actual inputs
for the design under verification. Generators create inputs at a high level of abstrac-
tion namely, as transactions like read write operation. The drivers convert this input
into actual design inputs, as defined in the specification of the designs interface. If the
generator generates read operation, then read task is called, in that, the DUT input pin
”read write” is asserted.

• Monitor

Monitor reports the protocol violation and identifies all the transactions. Monitors are
two types, Passive and active. Passive monitors do not drive any signals. Active monitors
can drive the DUT signals. Sometimes this is also refered as receiver. Monitor converts
the state of the design and its outputs to a transaction abstraction level so it can be
stored in a ’score-boards’ database to be checked later on. Monitor converts the pin level
activities in to high level.

• Checker

The monitor only monitors the interface protocol. It doesn’t check the whether the data
is same as expected data or not, as interface has nothing to do with the date. Checker
converts the low level data to high level data and validated the data. This operation
of converting low level data to high level data is called Unpacking which is reverse of
packing operation. For example, if data is collected from all the commands of the burst
operation and then the data is converted in to raw data , and all the sub fields information
are extracted from the data and compared against the expected values. The comparison
state is sent to scoreboard.

• Scoreboard

Scoreboard is sometimes referred as tracker. Scoreboard stores the expected DUT output.
Scoreboard in Verilog tends to be cumbersome, rigid, and may use up much memory
due to the lack of dynamic data types and memory allocation. Dynamic data types and
Dynamic memory allocation makes it much easier to write a scoreboard in SystemVerilog.
The stimulus generator generated the random vectors and is sent to the DUT using
drivers. These stimuli are stored in scoreboard until the output comes out of the DUT.
When a write operation is done on a memory with address 101 and data 202, after some
cycles, if a read is done at address 101, what should be the data? The score board recorded
the address and data when write operation is done. Get the data stored at address of 101
in scoreboard and compare with the output of the DUT in checker module. Scoreboard
also has expected logic if needed. Take a 2 inputs and gate. The expect logic does the
”and ” operation on the two inputs and stores the output”.

• Enviornemnt
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Environment contains the instances of all the verification component and Component
connectivity is also done. Steps required for execution of each component is done in this.

• Tests

Tests contain the code to control the TestBench features. Tests can communicate with all
the TestBench components. Once the TestBench is in place, the verification engineer now
needs to focus on writing tests to verify that the device behaves according to specification.

• Functional coverage

This component has all the coverage related to the functional coverage groups.

After making RTL changes in the design for verification of I have designed the test
case which will access the 4 random address location from each back and write the ad-
dress value itself in the register after writing the data in all the banks, reading of data
is performed and as shown in the flowchart if the write and read data does not matches
then OVM will give error and test case will get terminate.

Figure 8.2: Test case flow

Following are the output waveform observed while running the above test case in the
environment which will verify the design.
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Figure 8.3: Waveform while writing into specific register

Figure 8.4: Waveform while reading from specific register
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Chapter 9

Future Enhancement

• Support for 64 bit addressing.

• Support for various SRAM latency option.

• Support for non uniform bank size.
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Chapter 10

Conclusion

• As there is requirement to increase or to decrease the size of memory in the new
project design, it is good to parameterize the memory controller to meet the required
objective as fast as possible.

• Lintra is used to check RTL quality check of the design, I have performed lintra on
each module of SRAM and also at the top level. All the fatal errors are fixed from
RTL design. Depending upon the design requirement I have waived many errors
and warning.

• Formal Equivalence Verification is very useful and important for VLSI design flow.It
is also helpful for verification of ECO (Engineering Change Order) design with
exhaustive verification.

• Updated design has been verified in the OVM environment by making changes in
present OVM environment as well to make it compatible with design.
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