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1.0 Introduction 
Along with the advance of science and technology, composite materials including laminated 

composite plates have been widely used in various engineering field such as in aeronautic, 

astronautic ,auto- industries, submarine engineering ,nuclear technology ,and also for the fine 

construction such as circuit boards in electronic packages, thereby creating considerable interest in 

their analysis. In addition to their high strength / light weight, another important advantage of 

composite laminates is that structural properties can be tailored through changing the fiber angle 

and/or the number of plies .Various kinds of composite materials provides a wide range of 

selections for engineers. The need for more information on the behavior of laminated structural 

components, like plates, is clear. Rectangular plates are used in many engineering applications. 

                 

                                             
 

                             Fig.1 Cross-section Of Fibrous Composite 

 

Vibration characteristics of composite structures are of considerable interest for their design and 

performance. The Rayleigh-Ritz method with algebraic polynomial displacement function is used 

to obtain natural frequencies of vibration for laminated composite plates. For rectangular plates 

there exist several combinations of boundary conditions among them cantilever rectangular plates 

(as used in turbo machinery, impeller and fan blades) , plates having all its edges simply supported 

(as used in structural mechanics, and other application), plates having all edges free (as used to 
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detected damage of laminated panel by change in natural frequencies) are analyzed here. For 

example it is necessary to keep natural frequencies of structures well separated from their 

excitation frequencies in order to avoid resonance. 

 

 Classical example of resonance 

The collapse of the Old Tacoma Narrows Bridge, nicknamed Galloping Gertie, in 1940 is 

sometimes characterized in physics textbooks as a classical example of resonance. This description 

is misleading, however. The catastrophic vibrations that destroyed the bridge were not due to 

simple mechanical resonance, but to a more complicated oscillation between the bridge and winds 

passing through it, known as aeroelastic flutter. Robert H. Scanlan, father of the field of bridge 

aerodynamics, wrote an article about this misunderstanding. 

 

 Fatigue failure of composite material has always been an important problem in the application of 

composite structures. Major structural components of an airplane are subjected to repeated loading 

(fatigue loading) during take-off and landing. It has been observed that for some composites the 

fatigue strength is substantially lower than the corresponding static strength. This repeated loading 

causes growth of fatigue cracks, which, if undetected, can lead to catastrophic failure.  

Some examples of such accidents are:- 

• In 1985, crash of a Japan airlines Boeing 747SR (short-range) jumbo-jet due to a 

catastrophic fatigue failure of rear pressure bulkhead which resulted in loss of 520 human 

lives.  

• An accident involving an Aloha Airlines Boeing 737 jet in which much of upper half of a 

fuselage section was “blown off” during flight. The causes were fracture resulting from the 

undetected growth of multiple fatigue cracks.  

 

The fatigue behavior of composite materials is conventionally characterized by S - N curve or 

damage mechanisms. For every new material with a new lay-up, altered constituents or different 

processing procedure, a whole new set fatigue life tests has to be repeated. Here an analytical 

method is presented that includes the effect of stress ratio and load frequency for the prediction of 

fatigue life and residual strength of composite structures. 
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1.1 Motivation of Work 
 

Today composite is used in various fields, with high end applications as aircraft, wind turbines and 

so on. Very limited composite material‘s properties are available. The properties of lamina 

required are elastic properties, thermal properties, and strengths to find out laminate properties to 

carry out FEM and fatigue analysis.  As all these properties are not readily available. To get all 

these properties expensive experimentation is required to be carried out. For rectangular plates 

cantilever rectangular plates (as used in turbo machinery, impeller and fan blades) , plates having 

all its edges simply supported (as used in structural mechanics, and other application), plates 

having all edges free (as used to detected damage of laminated panel by change in natural 

frequencies) is been used widely, so it is necessary to keep natural frequencies of structures well 

separated from their excitation frequencies in order to avoid resonance. Fatigue   life  of composite 

structures  is the basic requirement as  it  will help to avoid sudden damage  in composite  structure  

which  intimate  the  life  after  which  the  component  is  replaced   

 

1.2 Objective of the Work 
Objective of present work is to study the behavior of composite materials. The specific scope of 

the work is: 

 

• Prediction of orthotropic / transversely isotropic lamina properties using   

micromechanics the very refined method “Method of Cells”. 

 

• Obtain natural frequencies of vibration for laminated composite plates by  

Rayleigh-Ritz method with algebraic polynomial displacement function to avoid 

resonance.  

 

• Prediction of fatigue behavior of composites using S-N curve approach and 

determination of residual strength and fatigue life at any no. of cycles (n) and 

any stress ratio (R)and frequency ratio( f). 
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CCHHAAPPTTEERR  22  
LLIITTEERRAATTUURREE  SSUURRVVEEYY  

  
2.1 Structures And Properties 
 

In  general,  composite  materials  are  made  by  combining  a  matrix  and  reinforcement  to 

create  a  material  which  has  desirable  characteristics  and  which  are  superior  to  either  of  

the original materials individually. The majority of composite material usage is in a form of a 

fiber reinforced  polymer  matrix.  E-poxy  based  systems  are  the  most  commonly  used  in  

matrix materials  for  polymer  composites.  E-poxy  exhibits  excellent  properties  overall,  with  

excellent adhesion, high strength, low shrinkage, good corrosion protection and processing 

versatility. The second portion of a composite material is the reinforcement. Fiber reinforcement 

is used almost exclusively.  The  fiber  material  is  the  reinforcement  in  a  composite  material  

that  gives  the material  the  majority  of  its  strength  properties.  The  fibers  generally  have  

very  high  specific tensile  strength  and  moduli,  but  depend  on  the  matrix  material  to  

provide  the  transverse  and compressive strength contributions. One of the types of fiber 

reinforcement such as carbon fibers offers light weight, high specific tensile modulus and 

strength, thus making them ideal for use in critical composite structures. They can be made from a 

variety of organic or petroleum fibers. Reinforcement  can  in  the  form  of  long  fibers,  short  

fibers,  particles  or  whiskers.  Composite materials have following advantages: 

 

• High  specific  strength  (strength  to  weight  ratio)  and  specific  modulus  (stiffness  

to weight ratio). 

• Much higher fatigue and endurance limit. 

 

• Flexible applications-allows the design of materials and structures. 
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When comparing the properties of composites to monolithic materials, the stiffness or the strength 

of a composite may not be different, or perhaps lower than the metals. But when specific strength 

(strength to weight ratio) and specific stiffness (stiffness to weight ratio) are considered, composites 

generally outperform metals. 

 
2.2 Properties of a Composite Based on Micromechanics 

 

Some basic properties of composite materials can be estimated by using micromechanics. The  

properties  of  composites  are  related  to  the  proportions  of  reinforcement  and  matrix.  The 

proportions of matrix and reinforcement are either expressed by weight fraction (w) or by the 

volume fraction (v).  In  a  composite  the  proportions  of  matrix  and  reinforcement  is  given  

by weight and volume fractions such as: 

 
wf  + wm =1          (2.1) 

 
vf  + vm =1               (2.2) 

 
where subscripts f and m denote fiber and matrix. 
 

 

Since  the  composite  properties  are  dependent  on  proportions  of  matrix  and  reinforcement,  

we can compute the constitutive property of composite by the following equation: 

 

                                                   Xc = Xf  vf   +  Xm vm                                                    (2.3) 

 

where  X  represents  an  appropriate  property  of  a  composite.  For example, the   longitudinal 

modulus E11 of a composite can be computed as 

 

                                                                E11 =  Ef vf  + Emvm                                                    (2.4) 

  

Most  properties  of  a  composite  are  a  complex  function  of  a  number  of  parameters  as  

the constituents  usually  interact  in  a  synergistic  way,  therefore  the  constitutive  properties  

of  the composite found by the law of mixtures are not fully accounted. 



Vibration And Fatigue Analysis of Composite Materials 
 

Institute of Technology, Nirma University  Page 6 
 

 

Composite laminates are designated in a manner indicating the number, type, orientation and 

stacking sequence of the plies.  The configuration of the laminate indicating its ply composition 

is called a lay-up. The configuration indicates, in additions to the ply composition, the  exact  

location  or  sequence  of  the  various  plies  is  called  the  stacking  sequence.  Table 2.1 

Illustrates various types of laminate designations commonly used:        

                                                        

                                                                        TABLE 2.1 

                                                               Laminate Designation 

                                                                          

                                                                                                              
where       s = symmetric sequence 
 
                 Number  subscript = number of plies. 
 
 
 
 
 
 

Type Sequence Notation 

Unidirectional ply [90 / 90 / 90 / 90] [90]4 

Cross-ply symmetric [0 / 90 / 90 / 0] [90]s 
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2.3 Natural Frequency of Vibration by Rayleigh-Ritz Principle 
 
 

The Rayleigh-Ritz method  is a fundamental technique which lends itself well to numerical methods. 

The variation approach finds application to solutions of problems of thermal transfer and diffusion, 

kinetics, magneto- and electrostatics, quantum  theory, and so forth. The laws governing such 

phenomena are typically expressed through the Laplace, Poisson, diffusion, and eigenvalue 

equations. In this paper, attention will be focused on the eigenvalue problem. 

 

Using the Rayleigh-Ritz principle, the eigenvalue problem may be rewritten as a matrix equation. In 

this form, solution of the problem becomes a matrix diagonalization procedure and many efficient 

means of solution become available. For an exact solution of the eigenvalue problem, treatment of 

an infinite dimensional matrix is required, and numerically this is awkward or effectively 

impossible. Thus, the problem is usually replaced by a truncated representation. A successive 

approximations approach proceeds by generating a trial solution, performing a matrix 

diagonalization for the truncated problem, improving the trial solution 

and repeating the procedure. In this way, an improved trial solution is generated which approaches 

the solution of the full infinite dimensional problem [1]. 

 

                                                    

 
                                                                                                                                                          (2.5) 

 

An analysis of the parallelization efficiency of the successive approximations approach to the 

eigenvalue problem is presented in this paper. The refinement to an approximation may be applied 

independently on several processor nodes at the highest level of the algorithm [2], [3], [4], [5]. At 

the core of each successive approximations strand is a matrix diagonalization procedures has been 

well studied and displays high parallelization efficiencies [6], [7]  (two-tiered approaches applied 

directly to the matrix diagonalization have been recently discussed [8]). In this paper, it is shown 

how both strategies can be simultaneously applied to successive approximation calculations. Within 



Vibration And Fatigue Analysis of Composite Materials 
 

Institute of Technology, Nirma University  Page 8 
 

this approach, the two levels of parallelization are completely independent, allowing for analysis of a 

two-tiered parallelization extrapolated from data obtained from separate applications of the methods. 

 

The literature on the title problem is vast. A series of publications (Lecissa. l978,1981. 1987) 

[9,10,11 ]listed hundreds of publications on the subject. Many of the previous studies concentrate on 

the theory of the subject. Obtaining natural frequencies only for those problems which permit exact 

solutions (Jones, 1973 ; Lin. 1974). Exact Navier-type solutions are possible for cross-ply plates 

having shear diaphragm boundaries (Jones, 1973) and antisymmetric angle-ply plates having a 

certain type of simple-support boundaries (S3). Exact Levy-type solutions are also possible for 

cross-ply laminates having two opposite shear diaphragm edges and for antisymmetric angle-ply 

laminate having two opposite S3 boundaries (Lin and King. 1979). Limited references are available 

on the study of the effects of many parameters like the material orthotropic characteristics, the 

number of layers, the lamination angle and boundary conditions on the natural frequencies of 

composite plates (Leissa and Naritn, 1989). 

 

2.4 Fatigue Life Models 
In these type of models, input information is taken from the S-N curves and a fatigue failure criterion 

is proposed. They do not take into account damage accumulation but predict the number of cycles at 

which fatigue failure occurs under fixed loading conditions. 

 

One of the first fatigue failure criteria for composites was proposed by Hashin and Rotem[12,13]. 

They distinguished a fiber-failure and a matrix-failure mode the equations of which are as follows: 

                                       L fXσ =                    

                                  
2 2

1T LT

f fY S
σ τ⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                               (2.6) 

 

where Lσ  and Tσ  are the stresses along the fiber and transverse to the fiber, LTτ  is the shear stress 

and ,f fX Y  and fS  are the ultimate longitudinal tensile, transverse tensile and shear stress  fatigue 

strength respectively. Since the ultimate strength is a function of fatigue stress level, stress ratio and 

number of cycles, the criterion is expressed in terms of three S-N curves which must be determined 
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experimentally by testing on-axis unidirectional specimens under uni-axial load. This criterion is 

applicable for unidirectional ply and also if the failure modes are clearly distinguishable. 

 

Whitworth[15] proposed a model to predict the fatigue life of composite specimens. He assumed that 

stress-strain response remains linear during fatigue cycle till fracture. The model is given as, 

                   
2

1

max

1exp 1 1
m

C
t

f
C XN

h σ

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

                                               (2.7) 

where C1, C2 are constants to be determined experimentally and h and m are parameters that depend 

on applied stresses. 

 

Ellyin and El-Kadi[16] demonstrated that the strain energy density can be used in a fatigue failure 

criterion for fiber-reinforced materials. The fatigue life Nf was related to the total energy input WΔ  

through a power law type relation of the form: 

  

                fW kNαΔ =                 (2.8) 

 

where k and α  were shown to be functions of the fiber orientation angle. With the help of 

experimental data from tests on glass/epoxy specimens, an expression for α  and k as a function of 

the fiber orientation angle was established. The strain energy density was calculated under an elastic 

plane stress hypothesis.  

Philippidis and Vassilopoulos[17] proposed a multi-axial fatigue failure criterion, which is very 

similar to the well known Tsai-Wu quadratic failure criterion for static loading: 

 

                           1 0ij i j i iF Fσ σ σ+ − ≤      i, j = 1, 2, 6   

                                                                                                                                 (2.9) 

where ijF  and iF  are functions of the number of cycles Nf, the stress ratio R, and the frequency of 

loading v. The values of the static failure stresses Xt , Xc , Yt , Yc , and S for the calculation of the 

tensor components ijF  and iF  have been further replaced by the S-N curve values of the laminate 

along the same direction and under the same conditions. Although, in doing so, five S-N curves are 
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required but the number was reduced to three due to assumption that Xt = Xc and Yt = Yc. The authors 

used laminate properties to predict the laminate behavior, as they state that this enhances the 

applicability of the criterion to any stacking sequence of any type of composite (eg, unidirectional, 

woven, or stitched layers). This is because the S-N curves for the laminate account for the different 

damage types occurring in these various types of composite materials. 

 

Fawaz and Ellyin[18] proposed a semi-log linear relationship between applied cyclic stress cσ  and 

the number of cycles to failure Nf : 

                                 log( )c
fm N bσ = +                         (2.10) 

 

The relation between the two sets of material parameters (m,b) and (mr ,br) is specified by: 

                                 

                                 1 2

1 2

( , , ). ( ).
( , , ).

r

r

m f a a g R m
b f a a b

θ
θ

=
=

                       (2.11) 

 Where 1a  is the first biaxial ratio 1
y

x
a σ

σ
⎛ ⎞=⎜ ⎟
⎝ ⎠

,  2a  is the second biaxial ratio 2
xy

x
a τ

σ
⎛ ⎞=⎜ ⎟
⎝ ⎠

, 

 R is the stress ratio and θ  is the stacking angle. Their model could be generalized in the   

expression: 

 

                 1 2 1 2( , , , , ) ( , , ). ( ). log( )c
f r f ra a R N f a a g R m N bσ θ θ ⎡ ⎤= +⎣ ⎦            (2.12) 

 

The aim of the model was to predict the parameters m and b (related with rm  and rb  through the 

functions f and g) of a general S-log (Nf) line, for any a, θ , and R. 

 

Philippidis and Vassilopoulos[17] compared their own results against the above-mentioned fatigue 

failure criterion proposed by Fawaz and Ellyin[18]. They concluded that the criterion by Fawaz and 

Ellyin was very sensitive to the choice of the reference S-N curve and that the predictions for 

tension-torsion fatigue of cylindrical specimens were not accurate. Under multi-axial loading the 

model by Philippidis and Vassilopoulos[17] can produce acceptable fatigue failure loci for all the 
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data considered, but their choice of a multi-axial fatigue strength criterion based on the laminate 

properties implies that for each laminate stacking sequence a new series of experiments is required. 
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CCHHAAPPTTEERR  33 

DDEETTEERRMMIINNAATTIIOONN  OOFF  PPRROOPPEERRTTIIEESS  OOFF  LLAAMMIINNAA  BBYY  
MMEETTHHOODD  OOFF  CCEELLLLSS  

    
3.0 Introduction  
The method of cells is a micromechanical model which has been shown to accurately predict the  

overall behavior of various types of composites from the knowledge of the constituent properties.  

In particular, the method yields explicit effective constitutive equations for the inelastic behavior of  

metal matrix composites 

 

The overall behavior of inelastic, multi-phase, unidirectional fibrous composites generated 

by the method of cells from the knowledge of the properties of the individual constituents is 

displayed in terms of: 

 

• Effective elastic moduli 

• Effective coefficients of thermal expansion 

• Effective thermal conductivities 

• Effective stress-strain response in the inelastic region 

 

In the generalized formulation, the repeating unit cell is subdivided into an arbitrary number of 

subcells. This generalization extends the modelling capability of the method of cells to include the 

following: 

 

• Thermo mechanical response of multi-phase, metal matrix composites 

• Modeling of variable fiber shapes 

• Analysis of different fiber arrays 

• Modeling of porosities and damage 

• Modeling of interfacial regions around inclusions, including interracial degradation 
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The continuum model for unidirectional fiber-reinforced materials is based on the assumption that 

the continuous square fibers extend in the x1 direction and are arranged in a doubly periodic array in 

the x2 and x3 directions, fig. 3.1. The cross section of the square fiber is h1
2 and h2 represents its 

spacing in the matrix. As a result of this periodic arrangement, it is sufficient to analyze a 

representative cell as in fig. 3.2. the representative cell contains four subcells β,γ=1,2. Let four local 

coordinate systems ( x 1, x 2
β, x 3

γ) be introduced, all of which have origins that are located at the 

centre of each subcell.  

            Jacob Aboudi and Marek-Jerzy Pindera [19] 

 
                

      Fig. 3.1 Doubly-periodic Array And a Repeating Unit Cell For The Original Method Of Cells. 

                                     

3.1 Assumptions 
 

• Fiber arranged in periodic manner to form periodic array. 
 

• Continuous square fiber as the area of circle and square is same. 
 

• Fiber and matrix are perfectly elastic materials. 
 

• Plane stress condition while calculating strength. 
 

• Eliminating the micro- variables in average heat flux calculation. 
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3.2 Mathematical Model 
                               Jacob Aboudi and Marek-Jerzy Pindera [19] 

 
3.2.1 Calculation  of Elastic Properties of  Lamina 

 
(E1, E2, G12, ν12, ν21) 

 
A). The first order displacement expansion in each subcell is given as 

                                  ( ) ( ) ( ) ( ) ( ) ( ) 1, 2, 32 3=     .u w + x + x =i i i i iβγ βγ β βγ γ βγ
φ ϕ                                     (3.01) 

                 Where ( )
iw βγ -- Displacement component of the centre of the subcell 

( ) ( ),βγ βγ
ι ιφ ϕ − Characterize the linear dependence of the displacements in the local 

coordinates ( ) ( )β γ
2 3x ,x   

    

        The components of the small strain tensor are given as 

                            ( ) ( ) ( )1      ,
2 i jij j iu u i jβγ βγ βγε ⎡ ⎤= ∂ + ∂ =⎢ ⎥⎣ ⎦

1,2,3.                                     (3.02) 

Where  ( ) ( )
1 1 2 2 3 3x , x  and x∂ = ∂ ∂ ∂ = ∂ ∂ ∂ = ∂ ∂βγ βγ  

The stress are related to strains in the form 

                                          ( ) ( ) ( )Cβγ βγ βγσ = ∈                                                               (3.03) 

The average stresses ijσ  in the composite are determined from the average stresses in the 

subcells ( )
ij

βγσ , in the form 

                                      
( ) ( ) ( )2

, 1

1 a
Aij ij

βγβγ

β γ
σ σ

=

′=
′ ∑               (3.04) 

Where ( ) ( ) ( )2
1 2a ,  Ah h h hβγ

β γ′ ′= = + which is the area representative cell and                               

( )

( )( )
( ) ( ) ( )

2 2

2 3
2 2

1

a

h h

ij ij
h h

dx dx
β γ

β γ

βγ βγ β γ
βγ

σ σ
− −

=
′

∫ ∫                                        
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The condition for the continuity of tractions, which are imposed along the interfaces of the subcells 

of the representative cell in the average sense, lead to 

                                               
( ) ( )

( ) ( )

1 2
2 2

1 2
3 3

.

.

i i

i i

γ γ

β β

σ σ

σ σ

=

=
                                                               (3.05) 

 

B). Displacement interfacial conditions 

At any instant, the normal and tangential displacements should be continuous at the 

interfaces of the subcells of the representative cell of fig. 3.2. It follows that 

                                    ( )
( )

( )
( )1 2

1 22 2

1 2

2 2
i i

x h x h
u uγ γ

=+ =±
=                                              (3.06) 

 

                                   ( )
( )

( )
( )1 2

1 23 3

1 2

2 2
i i

x h x h
u uβ β

=± =+
=                                               (3.07) 

The ± signs denote the two different relations obtained, depending on whether the 

interface follows the subcell ( )1γ or ( )2γ and same other equation. 

Imposing the continuity conditions at the interfaces between the subcells. The average 

strains in the subcells can be obtained as 

( )
111

1
,w

x
βγ ∂

∈ =
∂

 

( ) ( )
22 2 ,βγ βγφ∈ =  

( ) ( )
33 3 ,βγ βγϕ∈ =  

                                            ( ) ( )
212

1
2 ,1 w

x
βγ βγφ ∂

∈ = +
∂

                                  

( ) ( )
313

1
2 ,1 w

x
βγ βγϕ ∂

∈ = +
∂

 

                                              ( ) ( ) ( )
232 .3 2
βγ βγ βγφ ϕ∈ = +                                                  (3.08) 
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The average strains in the composite are given as 

                                           
( ) ( )( ) ( )2

, 1

1 a .
Aij ij

βγβγ

β γ =

′∈ = ∈
′ ∑                                            (3.09) 

And we get  

                                               1 .
2

ji
ij

j i

ww
x x

⎛ ⎞∂∂
∈ = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                                                     (3.10) 

 And we get the relationships between the average stresses and micro-variables, in the 

subcells of the representative cell,  

( ) ( ) ( ) ( ) ( )( )1111 11 12 2 3C Cβγ βγ βγ βγ βγσ φ ϕ= ∈ + +  

( ) ( ) ( ) ( ) ( ) ( )
1122 12 22 2 23 3C C Cβγ βγ βγ βγ βγ βγσ φ ϕ= ∈ + +  

( ) ( ) ( ) ( ) ( ) ( )
1133 12 23 2 22 3C C Cβγ βγ βγ βγ βγ βγσ φ ϕ= ∈ + +  

( ) ( ) ( )2
12 44 1

1

wC
x

βγ βγ βγσ φ
⎛ ⎞∂

= +⎜ ⎟∂⎝ ⎠
 

                                                ( ) ( ) ( )3
13 44 1

1

wC
x

βγ βγ βγσ ϕ
⎛ ⎞∂

= +⎜ ⎟∂⎝ ⎠
                                                       (3.11) 

( ) ( ) ( ) ( )( )23 66 3 2 .Cβγ βγ βγ βγσ φ ϕ= +  

C) Composite constitutive relations – square symmetry 

In the following, the constitutive equations of the unidirectional composite are 

derived in explicit form. In these equations the average stresses and strains are related by 

closed form expressions.  

a) Average normal stress-strain relations 

For that at i=2 we have 

( ) ( )( )12 22
22 2 12 2 ,h h hφ φ= ∈ −  

( ) ( )( )21 11
22 1 22 2 ,h h hφ φ= ∈ −  

Where 1 2.h h h= +  Similarly with i = 3 gives 
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( ) ( )( )12 11
33 2 23 3 ,h h hϕ ϕ= ∈ −  

        ( ) ( )( )21 22
33 1 13 3 .h h hϕ ϕ= ∈ −  

Then we solve equation for micro variables, the average normal stresses can be 

computed and obtain as  

11 11 11 12 22 13 33b b bσ = ∈ + ∈ + ∈  

                                                       22 12 11 22 22 23 33b b bσ = ∈ + ∈ + ∈                                      

                                                       33 13 11 23 22 33 33b b bσ = ∈ + ∈ + ∈                                               (3.12) 

These are the requested constitutive relations for the normal stresses and strain 

of the unidirectional composite. The coefficients ijb are the effective elastic constants 

of the composite, and are given as 

                   
( ) ( ) ( ) ( )( ) ( )( )11 12 21 22

11 11 12 2 311 12 A ,f fm mb a C C a a a C C Q Q⎡ ⎤′ ′ ′ ′ ′= + + + + − +⎢ ⎥⎣ ⎦
 

                 
( ) ( )( ) ( ) ( )( )12 21

12 1 12 1 22 3 23 2 12 2 22 4 23 A ,m m m m m mb h h C a Q C Q C h h C a Q C Q C⎡ ⎤′ ′ ′= + + + + +⎢ ⎥⎣ ⎦
 

                  
( ) ( )( ) ( ) ( )( )12 21

13 4 1 12 1 22 3 23 4 3 12 2 22 4 23 A ,m m m m m mb h h C a Q C Q C h h C a Q C Q C⎡ ⎤′ ′′ ′′ ′ ′′ ′′ ′= + + + + +⎢ ⎥⎣ ⎦
 

   
( ) ( )( ) ( ) ( )( )12 21

22 1 22 1 3 23 2 22 2 4 23 A ,m m m mb h h C a Q Q C h h C a Q Q C⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′= + + + + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

                 
( ) ( )( ) ( ) ( )( )21 12

23 1 23 2 4 22 2 23 1 3 22 A ,m m m mb h h C a Q Q C h h C a Q Q C⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′= + + + + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 

                  
( ) ( )( ) ( ) ( )( )12 21

33 4 1 22 1 3 23 4 3 22 2 4 23 Am m m mb h h C a Q Q C h h C a Q Q C⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′′′ ′′′ ′ ′′′ ′′′ ′= + + + + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
                            

                                                                                                                                           (3.13 --- 3.18) 

b) The average axial shear stress-strain relations 

 With i = 1 we have 

( )21 111
1 1 21

2
,wh h h

x
φ φ

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

 

( )12 221
2 1 11

2
,wh h h

x
φ φ

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠
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( ) ( )11 1 2
44 2 441 44

2 1
,m f mw wh C h C C

x x
φ

⎛ ⎞∂ ∂
= − − Δ⎜ ⎟∂ ∂⎝ ⎠

 

( )22 1
1

2
.w

x
φ ∂

=
∂

 

12 44 122 ,bσ = ∈  

                                                             13 44 132 ,bσ = ∈  

                                                           23 66 232 .bσ = ∈                                                                    (3.19) 

 

The effective elastic axial shear modulus of the unidirectional composite: 

               
( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ } ( )11 21 12 22 12 22

44 44 2 44 1 144 Afm mb C C h a a h a a C a a h⎡ ⎤′ ′ ′ ′ ′ ′ ′= + + + + Δ⎢ ⎥⎣ ⎦
 

               
( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ } ( )11 21 12 22 12 22

55 44 4 3 44 1 244 Afm mb C C h a a h a a C a a h⎡ ⎤′ ′ ′ ′ ′ ′ ′= + + + + Δ⎢ ⎥⎣ ⎦
 

               66 66 466
f mb C C hh δ=                                                                                            (3.20 --- 3.23) 

 

   Where 1 1 44 2 2 2 344         for fmh C h C h hΔ = + Δ ⇒ =  

( )2
1 66 1 2 1 3 2 3 66

fmh C h h h h h h Cδ = + + +  

The constants used here given in appendix, so the elastic stiffness matrix B = [bij]: 

 

 

 

                          (3.24)                     

 

 

 

 

The composite constitutive relations are of the form  

                                                                    Bσ = ∈                                                                      (3.25) 

This representation effectively provides an orthotropic material with a square 

symmetry.  

11 12 13

12 22 23

13 23 33

44

B

0 0 0

0 0 0

0 0 0

0 0 0  0 0

0 0 0 0

b b b
b b b
b b b

b
b

=

                            

                            

                            

                                  

                              55

66

0

0 0 0 0 0 b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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D) The effective elastic constants of transverse isotropic material can be determined 

from 

                                                                  ( )
0

1 .E B d
π

ξ ξ
π

′= ∫                                                         (3.26)                      

Where ijB b⎡ ⎤′ ′= ⎣ ⎦  obtain by transformation i.e. by rotating the x1, x2, x3 coordinates 

around x1-axis by an angle ' 'ξ . 

Which provides the elastic stiffness matrix E = [eij] in the form 

 

 

 

 

                                                                                                                    (3.27) 

 

 

                                                          

                                                            11 11e b=                                                                           (3.28) 

                                                         12 13 12e e b= =                                                                   (3.29) 

                                ( ) ( ) ( )22 33 22 23 663 4 1 4 1 2e e b b b= = + +                                      (3.30) 

                                ( ) ( ) ( )23 22 23 661 4 3 4 1 2e b b b= + −                                         (3.31) 

                                                         44 55 44e e b= =                                                                                                 

                                                                                                                                                      (3.32) 

                                                 ( )( )66 22 231 2e e e= −                                                               (3.33) 

       D.1) Compliance matrix calculation Sij when n  = = 1 

( ) 1

ij ijS e
−

=  

      

11 12 13

12 22 23

13 23 33

44

E

0 0 0

0 0 0

0 0 0

0 0 0  0 0

0 0 0 0

e e e
e e e
e e e

e
=

                              

                              

                              

                                  

                         55

66

0

0 0 0 0 0

e
e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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  D.2) Compliance matrix calculation Sij  

            when n ! = 1 then no need to calculate ije  

( ) 1

ij ijS b
−

=  

 

E)  Final elastic properties of lamina 

                                 1 111E S=                              2 221E S=  

                                 3 331E S=                               12 12 1v S E= −  

                                 13 13 1v S E= −                            23 23 2v S E= −  

                                 12 441G S=                             13 551G S=  

                                23 661G S=                                                                                         (3.34—3.42) 

3.2.2 Calculation of Coefficient of Thermal Expansion ( )iα   

 

The effective coefficient of thermal expansion of a unidirectional composite in the axial and 

transverse directions can be readily obtained given by Aboudi[20] 

           

          [ ] ( ) ( )1 o
1 2 3 11 22 33 12 13 23, , , 0,0,0     where kPa , , , , , .Bα α α −= Γ Γ = Γ Γ Γ Γ Γ Γ                     (3.43) 

 

It should be noted that determination of coefficient of thermal expansions using above 

equation is not affected by transformation. 

                          
( )( ) ( ) ( ) ( ) ( )( )( )11 12 21 22

11 22 2 3 1122 11' ' ' ' A'f fm mQ Q a a a aΓ = Γ − Γ + + Γ + + + Γ                                

                         ( )( ) ( ) ( ) ( ) ( )( )( )11 12 21 22
22 22 2 3 2222 22' ' ' ' ' ' A'f fm mQ Q a a a aΓ = Γ − Γ + + Γ + + + Γ                                

                         
( )( ) ( ) ( ) ( ) ( )( )( )11 12 21 22

33 22 2 3 2222 22

12 13 23

' ' ' ' A'

0, 0, 0      

f fm mQ Q a a a a′′′ ′′′Γ = Γ − Γ + + Γ + + + Γ

Γ = Γ = Γ =
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                                                                                                                                            ( 3.43 --- 3.45) 

                         And          

( )
( )

11 12

12 22 23

12 22 23

     2

                 0
                 0
                 0

n n n n
l t

n n n n n
l t

n n n n n
n l t

C C

C C C

C C C

α α

α α

α α

⎛ ⎞+
⎜ ⎟

+ +⎜ ⎟
⎜ ⎟

+ +⎜ ⎟Γ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                                            (3.46) 

  11, 22,33,12,13, 23 ,
,   

where ij n f m
f fiber and m matrix

= = =
= =  

 

3.2.3 Calculation of Thermal Conductivity of Lamina 

a)   Fourier law for anisotropic material 

                                                                                                                                (3.47) 

 

                                      Where        Thermal conductivity tensor 

 

b) Free expansion due to temperature difference is 

 

                                                                                                                                                       (3.48) 

By applying continuity condition of temperature at the interfaces the average heat 

flux in the subcell is given as 

                                                                                                                          (3.49) 

c) The average heat flux in the composite is given as 

 

i ij
j

tq k x
⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

ijk

( ) ( ) ( ) ( ) ( )
2 2 3 3T x xβγ β βγ γ βγθ ξ ξΔ = Δ + +

( ) ( )  , 1, 2,3i l
j

Tq k i jx
βγ βγ ∂= − =∂

' ( )
'

1

1 =  
A

n

i i
i

q a q βγ
βγ

=
∑
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                                                                                                                                                        (3.50) 

The continuity condition of the heat flux at the interface is given as 

                                                                                                                                                        (3.51) 

Where                and by eliminating the micro-variables 

 

                                                                                                                                                        (3.52) 

d) The effective (apparent) axial & transverse conductivity is 

 

                          ( ) ( ) ( ) ( )( )( )11 12 21 22 2
1 ' ' ' 'f m

llk a k a a a k h= + + +                  

                         
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( )

11 21 12 22
2 2

2 2 112 22
1

' ' ' '

' '

f
t fm m

t t t
m
t

k h a a h a a
k k h k h k h

k a a h

⎧ ⎫⎡ ⎤+ + +⎪ ⎪⎢ ⎥⎣ ⎦ ⎡ ⎤= +⎨ ⎬ ⎢ ⎥⎣ ⎦⎪ ⎪+ +
⎩ ⎭

                                 

                         
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( )

11 21 12 22
4 3

3 4 3 112 22
1

' ' ' '

' '

f
t fm m

t t t
m
t

k h a a h a a
k k hh k h k h

k a a h

⎧ ⎫⎡ ⎤+ + +⎪ ⎪⎢ ⎥⎣ ⎦ ⎡ ⎤= +⎨ ⎬ ⎢ ⎥⎣ ⎦⎪ ⎪+ +
⎩ ⎭

                             

                                                                                                                                                       (3.53—3.55) 

3.2.4 Calculation of Strengths of Lamina 

                     a. Calculating the stiffness matrices n
ijC  of lamina by using equations given     

                         appendix ‘A’ 

b. Calculation of compliance matrices as 

                              A. For fiber 

                                                                                     ( ) 1f f
ij ijS C

−
=                                                                                           (3.56) 

                                                          B. For matrix 

                                                                                     ( ) 1m m
ij ijS C

−
=                                                                       (3.57) 

(1 ) (2 )
i iq qγ γ=

2, 3i =

( ) ( )  , & 1,2,3j i
j

Tq k i l t jx
βγ βγ ∂= − = =∂
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                                                         C. For lamina 

                                                                                      ( ) 1
ij ijS C

−
=                                                                        (3.58)    

c. Calculation of stress concentration matrix   

                  The stress concentration factors are taken into consideration to relate                

                    the overall composite stress to the average stress in the matrix phase as 

                                                                                      
( ) ( ) .ij ijBσ σ=                                                                    (3.59) 

          

             for transversely isotropic composite the stress concentration matrix as per  

             Aboudi[3] is 

 

                            

 

                                                                                                                                                               (3.60) 

 

 

The elements of stress concentration matrix can be expressed explicitly in terms of the 

compliance elements of the composite, fiber and matrix phases and the volume fraction 

using Hill[5] relations 

                                A. For fiber 

                                             ( )( ) ( )1
1 V ff m m

f ij ij ijijBs S S S S
−

= − −                                               (3.61) 

                               B. For matrix 

                                           ( )( ) ( )1
1 V f fij ij m

ij ijij ijBs S S S S
−

= − −                                                 (3.62) 

ij ij ij
11 12 12
ij ij ij
12 22 23

ij ij ij
12 23 22

B

0 0 0

0 0 0

0 0 0

  0 0 0

Bs Bs Bs

Bs Bs Bs

Bs Bs Bs
=

                                    

                                   

                                   

                        ij
44

ij
44

ij
66

  0 0

  0 0 0 0 0

  0 0 0 0 0

Bs

Bs

Bs

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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  Now we have two 6x6 matrices and f ijBs Bs  

 

d. Calculation of strength of lamina   

           A. Ultimate Longitudinal stress of lamina 

 

Consider a lamina subjected to unidirectional loading along fiber direction i.e. in 

direction 1.  The lamina fails when fiber will fail, as stress concentration is more in fiber 

when subjected to loading in direction 1, so first element of stress concentration matrix of 

fiber is key element. 

              

                 11 11
11 11

           
f f

t c
t c

X XX XBs Bs= =                                                   (3.63) 

 

 B. Ultimate Transverse stress of lamina 

 

In transverse direction matrix is weaker so stress concentration factor out of matrix 

subcells is maximum is the cause of failure of lamina. When that subcell fails, lamina 

will fail. There is transverse direction loading is there so second element of stress 

concentration matrix of matrix subcells is key factor. 

 

 

 

 

          
( )( ) ( )( )( ) ( )

22 22( ) (12),(21),(22) ( ) (12),(21),(22)
max          maxm m

t t c cY X Bs Y X Bsβγ βγ

βγ βγ= =
= =       

 

                                                                                                                                                        (3.64) 
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C. Ultimate Shear stress of lamina 

 

In shear, lamina fails when shear stress in lamina matches with ultimate strength of 

matrix, so the forth element of stress concentration matrix of matrix subcells is key 

factor. 

 

a) Calculation of shear strength S12 and S13 
 

( )( )
12 44( ) (12),(21),(22)

maxmS S Bs βγ

βγ =
=  

( )( )
13 55( ) (12),(21),(22)

maxmS S Bs βγ

βγ =
=  

 

  b) Calculation of shear strength S23 

 
( ) ( )( )66 66 4 66 232 1m fBs C hh C Gβγ δ=  

( )( )
23 66( ) (12),(21),(22)

maxmS S Bs βγ

βγ =
=  
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3.3 Flow Chart For Calculating Strengths of Lamina 
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3.4 Closure  
 

Detailed discussion of mathematical formulation for all uni-axial lamina properties subjected to in-

plane loading has been presented in this chapter. Required inputs for determination of the lamina 

properties by ―Method of Cells” are as follow  

 

• Elastic properties of fiber and matrix.  

 

• Ehermal properties of fiber and matrix.  

 

• Strengths of fiber and matrix.  

 

.                                                  
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CCHHAAPPTTEERR  44  

 
VVIIBBRRAATTIIOONN  AANNAALLYYSSIISS  OOFF  CCOOMMPPOOSSIITTEESS  

 
4.0 Introduction 
 
Laminated composite structures are becoming increasingly important in many engineering 

applications. The need for more information on the behavior of laminated structural components, 

like plates. is clear. Rectangular plates arc used in many engineering applications. 
 

The use of vibration methods to obtain the elastic properties of materials appears to be getting more 

established. Apart from early work in this area , more recent contributions to theory and 

methodology continue to be made . The primary building block of laminated composite structures is 

the orthotropic lamina 

 

Structural characteristics such as static deflections and bending stresses, buckling loads, and 

vibration frequencies are easily and exactly found for symmetrically laminated cross-ply plates when 

the fiber axes are parallel to the edges. However, for angle-ply plates the analysis is considerably 

more complicated and exact solutions are out of the question. 

 

Currently, three separate, standard [21], static tests can yield the four independent elastic constants 

of the basic lamina (the Young’s moduli in the longitudinal and transverse directions respectively, 

the inplane shear modulus, G12 , and the in-plane Poisson’s ratio ν12. However, all four may be 

obtained from a single experimental plate vibration test.  

 

 

 

 

 

 



Vibration And Fatigue Analysis of Composite Materials 
 

Institute of Technology, Nirma University  Page 30 
 

The three-dimensional stress-strain relationships for thick, orthotropic composite panels may be fully 

described by nine independent elastic constants. The appropriate engineering constants may be taken 

as E1 , E2 , and E3 , the Young’s moduli in the longitudinal transverse and thickness directions 

respectively, the shear moduli, G12 , G13 , and G23 , and the Poisson’s ratios, ν12 , ν13 and  ν23 across 

the three orthogonal planes. For transversely isotropic samples,(i.e., E2=E3 , G12=G13 and ν12=ν13 ), 

as is common with many types of composite materials, only five independent constants are needed.  

 

The method that was developed by the first author and his colleagues [6-8] is applicable to the 

identification of any number of elastic constants of thin and thick plates, given enough vibration test 

data. 

                                   

The Rayleigh-Ritz method with algebraic polynomial displacement functions is used to solve the 

vibration problem for laminated composite plates having different boundary conditions (The 

Rayleigh-Ritz method is used to yield a frequency equation, and the displacement function is 

expressed in algebraic polynomial).Natural frequencies for cantilever rectangular plates, plates 

having all its edges simply supported,  plates having all edges free are presented .Convergence 

studies are made and reasonably accurate and comprehensive results were obtained.. The effect of 

various parameters (material, fiber orientation and boundary conditions) up on the natural 

frequencies is studies. 

 
The literature on the title problem is vast. A series of publications (Lecissa. l978,1981. 1987) listed 

hundreds of publications on the subject. Many of the previous studies concentrate on the theory of 

the subject. Obtaining natural frequencies only for those problems which permit exact solutions 

(Jones, 1973 ; Lin. 1974). Exact Navier-type solutions are possible for cross-ply plates having shear 

diaphragm boundaries (Jones, 1973) and antisymmetric angle-ply plates having a certain type of 

simple-support boundaries (S3). Exact Levy-type solutions are also possible for cross-ply laminates 

having two opposite shear diaphragm edges and for antisymmetric angle-ply laminate having two 

opposite S3 boundaries (Lin and King. 1979). Limited references are available on the study of the 

effects of many parameters like the material orthotropic characteristics, the number of layers, the 

lamination angle and boundary conditions on the natural frequencies of composite plates (Leissa and 

Naritn, 1989). 
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It is shown that the energy functional derived are consistent with the equations of motion and 

boundary conditions and there fore can be used with energy approaches such as the Rayleigh-Ritz 

method. Thus equations were successfully-applied to obtain the natural frequencies of laminated 

composite plates. Rayleigh-Ritz with algebraic polynomial is used. 

 

The primary purpose of the present work is to provide accurate and reasonably comprehensive 

results for the free-vibration frequencies of symmetrically laminated, simply supported plates, 

cantilever  plates ,plates having all edges free, especially for lay-ups other than cross-ply (or 

specially orthotropic) for which no exact solutions are possible. For this purpose the Rayleigh-Ritz 

method is used with sufficient numbers of displacement function terms to obtain accurate results. 

Secondly, the effects of changing the numbers of layers, fiber orientation angles, material properties, 

and aspect ratios may be seen from the extensive results presented. 

 

A complete and mathematically consistent set of equations, including equations of motion, boundary 

conditions and energy functionals is presented. It is shown that energy functionals derived there are   

consistent with the equations of motion and boundary conditions, and therefore can be    used with 

energy approaches such as the Rayleigh-Ritz method. 

 

In general situations, then, in seeking to determine the natural frequencies of laminated plates  

recourse must be made to approximate numerical methods. For single plates the traditional single 

field Rayleigh-Ritz method (RRM) can be employed if displacement fields can be proposed which 

are appropriate for the complete plate and which allow satisfaction of the relevant boundary 

conditions. 
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4.1 Analysis 
The Rayleigh-Ritz method may be used to solve the free vibration problem. This utilizes the strain 

energy and kinetic energy functional for laminated plates. The strain energy stored in the plate 

during elastic deformation may be written in terms of the middle surface displacements u and v in 

directions tangential to the middle surface and parallel to the xz-and yz-planes, respectively, and the 

normal displacement w (see Fig. 4.2).  

                   Arthur W. Leissa & Yoshihiro Narita[22] 

 

                                          
                                                      Fig. 4.2  Rectangular Plates With Coordinates 
 

Consider a laminated composite rectangular plate of dimensions a x b as shown in Fig. 4.2. Each 

layer of the plate consists of parallel fibers bonded together by a matrix material. The fiber direction 

within a layer is indicated by the angle Ө in Fig. 4.2. The modulus of elasticity of the layer in the 

direction of the fibers is El, and the transverse modulus is E2. 
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The strain energy is (Qatu. 1989; Leissa and Qatu. 1991) [23,24,25]: 

                   

                   

                                                                                                                                                        (4.01) 

 
      Where the Aij , Bij and are the conventional laminated stiffness coefficients. 

 

     The above energy functional may be expressed in terms of middle surface strains and                     

     curvature changes which are related to the middle surface displacements by 

 

 

 , 
                                                

                                                               , 
    

    
                                                                                                                                  (4.02)      
 

 

The total kinetic energy is         
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                                                                                                                                                        (4.03)               

 Where  is the average mass density of the composite plate per unit volume.                                                           

 
4.1.1For Plates Having All Edges Free  

        Displacements are assumed as   

 
 
 

 
                                                                                                                                                        (4.04)                      

Algebraic trial functions will be used in the analysis because first. they do form a complete set of 

functions, which guarantees convergence to the exact solution as the number of terms taken 

increases and. second. one can straightforwardly solve for many boundary conditions using algebraic 

trial functions.       

 

The displacement functions U, V and W can be  written in terms of the non-dimensional 

coordinates ξ and η  as :                                          

 

 
 

 
 

 
                                                                                                                                  (4.05)                   

where  , and  and  ,   are defined in Fig. 1. 
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Keeping in mind that the Rayleigh-Ritz method requires satisfaction of geometric (forced) boundary 

conditions only, with suitable selection of the values , , i0 , j0 , k0 , l0 , m0  and n0 one can solve 

for many boundary conditions with the same analytical procedure. 

 

4.1.2 For Simply Supported Symmetrically Laminated Rectangular Plates 
 
 
The transverse displacement w(x, y, t) of a plate vibrating freely may be 
written as 
 
                           
      
                                                                                                                                                        (4.06) 
 

The maximum strain energy (U) stored in the plate during bending in a vibratory cycle is given by 
                                   Arthur W. Leissa & Yoshihiro Narita[22]  
 
 

 
                                                                                                                                                        (4.07) 

Where the Dij are the well-known stiffness coefficients relating the moment resultants (Mx, My, Mxy) 
to the bending curvatures (Kx, Ky, Kxy) by the matrix relationship 
                

                        
                                                                                                                                                       (4.08) 

 

 

 

The maximum kinetic energy during a vibratory cycle is 

                                                                                                                                                 

                                
                                                                                                                                 (4.09)                    
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Transverse displacements are assumed in the form 
 

                               

 
                                                                                                                                                       (4.10) 
  
4.1.3 For Cantilever Laminated Plates                    
                                 

                                     
 

                         Fig 4.3 Laminated cantilever plate with co-ordinate conventions. 

 

The strain energy stored in the shell during elastic deformation may be written in terms of the middle 

surface displacements u and v in directions tangent to the middle surface and parallel to the xz and 

yz planes, respectively, and the normal displacement w. It may be expressed as the sum of four parts   

          

 

  (Mohamad S. Qatu & Arthur W.)[26] 
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                                                                                                                                                        (4.11) 
     

    Where Uor  includes terms due to orthotropic characteristics of the material 

        (i.e. A11, A12, A22, A66, D11, D12, D22,D66). 

              

                                                                                                                                                                                       

                                                                                                                                                        (4.12) 

                                                                                                                                                                                       

Ues includes terms of extension-shearing coupling (i.e. A 16, A26). 

 

    

                  

                                                                                                                                                       (4.13) 

                   

 

 
 
 
 
 
 
Ubs  includes terms of bending-stretching coupling (i.e. Bij ) 
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                                                                                                                                                               (4.14) 
  
 
And Ubt  includes terms of bending-twisting coupling (i.e. D16 , D26 ).  
  
 

                     

 
                                                                                                                                                              (4.15) 
 
Where the Aij, Bij and Dij are the conventional laminate stiffness coefficients 

               Whitney and Vinson and Sierakowski [27,28] 

 

The above energy functional may be expressed in terms of middle surface strains and curvature 

changes which are related to the middle surface displacements by 

 

                              +  , +  ,    
               

                               ,  ,  
                                                                                                                                                        (4.16) 
 
 
 
 The total kinetic energy is 

 

                                                
                                                                                                                                                        (4.17) 
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where ρ  is the average mass density of the composite shell per unit volume. 
 
For free vibrations of a shallow shell having the rectangular planform 

shown in Fig. 4.2, displacements are assumed as 

 

 

 

 
                                                                                                                                                       (4.18) 

Algebraic polynomial trial functions will be used in the analysis principally for two reasons. The 

first is that they form a mathematically complete set of functions, which guarantees convergence to 

the exact solution as the number of terms taken increases. 14 The second reason is that they are 

relatively simple to use in the algebraic manipulation and computer programming subsequently 

required, and can be differentiated and integrated exactly in the energy functional needed. Thus the 

displacement functions U, V and W are written in terms of the non -dimensional coordinates ξ and η as 

 

                                                 

 

 
 

 
 

 
                                                                                                                                                               (4.19) 
 
where ξ =2x/a,η =2y/b, a and b are the platform dimensions (Fig. 4.2) and αij , βkl and γmn, are 

arbitrary coefficients to be determined subsequently. It should be stated here that the Ritz method 

requires satisfaction of geometric (forced) boundary conditions only, and thus the indices in eqns 
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(4.22) begin with i = 1, k = 1 and m = 2 to guarantee satisfaction of the clamped boundary conditions 

at   ξ =0 for all terms of the polynomials. 

 

For solving the free vibration problem, eqn (4.04,4.21) and (4.05,4.22) are substituted into eqn 

(4.01,4.11) in order to get an expression for the maximum strain energy (Umax) and into eqn 

(4.03,4.20) in order to get an expression for the maximum kinetic energy (Tmax). The Ritz method 

requires minimization of the functional (Tma x- Umax) which can be accomplished by taking the 

derivatives: 

 

                         ;     j = 0,1……..J 
 

                        ;    l = 0,1……..L 
 

;   n = 0,1……..N 
                                                                                                                                                               (4.22) 
 

 

 

This yields a total of  I x (J+I) + K x (L+I )+ (M-1 ) x (N+I) simultaneous, linear, homogeneous 

equations in an equal number of unknowns αij ,  βkl and γmn .Those equations can be described  

                                                  

                                                                   
                                                                                                                                                               (4.23) 
  
 
 
 
 
 
4.2 Flow Chart for Typical Successive Approximations Approach to           
     The Eigen value Problem 
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                         Fig 4.4  Typical Program Flow For a Successive Approximations Approach. 

 

 

4.3 Closure  
Comparisons among results from the present method and analytical and experimental data obtained 

for laminated cantilever plates may be found in the dissertation by Qatu (1989) and the work 

accomplished by Qatu and Leissa (199la) [23,24,25]. There, the natural frequencies obtained 



Vibration And Fatigue Analysis of Composite Materials 
 

Institute of Technology, Nirma University  Page 42 
 

experimentally, and those obtained by using the finite element method are compared with those 

obtained by the present method. It was concluded that the present method yields a closer upper 

bound to the exact solution than the finite element results and is reasonably close to the frequencies 

obtained experimentally. 

 

 
 
 
 
 
 
 
 
                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                    
 
                        

CCHHAAPPTTEERR  55  
FFAATTIIGGUUEE  AANNAALLYYSSIISS  OOFF  CCOOMMPPOOSSIITTEE  MMAATTEERRIIAALLSS            

  
5.0 Introduction 
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The development of lightweight structures requires, among others, reliable design methods against 

cyclic fatigue. One approach is to design, build and test prototypes which certainly results in the 

highest possible reliability, but consumes considerable time and development cost. Therefore, 

fatigue life prediction is highly desirable as it allows the assessment of design alternatives in early 

stages of the development process and the integration into a CAE design environment, but most of 

all it does not necessarily require early design stage prototyping. 

 
The fatigue design methodology of polymer matrix composites (PMC) compared to metallic 

structural materials is still lacking with regard to the availability of methods as well as the 

insufficiency of existing models to reliably assess the fatigue behaviour. The reason for this situation 

is the inherent inhomogeneity of PMC and the various distinguished damage mechanisms such as 

matrix cracking, fiber/matrix debonding, fiber fracture, interlaminar delamination, as well as their 

pronounced interactions which have to be taken into consideration. 

 

The fatigue design methodology of polymer matrix composites (PMC) compared to metallic 

structural materials is still lacking with regard to the availability of methods as well as the 

insufficiency of existing models to reliably assess the fatigue behavior. The reason for this situation 

is the inherent in-homogeneity of PMC and the various distinguished damage mechanisms such as 

matrix cracking, fiber/matrix debonding, fiber fracture, interlaminar delimitation, as well as their 

pronounced interactions which have to be taken into consideration. 

 

Reifsnider KL and Stinchcomb WW [29] represents a non-linear fatigue life prediction methodology 

for layered composites which accounts for fatigue damage initiation and growth as well as final 

failure. This method subdivides relevant parts of a fatigue loaded structure into sub-critical and 

critical elements where sub-critical elements encompass in particular matrix cracking causing 

stiffness reduction and stress redistribution within the laminate without directly leading to the total 

failure of the laminate Stress redistribution is modeled through appropriate stiffness degradation 

relations applying the classical laminated plate theory. Critical elements are increasingly stressed, 

suffer from a decrease of their residual strength with increasing cyclic loading and finally cause the 

total failure of the structure when the residual strength of the critical element is reduced to the 
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equivalent stress correspondent to the instantaneous external load. This life prediction methodology 

may be regarded as the most complete for polymeric composites available to date. 

 

5.1 Fatigue Failure Criterion for Lamina (off axis loading) 

5.1.1 E-glass/epoxy 
 

Hashin and Rotem[30] conducted experiments (for stress ratio R=0.1 and cyclic  

frequency 19 Hz) on E-glass/epoxy lamina under cyclic loading. Equation for S-N curve 

along the fiber direction based on their experimental data (equation derived by curve fitting) 

is given as, 

                                                      )(Nf  XX fLtf =                                                                       (5.1) 

                                              ffL Nlogb a)N(f 10−=  

 

where Xf  is fatigue strength and )( Nf fL  is fatigue function along fiber direction, a 

and b are constant parameters and their values are given by Hashin and Rotem[24] as 1.123 

and  0.11 respectively. Material properties of UD lamina (E-Glass/Epoxy) along fiber 

direction are as: 

EL = 55.8 GPa,  tX  = 1260 MPa   Poisson’s ratio 2850LT .=μ  

    

 

 

 

 

 

 

 

 

            The S-N diagram (curve fit of experimental data) along fiber direction   

            under constant stress ratio of 0.1 and frequency 19 Hz is shown below in Fig. 5.1 
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           Fig. 5.1. Lamina Subjected To Fatigue Load Along Fiber Direction And Corresponding S-N                         

                     Curve. 

Equation for S-N curve along transverse to fiber direction based on experimental data (derived 

by curve fitting) is given by Hashin and Rotem[24] as, 

 

                                             )(Nf YY fTtf =                                                                           (5.2) 

                                   ffT Nlogd c)N(f 10−=  

 

where Yf is fatigue strength and ( )fT Nf  is fatigue function along transverse to fiber direction, c 

and d are constant parameters and their values are 0.956 and  0.0541 respectively, these 

parameters are developed by curve fitting19. The material properties for UD lamina E-

glass/epoxy along transverse to fiber direction are as follows 

                             

 

                                    ET = 18.1 GPa                    tY  = 42 MPa. 

     

S-N diagram (curve fit of experimental data) transverse to fiber direction under constant  

stress  ratio of 0.1 and frequency 19 Hz is shown below in Fig. 5.2. 
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Fig. 5.2 Lamina Under Fatigue Load Along Transverse To Fiber Direction And Corresponding S-N                        
Curve. 

 

 

Equation for S-N curve in shear mode based on experimental data (derived by curve fitting) is given 

by Hashin and Rotem[25] as, 

 

                                ( )fτf Nf SS =                                            (5.3)  

     ( ) ffτ Nlogh gNf 10−=  

 

 

where Sf is shear fatigue strength and )(Nf fτ  is fatigue function, g and h are constant parameters 

and their values are 0.917 and  0.0852 respectively. These parameters are found by curve fitting[24]. 

Shear modulus ( LTG ) of UD lamina (E-glass/epoxy) is LTG = 6.13 GPa and shear strength (S) is 84 

MPa. S-N diagram (curve fit of experimental data) for shear mode under constant stress ratio 0.1 and 

frequency 19 Hz is shown below in Fig.5.3. 
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       Fig. 5.3. Lamina Under Fatigue Load In Shear Mode And Corresponding S-N Curve. 

 

 

5.1.2 Theory 
Fatigue properties of a lamina, derived by experiments[24] are given in section 5.1.1 and 5.1.2. Our 

objective is to predict fatigue life of UD lamina subjected to off-axis loading as shown below in Fig. 

5.4. 
 

 

 

 

 

 

 

                 Fig. 5.4. Lamina Subjected To Off-axis Uniform Cyclic Loading At Angle. 

 

Above figure shows uniform uniaxial cyclic stress applied on lamina along x-direction. By using 

transformation matrix the cyclic stress components in L, T, and in LT plane can be calculated as;   
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                                                                                                                                                          (5.4) 

 

where transformation matrix [ ]
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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22
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2

 

 

From equation 5.4 induced stresses in principal coordinates of lamina are given as  

                                                            

c c 2
L x
c c 2
T y

c c
LT xy

 cos

 sin

-  cos sin

σ σ θ

σ σ θ

τ τ θ θ

=

=

=

                                      (5.5) 

 

Now using equation (5.1), (5.2), (5.3) and (5.5) in Tsai-Hill quadratic fatigue criteria as shown in 

equation (5.4), number of cycles to failure of lamina under off-axis uniform cyclic loading can be 

calculated. 
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5.2 Generated Model   
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      5.2.1 Objective 

• Prediction of Fatigue behavior of composites using S-N curve approach. 

• Determination of residual strength at any no. of cycles (n) and any R and f. 

• Determination of fatigue life at any R and f. 

 

     5.2.2Assumptions 

• When residual strength decreases to the maximum applied stress, fatigue failure 

occurs. 

• The shape parameter (α),scale parameter (β) and are γ the material properties ,i.e. they 

do not depend on R and f. 

• When residual strength decreases to the maximum applied stress, fatigue failure 

occurs. 

 

The shape parameter (α),scale parameter (β) and are γ the material properties ,i.e. they do not 

depend on R and f. 

       
      5.2.3 Input Properties 

            S-N diagram of the laminate at some known   

                    R and  f                                                                                           [ R = σ min / σ max  ] 

  

       5.2.3 (a) Fatigue properties 

                  Input S-N curve (3points on input S-N curve i.e. 
                      ( σmax1,σmax2, σmax3, Nf1, Nf2,Nf3) at some known R and f 

    or 

                       Equation for input S-N curve (σmaxVs Nf) 

         5.2.3 (b) Static properties 

             XT  or XC depending upon loading condition 

 

 

5.3 Mathematical Derivation 
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Determination of fatigue properties from input S-N curve equation. We  start with 

following deterministic equation for the rate of strength degradation 

                                          Jayantha A. Epaarachchi, Philip D. Clausen.[31] 

 

                                                          
r

-mtdX = - C N
dN

 

  
  This equation can be converted to time-dependent equation as follows 
        

                                                          1

r
-mt

1
dX = - C  t
dt                                   

                                        A1 and m1 are material constants 

 
   Integration of above equation yields 

                   
                                  XT

r = -A1f(σmax,R,XT) t-m1+1 / (-m1+1)  + constant 

    Putting 

                                                   α = -A1/ (-m1+1) 

     And                                  β =- m1+1                 in above eq.  

 
                                            max( , , )r

t tX f R X t constantβα σ= − +  
 

     For constant frequency, t = n / f 

 

     Applying the boundary conditions 

                                                 XT
r =   XT       at    n = 1 

                                                       XT
r =   σmax    at    n = Nf  
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         We get 

                                                    XT – σmax = α f (σmax ,R , XT) (Nf
β – 1) / fβ  

                    
                                                     f (σmax , R , XT) = XT 1 – γ σmax

γ(1-R)γ  

  
      Putting the value of function f in origional eq.  

      
                                    XT – σmax = α XT 1 – γ σmax

γ(1-R)γ (Nf
β – 1) / fβ                                                  (5.7) 

 

      Putting the values of the 3 points on the input S - N curve in the above  

      equation i.e. putting σmax1 , σmax2 , σmax3 , Nf1 , Nf2 , Nf3 we get 

      following 3 equations - 

 
                                 XT – σmax1 = α XT 1 – γ σmax1

γ(1-R)γ (Nf1
β – 1) / fβ                                                                  (5.8) 

                                XT – σmax2 = α XT 1 – γ σmax2
γ(1-R)γ (Nf2

β – 1) / fβ                                             (5.9) 

                                XT – σmax3 = α XT 1 – γ σmax3
γ(1-R)γ (Nf3

β – 1) / fβ                                           (5.10) 

 

These equations can be solved by the following method 

 

Dividing eq. (5.8) by eq. (5.9) 

 

                                  (XT – σmax1 )/(XT – σmax2 ) = σmax1
γ  (Nf1

β – 1) /σmax2
γ (Nf2

β – 1)                   (5.11) 

 

Dividing eq. (5.8) by eq. (5.10) 

 

                                 (XT – σmax1  /(XT – σmax3 ) = σmax1
γ(Nf1

β – 1)/σmax3
γ (Nf3

β – 1)                       (5.12) 

 

 Taking logarithm of both eq. ( 5) & eq. (6) 
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log (XT – σmax1 )- log (XT – σmax2 ) = 

                         γ(logσmax1 - logσmax2) + log(Nf1
β-1)- log(Nf2

β-1)                                                   (5.13) 

and 

 

log (XT – σmax1 )- log (XT – σmax3) = 

                         γ(logσmax1 – logσmax3) + log(Nf1
β-1)- log(Nf3

β-1)                                                   (5.14) 

     

 
 From above eq. (7) and (8) we get following two value of γ as follows  

 

                     γ=log(XT-σmax1)–log(XT-σmax2)–log(Nf1
β-1)+log(Nf2

β-1)/(logσmax1-logσmax2) 

                                                                                                                                                        (5.15) 

 

                    γ=log(XT-σmax1)–log(XT-σmax3)–log(Nf1
β-1)+log(Nf3

β-1)/(logσmax1-logσmax3)  

 

                                                                                                                                                        (5.16) 

Using the above two equations  (5.15) & (5.16) we can determine γ by interactive procedure, 

thus we get values of γ and β. 

 

To calculate α  we simply use any of the eq. (5.8) ,(5.9 ) or (5.10) 

 

α = (XT-σmax1) / [XT 1 – γ σmax1
γ(1-R)γ (Nf1

β – 1) / fβ]                                                                     (5.17) 

 

Thus we determine the value of α , β , γ. 

 

Once we know the α , β , γ  fatigue life Nf , residual strength XT
r at some new  

stress ratio (R1) or new frequency (f1)  can be calculated as follows-             
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Fatigue life : 
                                                           (XT-σmax1) f1

β   

                                      Nf   =    [  ----------------------------  + 1 ] 1/ β                                              (5.18)                      

.                                                      α XT 1 – γ σmax
γ(1-R)γ 

 

Residual strength: 

            
                           XT

r  =  XT -  [α XT 1 – γ σmax
γ(1-R)γ (Nf

β – 1) / fβ ]]                                   (5.19)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

5.4Flow charts 
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  5.4.1 To Determination of  “Fatigue life” of Composites 
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5.3.2 To Plot “Residual strength Vs Number of cycles” 

 
 

 
 

 

 

 

 

 

 

 

 
5.4.3 To Plot “Maximum stress Vs Fatigue Life” 
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CCHHAAPPTTEERR  66  

RREESSUULLTTSS  
  

6.1  Results of Predicted Properties for Lamina 
 Detailed discussion of mathematical formulation [ Jacob Aboudi and Marek-Jerzy Pindera (19)]  

for all uniaxial lamina properties subjected to in-plane loading for inverse micromechanics has been 

presented in chapter 3. The comparisons of actual and by “Method of Cells” are as in references.  
  

6.1.1 Input “fiber” Properties for Orthotropic Lamina Calculations 

                                                     Table 6.1  Fiber Properties  

Fiber  =>
n  =>

Coefficient of moisture expansion of fiber   (blf) NA 10-6/%M

Coefficient of moisture expansion of fiber   (btf) NA 10-6/%M

Longitudinal coefficient of thermal expansion   (αlf) -0.54 10-6/ 0K

Density of fiber   (ρf) 1800 kg/m3

Transverse coefficient of thermal expansion   (αtf) 10.10 10-6/ 0K

Longitudinal thermal conductivity of fiber  (klf) 12 W/m0K

Transverse thermal conductivity of fiber   (ktf) 15 W/m0K

Tensile strength of fiber  (Xtf) 2250  MPa

Compressive strength of fiber  (Xcf) 2000  MPa

 Poisson’s ratio of fiber in longitudinal direction (nltf) 0.2 −

 Poisson’s ratio of fiber in transverse direction (nttf) 0.4 −

Young’s modulus of fiber in longitudinal direction (Elf) 233000  MPa

Shear modulus of fiber in longitudinal direction  (Gltf) 8960  MPa

fiber volume fraction 0.6

INPUT DATA

1     (default value)
Graphite

Young’s modulus of fiber in transverse direction  (Etf) 23100  MPa

Properties unit
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6.1.2 Input “matrix” Properties For Orthotropic Lamina Calculations     

                                                          Table 6.2  Matrix Properties  

Matrix  =>

Coefficient of moisture expansion of matrix   (bm) 0.14 10-6/%M

Polymer 

Shear strength of matrix  (Xcm) 110  MPa

Properties unit
 MPa

 Poisson’s ratio of matrix in longitudinal direction (nltm) 0.36 −

Longitudinal thermal conductivity of matrix  (klm) 0.19

Young’s modulus of matrix in longitudinal direction (Elm) 4620

Tensile strength of matrix  (Xtm) 60  MPa

Compressive strength of matrix  (Xcm) 200  MPa

W/m0K

Density of matrix   (ρm) 1200 kg/m3

Transverse thermal conductivity of matrix   (ktm) 0.19

Longitudinal coefficient of thermal expansion   (αlm)

W/m0K

4.14E+01 10-6/ 0K
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6.1.3 Calculated Properties of Orthotropic “lamina” 
 
 
                                            Table 6.3 Calculated Properties Of Lamina 
 
                            

Fiber  =>
Matrix  =>
Lamina  => n =>

Coefficient of thermal expansion in direction 2   (α2)

Density of lamina   (ρ) 1560 kg/m3

Coefficient of thermal expansion in direction 3   (α3) 26.96 10-6/ 0K

26.96 10-6/ 0K

MOISTURE PROPERTIES OF LAMINA

Thermal conductivity of lamina in direction 3 (k3) 19.86 W/m0K

 Coefficient of thermal expansion in direction 1   (α1) 0.0686 10-6/ 0K

18 W/m0K

Compressive strength of lamina along direction 1 or x  (Xc) 1216.45  MPa

Compressive strength of lamina along direction 2 or y  (Yc)

 MPa

Poisson’s ratio of lamina in 1-3 plane  (n13) 0.26  MPa

Tensile strength of lamina along direction 1 or x  (Xt) 1368.5  MPa

Poisson’s ratio of lamina in 2-3 plane  (n23) 0.47  MPa

Axial Shear Modulus of lamina  (G12)

Transverse Young’s modulus of lamina (E3) 11152.9  MPa

Poisson’s ratio of lamina in 1-2 plane  (n12) 0.26  MPa

OUTPUT DATA

Transverse Young’s modulus of lamina (E2) 11152.9  MPa

Properties unit

Axial Young’s modulus of lamina (E1) 141678  MPa

Graphite
Polymer

Fiber volume fraction  => 0.6
Graphite/Polymer 1

3919.5  MPa

Transverse Shear Modulus of lamina  (G13) 3919.5  MPa

Transverse Shear Modulus of lamina  (G23) 3790.01  MPa

Tensile strength of lamina along direction 3 or z  (Zt) 51.473  MPa

Tensile strength of lamina along direction 2 or y  (Yt) 51.473  MPa

W/m0K

Shear strength of lamina in 1-2 plane  (S12) 94.438  MPa

Shear strength of lamina in 1-3 plane  (S13) 94.438  MPa

Thermal conductivity of lamina in direction 2 (k2) 19.86

Thermal conductivity of lamina in direction 1 (k1)

ELASTIC PROPERTIES OF LAMINA

STRENGTHS OF LAMINA

THERMAL PROPERTIES OF LAMINA
Shear strength of lamina in 2-3 plane (S23) 64.25  MPa

171.575  MPa

Compressive strength of lamina along direction 3 or z  (Zc) 171.575

Coefficient of moisture expansion of lamina in drec. 3 (b3) 0.246 10-6/%M

Coefficient of moisture expansion of lamina in drec. 1 (b1) 0.0059 10-6/%M

Coefficient of moisture expansion of lamina in drec. 2 (b2) 0.246 10-6/%M
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6.2 Results of Vibration Analysis 
 

Detailed discussion and mathematical modal [Arthur W. Leissa & Yoshihiro Narita(22)] for free-

vibration frequencies of symmetrically laminated, simply supported plates, cantilever  plates ,plates 

having all edges free  presented in chapter4. T 

he Rayleigh-Ritz method with algebraic polynomial displacement functions is used to solve the 

vibration problem. 

 
 
6.2.1 Input Material Properties for Composite Plates  
                                                          Mohamad S. Qatu[26] 
                   
                                                                    Table6.4 

Composite material E-glass/epoxy  (E/E) 

Axial Young’s modulus of lamina (E1) 98 Gpa 

Transverse Young’s modulus of lamina (E2) 7.9 Gpa 

Axial Shear Modulus of lamina  (G12) 5.16 Gpa 

Poisson’s ratio (ν) 0.28 
Dimensions a=304.8 mm, b=76.2 mm, 

h/ply 0.134 mm 
Density of lamina (ρ) 1520  kg/m3 
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6.2.2 Natural Frequencies for Cantilever Laminated Plates  
 
By Rayleigh-Ritz method (successive approximations approach to solve)  
 
                                  Rayleigh-Ritz method                                Experimental Results 
 
Mode 1                          11.1                                                            11.23 
Mode 2                          39.5                                                            42.47 
Mode 3                          69.4                                                            70.58 
Mode 4                          129.11                                                        130.62 
Mode 5                          193.93                                                        197.49 
Mode 6                          261.21                                                        262.13 
Mode 7                          379.92                                                        396.21 
Mode 8                          396.22                                                        401.37      
 
6.2.3 Natural Frequencies For Simply Supported Symmetrically Laminated Rectangular             
         Plates 
 
By Rayleigh-Ritz method (successive approximations approach to solve)  
 
                                 Rayleigh-Ritz method                                Experimental Results 
 
Mode 1                          138.85                                                          139.36 
Mode 2                          341.25                                                          343.67 
Mode 3                          403.56                                                          406.59 
Mode 4                          475.74                                                          479.23 
Mode 5                          631.19                                                          635.78 
Mode 6                          705.54                                                          711.33 
Mode 7                          799.28                                                          806.23 
Mode 8                          887.93                                                          896.96      
 
6.2.4 Natural Frequencies for laminated rectangular plates  having all edges free 
 
By Rayleigh-Ritz method  (successive approximations approach to solve)  
                                  
                                Rayleigh-Ritz method                                Experimental Results 
 
Mode 1                          60.12                                                            61.78 
Mode 2                          66.29                                                            68.91 
Mode 3                          151.29                                                          555.78 
Mode 4                          167.78                                                          171.90 
Mode 5                          269.23                                                          271.79 
Mode 6                          332.61                                                          335.89 
Mode 7                          433.91                                                          438.78 
Mode 8                          549.72                                                          551.17    
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6.2.5  Comparison the Results With ANSYS 10 
For cantilever laminated Plates 
MODE 1 

MODE 2 
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MODE3 
 

 
 
MODE4
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MODE5 

 
MODE6 
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MODE7 

 

MODE8 
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For Simply Supported Symmetrically Laminated Rectangular Plates 
MODE 1 

MODE 2 
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  MODE 3 

MODE 4 
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MODE 5 

 

MODE 6 
 

 

MODE 7 
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MODE 8 

Natural Frequencies For Laminated Rectangular Plates Having All Edges Free 
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MODE 1 
 

MODE 2 

 

MODE3 
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MODE4 

 

MODE5 
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MODE6 

 

MODE7 
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MODE8 

 
 

6.3 Results of Fatigue Analysis 
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Detailed discussion and  mathematical modal for prediction of fatigue behavior of composites using 

S-N curve approach. determination of residual strength at any no. of cycles (n) and any R and f. and 

determination of fatigue life at any R and f are been discussed in previous chapter. 

 
6.3.1 Input Experimental S – NCurves For Different Frequency (f) 
                                  Jayantha A. Epaarachchi, Philip D. Clausen.[31] 

 

Composite material                                                   Graphite/epoxy   

Laminate configuration                                             [0/90]8s (symmetric) 

                                                                                 and    

                                                                                 XT  = 425 Mpa 

 
                            Fig. 6.1 Experimental S – N curves for different frequency (f) 

 

Putting the values of the 3 points on the input S - N curve , σmax1 , σmax2 , σmax3 , Nf1 , Nf2 , Nf3  
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As we seen above for the same material with variation in data points α, β, γ remain same  

 

 

Lets take material parameters:              α =0.4133 

                                                             β = 0.1699 

                                                             γ = 1.6471 

 

 

 

 

 

 

 
6.3.2 Output  Maximum Stress (σmax) Vs  Fatigue Life (Nf)  

Data points 
(σmax (MPa),  Nf  )  

α β γ 

 (300, 221), ( 250, 2748) 
           (200, 49391) 

0.4133 0.1699 1.6471 

 (300,221), (270,100000) 
            (230, 1000) 

0.4215 0.1706 1.6624 

(216, 10000), (253, 1000)
 (200, 49391) 

0.4092 0.1644 1.6415 
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Keeping frequency (f) constant 10Hz  and Varying stress ratio (R)  

 

 
Fig. 6.2 Maximum Stress (σmax) Vs Fatigue Life (Nf) For  Frequency (f) 10Hz And Stress Ratio(R) 

0.1 

 

 
Fig. 6.3 Maximum stress (σmax) Vs Fatigue Life (Nf) for Frequency (f) 10Hz And  

            Stress ratio (R) 0.25 
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Fig. 6.4 Maximum Stress (σmax) Vs Fatigue Life (Nf) For Constant Frequency (f) 10Hz And  

            Stress Ratio(0.4) 

 

 

 
               

Fig. 6.5 Maximum Stress (σmax) Vs Fatigue Life (Nf) For Constant Frequency (f) 10Hz And  

            Stress Ratio(0.8) 

 

 

 6.3.3 Harmonic Analysis through ANSYS 10 
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 6.3.3(a)  Input Material Properties for Composite Plates  
                                                         Mohamad S. Qatu[26] 
 
 
                                                           Table 6.5 
             
Composite material E-glass/epoxy  (E/E) 

Axial Young’s modulus of lamina (E1) 98 Gpa 

Transverse Young’s modulus of lamina (E2) 7.9 Gpa 

Axial Shear Modulus of lamina  (G12) 5.16 Gpa 

Poisson’s ratio (ν) 0.28 
Dimensions a=304.8 mm, b=76.2 mm, 

h/ply 0.134 mm 
Density of lamina (ρ) 1520  kg/m3 

Load 100 N  

Frequency of loading 19 Hz 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.3(b )  Loads Acting Along Fiber Direction 
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                 Fig.6.6 When Loads With Frequency 19Hz Along The Fiber Direction  

Obtained values are 
Min. stress                        0.139*107   N/m2     
Max. stress                       0.579*107   N/m2 

 

 
                                    Fig.6.7 Maximum And  Minimum Stress Value 
Min. displacement                      0.303*10-8  m 
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Max. displacement                     0.439*10-5  m 
 

 
                                       Fig.6.8 Maximum And Minimum Displacemens Value 
 
           
6.3.3(c) Loads Acting Transverse To Fiber Direction 
 

 
.           Fig.  6.9 When Loads With Frequency 19Hz Transverse To Fiber Direction  
   Obtained values are 
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    Min. stress   77282   N/m2   ,      

    Max. stress   334757   N/m2 

 
                              Fig.6.10 Maximum And  Minimum Stress Value 
 

Min. displacement     0.122*10-8  m ,                              

Max. displacement      0.670*10-6  m 

 
                             Fig.6.11 Maximum And  Minimum Displacements 

CCHHAAPPTTEERR  77  
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CCOONNCCLLUUSSIIOONN  AANNDD  SSCCOOPPEE  FFOORR  FFUUTTUURREE  WWOORRKK  

 

Along with the advance of science and technology, composite materials including laminated 

composite plates have been widely used in various engineering field such as in aeronautic, 

astronautic ,auto- industries, submarine engineering ,nuclear technology ,and also for the fine 

construction such as circuit boards in electronic packages, thereby creating considerable interest in 

their analysis. In addition to their high strength / light weight, another important advantage of 

composite laminates is that structural properties can be tailored through changing the fiber angle 

and/or the number of plies .Various kinds of composite materials provides a wide range of selections 

for engineers. The need for more information on the behavior of laminated structural components, 

like plates, is clear. Rectangular plates are used in many engineering applications. 

 

Here we are using micromechanics to predict the various properties of orthotropic/transversely 

isotropic lamina which includes elastic properties, thermal properties, and strength. 

 

Many of the differential equations arising in science and engineering can be recast in the form of a 

matrix eigenvalue problem. Solution of this equation within the context of the Rayleigh-Ritz 

variation method may be viewed as one of the fundamental tasks of numerical analysis. Successive 

approximation approaches to the Rayleigh-Ritz problem seek to improve eigenvectors and 

eigenfunctions by sequentially refining a trial function. 

 

The fatigue behavior of composite materials is conventionally characterized by S - N curve or 

damage mechanisms. For every new material with a new lay-up, altered constituents or different 

processing procedure, a whole new set fatigue life tests has to be repeated. Here an analytical 

method is presented that includes the effect of stress ratio and load frequency for the prediction of 

fatigue life and residual strength of composite structures. 

 

 

 
 Future Work 
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• Inverse  microechanics for predicting fiber properties when orthotropic lamina properties are 

known. 

 

• Fatigue analysis using S-N curve of composite structure for transverse, bending, buckling 

type of mechanical loading  

 

• Determination vibration frequencies when laminated composite subjected to external forces. 

 
• Determination of fatigue life  in vibration environment itself . 
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