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Abstract

Along with the advance of science and technology, composite materials including laminated
composile plates have been widely used in various engineering field such as in aeronautic,
astronautic .auto- industries, submarine engineering nuclear technology and also for the fine
consiruction such as circuit boards in clectronic packages. thereby creating considerable interest
in their analysis. It is inevitable to determine properties of lamina from known properties of fiber
and matrix, natural frequencies, no. of cycles to failure as a part to ¢nsure the safe design of the

component.

As an alternative for determination of properties of lamina by experimental method which is
cxpensive, method of cells is widely used. In the present work an algorithm is developed to

determine properties of lamina from known properties of fiber and matrix.

An algorithm is also developed for determinations of natural frequency of plates made of
composite materials with various boundary conditions. Results so obtained are compared by

performing analysis using ANSYS.

Fatigue falure of composite material has always been an important problem in the application of
composite  structures. The fatigue behavior of composite materials is  conventionally
characterized by 8 - N curve or damage mechanisms, For every new material with a new lay-up,
altered constituents or different processing procedure. a whole new set fatigue life tests has to be
repeated. An algorithm is developed that includes the effect of stress ratio(R) and load frequency

(1) for the prediction of fatigue life and residual strength of compaosite structures,
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Vibration And Fatigue Analysis of Composite Materials

CHAPTER 1
INTRODUCTION

1.0 Introduction

Along with the advance of science and technology, composite materials including laminated
composite plates have been widely used in various engineering field such as in aeronautic,
astronautic ,auto- industries, submarine engineering ,nuclear technology ,and also for the fine
construction such as circuit boards in electronic packages, thereby creating considerable interest in
their analysis. In addition to their high strength / light weight, another important advantage of
composite laminates is that structural properties can be tailored through changing the fiber angle
and/or the number of plies .Various kinds of composite materials provides a wide range of
selections for engineers. The need for more information on the behavior of laminated structural

components, like plates, is clear. Rectangular plates are used in many engineering applications.
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Fig.1 Cross-section Of Fibrous Composite

Vibration characteristics of composite structures are of considerable interest for their design and
performance. The Rayleigh-Ritz method with algebraic polynomial displacement function is used
to obtain natural frequencies of vibration for laminated composite plates. For rectangular plates
there exist several combinations of boundary conditions among them cantilever rectangular plates
(as used in turbo machinery, impeller and fan blades) , plates having all its edges simply supported

(as used in structural mechanics, and other application), plates having all edges free (as used to

Institute of Technology, Nirma University Page 1



Vibration And Fatigue Analysis of Composite Materials

detected damage of laminated panel by change in natural frequencies) are analyzed here. For
example it is necessary to keep natural frequencies of structures well separated from their

excitation frequencies in order to avoid resonance.

Classical example of resonance

The collapse of the Old Tacoma Narrows Bridge, nicknamed Galloping Gertie, in 1940 is
sometimes characterized in physics textbooks as a classical example of resonance. This description
is misleading, however. The catastrophic vibrations that destroyed the bridge were not due to
simple mechanical resonance, but to a more complicated oscillation between the bridge and winds
passing through it, known as aeroelastic flutter. Robert H. Scanlan, father of the field of bridge

aerodynamics, wrote an article about this misunderstanding.

Fatigue failure of composite material has always been an important problem in the application of
composite structures. Major structural components of an airplane are subjected to repeated loading
(fatigue loading) during take-off and landing. It has been observed that for some composites the
fatigue strength is substantially lower than the corresponding static strength. This repeated loading
causes growth of fatigue cracks, which, if undetected, can lead to catastrophic failure.

Some examples of such accidents are:-

e In 1985, crash of a Japan airlines Boeing 747SR (short-range) jumbo-jet due to a
catastrophic fatigue failure of rear pressure bulkhead which resulted in loss of 520 human
lives.

e An accident involving an Aloha Airlines Boeing 737 jet in which much of upper half of a
fuselage section was “blown off” during flight. The causes were fracture resulting from the

undetected growth of multiple fatigue cracks.

The fatigue behavior of composite materials is conventionally characterized by S - N curve or
damage mechanisms. For every new material with a new lay-up, altered constituents or different
processing procedure, a whole new set fatigue life tests has to be repeated. Here an analytical
method is presented that includes the effect of stress ratio and load frequency for the prediction of

fatigue life and residual strength of composite structures.
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Vibration And Fatigue Analysis of Composite Materials

1.1 Motivation of Work

Today composite is used in various fields, with high end applications as aircraft, wind turbines and
so on. Very limited composite material‘s properties are available. The properties of lamina
required are elastic properties, thermal properties, and strengths to find out laminate properties to
carry out FEM and fatigue analysis. As all these properties are not readily available. To get all
these properties expensive experimentation is required to be carried out. For rectangular plates
cantilever rectangular plates (as used in turbo machinery, impeller and fan blades) , plates having
all its edges simply supported (as used in structural mechanics, and other application), plates
having all edges free (as used to detected damage of laminated panel by change in natural
frequencies) is been used widely, so it is necessary to keep natural frequencies of structures well
separated from their excitation frequencies in order to avoid resonance. Fatigue life of composite
structures is the basic requirement as it will help to avoid sudden damage in composite structure

which intimate the life after which the component is replaced

1.2 Objective of the Work

Objective of present work is to study the behavior of composite materials. The specific scope of

the work 1is:

e Prediction of orthotropic / transversely isotropic lamina properties using

micromechanics the very refined method “Method of Cells”.

e Obtain natural frequencies of vibration for laminated composite plates by
Rayleigh-Ritz method with algebraic polynomial displacement function to avoid

resonance.

® Prediction of fatigue behavior of composites using S-N curve approach and
determination of residual strength and fatigue life at any no. of cycles (n) and

any stress ratio (R)and frequency ratio( f).
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CHAPTER 2
LITERATURE SURVEY

2.1 Structures And Properties

In general, composite materials are made by combining a matrix and reinforcement to
create a material which has desirable characteristics and which are superior to either of
the original materials individually. The majority of composite material usage is in a form of a
fiber reinforced polymer matrix. E-poxy based systems are the most commonly used in
matrix materials for polymer composites. E-poxy exhibits excellent properties overall, with
excellent adhesion, high strength, low shrinkage, good corrosion protection and processing
versatility. The second portion of a composite material is the reinforcement. Fiber reinforcement
is used almost exclusively. The fiber material is the reinforcement in a composite material
that gives the material the majority of its strength properties. The fibers generally have
very high specific tensile strength and moduli, but depend on the matrix material to
provide the transverse and compressive strength contributions. One of the types of fiber
reinforcement such as carbon fibers offers light weight, high specific tensile modulus and
strength, thus making them ideal for use in critical composite structures. They can be made from a
variety of organic or petroleum fibers. Reinforcement can in the form of long fibers, short

fibers, particles or whiskers. Composite materials have following advantages:
. High specific strength (strength to weight ratio) and specific modulus (stiffness
to weight ratio).

o Much higher fatigue and endurance limit.

. Flexible applications-allows the design of materials and structures.
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When comparing the properties of composites to monolithic materials, the stiffness or the strength
of a composite may not be different, or perhaps lower than the metals. But when specific strength
(strength to weight ratio) and specific stiffness (stiffness to weight ratio) are considered, composites

generally outperform metals.

2.2 Properties of a Composite Based on Micromechanics

Some basic properties of composite materials can be estimated by using micromechanics. The
properties of composites are related to the proportions of reinforcement and matrix. The
proportions of matrix and reinforcement are either expressed by weight fraction (w) or by the
volume fraction (v). In a composite the proportions of matrix and reinforcement is given
by weight and volume fractions such as:
we +w, =1 (2.1)
vet v, =1 (2.2)

where subscripts f and m denote fiber and matrix.

Since the composite properties are dependent on proportions of matrix and reinforcement,

we can compute the constitutive property of composite by the following equation:

where X represents an appropriate property of a composite. For example, the longitudinal

modulus E11 of a composite can be computed as
Ej = Epvi +Evy 2.4)

Most properties of a composite are a complex function of a number of parameters as
the constituents usually interact in a synergistic way, therefore the constitutive properties

of the composite found by the law of mixtures are not fully accounted.
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Composite laminates are designated in a manner indicating the number, type, orientation and
stacking sequence of the plies. The configuration of the laminate indicating its ply composition
is called a lay-up. The configuration indicates, in additions to the ply composition, the exact
location or sequence of the various plies is called the stacking sequence. Table 2.1

[Nlustrates various types of laminate designations commonly used:

TABLE 2.1
Laminate Designation
Type Sequence Notation
Unidirectional ply [90 /90 /90 /90] [90]4
Cross-ply symmetric [0/90/90/0] [90]s

where s =symmetric sequence

Number subscript = number of plies.
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2.3 Natural Frequency of Vibration by Rayleigh-Ritz Principle

The Rayleigh-Ritz method is a fundamental technique which lends itself well to numerical methods.
The variation approach finds application to solutions of problems of thermal transfer and diffusion,
kinetics, magneto- and electrostatics, quantum theory, and so forth. The laws governing such
phenomena are typically expressed through the Laplace, Poisson, diffusion, and eigenvalue

equations. In this paper, attention will be focused on the eigenvalue problem.

Using the Rayleigh-Ritz principle, the eigenvalue problem may be rewritten as a matrix equation. In
this form, solution of the problem becomes a matrix diagonalization procedure and many efficient
means of solution become available. For an exact solution of the eigenvalue problem, treatment of
an infinite dimensional matrix is required, and numerically this is awkward or effectively
impossible. Thus, the problem is usually replaced by a truncated representation. A successive
approximations approach proceeds by generating a trial solution, performing a matrix
diagonalization for the truncated problem, improving the trial solution

and repeating the procedure. In this way, an improved trial solution is generated which approaches

the solution of the full infinite dimensional problem [1].

Uy = Mg = Mg e o = Mgy
(2.5)

An analysis of the parallelization efficiency of the successive approximations approach to the
eigenvalue problem is presented in this paper. The refinement to an approximation may be applied
independently on several processor nodes at the highest level of the algorithm [2], [3], [4], [5]. At
the core of each successive approximations strand is a matrix diagonalization procedures has been
well studied and displays high parallelization efficiencies [6], [7] (two-tiered approaches applied
directly to the matrix diagonalization have been recently discussed [8]). In this paper, it is shown

how both strategies can be simultaneously applied to successive approximation calculations. Within
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this approach, the two levels of parallelization are completely independent, allowing for analysis of a

two-tiered parallelization extrapolated from data obtained from separate applications of the methods.

The literature on the title problem is vast. A series of publications (Lecissa. 1978,1981. 1987)
[9,10,11 ]listed hundreds of publications on the subject. Many of the previous studies concentrate on
the theory of the subject. Obtaining natural frequencies only for those problems which permit exact
solutions (Jones, 1973 ; Lin. 1974). Exact Navier-type solutions are possible for cross-ply plates
having shear diaphragm boundaries (Jones, 1973) and antisymmetric angle-ply plates having a
certain type of simple-support boundaries (S3). Exact Levy-type solutions are also possible for
cross-ply laminates having two opposite shear diaphragm edges and for antisymmetric angle-ply
laminate having two opposite S3 boundaries (Lin and King. 1979). Limited references are available
on the study of the effects of many parameters like the material orthotropic characteristics, the
number of layers, the lamination angle and boundary conditions on the natural frequencies of

composite plates (Leissa and Naritn, 1989).

2.4 Fatigue Life Models

In these type of models, input information is taken from the S-N curves and a fatigue failure criterion
is proposed. They do not take into account damage accumulation but predict the number of cycles at

which fatigue failure occurs under fixed loading conditions.

One of the first fatigue failure criteria for composites was proposed by Hashin and Rotem[12,13].

They distinguished a fiber-failure and a matrix-failure mode the equations of which are as follows:

o T | _
GGk -

where o, and o, are the stresses along the fiber and transverse to the fiber, 7, is the shear stress
and X .Y, and S, are the ultimate longitudinal tensile, transverse tensile and shear stress fatigue

strength respectively. Since the ultimate strength is a function of fatigue stress level, stress ratio and

number of cycles, the criterion is expressed in terms of three S-N curves which must be determined
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experimentally by testing on-axis unidirectional specimens under uni-axial load. This criterion is

applicable for unidirectional ply and also if the failure modes are clearly distinguishable.

Whitworth[15] proposed a model to predict the fatigue life of composite specimens. He assumed that
stress-strain response remains linear during fatigue cycle till fracture. The model is given as,

e,
N, =exp 1 (%] -1y (-1 2.7)
' h |\ o

max

where C;, C; are constants to be determined experimentally and h and m are parameters that depend

on applied stresses.

Ellyin and El-Kadi[16] demonstrated that the strain energy density can be used in a fatigue failure
criterion for fiber-reinforced materials. The fatigue life Nywas related to the total energy input AW

through a power law type relation of the form:
AW =kN; (2.8)

where k and « were shown to be functions of the fiber orientation angle. With the help of
experimental data from tests on glass/epoxy specimens, an expression for & and k as a function of
the fiber orientation angle was established. The strain energy density was calculated under an elastic
plane stress hypothesis.

Philippidis and Vassilopoulos[17] proposed a multi-axial fatigue failure criterion, which is very

similar to the well known Tsai-Wu quadratic failure criterion for static loading:

F,00,+Fo,-1<0 ,j=1,2,6
(2.9)
where F,, and F are functions of the number of cycles N the stress ratio R, and the frequency of

loading v. The values of the static failure stresses X; , X, , ¥;, Y., and S for the calculation of the

tensor components F,, and F have been further replaced by the S-N curve values of the laminate

along the same direction and under the same conditions. Although, in doing so, five S-N curves are
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required but the number was reduced to three due to assumption that X; = X, and Y, = Y. The authors
used laminate properties to predict the laminate behavior, as they state that this enhances the
applicability of the criterion to any stacking sequence of any type of composite (eg, unidirectional,
woven, or stitched layers). This is because the S-N curves for the laminate account for the different

damage types occurring in these various types of composite materials.

Fawaz and Ellyin[18] proposed a semi-log linear relationship between applied cyclic stress o and

the number of cycles to failure N;:

o‘ =mlog(N,)+b (2.10)
The relation between the two sets of material parameters (m,b) and (m, ,b,) is specified by:

m= f(a,a,,0).g(R).m,

b=f(a,a,,0)b @1

Where q, is the first biaxial ratio(a1 = G% j, a, is the second biaxial ratio (az = - j,

R is the stress ratio and & is the stacking angle. Their model could be generalized in the

expression:
o“(a,,a,,0,R.N ) = f(a,.a,,0).[ g(R).m, log(N ) +b, | (2.12)

The aim of the model was to predict the parameters m and b (related with m. and b, through the

functions f'and g) of a general S-log (V) line, for any a, @, and R.

Philippidis and Vassilopoulos[17] compared their own results against the above-mentioned fatigue
failure criterion proposed by Fawaz and Ellyin[18]. They concluded that the criterion by Fawaz and
Ellyin was very sensitive to the choice of the reference S-N curve and that the predictions for
tension-torsion fatigue of cylindrical specimens were not accurate. Under multi-axial loading the

model by Philippidis and Vassilopoulos[17] can produce acceptable fatigue failure loci for all the

Institute of Technology, Nirma University Page 10



Vibration And Fatigue Analysis of Composite Materials

data considered, but their choice of a multi-axial fatigue strength criterion based on the laminate

properties implies that for each laminate stacking sequence a new series of experiments is required.
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CHAPTER 3

DETERMINATION OF PROPERTIES OF LAMINA BY
METHOD OF CELLS

3.0 Introduction

The method of cells is a micromechanical model which has been shown to accurately predict the
overall behavior of various types of composites from the knowledge of the constituent properties.
In particular, the method yields explicit effective constitutive equations for the inelastic behavior of

metal matrix composites

The overall behavior of inelastic, multi-phase, unidirectional fibrous composites generated
by the method of cells from the knowledge of the properties of the individual constituents is

displayed in terms of:

e [Effective elastic moduli
o Effective coefficients of thermal expansion
e [Effective thermal conductivities

e Effective stress-strain response in the inelastic region

In the generalized formulation, the repeating unit cell is subdivided into an arbitrary number of
subcells. This generalization extends the modelling capability of the method of cells to include the

following:

e Thermo mechanical response of multi-phase, metal matrix composites
e Modeling of variable fiber shapes

e Analysis of different fiber arrays

e Modeling of porosities and damage

e Modeling of interfacial regions around inclusions, including interracial degradation
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The continuum model for unidirectional fiber-reinforced materials is based on the assumption that
the continuous square fibers extend in the x1 direction and are arranged in a doubly periodic array in
the x2 and x3 directions, fig. 3.1. The cross section of the square fiber is h;? and h2 represents its
spacing in the matrix. As a result of this periodic arrangement, it is sufficient to analyze a

representative cell as in fig. 3.2. the representative cell contains four subcells B,y=1,2. Let four local

coordinate systems (% 1,% ,»X ;) be introduced, all of which have origins that are located at the

centre of each subcell.

Jacob Aboudi and Marek-Jerzy Pindera [19]

bl 3
Fibars
4 Matnx ' ’_Tﬁ* "'
¥ * T
e hg
p=2 =2
y=1 y=2
"2 i i
ha |
|'l"| F-'l .{-.?:h:a: =1
| Iy Iy 1‘“"1 iy =2
- | ———— }, —
%y ‘_,.,1':.,
o P -
a) Doubly periodic array b) Represenrative unir cell

Fig. 3.1 Doubly-periodic Array And a Repeating Unit Cell For The Original Method Of Cells.

3.1 Assumptions
e Fiber arranged in periodic manner to form periodic array.
e Continuous square fiber as the area of circle and square is same.
e Fiber and matrix are perfectly elastic materials.
e Plane stress condition while calculating strength.

e Eliminating the micro- variables in average heat flux calculation.
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3.2 Mathematical Model
Jacob Aboudi and Marek-Jerzy Pindera [19]

3.2.1 Calculation of Elastic Properties of Lamina
(E1, E2, G12, v12, v21)

A). The first order displacement expansion in each subcell is given as

l(ﬂV) _ A7) +f§ﬂ)¢i(ﬂ7) +)T§7)(pl(ﬂ7) i=1,2,3. (3.01)

u i

Where wl(ﬂ 7). Displacement component of the centre of the subcell

gé(ﬂy) (By)

,¢," "’ —Characterize the linear dependence of the displacements in the local

coordinates i(f ),igy )

The components of the small strain tensor are given as

1 ..
glgﬂy) :E[Oiugﬂy) +8jul-(ﬂ7)} i,j=1,2,3. (3.02)
Where 8, =6/6x,,0, =8/ox\") and 0, = 8/ex ")

The stress are related to strains in the form

P _ o(Br) (Br) (3.03)

The average stresses &, T in the composite are determined from the average stresses in the

subcells Eig.ﬂ 4 ), in the form

D - Y
5= > ()7 3 (3.04)
( )ﬂ,}/zl
Where (a')ﬂ " =hgh,, (A')=(l+h )2 which is the area representative cell and
hg/2 h, )2
—15/?7) -— | Gl(jﬂV)dféﬂ)d%(V)
(2 a2, 2
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The condition for the continuity of tractions, which are imposed along the interfaces of the subcells

of the representative cell in the average sense, lead to

=1r) _ =27)
2i 2i (3.05)
Aol

B). Displacement interfacial conditions

At any instant, the normal and tangential displacements should be continuous at the

interfaces of the subcells of the representative cell of fig. 3.2. It follows that

(17)

(27)

u; =u, (3.06)
S OB B - SN

ulPY = uP?) (3.07)
A=t 2 A2 =xn, 2

The =*signs denote the two different relations obtained, depending on whether the

interface follows the subcell (1y)or (2y) and same other equation.

Imposing the continuity conditions at the interfaces between the subcells. The average

strains in the subcells can be obtained as

(Br)_ 0O

S =—W
11 1>
axl

=Br)_ 4Pr)
22 h s

ggéiy): wgﬂy),

251(2ﬂy)=¢1(ﬂ7/) +ai;lwz,

_ 0
2 e1(3ﬂ7)=€01(ﬂj/)+8_x1W3,

28N Pr) , JP) (3.08)
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The average strains in the composite are given as

2
= = (Br) LAr) 3.09
el] AI) ﬂ;l( ) ] : ( . )
And we get
. oW
g =) 2, 2| (3.10)
2 Gx] 5xl~

And we get the relationships between the average stresses and micro-variables, in the

subcells of the representative cell,
El(lﬂy) C(ﬂ?) g +C(ﬂ7)( ¢§ﬂ7) N (/)gw))
ngﬁy) _ (ﬂy) 5 +C(ﬂy)¢(/3’7) +C(§7)¢,§ﬁ7)
5§3ﬂy) _C(ﬂy) 3 +C(ﬂ7) ¢§ﬂ7) +C(ﬂ7) §ﬂ7)

AP _c (/37)[ N qﬂyj

) _ (ﬂy)(&va ()J 3.11)

013 44 o ?

Br) _ AP [ JPr) L NPr)
03 =Ce |#5 +er )
C) Composite constitutive relations — square symmetry
In the following, the constitutive equations of the unidirectional composite are
derived in explicit form. In these equations the average stresses and strains are related by
closed form expressions.

a) Average normal stress-strain relations

For that at i=2 we have

A = (120 -1 ) [,

¢§21) = (h € —h1¢§11))/h2 :

Where /= h +h,. Similarly with i = 3 gives
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(0§12) = (h €33 _h2¢:£,11) )/hz ,

A2 = (h = —h1¢§22)) /h1 .

Then we solve equation for micro variables, the average normal stresses can be

computed and obtain as
O11 =byy €1 +hyp € +hy3 €33
O =byy €1 +hyy € +hy3 €33
T33 = by3 €1 +by3 € +b33 E33 (3.12)
These are the requested constitutive relations for the normal stresses and strain

of the unidirectional composite. The coefficients by are the effective elastic constants

of the composite, and are given as

=] (@) ¢l cfi (@) + (@) 4 (@) ) (s - ) (00 0) |/,

bus =| (/1) 13 () + OCHh + OsCH4 o (/) () + 0aCHh + 0435 ) | [
bis =| (/1) 13 () + 0ICH + O5CH )+ (s P () + 035 + 03 ) | /.

bos =| ()| B (@) 4 G5} G35 [+ () e () .03+ it | v

by =| (/) €3 ()" + 08 )+ 04 [+ (i) €3 (@) 4 )+ 05 | v

b =| () B (() 07} 0568 () (o) 08) i ||
(3.13 — 3.18)

b) The average axial shear stress-strain relations

A —[ o' j /hz,
471320
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11 ow ow
A1 =[h%10214—(%2h2(q{4 —Cjﬁ)j/A,

2)_ow

¢](

O1p =2byy &),

ze
G13 =2by4 G 3,

0_'23 = 2b66 é23 . (319)

The effective elastic axial shear modulus of the unidirectional composite:
by = CI {Cg{; [h((a')“ +(a')21)+h2 ((a,)IZ +(a,)22)} cn ((a,)lz +(a')22)h1}/(A'A1)
bs = i [y [ (@) 4 (s () (@) ) (@) )2 i s

bes = CLClihhy /5 (3.20 - 3.23)

Where Al = hICZZ]_ + h2C4f4 for AZ = h2 = I’l3
8= hEC +(Iyhy + hyhy + hyhy ) CL

The constants used here given in appendix, so the elastic stiffness matrix B = [b;]:

_bu blz b13 0 0 0
b12 bzz b23 0 0 0
| P by, by, 0 0 0 (3.24)
o o o0 b, o0 o0
0o 0 0 0 by 0
0 0 0 0 0 by
The composite constitutive relations are of the form
c=B¢€ (3.25)

This representation effectively provides an orthotropic material with a square

symmetry.
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D) The effective elastic constants of transverse isotropic material can be determined

from
le7,
E:;jo B'(&)E. (3.26)

Where B'= [bl'J obtain by transformation i.e. by rotating the x;, X», X3 coordinates

around x;-axis by an angle '&".
Which provides the elastic stiffness matrix E = [e;] in the form

€; €3 €3 0 0 0

EF =

0 0 0 e, 0 0 (3.27)

0 0 0 0 e 0

0 0 0 0 0 ey

e = by (3.28)
e, =¢€;=>b, (3.29)
€y =633 = (3/4)b22 + (1/4)b23 + (1/2)b66 (3.30)
€3 = (1/4)b22 + (3/4)b23 - (1/2)b66 (3.31)

e, =ess =b,,
(3.32)
€66 = (1/2)(622 - ezs) (3.33)

D.1) Compliance matrix calculation Sj; whenn ==

Sy = (ez:/ )_1
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D.2) Compliance matrix calculation S;;

when n ! =1 then no need to calculate e,

-1
Sy = (bu)
E) Final elastic properties of lamina
E, :l/Sll E, :1/522
E, = 1/S33 v, = =S, E
Vi =—S,E Vyy = =S, E,
Gl2 = 1/S44 G13 = I/Sss
G,, =1/S,, (3.34—3.42)

3.2.2 Calculation of Coefficient of Thermal Expansion (q,)

The effective coefficient of thermal expansion of a unidirectional composite in the axial and

transverse directions can be readily obtained given by Aboudi[20]
[al,az,a3,0,0,0]:B_lr where F(OkPa):(Fll,rzz,r33,rlz,rls,rz3). (343)

It should be noted that determination of coefficient of thermal expansions using above

equation is not affected by transformation.

Ly =((P5 T4 (0 +05) (@)1, +((a) 7 (@) + (a7 )t [
[y = ((1“312 —ng)(Q'zﬁLQ's)Jr(a')“ rs, +((a')12 +(a)" +(a')22)1“g12 )/A'

Foa=((PE ) 05408+ (o) T (o) 4 (o))

[, =0,I13=0,I3=0
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(3.43 --- 3.45)
qnl aln + 2C1n2 atn
Choy' + ( Cp+Cy ) a;
| Chay +(Chy+Cyy)
And 0 (3.46)
0

0

where ij =11,22,33,12,13,23=n= f,m

f = fiber,and m = matrix

3.2.3 Calculation of Thermal Conductivity of Lamina

a) Fourier law for anisotropic material

3.47
4= (%xjj o

Where k; Thermal conductivity tensor

b) Free expansion due to temperature difference is

AP = AT+)72(ﬁ)§2(ﬁ7) +)—C3(7) 3(ﬂy) (3.48)

By applying continuity condition of temperature at the interfaces the average heat
flux in the subcell is given as
q—l{ﬂy) _ _kl(ﬂy) a%x‘ i,j=1,2,3 (3.49)
J

¢) The average heat flux in the composite is given as

_ 1 & _
qi:_:' Zaﬁyqi(ﬂ}/)
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(3.50)
The continuity condition of the heat flux at the interface is given as
g\ =g (3.51)
Where j=2,3 and by eliminating the micro-variables
=) — _p (B OT P = P
g =k ij i=1,t&j=1,2,3 (3.52)
d) The effective (apparent) axial & transverse conductivity is
nll N2 , 22 2
b =((@) K (@) @) @) R /h
i | (@) +(a')21)+h2(( )
ky =k h2 (1 1y + 1" hl)}
#h" ()4 () )i
o [a{(@)! (@ s (@) ()2
ky = k™ [hh4 (ks + k" )}
+" (@) (@) )i
(3.53—3.55)
3.2.4 Calculation of Strengths of Lamina
a. Calculating the stiffness matrices Cl-’} of lamina by using equations given
appendix ‘A’
b. Calculation of compliance matrices as
A. For fiber
S = (cf ) (3.56)
B. For matrix
-1
m _ m
Sy = (c,.j ) (3.57)
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C. For lamina

-1
S; =(c,..) (3.58)
c. Calculation of stress concentration matrix

The stress concentration factors are taken into consideration to relate

the overall composite stress to the average stress in the matrix phase as

&) = g5 (3.59)

for transversely isotropic composite the stress concentration matrix as per

Aboudi[3] is

Bs!, Bs!, Bs!, o0 o 0
Bs!, Bsl, Bsl, o0 0 0

i i i
Bs), Bs,, Bs;, 0 0 0

B= )
0 0 0 Bs,, o0 0
) (3.60)
0 0 0 0 Bs,, o0
0o 0 0 0 0 Bs)

The elements of stress concentration matrix can be expressed explicitly in terms of the

compliance elements of the composite, fiber and matrix phases and the volume fraction
using Hill[5] relations

A. For fiber

Bs/ =(1/Vf)(sg—sg’)_l(s,-j —S,-;”) (3.61)

B. For matrix

Bs' = (1/\/’7 )(S{}’ -5/ )_1 (SJ -5/ ) (3.62)
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Now we have two 6x6 matrices Bsf and Bs?

d. Calculation of strength of lamina

A. Ultimate Longitudinal stress of lamina

Consider a lamina subjected to unidirectional loading along fiber direction i.e. in
direction 1. The lamina fails when fiber will fail, as stress concentration is more in fiber
when subjected to loading in direction 1, so first element of stress concentration matrix of

fiber is key element.

X/ X/
X, =" Bs!! X, = Bs'! (3.63)

B. Ultimate Transverse stress of lamina

In transverse direction matrix is weaker so stress concentration factor out of matrix
subcells is maximum is the cause of failure of lamina. When that subcell fails, lamina
will fail. There is transverse direction loading is there so second element of stress

concentration matrix of matrix subcells is key factor.

Y:X’”/( max (Bs(ﬂy))) Y=X’"/( max (Bs(ﬂy)))
L \=aane 2 ¢ e[ \p=aane)\ 2

(3.64)
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C. Ultimate Shear stress of lamina

In shear, lamina fails when shear stress in lamina matches with ultimate strength of
matrix, so the forth element of stress concentration matrix of matrix subcells is key

factor.

a) Calculation of shear strength S;; and S;3

S, = Sm/( max Bsify))
(By)=(12).,(21),(22)

S = S”’/( max Bséf”)
(B)=(12),(21),(22)

b) Calculation of shear strength S,;

Bl = (208, CL(1/6,)) 5

S, =8" ( max Bséf”)
(B)=(12),(21),(22)
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3.3 Flow Chart For Calculating Strengths of Lamina

el Ef vl vl 6l v xl x] v G

XX S™E B vited el kT
o4 .R‘rf o™ and Iy

~f 2f wm o ~F ~F ~f ~f
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f
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e MeiNeiReiNe i Ne/iRax:s
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[ Calculate G™ v \
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Calculate e 1,€37,€33,€44,€55,€66,€12-€13-€23
Calculate El,Ez,E3,V12,V13,V23,Glz,G13,G23

v
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3.4 Closure

Detailed discussion of mathematical formulation for all uni-axial lamina properties subjected to in-

plane loading has been presented in this chapter. Required inputs for determination of the lamina

properties by —Method of Cells™ are as follow
e FElastic properties of fiber and matrix.
e Ehermal properties of fiber and matrix.

e Strengths of fiber and matrix.
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CHAPTER 4

VIBRATION ANALYSIS OF COMPOSITES

4.0 Introduction

Laminated composite structures are becoming increasingly important in many engineering
applications. The need for more information on the behavior of laminated structural components,

like plates. is clear. Rectangular plates arc used in many engineering applications.

The use of vibration methods to obtain the elastic properties of materials appears to be getting more
established. Apart from early work in this area , more recent contributions to theory and
methodology continue to be made . The primary building block of laminated composite structures is

the orthotropic lamina

Structural characteristics such as static deflections and bending stresses, buckling loads, and
vibration frequencies are easily and exactly found for symmetrically laminated cross-ply plates when
the fiber axes are parallel to the edges. However, for angle-ply plates the analysis is considerably

more complicated and exact solutions are out of the question.

Currently, three separate, standard [21], static tests can yield the four independent elastic constants
of the basic lamina (the Young’s moduli in the longitudinal and transverse directions respectively,
the inplane shear modulus, G, , and the in-plane Poisson’s ratio vi,. However, all four may be

obtained from a single experimental plate vibration test.
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The three-dimensional stress-strain relationships for thick, orthotropic composite panels may be fully
described by nine independent elastic constants. The appropriate engineering constants may be taken
as E; , E; , and E3 , the Young’s moduli in the longitudinal transverse and thickness directions
respectively, the shear moduli, G, , Gi3, and Gy3 , and the Poisson’s ratios, vi2 , vi3 and v,3 across
the three orthogonal planes. For transversely isotropic samples,(i.e., E2=E3 , G12=G13 and vi2=vi3 ),

as is common with many types of composite materials, only five independent constants are needed.

The method that was developed by the first author and his colleagues [6-8] is applicable to the
identification of any number of elastic constants of thin and thick plates, given enough vibration test

data.

The Rayleigh-Ritz method with algebraic polynomial displacement functions is used to solve the
vibration problem for laminated composite plates having different boundary conditions (The
Rayleigh-Ritz method is used to yield a frequency equation, and the displacement function is
expressed in algebraic polynomial).Natural frequencies for cantilever rectangular plates, plates
having all its edges simply supported, plates having all edges free are presented .Convergence
studies are made and reasonably accurate and comprehensive results were obtained.. The effect of
various parameters (material, fiber orientation and boundary conditions) up on the natural

frequencies is studies.

The literature on the title problem is vast. A series of publications (Lecissa. 1978,1981. 1987) listed
hundreds of publications on the subject. Many of the previous studies concentrate on the theory of
the subject. Obtaining natural frequencies only for those problems which permit exact solutions
(Jones, 1973 ; Lin. 1974). Exact Navier-type solutions are possible for cross-ply plates having shear
diaphragm boundaries (Jones, 1973) and antisymmetric angle-ply plates having a certain type of
simple-support boundaries (S3). Exact Levy-type solutions are also possible for cross-ply laminates
having two opposite shear diaphragm edges and for antisymmetric angle-ply laminate having two
opposite S3 boundaries (Lin and King. 1979). Limited references are available on the study of the
effects of many parameters like the material orthotropic characteristics, the number of layers, the
lamination angle and boundary conditions on the natural frequencies of composite plates (Leissa and

Naritn, 1989).
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It is shown that the energy functional derived are consistent with the equations of motion and
boundary conditions and there fore can be used with energy approaches such as the Rayleigh-Ritz
method. Thus equations were successfully-applied to obtain the natural frequencies of laminated

composite plates. Rayleigh-Ritz with algebraic polynomial is used.

The primary purpose of the present work is to provide accurate and reasonably comprehensive
results for the free-vibration frequencies of symmetrically laminated, simply supported plates,
cantilever plates ,plates having all edges free, especially for lay-ups other than cross-ply (or
specially orthotropic) for which no exact solutions are possible. For this purpose the Rayleigh-Ritz
method is used with sufficient numbers of displacement function terms to obtain accurate results.
Secondly, the effects of changing the numbers of layers, fiber orientation angles, material properties,

and aspect ratios may be seen from the extensive results presented.

A complete and mathematically consistent set of equations, including equations of motion, boundary
conditions and energy functionals is presented. It is shown that energy functionals derived there are
consistent with the equations of motion and boundary conditions, and therefore can be  used with

energy approaches such as the Rayleigh-Ritz method.

In general situations, then, in seeking to determine the natural frequencies of laminated plates

recourse must be made to approximate numerical methods. For single plates the traditional single
field Rayleigh-Ritz method (RRM) can be employed if displacement fields can be proposed which
are appropriate for the complete plate and which allow satisfaction of the relevant boundary

conditions.
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4.1 Analysis

The Rayleigh-Ritz method may be used to solve the free vibration problem. This utilizes the strain
energy and kinetic energy functional for laminated plates. The strain energy stored in the plate
during elastic deformation may be written in terms of the middle surface displacements u and v in
directions tangential to the middle surface and parallel to the xz-and yz-planes, respectively, and the
normal displacement w (see Fig. 4.2).

Arthur W. Leissa & Yoshihiro Narita[22]

l_v'j
52
=3

Fig. 4.2 Rectangular Plates With Coordinates

Consider a laminated composite rectangular plate of dimensions a x b as shown in Fig. 4.2. Each
layer of the plate consists of parallel fibers bonded together by a matrix material. The fiber direction
within a layer is indicated by the angle © in Fig. 4.2. The modulus of elasticity of the layer in the

direction of the fibers is El, and the transverse modulus is E2.

Institute of Technology, Nirma University Page 32



Vibration And Fatigue Analysis of Composite Materials

The strain energy is (Qatu. 1989; Leissa and Qatu. 1991) [23,24,25]:

4.01)

Where the Aj;, Bj; and are the conventional laminated stiffness coefficients.

The above energy functional may be expressed in terms of middle surface strains and

curvature changes which are related to the middle surface displacements by

(4.02)

The total kinetic energy is
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B ena & 3 md} Ay Fre
T=2 ) 6d+008 + wflar g

(4.03)

Where 2 is the average mass density of the composite plate per unit volume.

4.1.1For Plates Having All Edges Free

Displacements are assumed as

'Eﬁ.‘r‘rj"r f‘} - H(-‘r‘rjr}ﬁin Wt
vix, v, £ m By, visin et
Frfﬂ.}r‘r_l}rr f‘} - khrrﬁﬁr‘rj?}ﬁin Wf‘
(4.04)

Algebraic trial functions will be used in the analysis because first. they do form a complete set of
functions, which guarantees convergence to the exact solution as the number of terms taken
increases and. second. one can straightforwardly solve for many boundary conditions using algebraic

trial functions.

The displacement functions U, V and W can be written in terms of the non-dimensional

coordinates § and i as :

3 T
i

¥
vamim X adind

PNhE
& E
I‘"E'ﬁ'ru‘,;‘}- Z Z,ﬁ};; 'I‘:.*;"l
fmfe e
e Wi
Wegdm Z P &
T e e
) ) (4.05)
where ™ G~ %0 ,and 1™ T and & , Ma are defined in Fig. 1.
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Keeping in mind that the Rayleigh-Ritz method requires satisfaction of geometric (forced) boundary
conditions only, with suitable selection of the valueséa, "a, 19, jo , ko , lo, mp and ng one can solve

for many boundary conditions with the same analytical procedure.

4.1.2 For Simply Supported Symmetrically Laminated Rectangular Plates

The transverse displacement w(x, y, t) of a plate vibrating freely may be
written as

}‘Ffﬁ.}r‘r j?r f‘} - H’I'E.‘*Fr j}ﬁin Wf‘
(4.06)

The maximum strain energy (U) stored in the plate during bending in a vibratory cycle is given by
Arthur W. Leissa & Yoshihiro Narita[22]

17 it 7w i dw
Ef-— [ﬂ“ ﬁhi +2915 Axs 51 o E(gn_‘i} S pl“.ﬁ = 5351 'iﬁjﬁi. ﬁhﬁ ]ﬁhﬂ‘

(4.07)

Where the Dj; are the well-known stiffness coefficients relating the moment resultants (M, My, Myy)
to the bending curvatures (K, Ky, Kyy) by the matrix relationship

My Dyg Lig Dye iy

My |=|Pis Lz Dagl| B

|;1r:|t_;\l-:: D'li, E:i, EE. H_;::,'
(4.08)

The maximum kinetic energy during a vibratory cycle is
Pt
T=—/nWgxay
2

(4.09)
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Transverse displacements are assumed in the form

M i

mTx | mTy
.H'sﬁﬁ-'r I‘!-‘} L ':-Itlv”rlt 31:[. 311 -
22 aa
(4.10)

4.1.3 For Cantilever Laminated Plates

N

e g —————>

A

~

A1 & '

b/2
~ \ 2
7 \/’/ 8
o ;‘.f

- Daa I

T b2

A &y [

- "

|

Fig 4.3 Laminated cantilever plate with co-ordinate conventions.
The strain energy stored in the shell during elastic deformation may be written in terms of the middle

surface displacements u and v in directions tangent to the middle surface and parallel to the xz and

yz planes, respectively, and the normal displacement w. It may be expressed as the sum of four parts

(Mohamad S. Qatu & Arthur W.)[26]
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U= Ugp ot Yoz + U + U
4.11)

Where U, includes terms due to orthotropic characteristics of the material

(1.e. Ay, A2, A2z, Ass, D11, Di2, D22,Des).

Uyorm 142 [F 864,11 (@u/0x)'2 + 4,66 (Bu/OWT2 + 422 (@v/0WT2 + 466 (Bv/0x)'2 + [A)11/(Riw"2 ) + A2

(4.12)

U, includes terms of extension-shearing coupling (i.e. A 16, A26).

om0 200 (B0 s ) o B

Ups includes terms of bending-stretching coupling (i.e. Bjj)
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ﬂ},li It
(4.14)
And Uy, includes terms of bending-twisting coupling (i.e. D16 , D26 ).
1 2w faEw 2w facw
Y=zl {4 Die (ﬂa'-’ }(W}+ Wz (ﬂw- }(f‘-‘if“f }} oAy
(4.15)

Where the Aj;, Bjj and Dj; are the conventional laminate stiffness coefficients

Whitney and Vinson and Sierakowski [27,28]

The above energy functional may be expressed in terms of middle surface strains and curvature

changes which are related to the middle surface displacements by

gu W v W gy . du 2w
: € _ b ——
s +K Ty oK, famymp T OV Ry
iy Sy Al
- — |.‘Il. I ™ — T = -
e = ST o T T ey
(4.16)
The total kinetic energy is
Fml ""Eﬁa + © OF + Wil dx &
77 i !
(4.17)
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where p is the average mass density of the composite shell per unit volume.

For free vibrations of a shallow shell having the rectangular planform

shown in Fig. 4.2, displacements are assumed as

W% v 1) m UG, vdsinwt
v 1.8 = Vin vhenat
w15 0 = Wi vlslnor
(4.18)
Algebraic polynomial trial functions will be used in the analysis principally for two reasons. The
first is that they form a mathematically complete set of functions, which guarantees convergence to
the exact solution as the number of terms taken increases. 14 The second reason is that they are
relatively simple to use in the algebraic manipulation and computer programming subsequently
required, and can be differentiated and integrated exactly in the energy functional needed. Thus the

displacement functions U, V and W are written in terms of the non -dimensional coordinates & and 1 as

E llr

Gl m Z Z.ff:;ﬁ'*r;f
PRI
& &

VGudm X ¥ Bl

i T T

Wegerd Z. Z FundH
(4.19)
where £ =2x/a,n =2y/b, a and b are the platform dimensions (Fig. 4.2) and a;j , P and ymn, are

arbitrary coefficients to be determined subsequently. It should be stated here that the Ritz method

requires satisfaction of geometric (forced) boundary conditions only, and thus the indices in eqns
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(4.22) begin with 1 =1, k = 1 and m = 2 to guarantee satisfaction of the clamped boundary conditions

at & =0 for all terms of the polynomials.

For solving the free vibration problem, eqn (4.04,4.21) and (4.05,4.22) are substituted into eqn
(4.01,4.11) in order to get an expression for the maximum strain energy (Umax) and into eqn
(4.03,4.20) in order to get an expression for the maximum kinetic energy (Tmax). The Ritz method
requires minimization of the functional (Tp, x- Umax) Which can be accomplished by taking the

derivatives:

T may = Uman) 0 [ o 1,2, eemeed
5{{’;} ; jZO,l ........ J

Ol max - Uman) _ g w12 K
gﬂki e ; 1=0,1........ L

I man = Uman?_ 0 m=23 . u.M
Moen - n=0,1........ N

This yields a total of I x (J+I) + K x (L+I )+ (M-1) x (N+I) simultaneous, linear, homogeneous

equations in an equal number of unknowns oj , Pu and ym, .Those equations can be described

= A e wm
(4.23)

4.2 Flow Chart for Typical Successive Approximations Approach to
The Eigen value Problem
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Fig 4.4 Typical Program Flow For a Successive Approximations Approach.

4.3 Closure

Comparisons among results from the present method and analytical and experimental data obtained
for laminated cantilever plates may be found in the dissertation by Qatu (1989) and the work
accomplished by Qatu and Leissa (1991a) [23,24,25]. There, the natural frequencies obtained
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experimentally, and those obtained by using the finite element method are compared with those
obtained by the present method. It was concluded that the present method yields a closer upper

bound to the exact solution than the finite element results and is reasonably close to the frequencies
obtained experimentally.

CHAPTER 5
FATIGUE ANALYSIS OF COMPOSITE MATERIALS

5.0 Introduction
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The development of lightweight structures requires, among others, reliable design methods against
cyclic fatigue. One approach is to design, build and test prototypes which certainly results in the
highest possible reliability, but consumes considerable time and development cost. Therefore,
fatigue life prediction is highly desirable as it allows the assessment of design alternatives in early
stages of the development process and the integration into a CAE design environment, but most of

all it does not necessarily require early design stage prototyping.

The fatigue design methodology of polymer matrix composites (PMC) compared to metallic
structural materials is still lacking with regard to the availability of methods as well as the
insufficiency of existing models to reliably assess the fatigue behaviour. The reason for this situation
is the inherent inhomogeneity of PMC and the various distinguished damage mechanisms such as
matrix cracking, fiber/matrix debonding, fiber fracture, interlaminar delamination, as well as their

pronounced interactions which have to be taken into consideration.

The fatigue design methodology of polymer matrix composites (PMC) compared to metallic
structural materials is still lacking with regard to the availability of methods as well as the
insufficiency of existing models to reliably assess the fatigue behavior. The reason for this situation
is the inherent in-homogeneity of PMC and the various distinguished damage mechanisms such as
matrix cracking, fiber/matrix debonding, fiber fracture, interlaminar delimitation, as well as their

pronounced interactions which have to be taken into consideration.

Reifsnider KL and Stinchcomb WW [29] represents a non-linear fatigue life prediction methodology
for layered composites which accounts for fatigue damage initiation and growth as well as final
failure. This method subdivides relevant parts of a fatigue loaded structure into sub-critical and
critical elements where sub-critical elements encompass in particular matrix cracking causing
stiffness reduction and stress redistribution within the laminate without directly leading to the total
failure of the laminate Stress redistribution is modeled through appropriate stiffness degradation
relations applying the classical laminated plate theory. Critical elements are increasingly stressed,
suffer from a decrease of their residual strength with increasing cyclic loading and finally cause the

total failure of the structure when the residual strength of the critical element is reduced to the
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equivalent stress correspondent to the instantaneous external load. This life prediction methodology

may be regarded as the most complete for polymeric composites available to date.

5.1 Fatigue Failure Criterion for Lamina (off axis loading)

5.1.1 E-glass/epoxy

Hashin and Rotem[30] conducted experiments (for stress ratio R=0.1 and cyclic
frequency 19 Hz) on E-glass/epoxy lamina under cyclic loading. Equation for S-N curve
along the fiber direction based on their experimental data (equation derived by curve fitting)
1s given as,

X, =X, devf) (5.1

fL(N/)=a—b loglo Nf

where X, is fatigue strength and f,(N ) is fatigue function along fiber direction, a

and b are constant parameters and their values are given by Hashin and Rotem[24] as 1.123
and 0.11 respectively. Material properties of UD lamina (E-Glass/Epoxy) along fiber

direction are as:

ErL =55.8 GPa, X, =1260 MPa Poisson’s ratio 4, ; = 0.285

The S-N diagram (curve fit of experimental data) along fiber direction

under constant stress ratio of 0.1 and frequency 19 Hz is shown below in Fig. 5.1
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Fig. 5.1. Lamina Subjected To Fatigue Load Along Fiber Direction And Corresponding S-N
Curve.
Equation for S-N curve along transverse to fiber direction based on experimental data (derived

by curve fitting) is given by Hashin and Rotem[24] as,

Yf:erT(Nf) (5.2)
Jr(N;)=c—d log,, N,

where Yris fatigue strength and f, (N _ f) is fatigue function along transverse to fiber direction, ¢

and d are constant parameters and their values are 0.956 and 0.0541 respectively, these
parameters are developed by curve fitting'”. The material properties for UD lamina E-

glass/epoxy along transverse to fiber direction are as follows

Er=18.1 GPa Y =42 MPa.

S-N diagram (curve fit of experimental data) transverse to fiber direction under constant

stress ratio of 0.1 and frequency 19 Hz is shown below in Fig. 5.2.
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Fig. 5.2 Lamina Under Fatigue Load Along Transverse To Fiber Direction And Corresponding S-N
Curve.

Equation for S-N curve in shear mode based on experimental data (derived by curve fitting) is given

by Hashin and Rotem[25] as,

Sf :Sff(Nf)

fT(Nf)=g—h log,, N,

(5.3)

where Sy is shear fatigue strength and f (N, ) is fatigue function, g and h are constant parameters
and their values are 0.917 and 0.0852 respectively. These parameters are found by curve fitting[24].
Shear modulus (G, ;) of UD lamina (E-glass/epoxy) is G,,= 6.13 GPa and shear strength (S) is 84

MPa. S-N diagram (curve fit of experimental data) for shear mode under constant stress ratio 0.1 and

frequency 19 Hz is shown below in Fig.5.3.
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Fig. 5.3. Lamina Under Fatigue Load In Shear Mode And Corresponding S-N Curve.

5.1.2 Theory
Fatigue properties of a lamina, derived by experiments[24] are given in section 5.1.1 and 5.1.2. Our
objective is to predict fatigue life of UD lamina subjected to off-axis loading as shown below in Fig.

54.

T y
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— —_—

Fig. 5.4. Lamina Subjected To Off-axis Uniform Cyclic Loading At Angle.

Above figure shows uniform uniaxial cyclic stress applied on lamina along x-direction. By using

transformation matrix the cyclic stress components in L, T, and in LT plane can be calculated as;
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C
o,

c

O-X
o; |=[T]]0
Ty 0
(5.4)
cos” 0 sin® 0 25in6cos 0
where transformation matrix [T ] =| sin”> 0 cos” 0 -2sin6cos 0
-sinfcos@  sinOcosO cos” 0-sin’ 0
From equation 5.4 induced stresses in principal coordinates of lamina are given as
o, =0 cos’ 0
c c .2
or =0, sin” 6 (5.5)
T, =-T,, cosOsind

Now using equation (5.1), (5.2), (5.3) and (5.5) in Tsai-Hill quadratic fatigue criteria as shown in

equation (5.4), number of cycles to failure of lamina under off-axis uniform cyclic loading can be

calculated.

5.2 Generated Model

(5.6)
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5.2.1 Objective

e Prediction of Fatigue behavior of composites using S-N curve approach.
e Determination of residual strength at any no. of cycles (n) and any R and f.

e Determination of fatigue life at any R and f.

5.2.2Assumptions

e When residual strength decreases to the maximum applied stress, fatigue failure

occurs.

e The shape parameter (a),scale parameter () and are y the material properties ,i.e. they

do not depend on R and f.

e When residual strength decreases to the maximum applied stress, fatigue failure

occurs.

The shape parameter (a),scale parameter () and are y the material properties ,i.e. they do not
depend on R and f.

5.2.3 Input Properties
S-N diagram of the laminate at some known

Randf [R:Umin/o-max]

5.2.3 (a) Fatigue properties
Input S-N curve (3points on input S-N curve i.e.

( Omax1,Omax2, Omax3, Ny, Np,Nyz) at some known R and f

or

Equation for input S-N curve (6. Vs Ny
5.2.3 (b) Static properties

Xr or Xc depending upon loading condition

5.3 Mathematical Derivation
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Determination of fatigue properties from input S-N curve equation. We start with
following deterministic equation for the rate of strength degradation

Jayantha A. Epaarachchi, Philip D. Clausen.[31]

dx;
dN

=-CN™

This equation can be converted to time-dependent equation as follows

A ¢ nCImdif10uRND
dt

A and m, are material constants
Integration of above equation yields

X1 = -A f(Omax, R, X1) t™ 1/ (-m;+1) + constant
Putting
o =-Ay/ (-m+l1)

And B=-m;+I1 in above eq.

X =-af(o,,,R X)t’"+constant

For constant frequency, t=n/f

Applying the boundary conditions
XTr = Xr at n=1
Xr'= Ompax at n=N;
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We get
XT — Omax = O f(cmax aR ) XT) (I\IfB - 1) / fﬁ

f(cmax R, XT) =Xt by Gmaxy(l'li)y

Putting the value of function f in origional eq.

X1 — Omax = 00 X1 ' ¥ Oman (1-R)Y (NF — 1) / {7 (5.7)

Putting the values of the 3 points on the input S - N curve in the above
equation i.e. putting omax1 , omax2 , omax3 , Nfl , Nf2 , Nf3 we get

following 3 equations -

X1 — Omaxt = 0 X1 'Y Omaxt"(1-R)Y (NP = 1) / P (5.8)
Xt — 6maz = 0 X1 'Y Omax2'(1-R) (NP — 1) / £# (5.9)
X1 — Omax3 = 00 X1 ' 7 Omaxs (1-R)Y (NP — 1) / £ (5.10)

These equations can be solved by the following method
Dividing eq. (5.8) by eq. (5.9)

(X1~ Omaxt V(X1 — Omaxz ) = Gmaxt” (Net® = 1) /Gmara’ (N — 1) (5.11)
Dividing eq. (5.8) by eq. (5.10)

(Xt = Omaxt /(X1 = Omaxs ) = Omaxt '(Nii” = 1)/Omas” (N = 1) (5.12)

Taking logarithm of both eq. ( 5) & eq. (6)
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10g (XT — Omax1 )' 10g (XT - GmaxZ) =
V(1020 max1 - 1086max2) + log(NgP-1)- log(NpP-1) (5.13)

and

10g (XT — Omax1 )' 10g (XT - Gmax3) =
V(1020 max1 — 1080 maxs) + log(NgiP-1)- log(NgsP-1) (5.14)

From above eq. (7) and (8) we get following two value of y as follows

Y=10g(X1-Gmax1)—10g(X1-Omax2)—10g(NeP-1)+Hog(N-1)/(1026max1-1020 max2)

(5.15)
Y=10g(X1-Grmax1 }-10g(X1-Cimax3)-1og(NfiP-1)+log(Ni"-1)/(10g6max1 -102Cmax3)
(5.16)
Using the above two equations (5.15) & (5.16) we can determine y by interactive procedure,
thus we get values of y and .
To calculate o we simply use any of the eq. (5.8) ,(5.9 ) or (5.10)
0= (X1-0maxt) / [X1 ' 7 Omaxt((1-R) (NgP — 1) / ] (5.17)

Thus we determine the value of a, B, v.

Once we know the a., B, v fatigue life N¢, residual strength Xt" at some new

stress ratio (R;) or new frequency (f;) can be calculated as follows-
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Fatigue life :
(X1-Gmax1) i
Ne = [ +1]YP (5.18)
o X1 'Y Omax (1-R)"

Residual strength:

X' = Xr- [0 Xt oma (1-R) (NP — 1) / 1] (5.19)

5.4Flow charts
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5.4.1 To Determination of “Fatigue life” of Composites

| START
Y
Input - structural elementto be analyze andits dimensions
Laminate configuration - consists of layer material, layer thickness,
layer orientation

'

Xt or Xc, input S-N curve,i.e. 3 points on S-N curve Gz, Omao, Tmaxs
and corresponding Ny N¢s , N¢g

v

4 ),

Calculate B using eq.

pS S

!

g ™

Calculate y using eq.

. + iy
e N
Calculate a using eq.
b S
v

using eq.(12)

|
| EnD

[ Calculate fatigue life }
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5.3.2 To Plot “Residual strength Vs Number of cycles”

| START |

}

[Calculate apy using3p0in1 Input = structural elementto be analyze andits dimensions

son S-N curve

Laminate configuration - consists of layer material, layer thickness,
layer orientation , load applied on the laminate, R andf
at which we wants o/p

Calculate average stress inducedin the laminate using load applied
on thelaminate and total lamin ate thickn ess

MNo.of cycles = 50

T * [Calculate Residual strength using eq. (13) 1

No

MNo. of cycles=No.cyles +50
F

Yes

[ Plot:Residual strength Vs No. of cycles | )

END

5.4.3 To Plot “Maximum stress Vs Fatigue Life”
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| START |

Calculate a By using 3 point Input
son S-N curve

structural elementto be analyze andits dimensions

Laminate configuration - consists of layer material, layer thickness,
layer orientation , load applied on the laminate, R andf
at which we wants o/p

AtorXc, InputS-N curveie. 3 points on S-N curve
Omaxt» Omax2. Tmaxa @nd corrospon di|n gNf1, Nf2 , Nf3

MNo. of cycles = 1

Calculate Maximum stress(omax) using
no.of cycles(n) andR f given by userusingeq. 1

log{No. of cycles) =
log{no of cycles) + 0.2

log (No. of cycles)<=6

Plot:Maximum stress ¥s No. of cycles(n)
i.e. S-N curve

END
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CHAPTER 6
RESULTS

6.1 Results of Predicted Properties for Lamina

Detailed discussion of mathematical formulation [ Jacob Aboudi and Marek-Jerzy Pindera (19)]
for all uniaxial lamina properties subjected to in-plane loading for inverse micromechanics has been

presented in chapter 3. The comparisons of actual and by “Method of Cells” are as in references.

6.1.1 Input “fiber” Properties for Orthotropic Lamina Calculations

Table 6.1 Fiber Properties

INPUT DATA
fiber volume fraction 0.6
Fiber => |Graphite
n => 1 (default value)
Properties unit
Young’s modulus of fiber in longitudinal direction (Elf) 233000 MPa
Young’s modulus of fiber in transverse direction (Etf) 23100 MPa
Shear modulus of fiber in longitudinal direction (Gltf) 8960 MPa
Poisson’s ratio of fiber in longitudinal direction (nltf) 0.2 -
Poisson’s ratio of fiber in transverse direction (nttf) 0.4 -
Tensile strength of fiber (Xtf) 2250 MPa
Compressive strength of fiber (Xcf) 2000 MPa
Longitudinal thermal conductivity of fiber (kif) 12 W/m’K
Transverse thermal conductivity of fiber (ktf) 15 W/m’K
Longitudinal coefficient of thermal expansion (alf) -0.54 10/ K
Transverse coefficient of thermal expansion (atf) 10.10 10% °K
Density of fiber (pf) 1800 kg/m’
Coefficient of moisture expansion of fiber (blf) NA 10°%/%M
Coefficient of moisture expansion of fiber (btf) NA 10°/%M
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6.1.2 Input “matrix” Properties For Orthotropic Lamina Calculations

Table 6.2 Matrix Properties

Matrix => |Polymer
Properties unit
Young’s modulus of matrix in longitudinal direction (Elm) 4620 MPa
Poisson’s ratio of matrix in longitudinal direction (nltm) 0.36 -
Tensile strength of matrix (Xtm) 60 MPa
Compressive strength of matrix (Xcm) 200 MPa
Shear strength of matrix (Xcm) 110 MPa
Longitudinal thermal conductivity of matrix (kim) 0.19 W/m'K
Transverse thermal conductivity of matrix (ktm) 0.19 W/m'K
Longitudinal coefficient of thermal expansion  (alm) 4.14E+01 10K
Density of matrix (pm) 1200 ke/m’
Coefficient of moisture expansion of matrix (bm) 0.14 10°/%M
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6.1.3 Calculated Properties of Orthotropic “lamina”

Table 6.3 Calculated Properties Of Lamina

OuUTPUT DATA
Fiber => Graphite
Matrix => |Polymer
Lamina => Graphite/Polymer n=> 1
Fiber volume fraction => 0.6
Properties unit
ELASTIC PROPERTIES OF LAMINA
Axial Young’s modulus of lamina (E,) 141678 MPa
Transverse Young’s modulus of lamina (E») 11152.9 MPa
Transverse Young’s modulus of lamina (E5) 11152.9 MPa
Poisson’s ratio of lamina in 1-2 plane (n;,) 0.26 MPa
Poisson’s ratio of lamina in 1-3 plane (n;s) 0.26 MPa
Poisson’s ratio of lamina in 2-3 plane (n,3) 0.47 MPa
Axial Shear Modulus of lamina (G,) 3919.5 MPa
Transverse Shear Modulus of lamina (G,3) 3919.5 MPa
Transverse Shear Modulus of lamina (G53) 3790.01 MPa
STRENGTHS OF LAMINA
Tensile strength of lamina along direction 1 or x (X)) 1368.5 MPa
Tensile strength of lamina along direction 2 or y (Y 51.473 MPa
Tensile strength of lamina along direction 3 or z (Z) 51.473 MPa
Compressive strength of lamina along direction 1 or x (X,) 1216.45 MPa
Compressive strength of lamina along direction 2 ory (Y.) 171.575 MPa
Compressive strength of lamina along direction 3 or z (Z,) 171.575 MPa
Shear strength of lamina in 1-2 plane (S;,) 94.438 MPa
Shear strength of lamina in 1-3 plane (S;3) 94.438 MPa
Shear strength of lamina in 2-3 plane (S,3) 64.25 MPa
THERMAL PROPERTIES OF LAMINA
Thermal conductivity of lamina in direction 1 (k;) 18 W/m’K
Thermal conductivity of lamina in direction 2 (k,) 19.86 W/m°K
Thermal conductivity of lamina in direction 3 (k3) 19.86 W/m°K
Coefficient of thermal expansion in direction 1 (a)) 0.0686 10°% °K.
Coefficient of thermal expansion in direction 2 (a») 26.96 10°% °K
Coefficient of thermal expansion in direction 3 (os) 26.96 10°%/ °K
MOISTURE PROPERTIES OF LAMINA
Coefficient of moisture expansion of lamina in drec. 1 (b)) 0.0059 10°°/%M
Coefficient of moisture expansion of lamina in drec. 2 (b,) 0.246 10°%/%M
Coefficient of moisture expansion of lamina in drec. 3 (bs) 0.246 10°°/%M
Density of lamina (p) 1560 kg/m>
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6.2 Results of Vibration Analysis

Detailed discussion and mathematical modal [Arthur W. Leissa & Yoshihiro Narita(22)] for free-
vibration frequencies of symmetrically laminated, simply supported plates, cantilever plates ,plates
having all edges free presented in chapter4. T

he Rayleigh-Ritz method with algebraic polynomial displacement functions is used to solve the

vibration problem.

6.2.1 Input Material Properties for Composite Plates
Mohamad S. Qatu[26]

Table6.4
Composite material E-glass/epoxy (E/E)
Axial Young’s modulus of lamina (E)) 98 Gpa
Transverse Young’s modulus of lamina (E,) 7.9 Gpa
Axial Shear Modulus of lamina (Gy;) 5.16 Gpa
Poisson’s ratio (v) 028
Dimensions a=304.8 mm, b=76.2 mm,
b/ply 0.134 mm
Density of lamina (p) 1520 kg/m3
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6.2.2 Natural Frequencies for Cantilever Laminated Plates

By Rayleigh-Ritz method (successive approximations approach to solve)

Rayleigh-Ritz method Experimental Results
Mode 1 11.1 11.23
Mode 2 39.5 42.47
Mode 3 69.4 70.58
Mode 4 129.11 130.62
Mode 5 193.93 197.49
Mode 6 261.21 262.13
Mode 7 379.92 396.21
Mode 8 396.22 401.37

6.2.3 Natural Frequencies For Simply Supported Symmetrically Laminated Rectangular
Plates

By Rayleigh-Ritz method (successive approximations approach to solve)

Rayleigh-Ritz method Experimental Results
Mode 1 138.85 139.36
Mode 2 341.25 343.67
Mode 3 403.56 406.59
Mode 4 475.74 479.23
Mode 5 631.19 635.78
Mode 6 705.54 711.33
Mode 7 799.28 806.23
Mode 8 887.93 896.96

6.2.4 Natural Frequencies for laminated rectangular plates having all edges free

By Rayleigh-Ritz method (successive approximations approach to solve)

Rayleigh-Ritz method Experimental Results

Mode 1 60.12 61.78

Mode 2 66.29 68.91

Mode 3 151.29 555.78
Mode 4 167.78 171.90
Mode 5 269.23 271.79
Mode 6 332.61 335.89
Mode 7 433.91 438.78
Mode 8 549.72 551.17
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6.2.5 Comparison the Results With ANSYS 10

For cantilever laminated Plates

MODE 1

DISPLACEMENT
STEP=1

LISPLACEMENT

STE
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— ANSYS
STEFP=1

ATEL =2 =008
e — 11-05:07
FREQ=193_S6
DIMD =12_014

D ISPLACEMENT ANSYS
STEP=1

APR ZzZ zOOS
SUE =& 1l:02:4a3
FREQ=250. 453
DM =19 . 236
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For Simply Supported Symmetrically Laminated Rectangular Plates
MODE 1

ACEMEMNT

SPLLACEMENT

EFr=1
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pIsPLACTHENT ANSYS
STED=1 APR Zz zoos
2UE =3 lz:21:358
FREQ=404_433 :

DI =10. 738

pISPLACKMENT ANSYS
STEDP=1 APR Zz zOoOs
SUE =4 lz:zz:zaz
FREQ=474_3ZZ

DIDE =14._ 567
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MODE 7
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DISPLACEMENT
STEFP=1

sUE =7
FREQ=733_ 73=
DM =1&5.333

NANSYS

APR ZEZ Z003
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DIZPLACEMENT
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STE =2
FREQ=553_ 313
DM =1L5. 2E=2

ANSYS
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1lz-41:17

Natural Frequencies For Laminated Rectangular Plates Having All Edges Free
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ADDR EZ Z002
la:-=2z:-08

Freg Response_ 1

DISPLACEMENT

STEFP=1
SUE ==Z
FREQ=c5_43
DM =1L5_572

FALL SO

APER Z3 zZO0g
14:326:12

Freq Response_1

MODE3
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DISPLACEMENT
STEFP=1

SUE =3
FREQ=150_2z&65%
DM =12_.12&

ANSYS

APR Z3 zO0Og
14:33: 32

Freg_ Response_1

DISPLACEMENT
STEP=1

STTE =4
FREEQ=1&32_Z53
DIL< =11.20z

FALL N

LAPER 23 zZOO0Z
l:-21:13

Freq Response_1

MODES
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pTsPLACEMENT ANSYS
STEFP=1

ADR 23 2008
SUE =& la:4z2:41
FREQ=Z65. 543
DID{ =1%.&04

Freg Response_1

S — ANSYS
STEP=1

APL E3Z ZO0O0S
SUE =& 14:45:E51
FREQ=330.654
DIDZ =11.397&

Freg Response_1

MODE7

Institute of Technology, Nirma University




Vibration And Fatigue Analysis of Composite Materials

E——— FALL N
STEP=1

s2UE =7
FREQ=434_ 106
DM =zZz0_041

LAPER 23 zZOO0Z
14:-47:-17

Freq Response_1

brspLACEMENT NANSYS
STEP=1

STUE =85
FREQ=S545. 357
DML =1Z2. 27

APR Z3 ZO00Z
l4:-42:2Z0

Freg Response_ 1

6.3 Results of Fatigue Analysis
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Detailed discussion and mathematical modal for prediction of fatigue behavior of composites using
S-N curve approach. determination of residual strength at any no. of cycles (n) and any R and f. and

determination of fatigue life at any R and f are been discussed in previous chapter.

6.3.1 Input Experimental S — NCurves For Different Frequency (f)
Jayantha A. Epaarachchi, Philip D. Clausen.[31]

Composite material Graphite/epoxy

Laminate configuration [0/90]s, (symmetric)

and

X1 =425 Mpa

Maxinum stress (MPa)

0 I I I 1
1E+00 1E+02 1E+04 1LE+06 LE+08
N,
f

Fig. 6.1 Experimental S — N curves for different frequency (f)

Putting the values of the 3 points on the input S - N curve , omax1 , omax2 , omax3 , Nfl , Nf2 , Nf3
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Data points

a B Y
(o__(MPa), N, )
(300, 221), ( 250, 2748) | 0.4133 | 0.1699 1.6471
(200, 49391)
(300,221), (270,100000) | 0.4215 | 0.1706 1.6624
(230, 1000)
(216, 10000), (253, 1000) | 0.4092 | 0.1644 1.6415

(200, 49391)

As we seen above for the same material with variation in data points a, 3, y remain same

Lets take material parameters:

o =0.4133

B=0.1699
y=1.6471

6.3.2 Output Maximum Stress (6,,,y) Vs Fatigue Life (\Ny)
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Keeping frequency (f) constant 10Hz and Varying stress ratio (R)

130

120 -

R=0.1.f=10Hz

Maximum stress, o, (MPa)

40 T T T L]
1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Fatigue life, V,

Fig. 6.2 Maximum Stress (omax) Vs Fatigue Life (Ny) For Frequency (f) 10Hz And Stress Ratio(R)
0.1

- -
S &
1 J

(MPa)

R =0.25.f = 10Hz

r
T

2
-
(=]
o

1

Maximum stress, X
[=;] (=]
[ =] (=]

5

1.E+00 1.E+02 1.E+04 1.E+06
Fatigue life, N,

Fig. 6.3 Maximum stress (cmax) Vs Fatigue Life (Nf) for Frequency (f) 10Hz And
Stress ratio (R) 0.25
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(MPa)

,
T

R=04.f=10Hz

—
'

Maximum stress, X
3 b4

40 T 1 T
1.E+00 1.E+02 1.E+04 1.E+06
Fatigue life, ;\f,

Fig. 6.4 Maximum Stress (omax) Vs Fatigue Life (Nf) For Constant Frequency (f) 10Hz And
Stress Ratio(0.4)

140 -

120 - R=0.8,f=10Hz

©
o

Maximum strcss.X; (MPa)
=
o

o
o

&
o

1.E+00 1.E+02 1.E+04 1.E+06
Fatigue life, NV,

Fig. 6.5 Maximum Stress (omax) Vs Fatigue Life (Nf) For Constant Frequency (f) 10Hz And
Stress Ratio(0.8)

6.3.3 Harmonic Analysis through ANSYS 10
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6.3.3(a) Input Material Properties for Composite Plates
Mohamad S. Qatu[26]

Table 6.5

Composite material

E-glass/epoxy (E/E)

Axial Young’s modulus of lamina (E;) 98 Gpa
Transverse Young’s modulus of lamina (E,) 7.9 Gpa
Axial Shear Modulus of lamina (Gy;) 5.16 Gpa
Poisson’s ratio (v) 0.8

Dimensions a=304.8 mm, b=76.2 mm,
b/ply 0.134 mm

Density of lamina (p) 1520 kg/m3

Load 100 N

Frequency of loading 19 Hz

6.3.3(b ) Loads Acting Along Fiber Direction

Institute of Technology, Nirma University
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ELEMNMENTS

Fig.6.6 When Loads With Frequency 19Hz Along The Fiber Direction
Obtained values are
Min. stress 0.139*107 N/m’
Max. stress 0.579*107 N/m’

1
MNODAL SOLUTTION

Freg Fesponse_

Fig.6.7 Maximum And Minimum Stress Value
Min. displacement 0.303*10™ m
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Max. displacement 0.439%10° m

as

) - l-‘-ll':-E—l:IE- .

Fig.6.8 Maximum And Minimum Displacemens Value

6.3.3(c) Loads Acting Transverse To Fiber Direction

ELEMENTE=

Fig. 6.9 When Loads With Frequency 19Hz Transverse To Fiber Direction

Obtained values are
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Min. stress 77282 N/m’
Max. stress 334757 N/m?

Fig.6.10 Maximum And Minimum Stress Value

Min. displacement ~ 0.122*10® m,
Max. displacement  0.670*10° m

C .670E-06

Fig.6.11 Maximum And Minimum Displacements

CHAPTER 7
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CONCLUSION AND SCOPE FOR FUTURE WORK

Along with the advance of science and technology, composite materials including laminated
composite plates have been widely used in various engineering field such as in aeronautic,
astronautic ,auto- industries, submarine engineering ,nuclear technology ,and also for the fine
construction such as circuit boards in electronic packages, thereby creating considerable interest in
their analysis. In addition to their high strength / light weight, another important advantage of
composite laminates is that structural properties can be tailored through changing the fiber angle
and/or the number of plies .Various kinds of composite materials provides a wide range of selections
for engineers. The need for more information on the behavior of laminated structural components,

like plates, is clear. Rectangular plates are used in many engineering applications.

Here we are using micromechanics to predict the various properties of orthotropic/transversely

isotropic lamina which includes elastic properties, thermal properties, and strength.

Many of the differential equations arising in science and engineering can be recast in the form of a
matrix eigenvalue problem. Solution of this equation within the context of the Rayleigh-Ritz
variation method may be viewed as one of the fundamental tasks of numerical analysis. Successive
approximation approaches to the Rayleigh-Ritz problem seek to improve eigenvectors and

eigenfunctions by sequentially refining a trial function.

The fatigue behavior of composite materials is conventionally characterized by S - N curve or
damage mechanisms. For every new material with a new lay-up, altered constituents or different
processing procedure, a whole new set fatigue life tests has to be repeated. Here an analytical
method is presented that includes the effect of stress ratio and load frequency for the prediction of

fatigue life and residual strength of composite structures.

Future Work
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e Inverse microechanics for predicting fiber properties when orthotropic lamina properties are

known.

e Fatigue analysis using S-N curve of composite structure for transverse, bending, buckling

type of mechanical loading

e Determination vibration frequencies when laminated composite subjected to external forces.

e Determination of fatigue life in vibration environment itself .
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Appendix

Caleulation of coefficient * A

Ar=Co (14 (hp /i) and Ay = C% (14 (hy b))
Ay =C35(h /hy)

3 = Aqqp = C3h

C3y (y fhy )+ €45 and Ag = CF (b /iy )+ €,

Ap= Ay =Cd,

-
e il
[

AI.S —_v}iz (15”3/}'!'] Hﬂd Aﬁ - ;fq {15”3/h]
Ag=h O35 /‘rfz

Calculation of coefficient T,

D=Ay ["Hz (Asaq - Agay)+ f“ﬁ—*‘h}f‘wu] FAy [-’*4*‘3-‘*11 +Ag (Agar) - agay ]']

s Ay [ay A Al P AslAg Ay - Ag *"-11?]

' = Constant is given as
Ti =|:—[:ﬁ5.‘$nsa‘ﬁt12 + ;""Lﬁ.-"!'u}.a\] 1 jl :/L"‘ |'r2 —{.""‘nz.ﬁlgﬂ1j TA}AQJ‘"\I fies f§\|-a'n,_'|..n‘ﬁ]1 F}."IIJ'IJ‘
_-EI_I; — | A|A5fﬂn[2 + .ﬂkzﬂﬁfﬁil =5 A:‘:l;"'"n:rl.’*'n] I ]/J'r-} JF_I_ = |::%|ra'kf1.‘*l{; ¥ I -"!'tg I:A';"*'Lj —Az;‘xﬁ_\]]/ﬂr}
T =[ AjpAgAg + Ay (A7A5 —AyA, D %= [—(A2A7812+ AsAgA )|/p
P B N 3
.I'r? = Lﬁ_}!‘is.ﬂﬁ.],} - r':"nz {ﬁ-i‘&"lz = IJI'L{"I"HU Jlflri} ?H = I:;'"\.:n""'n E‘.“:"l? + ;’13 {fl'l. rl."é‘ljl = .-'n'LS.*J'l'L? J|JI/_|D

Ty =[ ApAsAg+Ag(ArA ‘“‘HAMH/” fip=

AALA aF Ay l::ﬂﬁﬂlﬂ —Aghy }]/JU

Th = I:,é';_;i"k‘;ﬂ| 1 *F .'ﬁl.[ {;""‘Lﬁﬂlﬂ —ﬁ4A]2 [I/Lj .I'IEE -_[—I{(.dkt.ﬂ‘.?rﬂﬁ +a"'{"n3.a'|.4f1|.3} ||I.I'Ir1r;I

3= [‘5“4"5'“?’*1 1+ As (Agh g —AgA, t)]/”~ 4= [""1"9*"‘| o+ As (AgAg - Aga 10 }J.f_}




[‘("'*1“5"::} FAZAYAL )],.f'(” ; Ne = ["’*2’*‘4*3 + A (AgAs —"“4“9}}{9

Calculation of shear modulus

G=

(2><{]+V”JJ

Calculation of stiffness matrix clements

il . ¥ s
ko= U.EEI:';/'I[tP.S(] vy, )(F:. Xf;) (u},) }

i / { 2
rll = f'.-lr b Ak (l'” )

il i
Crz2 = kv
€59 = ko [D.SE:X(J + vy ”
Chg = & —|:IJ_5 .":'I.Iff(i by )}

Cay = G,

i T -
Cop = (f-zz "~23)X3
' :

o i o

Cla =1 =£31 582
i ]

C32 =Cas

f f

Cs5 =LC44

Calculation of area ol subcells
1y = height ol fiber portion in cell  assume & = Tx10%m
by = height of fiber port I by = %107

] {—HV, —‘V'_r -i-\/((,r.!"~.-"J )3 —EJTVI,: +Vf +4dnV ) ]J’il

hy,=—
=4 nV,




’&3 :.H.lrl'z
.Ifi'__'l_ = .lrl‘l + .Ir'l'j
= .I'I]'l T .lil‘j

a)'
{:u ) = Jiy X hy
Ii }?‘ = .I'IT'I'_: s ';IT

iy % Iy

49
J’J} B Jri": ,\(.I!Ih;

A): (.I'I]"l + ;EE ]{IE;I] b I'ET!I]: -I|!-f-"i"4

Calcualtion of stress concentration matrix elements
This 1s obtained by putting &, =1 and other stress values zero in £, =35,0,
£,=1E,
&= _{Vu 1E,)

£ =—(vy /E,)

J,=hChe,, [h + hC" e /h

Jy =G = CL)&, +hCre,, [hy + hCle,, [h
L=(Ca=Cle, +hCe,, /h +h, ‘:;a, /f:x
.- hﬁ.njg_,:,fh_: +h,C ',’11,331 /h,

¥ = ?;Jr ea Te'}: + ‘?;JJ * Tr‘"rut
W, =T+ T, + I+ 1.,

Wi = ?;;J| 23 ?;-IJ_‘- + ?;5'}3 + TI‘[:J—t
W, = J_|_j|“),r +h {"?3‘;4
BS“_(]IEH-I_C (y;|+yf4}




Similarly other elements calculated as
&) :_{V:: 1E))
&y =11 E,
£33 = _(V]I 1E,)

for Bsi")




C programme for calculating strengths of lamina

Input-  Fiber properties : B, E v v, G, kL kL ' X5, XS
Mﬂlrix P")pﬁrlieﬁ . EIII . 1"‘“mT I:'-m ; km 3 1,',-II-1 \ SI‘I‘I
Fiber volume fraction @ Vi

Cutput- Strength properties of lamina : X, Y, 20, X Yo 20055, Sy S

#tinclude<stdic.h>

#include<conic.h>

#include<math.h>

volid maint)

{

int K1f,Ktf,CE£[6]([6],Cm([6)[6)B[6][&],E[6)[6]={{D,0,0,0,0,0},
{(0,0,0,0,0,0),
(Q,0,0,0,0,0%¥,;
(0,0,0,0,0, 0%,
f0,0,0,0,6,0),
f0,0,0:0,0,0})};

float

El[,Etf,Gltf,th,KCE,Alf,ﬂtf,Elf,Btf.Elm,Ktm,XEm,vf,vl[,vtf.El,S

[6I[6];

float SEf[&e][&],5mie] |&];

const long double hl=0.0000007;

printf{"fibre->Graphite & Matrix->Polymer");

printf{"input fiber properties for orthotropic lamina

calculations: " }:

Elf=2%3000;

EEE=23T08::

Gltf=8860;

¥ E=2200:

Xof=2000:

Kl1f=12;

ELE=15:

Alf=-0.54;

BEf=1T0 10:

Elm=46230;

XEm=60;

Xoem=2010;

hZ=1/2*%{ {(-n*vE) -vi+sgre ( (n*vi) 2 (2Fn*vE) 24w EsZed*n¥vE ) ;

h3i=n*h2;

hid=hl+h3;

h=hl+hZ;

printf{"enter the values of coefficient of moisture

expansion:BLIf and Btf"):

scant ("%f %E",BLlf;BtE);




printf("enter values of elastic stiffress matiix B"Y;
for{i=0;1i<6:3i++)
{
for(j=0:j<6;3++)
{
soanf ("84 . Bii] 91
I
}
E[1] [1]=B{1])[1]1;
E[1}[2)=E[1][3]=B[1]1(2];
E[E]IE]zEIB]{E]z{B;d*H[El[2]}4{1!4*3{21[3]}+t1£2*B[6][5]};
EIEI[BI:{1I4*B[2][2}]+(3f4*5{2][3]}—{IIE*B[5][6]};
E[4] [41=E[5] [5]1=B(4][4];
E[6] [6]=1/2*(E[2][2])-E[2]1[3));
1f fn==1)
{
for{i=0;i=<5;i++)
{
for{j=0;3<5;j++)
{
SH1[9)=E[a] [1):=
)
}
1
elsa
{
for{i=0;1<5;1+%)
{
for{j=0;3<5;3++)
{
S[1) [(3)=Bl3)[i];
i

178111 (1] :e2=1/512] [2];
1¢8[31131:

&M AD e

F=
12=-(8[1]1[2]%el);

VL3=={S[1] [3]*&1);

V23=—(5[2]1[31*as2);
g12=1/5[41[4]1;g13=1/S[5]1[5];423=1/8[6)[5]:
CE[l][]]'Elhﬁ*k*Ivlf“2};

CE[1)[2]=2*K*71f

CELZ} [2)=k+{D.5*EL/1evEE )

CE{Z] [3])=k=[0.5*El £13:E) ;

SE[4] FEl=81t"
CEl6l{6]l=(CE[2)[2]-CTI2)[3]1)/2;

CEUEI T3 =t (2) (11=Ccfl3] (X)=ef11] (2]




LI 2] =CE T2 181

CEIS1[5]1=CE[4][4)];

For{i=0;i<5;i1++)

{

for{j=0; j<5;j++)

L

SE[I)1[J1=CE£(3][4i];

Smli][j)=Cm[j][1i];
Bs[i]IjI={l£v[i![j]}*{5m[i][j]—Sf[il[j]};

b

}

Besf=({1l/vE}*(5£-8m) ;

printf{"for fiber Bsf=",Bsf);

YXE=XtE/Bs[1][1];

Xe=XcE/Bs[1] 1]

printf("ultimate longitudinal strength of lamina: Xt=%f
Xo=%f" %t ,Xc);
Yt=thmaxstll][2],Bs[2|[1],Bs!2]{2
YC=XCImaK{E$[1}[2},Bs[2][1?,35[2][2
printf("ultimate transverse stress
Yo=%f",¥t,Yo);

printf("ultimate shear stress of lamina: S12=%f
SlEz%f",S[ll[2],5[1]{3]};
S:SMHmax[Bs[]]EE],BS[E][1],35[2][2]];

printf {"shear strength :%f",%);

agetchi{]) ;

1

EH
) B
of lamina: Yr=2f

]
]




MhTLABngﬁmmeMgmmmhRﬂmmmsmmgthNmMErmmydmpME

I]TPUT- ~ Ginaxte Oy Toants Ny Nis Npi

Dmpm-vahwsofuB?.RcﬁdmﬂszQM1VﬁNumhmwﬁcyﬂcsmﬁﬁbrmuvaMUofRaﬂdf

close all:;
clear all;

el e

X T=6740;
Sigma_ Maxl=350:
Sigma Max2=250;
Sigma Max3=200;
N F1=221:

N _F2=3748:
N_F3=49391,;

R=-1;
F_B=10;

B=input('Betg Value') :

Gammalzfloglﬁ{K_T—Eigma_Maxi]—nglDfK_T—SigmauMaxij—
lmng{{N_Fl.“B]—l]+lOg1ﬂiEN_FE-*E]-1}}f[log10t5igma_Max1}—
loglO(Sigma Max2) ) ;
GﬂmmaE:'lnglU{X_T—SigmauMax1J—lsngiH_T~Sigma_Max3}—
1ong{fH_F1.“BJ—lhflcglﬂtfN_FE,“B?-1]}Ktlﬂg1G{Sigma_Male—
loglO(Sigma_Max3));

B

Gammal

Samma 2

Gamma=1.5471;

B=0.1633;

Sigma Max=350:

n=15;

Alfta=(x T Sigma_mnxl}*(F_B.“B}H{EX_T.*{E—
Gammalbj*tSigma_Maxl,“Gamma}*[{l~R]‘Aﬂaxwm}*{{N_Fl_“B}—ilj;
Alfa

tAlfa=0.4233;

R=-10:1;

F=10:100;

NE={({ (X T-Sigma_Max).*(F B."BY) ./ (Aalfa.* (X T.~{1-
Gamma}}.*{Sigma_Max.“Gamma},*{[J—H}.“Gamma]}]+l].‘{ifﬁ];
X_T_R=[X_T]—ﬁ1fa-*{X_T.”{3—Gamma1}].*(Sigma_Maxl.”Gamma}.*[il—
R].“Gammaj.*[1.HF_E?.*EH,“E-1];

MNf

AT R

plot (Nf, X T _R)



C programme for typical successive approximations approach to the eigenvalue

Problem

#include<stdio hs
#tinclude<conio.h>
#include<math.h>
finclude<string.h>
#Include<stdlib.h>
void main()

{
fi%
LINEAR RAYLEIGH-RITZ ALGORITHM
To approximate the solution of the boundary-value praoblem
B{B{XFT")/BE + Oy = Eixl, == = 3,
Y(0) = ¥(1) = ¢,
with a piecewise linear function:
INPUT: integer N; mesh points KAiBY =0 = 3L
< KiN) < X(N+1) = 1
QUTPUT: coefficients C(l),...,C{N) of the basie functions
i

Float X[EE],H[25],A,EI,,QLPHE&,BETA,ZETA,Z,C[EE:'].Q[E] [26] ;
Float HQ,HO;
int Nl,dl,FN,N,J,FLﬁG;
char Al ;
char NAME[30];
A INE,0UP : btext:
f44*% Change functions P, Q0 and F for a new problem
i
float P(flgat X )

Br= 100G
17
fleat QQ{ flpat X )

Q0 = BI * pr
¥
flogat F ( float % )

F=2.G*?‘1*Pl*sinfl~"1“)§]

¥



void  INPUT()

{
printf("Thig i& the Pieftwise Linear Ravleigh-Rits
Methed. ") ;
printf ("This program regquires functiopns P, Q0, F to be
created and ") ;
printf ("X(0), ..., %X{(N+1) to be supplisd., ")
printf {"Are the preparations complete? Answer Y or N. ");
scanf{ "$E",&827 )

c ¥l S == "¥" ) por ( AA == "y" ) ) then
{
OK = false:
while { 0% )
{
printf ("Input integer N where A0y = 0, X(N+1)
= 1."%%;

scanf{ N )
if { N = 2 1 then printf ("N must be greater

than 1. "}
glse OK = true;
T
X[0] = 0.0;
A[N+¥11 = 1.0;
printf ("Choice of method to input X{(1), ey KA

™o
printf ("l1. Tnput frem keybeoard at the prompt ") ;
printf (“2. Equally spaced nodes to be calculated
b -

printf (3 Input from text file "}
printf {("Please enter 1, 2y e 3.0");
scanf({ "%d",&FLAG ) :
if { FLAG == 2 } then
{
HE = 1.0 /A { N + 1.0 ):
for (J = 1;Jd<= NlaJes)
{
X[JI)] =3 * HC;
H[J-1] = HZ
}
HIm] = HCT
}
aelse
{
1f { FLAG == 3 } then




{
printf ("Has tha input file been created?”)
printf (" - enter Y or N. ")
scant( "%f",&BA |
if { BA = "Y' ) or { AA = "v" J then
{

printf ("Input the file name in the form ="
printf (" drive:name.sxt, ")

printf {"for example: A:DATA.DTA i

scanf( "%s",NAME ),

for (J = 1;J<= N1:J++) Tead { INEB, Z[J] ):
for (J = 0;T<= Hl:J++) H[T] = x[Jg+1] - .
clase | INP )

elge
{
printf ("The program will } sov);
printf(" the input file can be created. ik
OK = talse:
1
}
elsea
{
for (J = 1:;0<= NL1:J++){
printf ("Input X{",J, ") g
scanf { X[J] );
H[J-1] = XE[F] = xLT-1]
Fa
HIN] = Z[N+1] - X[N]

glsa
{
printf ("The program will } so that tha functions "J;I
printf ("can be croated. "):
DK = false
i
%

float SIMPSON( int FN , float &, Tloatc B )
.l‘f *
{
float Z[4],Y;H ;
int I;



H={B-2a) /4.0:
fer (L = 0:Te=4:T++)

{
¥ =8+ T * H:
switch (FN)
{
cage 1z G[E = f &D= T v =& T & sarti H } * QQiY);
case 2: Z[I] = sgrt{ I * H } * QQ{ ¥ );
case 3: Z[I] = sgrt{ H * ( 4.0 - T ) ) = oob ¥
gase 4: Z[I] = P Y )
case 5: Z[I] = I *H * F| ¥ );
case B: Z[I] = { 4.0 I}y "HE=FLEN
}
}i

SIMESON = | Z[0} + 2141 + 2.0 # 2Ll + 4.0 % 2111 = 23]
YR H o 3.0;

vold main()
{

printf ("Cheoice of output method: Bz
printf ("1. Qutput to screen "y
printf ("2. Qutput to text file i I
printf ("Please enter 1 or 2."):
scant {("%4", &FLAS )¢
if { FLAG = 2 ) then

{
printf ("Input the file same in the Form -
drive:name.ext, ");
printf{"for example: LeQUTPUT.DTA" ) ;

scanf (| "%s",NAME )}
strcpy [ OUP, MNAME )
]
] .

i

else strepy ( OUP, "CON"
rewrite { QUP )
priotf (QUP, "PIRCEWISE LINEAR RAYLETIGH-RITET METHOD" )

printf(oup);
printf |
GUP,”I":H,"X{Tl}":12,“K{I}":12,"K(T+l]":1?,"CfI}":ld?:
printf ( QUP );
for 0 =1 ke W ds

printf{0OUr,J:3,%[J- l]ilz:B,XEJ]:12:3,31J+1]:12:B‘C[J]:14:8];

cloze ( QUPR )

Y




Yz

ik

i

INEUT;
Fi Step 1 is done within the input procedurs e
if ( OK ) then
{
Nl =N - 1:
FE STEE 3 &y
for (J = 1:J<= Ni:J++) i
@[1.J] = SIMPSON{( 1, X[J], X[J+1] ) ¢ sgrt{ HIJ]
D[2,J) = SIMPSON( 2, %[J-1], L0T) ) 4 sgred H[I-1]
Q[3,J] = SIMPSON| Fy X131 FiTg+1] Vo4 osgrt( HIT)
Q{4.J) = SIMPSON{ 4, X[J-17, X[JI] ) 7 sQrt{ H[JI-1)
0I5 7] SIMPEON( 5, X[J-1], X[JI ) / HIJ LY ;
D[6,J] = SIMESON{ &, XLT), ZE[T+11 1y 4 H[J]
i
D[2,M) = SIMESON( 2, X[N-1], XIN] )} 4/ sgret H[N-1]
RI3,N] = SIMPSON! 3, XN}, x[N+1) ) ¢ sgrt{ H[N]
o[4,m = STMESOW ([ 4, XIN=1], ¥[W] 3y sgrt{ HIN-11
Old,H+1] = SIMPSON( 4, Z[N], XIn+17 ) 7 sgrt{ HIN]
QI5,N] = SIMPSON( 5y X[N=1], X[N] ) # H[{N-1]1 ;
Ql6,N] = SIMPSON{ &, X[N], XI[N+1] ) / HIN] ;
£ STEP 4
i
for (J = 1;J<= NM1:gw+)
{

/% STEPS 6-10 solve a

ALFHA[J] = D[Q,J}+Q[4;J+l]+Q[2,J]+Q[3,J];
BETALJ] = Q[1,7]1-004,J+11;
E[J] = Q[5,J1+0[6,J]

Il.l' &

ALPHA[N]
BIN] = O
'J,I'*

using Algorithm */

Alll =
AETATL
ZEL]l = B

STEP: §

L5,

STEF & .

ALFHAI1] :

BETA[L1] /
17 4 &[1]1;

Tl

ALPHA[L1] :

QI4,N]+0[4, N+1)+0[2,N1+0[3,N];
N]+Q[&,N];

symmetric tridiagonal linear sSy¥slhem

)3

¥iz

hge:

b

b




i STEP: 7 5y
for (J = 2:J<= N1;J++)
{
A[J] = ALPHA([J] - BETA[J-1] * ZETA[J-1]:
ZETE[J] = BETA[J] / Ald];

Z2[J] = { B[J] - BETA[LJ-11 * Z[J-1) ) / &A[JL:
¥

L% STEP 8 *

A[N] = ALPHA[N] - BETA[N-1] * ZETA[N-1]:

Z[N] = ( BINI - BETA[N-1]1 * Z[N-1] ) / A[N]:
P STEP 9 e

CN] = 2IN1;
i STEE 10 i

for {3 = 1;J2= N1 ;T4+)

LT1:N_L_.I:
CIJ1) = Z[J1] - ZETA[JI1] * C[J1+1]

Yi
QUTEUT
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